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Abstract— Reproducibility, transparency, representation, and
privacy underpin the trust on genomics research in general and
genome-wide association studies (GWAS) in particular. Concerns
about these issues can be mitigated by technologies that address
privacy protection, quality control, and verifiability of GWAS.
However, many of the existing technological solutions have been
developed in isolation and may address one aspect of
reproducibility, transparency, representation, and privacy of
GWAS while unknowingly impacting other aspects. As a
consequence, the current patchwork of technological tools only
partially and in an overlapping manner address issues with
GWAS, sometimes even creating more problems. This paper
addresses the progress in a field that creates technological
solutions that augment the acceptance and security of population
genetic analyses. The text identifies areas that are falling behind in
technical implementation or where there is insufficient
research. We make the case that a full understanding of the
different GWAS settings, technological tools and new research
directions can holistically address the requirements for the
acceptance of GWAS.

Keywords—genomics research, trust, privacy, transparency,
representation

I. INTRODUCTION

Genome Wide Association Studies (GWAS) scan the genomes
of thousands of individuals to identify genetic markers that are
associated with a trait or a disease. The output of a GWAS
consists of statistics such as p-values, chi-square values, and
odds ratios. These outputs and their derivatives can be used for
various purposes, including (i) identifying gene/variant and
phenotype correlations, (ii) generating data to build polygenic
risk scores (PRS) for prediction and causal inference, and (iii)
learning more broadly about the biology of a trait. Today,
GWAS are conducted in different settings, including (i) local
setting, in which a researcher conducts the study on a local
dataset and shares the result (e.g., through research papers), and
(ii) collaborative setting, in which two or more researchers
combine their datasets for joint research. Alternatively, when
data cannot be shared, statistics support collaborative meta-
analysis over multiple independent studies.

Regardless of the setting, key requirements for trust in GWAS
are reproducibility, transparency, representation, and privacy

(herein referred to as “challenges of GWAS”). Technical
reproducibility enables the validation of the research and its
further development by other researchers. Transparency
ensures that the pipeline of data collection, analysis, and
dissemination is open and accessible to all stakeholders. A
balanced representation ensures that all populations can benefit
from the research, which requires the participation of people
from different backgrounds (especially underrepresented
populations) in research studies. Privacy is threatened by loss
of anonymity. Note however that “trust” in genomic research
also depends on the participating parties and the nature of the
study. For a given study, some of the aforementioned key
requirements may be directly required to develop trust for some
parties, white others may be indirect requirements.

To address these key requirements, technology can come to the
rescue, by providing assurance for all of these challenges of
GWAS. For example, quality control tools mitigate bias from
the analysis by eliminating low-quality, noisy, or incomplete
data and also ensure the robustness of the analysis. Similarly,
privacy-enhancing technologies guarantee that collected data is
processed and results are shared in a privacy-preserving way.
Verifiability tools help identify potential miscalculations
during the GWAS computation. However, many technological
solutions have been developed in isolation and in different
contexts, thus partially and in an overlapping manner solving
individual challenges of GWAS. For example, technical
solutions for privacy-preserving GWAS have been extensively
studied [1–3]. However, implementing such privacy-preserving
solutions in isolation is not sufficient to address all key
challenges of GWAS. Furthermore, while they may address one
challenge of GWAS, they may unknowingly compromise other
aspects.

Here, we only focus on reproducibility, transparency,
representation, and privacy because these values are essential
to the scientific process. However, these aspects do not cover
the full spectrum of ethically, socially and legally relevant
challenges in GWAS. In particular, this paper does not cover
privacy-related conditions for sharing DNA samples, or privacy
issues linked to communication of findings and results to
research participants. Note that there are other requirements for

979-8-3503-2385-6/23/$31.00 ©2023 IEEE 1
DOI 10.1109/TPS-ISA58951.2023.00011

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 30,2024 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.



the acceptance of GWAS studies, such as the misuse of
findings. Researchers must take care to ensure that the results
of a study are not used in a way that could harm or exploit
vulnerable populations. Additionally, they must work to ensure
that any benefits of the study are shared equitably among all
participants.

