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Condition-based Maintenance for Wind Farms using
a Distributionally Robust Chance Constrained
Program

Heraldo Rozas, Weijun Xie, Nagi Gebraeel

Abstract—Operations and Maintenance (O&M) expenses ac-
count for up to 30% of the operating costs of wind farms.
Condition-based maintenance (CBM) strategies, which incorpo-
rate predictive analytics into maintenance optimization, have
been proven to be effective in reducing O&M costs in wind
farms. Existing predictive CBM strategies for wind farms rely on
the assumption that predictive analytics can accurately estimate
the remaining lifetime distribution (RLD) of wind turbines,
allowing for the direct implementation of stochastic programming
or threshold-based policies. However, estimated RLDs can be
inaccurate due to noisy sensors or limited training data. To
address this issue, this paper develops a CBM strategy for wind
farms that uses a Distributionally Robust Chance Constrained
(DRCC) optimization model. Our formulation acknowledges
that estimated distributions may be inaccurate and so seeks
solutions that are robust against distribution perturbations within
a Wasserstein ambiguity set. We show that the proposed DRCC
optimization problem can be exactly reformulated as an integer
linear program. We derive methods to strengthen the Big-M
values of this reformulation, thereby enabling the DRCC model
to be efficiently solved by off-the-shelf optimization software.
The proposed strategy is validated through computational studies
using real-world and synthetic degradation data, outperforming
stochastic programming and robust optimization benchmark
models.

Index Terms—Wind Turbines, Distributionally Robust Chance
Constrained Optimization, Condition-based Maintenance, Con-
dition Monitoring, Prognostics.

NOMENCLATURE

Abbreviations

CM  Condition monitoring.

CBM Condition-based maintenance.

DR Distributionally robust.

DRCC Distributionally robust chance constrained.
DRO Distributionally robust optimization.
1P Integer programming.

MILP Mixed integer linear programming.
O&M Operations and Maintenance.

RLD Remaining lifetime distribution.
SAA  Sample average approximation.

WF  Wind farm.

WT  Wind turbine.
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Sets
J Set of wind turbines.
T Set of maintenance epochs.

N Set of samples.

PW(5) Wasserstein ambiguity set with radius J.

X Feasible set of decision variables.

D Feasible set of decision variables determined by the
deterministic constraints.

Decision variables

Tt x;¢ = 1 if wind turbine j undergoes maintenance at
time .
2t z¢ = 1 if maintenance crew is deployed in the wind

farm at time ¢.
X Vector of all decision variables.
Random variables and distributions

w;j Random variable representing the remaining life-
R time of wind turbine j.
Q Random vector representing the remaining lifetimes

of all wind turbines under study.
RLD; Remaining lifetime distribution of wind turbine j.

ﬁﬁ)j Estimated remaining lifetime distribution of wind

turbine j.
Parameters
J Total number of wind turbines.
N Total number of samples.
cPr Preventive maintenance cost.
c° Corrective maintenance cost.
c’ Deployment cost of the maintenance crew.
Dt Expected revenue of wind turbine at time .
K, Capacity of the maintenance crew at time ¢.

7™ Length of the planning horizon.

AvPd - Length of the freeze period.

Py Threshold on the maximum unavailability of wind
turbine j.

At Threshold on the maximum number of unavailable
wind turbines at time ¢.

y Threshold on the maximum number of wind turbine
failures.

€ Confidence level of the first chance constraint.

Q@ Confidence level of the second chance constraint.

15} Confidence level of the third chance constraint.

6 Radius of the Wasserstein ambiguity set.

w;- Remaining lifetime sample 7 of wind turbine j.

Q; Remaining lifetime vector sample ¢ of all wind
turbines under study.

o Empirical standard deviation of {w}}icn.
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I. INTRODUCTION

Wind power generation has been growing steadily in the
United States, constituting 30% of total capacity additions
over the last decade [1]. Reliable power generation from wind
farms (WFs) relies heavily on the Operations and Maintenance
(O&M) strategies. It is estimated that O&M activities account
for up to 30% of the running costs of WF operations [2], [3].
Therefore, enhancing maintenance and repair operations can
significantly impact the bottom-line profits of WFs. This need
has driven extensive research into optimization strategies for
WF O&M, as discussed in several survey papers [2]-[4].

One of the key challenges in optimizing WF O&M is
the uncertainty that exists around the lifetime distribution
of wind turbines (WTs). This uncertainty poses a significant
challenge for stakeholders who are responsible for managing
the O&M of WFs, as it can impact the overall efficiency and
profitability of the operation. The impact of uncertainty on the
remaining lifetime of WTs and their maintenance schedules is
a critical factor that is frequently overlooked in the planning
and operational phases of WFs. While some studies may
assume that the remaining lifetime of WTs has been accurately
estimated [5] or that maintenance windows are predetermined
[6]-[9], this approach can lead to underestimation of the true
scope of uncertainty involved. In reality, a significant body
of research acknowledges the importance of considering the
uncertainty in WT lifetimes due to its substantial effect on
maintenance costs and the overall reliability of WFs.

One of the common approaches to dealing with lifetime un-
certainty when optimizing maintenance schedules for WTs is
by using reliability models. These models make use of histori-
cal data on failure times to fit standard reliability distributions,
such as the Weibull distribution, which help to describe the
uncertainty surrounding the failure times of WTs [10], [11].
Fitted distributions can then be integrated into the optimization
problem to calculate appropriate maintenance schedules. These
optimization problems seek to minimize maintenance costs.
They are often framed as reliability/age threshold policies,
wherein maintenance actions are performed when the WT
reliability/age surpasses a predetermined threshold [12]-[20].
Previous reliability-driven formulations have explored vari-
ous maintenance strategies, including preventive maintenance
(conducted before failure), corrective maintenance (conducted
after failure), and opportunistic maintenance [12], [17]-[19].
Opportunistic maintenance involves grouping maintenance
tasks for WT components based on economic convenience,
such as aligning with already scheduled maintenance tasks
or favorable weather conditions [21]. Additional operational
aspects of reliability-based WT maintenance optimization in-
clude spare parts management [18], [22] and maintenance crew
routing [23].

In contrast, condition-based maintenance (CBM) leverages
condition monitoring (CM) data to optimize maintenance
schedules, adapting maintenance decisions to the observed
degradation of WTs [24]. CBM has received significant atten-
tion for its potential to reduce the operational costs of WFs and
has been investigated using two different approaches: the state-
based approach and the predictive analytics-based approach.

The state-based approach assumes that the current degrada-
tion state of the WT can be estimated/observed using CM
technology. The collected information can be used to compute
efficient maintenance schedules that better reflect the state of
the WT relative to the reliability-based approach discussed
earlier. For example, in [25], [26], the authors developed a par-
tially observed Markov decision process (POMDP) to compute
WT maintenance schedules. Their model considers seasonal
weather variations and assumes that the exact degradation
states of the WTs can be observed by paying an observation
cost. In [27], the authors modeled the degradation of WTs
using a continuous-time Markov chain with discrete states,
which can be estimated by either visual or remote inspec-
tions. The inspection policy was optimized using Monte Carlo
simulation. State-based approaches, like the ones discussed,
utilized sensor data to estimate the current WT degradation
state. However, they did not predict its future evolution.

On the other hand, predictive analytics approaches rely
on prognostic models that use sensor data to estimate the
remaining lifetime distributions (RLDs) of WTs. They focus
on predicting the future degradation state of the WT. Estimated
RLDs generally exhibit lower levels of uncertainty compared
to reliability models, primarily because RLD predictions are
based on actual degradation signals gathered from operational
WTs. These observed signals provide a more concrete basis
for estimation, thus reducing the uncertainty compared to
estimates based on historical lifetime data. By incorporating
these estimated RLDs into optimization modules, it is possible
to devise more efficient maintenance schedules for WTs.

Advances in predictive analytic models for WTs have been
notable during the last decades, as surveyed in the following
review papers [28]-[31]. However, few works have tackled
the integration of predictive analytics and optimization within
a single framework that aims to compute the maintenance
schedule of WTs. These frameworks can be classified into
two categories: threshold-based policies and stochastic pro-
gramming models. In threshold-based policies such as those
found in [32]-[37] aim to construct maintenance policies
that are based on a set of decision parameters, such as
intervals between repairs or signal thresholds. They evaluate
the expected performance of the policy for different decision
parameters using numerical methods built with the RLDs
estimated by prognostic models. The optimal maintenance
policy is determined by selecting the parameters that provide
the best expected performance (e.g., minimum maintenance
cost or maximum revenue). Stochastic programming models
such as [38]-[44] focus on formulating stochastic mixed
integer linear programs to minimize the expected maintenance
cost or maximize the expected total revenue while satisfying
operational constraints. The stochasticity of the optimization
model is driven by the RLDs that are estimated using a prog-
nostic model. Some authors [40], [41], [43] include chance
constraints to restrict the probability of undesired events, such
as a large number of simultaneous unavailable generators or
WTs.

The direct integration of estimated RLDs into decision
frameworks, as demonstrated by the previous works, relies on
the underlying assumption that the estimated RLDs accurately
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represent the “true” RLDs. In other words, these works assume
that the prognostic model generates accurate predictions. Un-
fortunately, this assumption often does not hold true in practice
due to multiple factors, including noisy sensors or sparsity
of (historical) training data. In these scenarios, there is no
guarantee of how well these models will perform [24].

This paper addresses this problem by proposing and de-
veloping a CBM model for WFs that is based on a Distribu-
tionally Robust Chance Constrained (DRCC) formulation. Our
model focuses on the uncertainty of estimating the remaining
lifetimes of WTs. We utilize a prognostic model that utilizes
real-time sensor measurements to update the RLDs in real-
time. Consequently, we implement our optimization model in
a rolling horizon fashion to adapt its decisions to the latest
degradation states of the individual WTs. Our proposed DRCC
formulation acknowledges that the estimated RLDs can be
inaccurate. It, therefore, seeks optimal robust solutions against
perturbations of the RLD within a Wasserstein ambiguity set.
Our formulation aims to optimize maintenance schedules in
the presence of inaccurate prognostic results. Our objective
function aims to minimize expected maintenance costs, ac-
counting for the trade-off between early and late repairs. Our
model encourages opportunistic repairs by incorporating the
deployment cost of the maintenance crew into our objective
function. This serves as an incentive to group maintenance
activities whenever it is economically convenient. Our for-
mulation also includes operational contract requirements by
incorporating Distributionally Robust (DR) chance constraints.
Specifically, we formulate and implement three different DR
chance constraints. The first constraint aims to limit the
unavailability of WTs. The second is designed to ensure that
the power generation commitments are satisfied. The third
constraint restricts the number of corrective repairs (result-
ing from unexpected failures). We show that the proposed
DRCC optimization problem can be exactly reformulated as
an integer program that can be solved efficiently using off-
the-shelf solvers. In summary, the contributions of this paper
are threefold:

« We develop a CBM optimization model for WFs that is
based on a DRCC formulation. Our model aims to minimize
expected maintenance costs while incorporating operational
and reliability requirements. We utilize a contemporary
prognostic model that utilizes real-time degradation-based
sensor data to predict and continuously update RLDs of
WTs. Unlike existing models, we account for potential
estimation errors and uncertainty in the predicted RLDs
of individual WTs due to noise and/or sparsity of the
training data. We propose a CBM model that relies on a
DR formulation where the predicted RLDs are utilized to
construct a Wasserstein ambiguity set that models potential
perturbations of the estimated distribution. To the best of
our knowledge, this type of formulation is the first of its
kind in WF maintenance literature.

« We formulate three data-driven DR chance constraints that
aim to limit the probability associated with extended un-
availability of WTs, not meeting power demand, and having
a large number of unexpected failures. The simultaneous im-

plementation of these three DR chance constraints is unique
to this work and can be helpful for operators to verify that
the computed maintenance schedules satisfy reliability and
operational contract requirements. Such verification cannot
be achieved if we solely focus on minimizing expected
maintenance costs, which is often the case in the existing
literature.

« We derive an exact integer programming (IP) reformulation
for the proposed DRCC maintenance optimization problem
by exploiting specific structural properties of our problem.
We provide closed-form expressions to compute the param-
eters of the resulting IP reformulation. Furthermore, we de-
velop a methodology to strengthen the Big-M parameters of
the reformulation, enabling efficient solving of the model by
off-the-shelf optimization software. The performance of the
proposed DRCC formulation is evaluated through simulation
studies built with real-world and synthetic degradation data.
The proposed DR formulation shows results superior to the
benchmark models based on stochastic programming and
robust optimization, especially when dealing with inaccurate
prognostic results.

The remainder of this paper is organized as follows. Section II

presents the problem setting. Section III details the proposed

DRCC formulation and the corresponding IP reformulation.

Section IV discusses the results obtained in the computational

studies. Finally, Section V provides the final remarks and

future research directions of this work.