In this work, we first discuss the key challenges of GWAS.
Next,     we     summarize     existing     technical     solutions     for
responsible management of genomic data. Finally, considering
different GWAS settings, we discuss how additional technical
challenges need to be addressed to pave the way toward greater
trust in GWAS. Rather than just comprehensively surveying all
existing technical solutions, which has been the object of recent
work [1–3], the goal of this paper is to identify and prioritize
different requirements, and then work to resolve any conflicts
between them to develop technical solutions for responsible
GWAS. This process can help ensure that the final technical
solution meets the needs of all stakeholders.

The reader should also use this work to address the next
challenges emerging from a broader use of whole exome and
genome sequencing technologies. The experience with GWAS
should guide the assessment of reproducibility, transparency,
representation, and privacy unique to sequence data.

II. CHALLENGES OF GWAS

A. Technical reproducibility of results

In this paper, we define reproducibility as obtaining consistent
results using the same data and code as the original study.
Reproducibility of research results is crucial to validate existing
research and build on top of it. To provide reproducibility,
researchers typically share their workflows (methodologies).
Such workflows support tracking research data through
preprocessing, analyses, and interpretation. Currently,
workflows are stored as in [4], where all the steps are necessary
to go from the initial input(s) to the final output(s). For instance,
if research is published, it should be possible to have access to
the research findings (workflow output), their associated
metadata (e.g., model parameters, demographics of the research
participants, and assumptions), and the input dataset. There
exists a number of tools, such as Taverna [5], Kepler [6], and
VisTrails [7] for building workflows and capturing provenance
on them, which facilitates reproducibility and interpretation of
the research results.

To address the reproducibility requirements, verifiability tools
(as in Section III.C) can be utilized by formulating
reproducibility as the verifiability of research findings. On the
other hand, providing the input dataset raises privacy concerns
and most of the time, sharing it with other parties is subject to
a complex institutional review board (IRB) process. Therefore,
there is a need for solutions that allow reproducibility in a
privacy-preserving and practical way (as discussed in Section
IV.A.2).

In this paper, we primarily focus on the issues surrounding data
accessibility and sharing as major obstacles to reproducibility.
While we acknowledge that technical obstacles, such as
maintaining functional installation scripts and changing paths,
can indeed pose challenges to reproducibility, a detailed
discussion on these aspects is beyond the scope of this article.
However, it is worth mentioning that utilizing containerization
technologies, such as DockerHub, and repositories like
Figshare and Zenodo can help address some of these technical
challenges and promote reproducibility. These solutions require
a certain level of technical expertise, but can significantly
improve the ease of reproducing research workflows in the long
run.

B. Transparency

In this paper, we define transparency as ensuring that the
pipeline of data collection, analysis, and dissemination is open
and accessible to all stakeholders. Research participants would
like to know the consequences of sharing their data both in
terms of risk and benefit. As discussed below, the primary
privacy risks of sensitive data sharing are re-identification [8,9],
attribute inference [10], and membership inference [11].
Depending on the GWAS setting, type of collected data, and
how the research outcome is shared, such privacy risks should
be communicated to the research participants to provide
transparency.

To address the transparency requirement, using the privacy risk
quantification tools (in Section III.A.5) and conveying the
outcome to the research participants will help (i) inform
participants about the consequences of their shared data, and
hence provide transparency while data sharing and (ii) provide
data minimization considering the required usage of the data
and preserving privacy against the identified vulnerabilities.
Thanks to such tools and algorithms, research participants are
made aware of their privacy risk/utility tradeoff when sharing
data which will allow them to provide fully informed consent
for the collection and use of their data. From the researchers'
point of view, it is important to understand the incentives of the
research participants to take part in the research activities. In
addition to knowing the potential privacy consequences,
participants also would like to know other factors before they
decide to take part in research studies. Such factors may include
credibility of the research institution, benefit of the research
study for the participants and for the population at large,
interdependent privacy risks (privacy risks that may occur for
the family members of the research participants due to the data
shared data by the participants), the duration of data storage by
the research institution, and data use agreements (e.g., possible
commercial use). Such incentives of participation can be
formalized and analyzed using game theoretical formulations
as in [12].
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C. Representation

In this paper, we define representation as ensuring that all
populations can benefit from the research. There is unequal
representation of human populations in genomic research [13].
Based on [14], data from individuals of European ancestry
account for at least 78% of GWAS while individuals of African
ancestry account for 2.4%. In addition, over 70% of samples
included in GWAS originate from only three countries (USA,
Iceland, and UK) [14]. On the other hand, associations between
genetic variants and traits may not be accurate unless the study
involves individuals belonging to diverse ancestral
backgrounds. Models developed using non-diverse populations
may not be generalizable, and treatments developed based on
results of association studies on non-diverse populations may
be ineffective in underrepresented groups [15–18].