II. PROBLEM SETTING

We consider a fleet of WTs indexed by j € J = {1, ..., J}.
We assume that these WTs are monitored by sensors and that
the collected CM data can be used to predict the remaining
operational life of the WT. The remaining lifetime of the j—th
WT is defined as a non-negative random variable, denoted
as ;. We denote Q = [&1,...,00y] as a random vector
representing the remaining lifetimes for all WTs. Note that
WTs are assumed to be independent. We consider a setting
where a prognostic model is used to analyze (streaming) CM
data to predict (and update) the RLD of the WT. The resulting
distribution is denoted as LD ; and corresponds to a data-
driven estimate of the ground truth distribution, RLD ;, which
governs the uncertainty of the component remaining lifetime
wj.

JAS we noted earlier, only a handful of works have truly inte-
grated RLD predictions within their maintenance optimization
models, such as [32], [34], [35], [39]-[44]. However, they all
assumed that the predicted RLDs are accurate. In practice,
this is not entirely true. Prognostic models leverage noisy
data to predict RLDs. Additionally, many prognostic models
are estimated using historical data that is often sparse and
fragmented. Consequently, the prognostic model being used
and the resulting remaining life estimates are likely going to
be inaccurate. Due to this uncertainty, optimization models that
use methods such as stochastic programming and simulation-
based approaches cannot guarantee good performance in these
settings.

To address these challenges, we propose a DRCC formu-
lation that seeks optimal solutions that are robust against



https://ieeexplore.ieee.org/abstract/document/10540191 [Accepted version]

distribution perturbations within a Wasserstein ambiguity set.
Another attractive feature of our model is that it is not bound to
a particular prognostic modeling methodology. In other words,
any prognostic modeling approach that predicts RLDs can
be easily integrated with our CBM optimization model. Our
formulation assumes that (1) each WT needs a single repair
within the planning horizon; (2) if a WT has been repaired
within the planning horizon, it cannot fail within the remaining
periods of the same planning horizon; (3) power demand,
power generation, and energy price are assumed to be known;
and (4) a WT can be inactive due to two reasons only, failure
or ongoing maintenance.

The implementation of the proposed maintenance strategy
with its different building blocks is summarized in Figure 1.
Sensor data collectei_@m WTs are processed by a prognostic
model to estimate RLD;, j € J. These estimated RLDs are
then integrated into the proposed DRCC formulation, which
is presented in the next section, to compute the maintenance
of WTs.

Maintenance schedule

| DRCC optimization model ( Section III ) |

| Prognostic model ( e.g. [49],[51] )

f t

l Sensor data

f f

A
N
n

Wind ,i\ .. ,i\
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1

Fig. 1: Proposed maintenance strategy.

III. A DISTRIBUTIONALLY ROBUST CHANCE
CONSTRAINED FORMULATION

The first step toward building our DRCC formulation is to
define the type of distribution perturbation allowed within the
optimization framework. This is modeled by the ambiguity set
presented in the following section.

A. Ambiguity Set

The uncertainty of the CBM optimization model lies in the
remaining lifetime of the J WTs, which can be represented
as a vector of non-negative independent random variables de-
noted as Q = [@1, ..., ). The distribution of &; is unknown,
tEt\it can be estimated using a prognostic model, resulting in
RLD;. By assuming the independence of w; for all j € 7,
we can estimate the joint distribution of Q) and denote it as
RLD.

Next, we construct an empirical distribution of Q by gen-
erating N independent samples of RLD. These samples are
indexed by s € N =1,..., N, and the i-th sample is denoted
as Q; = [wi,...,wy], where each w} is drawn from RLD);.

Since the age of WTs can vary significantly, there might
be substantial differences in the range of random variables
representing the remaining lifetime of each WT. To standardize
this variability, we define a normalized sample of remaining
lifetimes as Q; = W'}, ...,w'}], where W' = wi/oj, and o;
is the empirical standard deviation of {w} };ex. The empirical
distribution based on the normalized set of samples {Q;}ze N
is given by

~ ~ 1 ~/ ’
Ba(@) = & Y10 = 0,
ieN
where I(z) is the indicator function. Our approach uses the
oo—Wasserstein ambiguity set [45] defined as:

PW(5) = {]P’ €P(E): Wa (JP, EDN) < 5} W

where the co—Wasserstein distance is given by:
Woo (P1,P3) :i%f{ess.supﬂﬁll —:

Q is a joint distribution of Q/l and Q; }

with marginals P; and Ps, respectively [’
P(E) represents the set of all distributions with support = =
supp(Q'). Therefore, P" (§) represents the set of distributions
within = whose co—Wasserstein distance from the empirical
distribution ]fDN is less than or equal to 6 > 0. This set can
be visualized as a Wasserstein ball centered at I@’N with a
radius of d. The hyper-parameter § > O controls the size of
the ambiguity set and determines the level of confidence in
the prognostic model used to predict the RLDs. A smaller §
indicates a higher confidence level in the prognostic results,
while a larger § implies a lower confidence level. The adoption
of a Wasserstein ambiguity set is driven by two practical
reasons: i) it allows us to restrict the shape of the distribution
perturbations for general empirical baseline distributions, and
ii) it enables us to derive tractable reformulations that can
be solved directly with off-the-shelf optimization software.
These two reasons are common criteria for selecting ambiguity
sets in distributionally robust optimization (DRO) applications
[46]. For the derivations of the next section, we will use
the maximum norm that is defined and denoted as follows:
lv]|= max;ep,... qlvil, v e R4,

B. Decision Variables and Objective Function

This section discusses the decision variables and the objec-
tive function of our formulation. Let 7 = {1,2,..., 7"} be
the set of maintenance epochs and 7 be the set of WTs. We
introduce the binary decision variable xj;, where z;; = 1 if
WT j € J is scheduled to be repaired at time ¢t € 7. We also
define a binary decision variable z;, t € T, where z; = 1 if
the maintenance crew visits the WF at time ¢. This decision
variable is used to capture the deployment or setup cost of
the maintenance crew. This cost is similar to the cost used by
[39] to encourage opportunistic repairs. Opportunistic repairs
are very attractive when the cost of allocating and deploying
maintenance resources is high.

Our objective is to minimize the total maintenance costs. To
this end, we propose the cost function expressed in (2), where
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X is a vector that contains all decision variables. The cost
function is divided into three parts. The first part represents a
preventive maintenance cost incurred when WT j is repaired at
time ¢ prior to failure (i.e., w; > t). This cost consists of a fixed
repair cost c¢’” plus a variable opportunity cost Z,L:;jtjfl Dk
that is used to account for the lost production due to the
early repair. Note that this is a sunk cost that becomes higher
when WTs are maintained prematurely, i.e., their remaining
lifetimes are significant. The second component is a corrective
maintenance cost incurred at time ¢ when WT j is repaired
after failure, i.e., w; < ¢. This cost also consists of a fixed
repair cost c“® (where ¢ > cP") plus the variable opportunity
cost 22;1@7 | Pk which again captures the lost production.
The third cost component is the setup cost. It is used to
capture the deployment cost, c¥, of the maintenance crew.
As mentioned earlier, this cost is critical to encouraging
opportunistic maintenance by grouping the repair operations
of multiple WTs at the same maintenance event. This cost
attempts to balance the previous two costs components with
respect to the cost of deploying the crew to a given WF [39].

It is worth mentioning that our model does not schedule
maintenance upon the failure of individual WTs. Instead, it
seeks to compute a maintenance schedule that balances be-
tween early and late repairs for the entire fleet of WTs, taking
into account penalties associated with generation loss and
setup costs. Consequently, the model may postpone the repair
of a failed WT to align it with the repair of other degraded
WTs when such alignment is more economically convenient.
The model incorporates specific DR chance constraints to
ensure that the unavailability of WTs (i.e., postponing the
repair of failed WTs) does not compromise the operational
requirements of the WF-these constraints are discussed later
in Section III-D.

(i) Preventive Maintenance Cost

[@j]-1

X, =>">" S o+ | K@y >t} et
JETtET k=t
(i) Corrective Maintenance Cost
t—1 (@3]
S0l 1D TR FENE) P
JETtET k=|®; ]
(iii) Setup Cost
—
S
teT
Note that f(X, Q) can be rewritten as follows:
=2 ¢t ), ) aldgt) -y
teT JET teT
where a(wj,t) = ( ,Ei@klpk + cpr) Ko, > t} +

(Shlay) e+ ) ey <1
Note that the cost function f(X,) is stochastic due to its

dependence on Q. Our goal is to solve the following DRO
problem:

. 5
in {Peiuvyw)E [f(X ,Q)]} , 3)

where X C RIX| corresponds to the feasible region of X
determined by the operational constraints explained later.

We now focus on deriving a tractable expression for
suppepw (5) B [f(X, Q)]. To this end, we notice that (3) can
be simplified using the fact that ), - c”- 2; is a deterministic
cost. This results in the following equation:

ZCU'ZH‘

sup E°[f(X, Q)] =

PePW (§) teT
“)
sup EF|> > al@;t)-a;
PePW (§) jeTteT

Before detailing our derivations, we present two results in
Preposition 1 and 2 adapted from [47] and [45], respectively.
These results are stated in terms of the notation used in our
model.

Proposition 1. (Adapted from _Proposition 3in [47]) Consider
a real-valued function r(X, Q' ) dependent on the vector of
decision variables X and the random vector ). Then,

i (x,0)
min-<§ — su T
Xex|N Z 5P ’

ieN |9 —Q; <8

min sup E" [r(X, Qb=
Xex {Pepw(s) I )}}
Proposition 2. (Adapted from Proposmon 3in [45]) Consider
a real-valued function r(X, Q ) dependent on the vector of
decision variables X and the random vector ). Then,

inf IP’{QI : r(X,STZI) < 0} =

PePW (§)
— Z mf

i (r(X,Q’) < 0) .
e —Ql<s

Now, we proceed to derive a tractable expression of the
supremum on the right-hand side of (4). This result is pre-
sented by Proposition 3.

Proposition 3. If Y, x;; = 1 for any j € J, then

sup EF ZZ a(@;,t)

PePW(5) jeTteT

* Tt :E E %‘t'Ijt,

JET tET

where {ji}c ;o are constant values that can be pre-
computed from the set of samples {Q;}icn.

Proof. Using Proposition 1, we obtain the expression in (5a).
Since we are using the maximum norm, we can compute the
supremum of each WT individually as shown in equation (5b).
Since we assume that a WT undergoes only one maintenance
event within the planning horizon, then for », -z = 1,
we have only one x;; = 1. Thus, the supremum evaluated at
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time ¢ can be expressed by equation (5c). By rearranging the
order of the summation, we arrive at expression (5d).

sup EF ZZ a(@j,t) - xj

PEPW (9) JETtET
1
=¥ Z . sup. Z Za(wj,t) - Tt (5a)
ieN Q=<6 \ jeg teT
— Z Z sup <Z a(wj,t) - a?jt> (5b)
zeNjeJ“’J lwj —wj|<d-05 \zeT
zzz( ) R
ZENJEJ teT \Wit ‘wJ*w [<d-0;
1
DO ol € o ) I
JETteET iEN witlws —wj| <80,
Now define v;;; as follows:
Yije = sup (a(wj, 1)) =
wj|w;j —w;|§5-0j
[w; -1 -1
max Z i+ " maxz Pk + ¢ (6)
max k=t ; k=lw;]
st. w; >t st. 0 Sw; <t
wj —wj< 605 |wj —wi< 30y
As pi > 0, (6) can be further simplified as follows:
oy
Vijt :max{ Z pr + " -H(w§+6-aj >t),
k=t
(7N

t—1
S e

k=O7in
where ©71** = |min{w} - 0; — 1,7™*"}| and O} =
Lmax{w —d§-0;,1}]. The proof is completed by setting v;; =
N > ien Yije» which is a constant that can be pre-computed
from the set of samples {;};cn

O

Remark 1. Notice that 1);;; defined in (7) depends on the
parameter p;, which represents the expected revenue generated
by a WT at time t and is assumed to be known. In practice, p; is
a random variable due to its dependence on the power gener-
ation and energy price. The parameter p, could be included as
a random variable in the proposed DRO maintenance strategy.
Doing that would require maximizing 1);;; with respect to py,
which is not difficult because 1);;; is increasing with respect
to pi. However, analyzing the uncertainty of p; is out of the
scope of this paper and will be investigated in future works.

As our formulation assumes just one repair for each WT
within the planning, the assumption of Proposition 3 is sat-
isfied. Therefore, we can invoke Proposition 3 to show that
our optimization problem expressed in (3) reduces to the

expression below, which corresponds to a linear objective
function minimized over X.

ZC Zt+zzwjt Zjt ¢ - ®)

JET teT

min

Xex

The subsequent subsections present the constraints used
to describe feasible region X. We will discuss a set of
deterministic constraints concerning the number of repairs in
the planning horizon and the available capacity of the crew.
We will also introduce three different DR chance constraints:
the first concerns the unavailability of the WTs, the second
concerns demand fulfillment, and the third concerns the num-
ber of corrective repairs (resulting from unexpected failures).

C. Deterministic Constraints

We introduce two deterministic constraints modeling some
conditions imposed on the maintenance schedule. The feasible
region created by these constraints is denoted as D.