To address these issues, it is crucial to increase the participation
of underrepresented populations in genomic research. One
barrier for participation of underrepresented populations in
research studies is “trust”. There are technical solutions that
enable trust in GWAS, in particular trust in privacy (next
Section II.D). These include privacy-enhancing technologies
and tools that provide privacy risk quantification to clearly
show the consequences of data sharing to the research
participants (as in Section III.A). In addition, researchers, using
the quality control tools (e.g., population stratification, as
discussed in Section III.B), can better understand the
backgrounds of the research participants to mitigate bias. More
generally, by knowing how data is collected, processed, and

shared, individuals may be more willing to participate.
However, it is not clear that risk quantification tools will
advance trust in GWAS, and it is not obvious that this would
in-turn promote participation in GWAS studies from more

diverse human populations.

We recognize that there are unaddressed technical requirements
related to representation, as well as active research and
development in this domain. Nevertheless, our article's
objective is to underscore the interconnection between these
concerns and the core themes of reproducibility, transparency,
and privacy, rather than delivering an extensive analysis of the
representation     challenge.     Examining     the     link     between
representation and our central themes will bolster the
comprehension of the hurdles and potential solutions in data-
driven research.

situations). GWAS data (i.e., set of SNPs) can be used to infer
polygenic risk of diseases of individuals or for paternity cases.
This is an example of attribute inference attack (in Section
3.1.5). On the other hand, membership inference attack (in
Section III.A.5) is typically more serious. In membership
inference, using GWAS outcome, an attacker can infer the
membership of a victim to the case group that is used in the
study. Case group typically has a label corresponding to the trait
under study (e.g., Cancer, Parkinsons, Autism, HIV, etc.).
Therefore, inferring the membership of a victim to the case
group is equivalent to inferring the corresponding label for the
victim. Lack of privacy in the system may cause betrayal or
neglect of GWAS participants’ trust. This may lead to the
participants not donating their data to research, and hence pose
a barrier for the advancement of the field.

Most existing work considers privacy in four stages in the
process: (i) privacy during data collection from the research
participants, (ii) privacy during data pre-processing (i.e., while
identifying and removing certain data records or attributes from
the research study), (iii) privacy during GWAS computation (in
outsourced and collaborative settings), and (iv) privacy while
sharing the research outcomes (Figure 1). In addition, we also
consider privacy risk quantification tools and identification of
privacy requirements. Methods that quantify the privacy risk
can provide transparency to individuals and organizations about
the risks associated with sharing genomic data. The methods
presented below in Section III.A can help individuals and
organizations make informed decisions about whether to share
genomic data and can help identify and address privacy risks.
Quantifying the privacy risk can also help organizations
improve their privacy practices.

III. TECHNICAL SOLUTIONS TO ADDRESS CHALLENGES IN

GWAS

The technical approaches and existing solutions to address
challenges in GWAS are depicted in Figure 1. Those techniques
address privacy protection, quality control, and solutions for
verifiability. Note that one common natural requirement for all
settings is security, which includes keeping data encrypted at
rest, secure communication between the involved parties, and
access control to datasets and research results. Such security
requirements can be achieved by using existing tools, and hence
they are not discussed in this paper.

D. Privacy

In this paper, we define privacy as ensuring that the research
participants remain safe against known inference attacks.
Privacy is a pressing challenge in conducting GWAS [1–3]. The
worst-case scenarios that may occur due to misuse of genomic
data (in the case of lack of privacy) include genetic
discrimination in health/life insurance, employment, education,
etc. and blackmail (e.g., considering unknown paternity

3
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Figure 1: Technical solutions. The boxes in different GWAS steps represent the technical tools that are required during the corresponding step: Green
boxes represent privacy enablers, dark blue box represent quality control, and orange box represent verifiability. Privacy requirements (e.g., via standards,
policies, or law) provide input for the privacy enablers at each GWAS step. Purple boxes at the bottom represent the key challenges, and the arrows between
technical tools and the challenges show which technical solution helps address a given challenge.