Constraint (9) states that any WT needs exactly one repair
within the planning horizon.

ijt = 17

teT

jeJ. 9)

Constraint (10) models the deployment of the maintenance
crew to conduct maintenance activities in the WFE. Specifically,
two conditions are captured by this constraint: (1) maintenance
tasks can be scheduled at time ¢ only if the maintenance crew
visits the WF at time ¢, and (2) the total number of repairs
scheduled at time ¢ cannot exceed the maximum working
capacity of the maintenance crew.

Zl‘jt Szt'Kt, tET
JjET

(10)

D. Distributionally Robust Chance Constraints

In addition to deterministic constraints, our formulation
includes DR chance constraints to model operational contract
requirements associated with reliability indicators and meeting
power demand. Upon initial examination,the resulting DRCC
sets may seem to be intractable because their construction
requires computing infpepw 5y P(-). We will show that the
proposed DRCC sets indeed admit IP reformulations.

1) Limiting the Unavailability of Wind Turbines: We re-
strict the total number of unavailable time units within the
planning horizon for every WT. This is enforced by the
following DRCC set:

le{XeD: inf IP’{Q:
PePW (§)

Dolt—@ls < Pj}

teT
Proposition 4. The set Z, admits an IP representation with

following structure:

Zli{XGDZIjtSUﬁ, jej,tET}, (11)
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where {u;}jc 7, 1T are binary constant parameters that can
be pre-computed using {0 }icn-

Proof. Using Proposition 2, we obtain that for a given j € J:

1 .
le{X S D: N Z mf I |:Z[t — Wj]+$jt S pj:|

ien wiilwjmwISéoy | for
2 1-— €5, .] S \7}

Since we assume that a WT undergoes only one maintenance
event within the planning horizon, i.e., EtET T = 1, we
have only one x;; = 1. Let X € D such that z;; = 1. It
follows that X € Z; if and only if (12) is satisfied.
1 .
= inf I{t—wly
Jen witlwi—w| <80,

S p]} Z 1-— €;. (12)

Next, we can define u;; as follows:

1
ujp =1|— inf I{[t —wjl+ <pj} >1—¢
’ |:N zezj\/'wj Jwj—wi|<d-0; ’ ’ ’

=1 [N Z {t—max (Wi —38-0;,0)]+ Sp]} >1—€j:| ,
iEN
Note that u,; is a parameter that can be pre-computed using
{Q;}icar. We also note that xj; belongs to Z; if and only if
2+ < uj;, which means that (11) provides an alternative exact
representation of Z;. This completes the proof.
O

2) Satisfying Demand: Satisfying demand is a critical op-
erational requirement. We assume that the expected power
demand d; > 0, t € 7T and the expected generation
gt > 0, t € T are known quantities. To meet demand at time
t, we need at least n,, operational WTs, where n, must satisfy
no-g: > di. As n, is a non-negative integer, the latter condition

is equivalent to n, > | =t |. Therefore, the maximum number

of inactive WTs A, at time ¢ must satisfy J—X\; = n, > {%—‘ :

In other words, \; = J — [%W ,teT.

A WT j can be inactive for one of two reasons either it
has failed and has not yet been repaired or it is currently
under maintenance. Thus, we can say that a WT is inactive if
(1 - ZZZI zjt> -I(w; <t)+ ;s = 1. Using this formalism,
meeting demand condition can be enforced by the following
DRCC set:

Zg—{XGD: inf P{Q;
PeEPW (5)

t
Z <1—ijt> (@, §t)+xjt§)\t} >1—aq, teT}.
jeET k=1

Proposition 5. Set Z, admits an IP representation with
following structure:

szeNyzt>1 a, teT
Zo = XeD: Z]EJ ( Zk 1 xjk) Gije + Tji < , (13)
M4+ Mi(1—yu), i€N, teT

yie € {0,1}, i e N, t €T

where {¢iji}tien, je, teT are binary constants that can be
pre-computed using {0 }icnr-
Proof. Using Proposition 2, we obtain the following equality:

1
Zg:{XGD:—Z inf |
N R 9 -all<s

> <<1— ZM) (wj <t)+xﬁ> g&} > 1—a, teT}.

je€ET

Using the fact that the indicator function is monotonous, we
derive the following expression:

inf I Z((l—Zka> wj<t)+z7,>§)\t =
Qe —aji<s | jer

I max Z 1—Z'EJk I(w; < t) + x4 <At p-
Qo' —aji<s | jer

14

Since we are using the maximum norm, the indicator function
of the right-hand side of (14) can be simplified as follows:

_H{Z ((1iI1k> : max {H(% <t)}+$n> <>\t} (152)
JjeT k=1 wjilwj—wil<8e
—H{Z ((172%0 (max{w! — 5 - aJ,0}<t)+th></\t} (15b)

Ji€T

AR (5] o))

where (15a) follows from the fact that the inner max() is
separable in terms of j due to the maximum norm, (15b) holds
due to the monotony of indicator function, and (15c) holds by
the definition of ¢;;;, where ¢;;; = I(max{w} — 4 - 0,0} <
t), i€ N, je J, te T.Combining the previous results,
we conclude that Z5 admits an IP representation with the
following structure:

(15¢)

Nzye/\/yzt l—a, teT
Z2: XED'EJEJ (2 _Zk:1xjé) ¢z]t+$3t§ (16)
A+ M1 —wyir), i€N,teT

yie €{0,1}, ie N, teT

where {¢i;i}ienr, jes, te are binary constants that can be
pre-computed using {€2;}icnr-
O

Notice that in (16) we can easily find naive Big-M values by
defining M2 = J— X\, i € N, j € J, t € T. This definition
1-— ZZ:I a:jk> . ¢ijt + Jijt> < J.
Remark 2. Note that )\ in (16) represents the maximum num-
ber of unavailable WTs while still satisfying power demand
at time t. In practice, \; can be a random variable due to
its dependence on power demand d; and power generation g;.
Our model can accommodate these uncertainties, necessitating
the minimization of Ay with respect to d; and p; due to the
monotonicity of the indicator operator in (14). WTs may have
different production profiles due to their distinct geographic
position within the WF. To model this, it would be necessary
to analyze g;1,j € J and redefine Zy accounting for the
different production profiles of each available WT. These two
extensions will investigated in future works.

is valid because ., ;
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3) Limiting the Number of Failures: We restrict the total
number of corrective repairs within the planning horizon. To
do this, we define the following DRCC set:

2y = {X €D: PE;}@@)P{Q P D W@ <) -

JETtET

gv}zlﬂ} (17)

Proposition 6. Set Z3 admits an IP representation with
following structure:

jeg 2aet Mgt " Tjt <
'Y‘i’Mf(l*’wl), ZGN ’
w; € {0,1}, i1 €N

X eD:

Z3 = (18)

where {n;ji}ien, jes, teT are binary constants that can be
pre-computed using {Q; }ien.

Proof. The proof follows identical arguments to the proof of
Proposition 5.
O

Notice that in (18), we can easily find a naive Big-M value
by setting M? = J—+, i € N. This definition is valid because

Zjej Zte”]‘nijt cxj < J, 1€ N.

Corollary 1. The proposed DRCC formulation in (3) can be
reformulated exactly as a linear integer program.

Proof. We note that the feasible region of the proposed DRCC
program presented in (3) can be written as X = Z; N 23N Z3.
Thus, using Prepositions 3, 4, 5, and 6, we conclude that X
admits an exact IP representation.

O

E. Big-M Coefficients Strengthening

We have shown that Z5 and Z3 admit an IP representation,
adopting the following common structure:

ca' Tz < b+ M1 —2),i €Ny,
Zi 6{071}, 1eN

Z=<xe€{0,1}"=

where a'’ € Z" and b° € Z are non-negative sample-
dependant parameters. Such sets represent a particular case
of a finite scenario approximation of the chance-constrained
binary packing problem investigated by [48]. Thus, we can
utilize some of the results presented in [48] to strengthen the
Big-M values used to represent Z, and Z3. This leads to better
relaxation, which speeds up the running times.

Specifically, we strengthen M* using Algorithm 1. The max-
imization problem (20) of Line 2 corresponds to a continuous
knapsack linear program, which can be solved by a simple
sorting procedure — greedy algorithm. Algorithm 1 can be used

to compute Big-M values for Z, and Z3. For Z3, Algorithm
1 can be further improved by modifying Line 2 as follows:

max ez Yo Mgt Tit =
St D ieg Duper Mt Tjt <Y
ZteTfﬂjt <1l,jeJg
x € 1[0,1]

We include the constraint ZteT zjy < 1, for each j € J.
By doing this, we remove all infeasible solutions, such that
for a given j € F, x;; = 1 for more than one ¢ € T, which
are infeasible to our original optimization problem. As (19)
includes more constraints than (20), it follows that the optimal
value of (19) is smaller or equal to the optimal value of (20).
Consequently, this modified algorithm may find lower Big-M
values.

Next, we show that (19) can be solved by a simple ordering
procedure in Proposition 7.

pi(i) = 19)

Proposition 7. The optimization problem presented in (19)
can be solved by a simple ordering procedure.

Proof. See Appendix A.

Algorithm 1 Big-M Coefficients Strengthening [48]
1: for i € N do

0i(i') ;== max{a’ Tz —b:a’ Tz < b,z €0,1]"} (20)

2: Sort {¢;(i")}irear in a non-decreasing order:
pi(01) S pi(02) <. < pi(on)
3 M* = @i(o|N.pj+1)

IV. COMPUTATIONAL STUDIES

We now discuss a computational study aimed at evaluating
the performance of our optimization model. We present two
case studies. In the first case study, we use real-world vibration
monitoring data from a rotating machinery test rig to represent
the degradation of a critical component in the WT. In the sec-
ond case study, we use a simulation (bootstrapping) framework
inspired by the same data obtained from the rotating machinery
test rig to help evaluate the performance of our optimization
model under various settings of data availability (and sparsity).

A. Computational Study with Real-world Degradation Signals

This case study was performed using a publicly available
real-world vibration monitoring dataset obtained by perform-
ing accelerated degradation tests on rolling element bearings
from an “as-good-as-new” state until failure. The actual test rig
used to acquire the data has been described in detail in [49].
Note that bearings are a critical component of any WTs and
are typically one of the key components that are continuously
being monitored using vibration sensors. Hereafter, we will use
the term degradation signal to refer to the vibration monitoring
data, which evolves from the “as-good-as-new” state until the
point of failure of the bearing. Bearings are assumed to have
failed once their degradation signals cross a predefined failure
threshold defined using ISO standards for vibration monitoring
of industrial machinery [50].
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1) Prognostics Modeling: We let S™ = {5(0), ..., S(tm)}
denote the m!" degradation signal, where S(t) represents the
amplitude of the degradation signal observed at time ¢ We
assume that a set of historical degradation signals (hereinafter
referred to as training data) S™" = {S', 52, ...} is available
and can be used to estimate the parameters of the prognostic
model. In this study, we consider 16 degradation signals that
were split in half, 8 degradation signals used for training
(estimating the parameters of the prognostic model), and 8
degradation signals used to test the optimization model. The
8 degradation signals used for testing were sampled with
replacement in order to emulate the degradation of the WTs.

The prognostic model used in this study is similar to the
one presented in [51]. The authors develop a stochastic model
with a combination of deterministic and random parameters.
They use a first-passage time approach to calculate the RLD.
Specifically, they show that the RLD at time ¢ can be ap-
proximated by an Inverse Gaussian distribution IG(v¢, V),
where v; > 0 is the location parameter and +; > 0 the shape
parameter.

We use the training data to estimate the prior distributions
of v, and ~,. A Bayesian updating approach is then used
to update the prior distributions using newly observed data
as they become available. The updating process allows us to
capture the latest degradation states of the WTs and update
their RLDs accordingly. The updated RLDs are again used
by the optimization model to compute a revised maintenance
schedule.

2) Implementation of the Proposed DRCC Model: This
continuous updating process of the RLDs motivates the im-
plementation of the optimization model in a rolling horizon
fashion with a freeze period of A“P? [days]. This means that
only maintenance decisions scheduled within the freeze period
[1,..., A"P4] are performed. More specifically, it is assumed
that when the maintenance crew is deployed in the WF, it only
performs scheduled maintenance. This assumption is driven
by the fact that performing maintenance on a set of WTs
requires resources (e.g., personnel and spare parts) that need to
be allocated beforehand. Therefore, the deployed maintenance
crew is not allowed to change maintenance decisions. After
the freeze period, the RLDs of WTs are re-estimated using
fresh sensor data, and then the optimization model is re-
executed leading to an updated maintenance schedule. This
decision-updating process is repeated over and over so that the
optimization model can adapt its decisions to the degradation
process experienced by the components.