A. Privacy protection solutions

As mentioned before, this paper is not meant to be an extensive
survey of privacy-preserving solutions for GWAS, but rather to
identify key aspects of privacy requirements and the
corresponding challenges for GWAS. Thus, in the following,
we focus on specific solutions that have been proposed to
protect the privacy of genomic data in the life cycle of GWAS.

1) Privacy during data collection. Generally, participants’
data is collected to conduct GWAS under consent and data use
agreements without any obfuscation. However, it is possible to
add privacy guarantees to data collection. Privacy guarantees
help in case the research dataset is breached due to
vulnerabilities in the system. To share a participant’s data with
a researcher, one promising direction is to utilize local
differential privacy (LDP) techniques.

LDP [19,20], a variant of differential privacy [21] (which will
be discussed in Section III.A.4), is a state-of-the-art model to
preserve the privacy where participants perturb (randomize)
their inputs before sharing with researchers, and this provides
indistinguishability guarantees for the shared data. Such
guarantees help provide anonymization, and hence LDP has the
potential to fulfill legal de-identification requirements in
HIPAA or the GDPR. After receiving data from the participants
under LDP, the data aggregator (researcher) applies estimation
techniques to partially eliminate noise before processing the
collected data. Collecting perturbed data from more individuals
decreases the accuracy loss due to randomization. Hence,
practical usage of LDP-based techniques needs a high number
of research participants, which limits the utility of LDP-based
techniques. To overcome the accuracy loss due to LDP, a s
shuffling technique has been proposed [22,23], wherein a
trusted party receives the data from participants and permutes
them before sending them to the researcher. Another approach
to improve the utility of LDP is providing different privacy
protection for different inputs [24,25]. Another issue with using
LDP-based techniques for genomic data collection is the
correlations in genomic data (e.g., linkage disequilibrium). In
previous work [26], we showed the privacy risks when the
shared data includes correlations, and we explored a variant of

LDP that considers correlations in the data and optimizes utility
without compromising privacy.

Another privacy challenge during data collection arises due to
correlations between the genomes of people from the same
family (e.g., interdependent privacy issues). Two main
directions have been proposed: (i) optimization-based schemes
[27], in which a research participant shares their genome by
both considering privacy budgets of their family members (i.e.,
privacy preferences, which represent how much individuals
want to reveal about their genomic data) and the utility of the
shared data; and (ii) selective sharing techniques [28], which
aim to protect sensitive parts of genomic data both for research
participants and their family members while maximizing the
utility of the shared data. Considering that people of the same
family might have very different opinions about how to protect
and whether or not to reveal their genome, genomic data
sharing by family members can also be studied in a game-
theoretic setting [12], where a closed-form Nash equilibria can
be defined in different settings and the game evolution analyzed
when relatives behave altruistically.

2) Privacy during data pre-processing. The techniques in
this category mainly focus on quality control (discussed in
Section III.B). Cho et al. [29] considered conducting the quality
control steps in an outsourced environment in a privacy-
preserving way using secure multiparty computation. Huang et
al. [30] considered privacy-preserving execution of a limited
number of quality control steps before meta-analysis, with the
goal of approving or rejecting a collaborative study. In Section
IV.A.1, we will argue that existing privacy-preserving quality
control tools are insufficient, especially for collaborative
GWAS settings, and we will highlight the additional privacy
requirements during data pre-processing.

3) Privacy during GWAS computation. In the settings of
outsourced and collaborative research, the existing privacy-
preserving GWAS computation techniques can be categorized
into three main categories: (i) techniques that rely on
homomorphic encryption [31–33], in which the computation is
done at an untrusted cloud or among the participants over
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encrypted data; (ii) techniques that utilize secure multiparty
computation [29,32,34,35], in which research dataset is
distributed     to     several     non-colluding     servers     and     the
computation is done among such servers; and (iii) techniques
that utilize secure hardware [36], in which the computation is
done inside a secure, tamper-proof enclave. For the last
category, trust in hardware manufacturers is a crucial aspect for
any computation that relies on hardware, as the reliability and
security of the hardware directly impacts the overall
performance and safety of the system. In the context of privacy-
preserving GWAS, this trust is particularly important, because
of the handling of sensitive data and computations. The actual
concern in this scenario should be focused on the attestation
procedure, which is the process of verifying the integrity and
authenticity of the hardware being used. A robust attestation
procedure can help mitigate potential risks and ensure that the
hardware is secure and trustworthy. Additionally, attention
should be given to potential side-channel leaks, which are
vulnerabilities that could be exploited to gain unauthorized
access to sensitive data or computations.