Our computational studies analyzed a WF with J = 100
WTs. The optimization model was implemented with fol-
lowing parameters: 177" = 40, AvPd = 90 " = $4K,
0 = 4P, ¢V = 1277, py = $04K, p; = 7, ¢; = 0.1,
At = 10, @ = 0.1, v = 10, and 8 = 0.1. The proposed
DRCC formulation was tested for five different radius of the
Wasserstein ball with N = 100. Additionally, two CBM
benchmark models based on stochastic programming and
robust optimization were implemented. It is worth recalling
that the use of stochastic programming for optimizing WT
maintenance schedule has been investigated in other papers
[43], [44]. Thus, the stochastic programming model constitutes

a valid state-of-the-art benchmark model. A summary of the
implemented models and their corresponding notation used in
the discussion of the numerical results is presented in Table
I. Each simulation study included 20 updates of the rolling
horizon, which is equivalent to 400 days of operation. The
simulations were repeated 20 times for each configuration to
account for the fluctuations in the simulated environment. The
results obtained are displayed in Figure 2.

TABLE I: Summary of implemented models.

Category Notation Description
Proposed DR: § Pro_posed DRCC strategy implemented with
radius 4.
Stochastic programming formulation solved via
SAA Sample Average Approximation approach (SAA),
which coincides with the proposed DRCC formula-
Benchmark

tion with § = 0.
Robust optimization considering the worst-case
Rob. scenario for each remaining lifetime, i.e.,
wj € [minjen w} maxien wi], jE€J.

(a) Percentage of Preventive Maintenances

100 % =

¥

[e]
SAA DR 0. DR 02 DR 03 Rob.

(b) Total Maintenance Cost

% PM

H 1

z
2
S 65 I%I
=)
6.0 o
SAA DR:0. DR 02 DR 03 Rob.
(c) Power Generation Revenue
39.2 %I @ %I
% 39.1 2
k)
M
£.39.0
38.9 1 o

SAA DR:0.I DR 02  DR:03 Rob.

(d) Total revenue
33.04 %
32.54 Q
32.04
SAA DR; 0.1 DR; 0.2 DR; 0.3 R(;b.
(e) Average chance constraint violations rate

[$K /day]

= = = Desired level: 0.10

N
=

Average CC violation
=) 15
=) o
HIF—o
(Ha o

-
DR: 0.3 Rob.

SAA DR 0.I  DR:02

Fig. 2: Performance obtained with real-world degradation data.
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3) Results: The results obtained are displayed in Figure 2.
We notice that SAA model presents a deficient performance
in terms of the percentage of preventive repairs, being close to
80%. Further, it can be seen that the chance constraint violation
rate of SAA model exceeds the desired level-see Figure 2 (e).
The poor performance of SAA model can be caused by the
reduced number of training data sets or by the noise in the
degradation signals, which negatively impacts the prediction
accuracy of the prognostic model. This leads to a biased
characterization of the model uncertainty, thereby making
it invalid the implementation of stochastic programming in
this setting. In contrast, Rob. model offers almost 100 % of
preventive maintenances. However, it incurs high maintenance
costs and thus is not competitive in terms of total revenue.

Our proposed DRCC model showcases significant improve-
ments in terms of the percentage of preventive maintenance
compared with SAA model. The highest total revenue of
our model is reached by DR: 0.2. Nevertheless, the chance
constraint violation probability of DR: 0.2 still exceeds the
desired level so this alternative cannot be adopted. We select
DR: 0.3, which yields a total revenue similar to SAA model
but meets chance constraints requirements.

B. Computational Study with Synthetic Degradation Signals

This second case study relies on a simulation framework for
generating CM data for rotating machinery. The simulation
framework is inspired by a real-world vibration monitoring
dataset used in [49] and is detailed in Appendix A and B
of [39]. This case study also adopts the prognostic model
presented by [51]. The optimization model was implemented
using the same setting described in Section IV-A2.

We conducted two simulation studies to analyze the perfor-
mance of the optimization model depending on the size of the
training data (i.e., |S™"|). These two settings are referred to as
sparse training data ( |S™"|= 5) and abundant training data
( |S'@in|= 50 ). The results obtained for these two settings are
summarized in Figure 3.

1) Results: For the case of sparse training data (in red),
it can be seen in Figure 3 that SAA model produces a poor
performance, showing, on average, a percentage of preventive
maintenance lower than 90 % and limited total revenue relative
to the other models. More importantly, it is observed in
Figure 3 (e) that the chance constraint violation rate of SAA
model exceeds the desired level. This implies that operational
requirements are not satisfied when using SAA model. This
deficient performance is attributed to the fact that the prog-
nostic model was trained with sparse data. As a consequence,
the estimated RLDs may not accurately characterize the actual
RLDs, thereby leading to biased maintenance decisions. Rob.
model, on the other hand, presents an outstanding performance
in terms of the percentage of preventive repairs with 100%
for most cases. However, Rob. model is very conservative
to accomplish this goal, which is reflected in the high total
maintenance costs.

The performance of our proposed DRCC model varies
depending on the value of §. As discussed in Section III-A,
0 captures the confidence level we have in the prognostic

results. When training data is sparse, this confidence should
be low. So we anticipate that increasing & helps in seeking
more robust maintenance decisions. This claim is supported
by the computational results shown in Figure 3. We can see
that increasing § helps to raise the percentage of preventive
maintenance and total revenue. For instance, with DR: 0.3, we
obtain on average an increment of 6% in the percentage of
preventive repairs and 0.9 % in the total revenue compared
to SAA model. Furthermore, we can notice that DR: 0.3
satisfies the desired level of chance constraints. Therefore, our
proposed DRCC model provides a reasonable balance between
conservative and profitable decisions.

[ Sparse Training Data [ Abundant Training Data
(a) Percentage of Preventive Maintenances

100 ? % o :I_-u =T
954 % % é %
=
a
= 904
o
85 A
SAA DR:0. DR:02 DR:03 DR:0.4 DR:0.5 Rob.
(b) Total Maintenance Cost
6.0
_ 551 o I%I
B (@)
3 o
o
¥ 501 é éé % ,—TT] é @ 8
4.5 %I
SAA DR:0. DR:02 DR:03 DR:0.4 DR:0.5 Rob.
(c) Power Generation Revenue
39.30 1 é é % é
= 39.25 1 %I l‘%l é ° é'
5% 19 : T
% 3920 1 °
39.151
SAA DR:0. DR:02 DR:03 DR:0.4 DR:0.5 Rob.
(d) Total revenue
35.04
> 3454 % %
g3 %' é@ o é é 8
4 o o
&
34.01 5 o
o
33.51
SAA DR:0.1 DR:0.2 DR:0.3 DR:0.4 DR:0.5 Rob.
(e) Average Chance Constraint violations rate
g 0.20 1 = = = Desired level: 0.10
2 0.15 o
> o o
So010{sl Jauas sasamsamssssagesssssanaans
&
£ 0.05 é |_I_| &l = |5 2
= o o
<
0.001 o = 0= __

SAA DR:0.I DR:02 DR:03 DR:04 DR:05 Rob.