The main goal of all these techniques is to conduct GWAS
computations without revealing the research dataset to the
cloud server (in the outsourced setting) or to other collaborating
researchers (in the collaborative setting). Among the
aforementioned techniques, homomorphic encryption and
secure     hardware-based     techniques     enable     collaborative
privacy-preserving GWAS. However, techniques that rely on
homomorphic encryption typically suffer from scalability
problems, whereas techniques that rely on secure hardware
suffer due to potential side-channel attacks and trust issues (as
they require a level of trust on the hardware manufacturer).
Alternatively, secure multiparty computation-based techniques
enable outsourcing the computation of GWAS to third-party
servers (which typically have high computational power).
However, the real-life implementation of secure multiparty
computation-based techniques is non-trivial, as they require the
existence of several non-colluding servers in the system.

4) Privacy while sharing the research outcomes. Most
institutions, including the US National Institutes of Health
(NIH), allow sharing of GWAS results [37]. However, it has
been shown that sharing of aggregate statistics may lead to
privacy risks for the dataset participants [11]. To reduce this
risk, some researchers have proposed using the model of
differential privacy to mitigate membership inference attacks
when releasing summary statistics. Differential privacy [21] is
a concept to preserve the privacy of records in statistical
databases while publishing statistical information about the
database. Fienberg et al. used the differential privacy concept
for sharing statistics, such as minor allele frequencies and chi-
square values [38]. Yu et al. extended this work and presented
a scalable algorithm for any arbitrary number of SNPs [39].
Johnson and Shmatikov proposed using a variation of
differential privacy for the computation and release of statistics

about a genomic database [40]. Tramer et al. also studied the
tradeoff between privacy and utility provided by differential
privacy [41]. Although differential privacy provides strong
privacy guarantees, noise added to GWAS statistics to achieve
differential privacy results in significant degradation in the
correctness of the research outcome.

5) Privacy risk quantification tools. Many researchers have
worked on identification and quantification of privacy risk due
to re-identification, attribute inference, and membership
inference attack. Re-identification (deanonymization) links
anonymous data to contributing subjects. Attribute inference
aims to infer missing (hidden) attributes of an individual from
the observed ones. Membership inference aims to infer the
membership of an individual in a private database using the
results of the queries that are obtained from this database.
Today, it is possible to quantify (i) re-identification risk in an
anonymized genomic dataset depending on varying amounts of
auxiliary information [8], (ii) membership inference risk due to
sharing of aggregate statistics about a genomic dataset [11], (iii)
membership inference risk due to genomic data sharing beacons
[42,43], (iv) attribute inference risk due to genotype-phenotype
correlations [9,44], and (v) interdependent privacy risks (e.g.,
decrease in genomic privacy of an individual due to sharing by
a family member) [10].

Attribute inference attacks are typically modeled and quantified
via inference algorithms that consider statistical correlations
between     hidden     (sensitive)     data     points     and     auxiliary
information. Membership inference attacks are typically
modeled using a likelihood ratio test to quantify the power of
an attacker. Using such tools developed in previous work
[9,10,42–44], it is possible to quantify the risk of attribute
inference on the data collected from the research participants.
Furthermore, to quantify the privacy risk when researchers
share aggregate statistics, tools that quantify the membership
inference risk can be used.

6) Identifying privacy requirements. Considering all
different privacy-preserving solutions we have discussed, one
open research question that remains is: how much privacy is
enough? Or equivalently, can we accept the data sharing
policies of some institutions as baseline for privacy? For
instance, using the aforementioned privacy risk quantification
tools (in Section III.A.5), NIH genomic data sharing policy can
be represented quantitatively and accepted as a baseline privacy
requirement. Such a quantifiable privacy baseline would also
help in selecting the privacy parameters (e.g. the epsilon
parameter in differential privacy) or how much data/metadata
to share in outsourced and collaborative GWAS settings.