Fig. 3: Performance obtained with synthetic degradation data.
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When training data is abundant (in blue), we can notice
in Figure 3 that SAA model offers very competitive results.
This is not surprising because in this setting it is expected
to obtain accurate prognostic results, implying that the use of
stochastic programming is well justified. Our proposed DRCC
formulation also shows satisfactory results yet its improvement
is lower compared with the case of sparse training data.

Remark 3. One important step in implementing DRO mod-
els with Wasserstein ambiguity sets is determining a proper
Wasserstein radius 6. In practical applications, the tuning
of 6 is accomplished through cross-validation [45], [46],
relying on historical degradation sensor data. Specifically,
cross-validation is used to evaluate the performance of the
DRO maintenance strategy with different values of § and then
select the value that provides the best performance.

C. Running Times

We evaluated the running times of the proposed DRCC
formulation at different problem instances varying the number
of WTs J. The optimization problems were solved on Python
3.10 using Gurobi 9.5. All the experiments were carried out on
a state-of-the-art supercomputer—Partnership for an Advanced
Computing Environment (PACE) with 48 GB of memory. Our
formulation was implemented with two different methods to
set the Big-M values of the integer representations of Zj
and Z3, denoted as: i) Optimized Big-M that uses the Big-M
strengthening method of Section III-E and Naive Big-M that
uses the naive Big-M values derived just after Propositions 5
and 6. Table II presents the maximum running times obtained
in 50 executions for each configuration of J, respectively.
We observe that Optimized Big-M implementation shows a
significant reduction in running times compared with the naive
values, being able to solve instances with 150 WTs in less than
one hour.

TABLE II: Running times depending on the number of WTs
(N =100)

J Optimized Big-M Naive Big-M
Max Running Time [s] Max Running Time [s]
50 36.56 37.73
100 2375.25 4881.94
150 3590.80 > 10800

V. CONCLUSIONS

This paper developed the first CBM strategy for WTs that
can theoretically deal with inaccurate prognostic results. The
proposed CBM strategy relied on a DRCC formulation. The
strategy used a prognostic model to estimate WTs” RLDs from
sensor data. Then, the estimated RLDs were utilized to con-
struct a Wasserstein ambiguity set, thereby capturing potential
RLD perturbations. As a result, the DRCC formulation can
compute reliable maintenance schedules even in presence of
inaccurate prognostic results.

The effectiveness of our DRCC formulation was demon-
strated in the computational studies involving real-world and
synthetic degradation data, where the DRCC model out-
performed the two benchmark models based on stochastic

programming and robust optimization. The advantage of using
our DRCC model was even more notable when dealing with
inaccurate RLDs. In fact, when training data was sparse,
our model produced on average an increment of 6% in the
percentage of preventive repairs and 0.9 % in the total revenue
compared to SAA model. In addition to these increments, our
model was able to meet chance constraint requirements, which
was not achieved by SAA model.

We proved that the proposed DRCC optimization problem
can be reformulated as an integer linear program. We derived
methods to strengthen the Big-M values of this reformulation,
thereby enabling the DRCC model to be efficiently solved by
off-the-shelf optimization software. We assessed the maximum
running times of the DRCC optimization model, showing that
the problem can be solved in less than one hour even in large
instances with 150 WTs.

In future work, we plan to extend this model to account
for uncertainty in wind power generation, power demand, and
electricity prices. The objective will be to analyze the impact
of these key factors on the optimal CBM schedule.

APPENDIX A
Proof of Proposition 7:
For any j € J and i,i' € N, we can compute and sort
the set {7;j:/ni ji }1e7. resulting the permutation o’(-) that
satisfies:

- ol
ijod < < nlJO‘T

77‘/- J
Y1017

We know that for Z, it holds that 7;;; € {0,1}. Thus, some
ratios may not be well-defined. When this happens, we use
the following convention: 0/0 = 0 and 1/0 = +c0.

Claim 1: There exists an optimal solution z* to (19) such that
forany j € J, 2}, =0, t €T\ {0‘]7—|}.

Proof. Let T be an optimal solution to (19). Then, for a given
Jj € J, we define three sets: I = {t € T|z; > 0},
TY = {t € T|nije = 1}, and T} = {t € T|nije = 1}.
We additionally define b; = ZteT Nirjt - Tj¢. As T is optimal
to (19) , ;. must be the optimal solution to the following two
equivalent linear programs (LPs):

max >, Nijt " Tjt

St Djer Mgt Tjt < by
et Tt <1
zj. €10, 1]I71

= ZteTf Zjt

= ZteTi’fmTjj Tjt < b
= ZteTj'rj T <1

Tj. € [0, 1]‘7—'

21

The optimal objective function value of (21) is lower or equal
than 1. Then, for any ¢ € I} such that ¢ # 0\jT|’ we know that
the following inequality holds:

Nijt < igol,

i jt Nirj0?
J v Jo1r

Therefore,
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1) Ifn = 0, it implies that all the other ratios are 0 and
(21) becomes trivial, allowing x; oy = min{1,b;} and

zjp=0teT — {om} to be an optlmal solution (21).

9T

2) If n,, joly, = 0, (21) is again trivial and its maximum is
attained at T, =landz;; =0teT — {OIT\}
T
3) Else, 77”0 1 and 77”0 1, which implies that
Nirjt = 1, t € TY, thus resulting in Tj_j - Tj_,j.

Subsequently, the constraints of (21) can be rewritten
as ZteTf zj; < min{l,b;}. The optimal value of the
resulting LP can be attained at Tjoi = min{1,b;} and
zje =0, t €T\ {ol}.
As the previous analysis is valid for any € 7, it means that we
can always compute an optimal solution to (19) that satisfies:
JjeT, x5 =0,teT)\ {0\j7’|}' This finishes the proof of
Claim 1. O

Claim 1 guarantees the optimal objective value of (19)
does not change if we fix x;; = 0 for any j € J and
te T\{o ‘} This implies that we can remove these variables
from the optlmlzatlon program and still attain the same optimal
value for the objective function. When removing these decision
variables, we end up with the following optimization problem:

max Z_]EJ nzyolﬂ
s.t. dej Nt joi
z € 0,1]"

J "TT\ —7
(22)

. < .
eal JO\Jﬂ =7

This corresponds to a continuous knapsack problem that can
be solved by a simple ordering procedure—greedy algorithm.
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