B. Quality control

It is crucial to assess the quality of the datasets that GWAS is
conducted on to achieve reliable genetic associations between
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traits and diseases. If the research datasets are not properly
curated (e.g., if dependent/correlated data records are not
removed or heterogeneous populations are not controlled for),
the summary statistics calculated as a result of GWAS may lead
to biased associations. Furthermore, studies that implement
wrong statistics (obtained via GWAS without quality control)
are unlikely to provide reproducible results [45].

Previous work investigated the implementation of quality
control procedures in local GWAS datasets with the aim of
creating high-quality datasets that will result in accurate
research outcomes [15–18]. The quality control steps which are
extensively used include eliminating samples or markers with a
significant number of missing values in the dataset, identifying
and eliminating sex inconsistency, eliminating variants with
low minor allele frequency, eliminating the variants that are not
compliant with Hardy-Weinberg equilibrium, eliminating the
relatedness between the samples (e.g., removing samples with
high kinship relationships), and population stratification (e.g.,
eliminating or correcting for heterogeneous populations).

Conducting such steps for non-collaborative research studies is
straightforward, since both quality control and the research are
done locally by the same researcher. On the other hand, in
collaborative settings, although some of the simple quality
control steps can be done locally by each researcher, some of
the steps have to be conducted on the combined dataset and may
impact requirements such as privacy. For instance, sample
missingness can be dealt with at each research site
independently and does not need to be repeated in the combined
dataset. However, relatedness or population stratification has to
be done on the combined dataset. Two or more datasets that
include completely homogeneous populations and no family
members, when looked at in isolation, may turn out to contain
bias when they are combined, thus impacting diversity and
inclusion (e.g., considering genealogy) [46]. For genomic
studies, it is desirable to identify the ancestry of the research
participants from their genomic data (e.g., via a principal
component analysis). In addition, for collaborative studies (e.g.,
meta-analysis), even a perfect protocol cannot fully compensate
for not having access to individual participant data, which
would guarantee standardized quality control [47]. This clearly
shows the importance of quality over the federated data. In
addition, as we will discuss in Section IV.A.1, direct use of
quality control tools may result in privacy concerns.

C. Verifiability

It is crucial to verify the correctness of published research.
Computational errors might occur during the workflow (e.g.,
the published results/statistics or the metadata may be
computed wrong) or during quality control (e.g., a researcher
might use low-quality data to conduct the research). It is trivial
to verify the correctness of the research findings if, besides the
workflow and its associated metadata, the input dataset is
provided. In most applications, provenance (origin or the data
or computation) is captured using these components. However,

the input dataset might not be released as it may contain
sensitive information about individuals (e.g., personal records).
In such cases, verifying the correctness of the computations
becomes non-trivial.

There exist several works in the field of verifiable computation,
which aim to do various computations on the cloud while
verifying the correctness of the returned results [48,49].
However, the correctness of GWAS results cannot be easily
verified by those general tools without having access to the
original research dataset. One alternative may be to use
homomorphic authenticators [50], but they are impractical for
statistical analysis on large datasets due to the high computation
burden. In addition, Zero-knowledge proof (ZKP), which is a
cryptographic technique introduced by Shafi Goldwasser,
Silvio Micali, and Charles Rackoff in the 1980s, allows one
party to prove the validity of a statement without revealing any
information about the statement itself, except for the fact that it
is true. In the context of genomics research, ZKP can be used
to authenticate the genomic data and results from genome
computations, thus addressing the verifiability and
transparency issues without directly sharing the original human
genomic data for privacy protection. But, ZKP techniques are
typically computationally expensive and may not scale well
with the size of the genomic dataset. Designing efficient ZKP
protocols for complex genomic computations is a non-trivial
challenge, and may require a deep understanding of the
underlying cryptographic primitives and genomic data
structures.

Therefore, new research is needed to provide verifiability of
GWAS computations. In addition, as we will discuss in Section
IV.A.2, verifiability tools may also result in privacy concerns,
and this should be taken into consideration when developing
such tools.

IV. CONFLICTS FOR THE IMPLEMENTATION OF TECHNICAL

SOLUTIONS IN VARIOUS SETTINGS

Conflicts arise when trying to provide technical solutions for
several challenges of GWAS. For example, one potential
conflict is between the need for privacy and the need for
transparency of the research methodology. To protect the
privacy of study participants, it may be necessary to keep
certain data confidential. However, to ensure that the study is
conducted in an open and transparent manner, it may be
necessary to release some or all of that data. Identification of
such conflicts is one of the main contributions of this article,
and to the best of our knowledge, there is no previous work in
that direction. We believe that identifying and resolving these
conflicts will be valuable, and indeed crucial, for other
researchers as they develop new technical solutions.

6

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 30,2024 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.



Figure 2: Pipeline for different GWAS settings.

A. Conflicts between the technical solutions

1) Quality control vs. privacy. As discussed in Section
III.B, conducting quality control in the local setting (i.e., when
a researcher conducts the research only by using their local
dataset) does not create any privacy challenges since all quality
control steps can be performed locally, without sharing data
with a third party. On the other hand, in collaborative settings,
researchers ideally want to consider the federated datasets to
conduct the quality control steps due to potential bias that arise
due to statistical relationships between the records across
different datasets. However, sharing their datasets with each
other (or with a centralized server) makes the dataset
participants vulnerable to re-identification attacks (as discussed
in Section III.A.5).

As discussed in Section III.A.2, some works consider privacy-
preserving quality control in the local GWAS setting [29] or
privacy-preserving execution of a limited number of quality
control steps before meta-analysis [30]. However, existing
works do not consider quality control steps that involve the
federated datasets (e.g., relatedness or population
stratification). To address this, existing cryptographic solutions
(e.g., homomorphic encryption and its variants) can be used to
check the kinship relationships between samples across
different datasets, or to conduct principal component analysis
on the federated dataset. However, such cryptographic
solutions are not efficient, and they are not scalable for large-
scale operations. Therefore, new privacy-preserving, IRB-
compliant, and efficient techniques are needed to provide
quality control, especially for collaborative GWAS.

In a recent work [51], considering the kinship elimination step
of the quality control pipeline in a collaborative setting, we
proposed a mechanism for identifying correlated records across
multiple data repositories in a privacy-preserving manner. The
proposed framework, based on random shuffling, synthetic
record generation, and local differential privacy, allows a trade-
off of accuracy and computational efficiency. Similar
mechanisms can also be developed to address other quality
control steps that consider statistical correlations across data
records (e.g., population stratification). Although such schemes
do not require the collaborators to share their raw datasets with
each other, they still require the exchange of a limited amount
of metadata about the research datasets. As discussed in Section
III.A.5, sharing of such data may lead to attribute inference and
membership inference attacks, and the vulnerability of the
proposed schemes against such attacks should be studied before
using such schemes.

2) Verifiability vs. privacy. Achieving verifiability in
isolation may result in privacy vulnerabilities, since most
practical verifiability tools that provide reproducibility require
providing the input dataset or significant information about the
input dataset. However, as discussed in Section III.A.5, such
information about the input dataset may result in re-
identification risk for the participants, and hence it is not
preferred/allowed by many institutions. Therefore, verifiability
should be considered along with privacy. To achieve this, new
cryptographic techniques can be developed using the existing
verifiable computation tools [48,49] to allow researchers to
assess the correctness of published research without having
access to the original research dataset. Alternatively, as
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discussed, efficient implementations of homomorphic
authenticators [50] can serve as an alternative solution.

In a recent work [52], we also proposed a framework that
verifies the correctness of the aggregate statistics obtained as a
result of GWAS conducted by a researcher while protecting
individuals' privacy in the dataset. In the proposed framework,
the researcher keeps the dataset private while providing, as part
of the metadata, a partially noisy dataset (that achieves local
differential privacy). To check the correctness of the workflow
output, the other researcher makes use of the workflow, its
metadata, and the results of another GWAS (conducted using
publicly available datasets) to distinguish between correct
statistics and incorrect ones. Via evaluations using real genomic
data, we show how the correctness of the workflow output (i.e.,
whether the output is computed correctly by the researcher) can
be verified with high accuracy even when the aggregate
statistics of a small number of variants are provided. We also
quantify the privacy leakage due to the provided workflow and
its associated metadata and show that the additional privacy risk
(in terms of membership inference and re-identification) due to
the provided metadata does not increase the existing privacy
risk due to sharing of the research results (i.e., aggregate
GWAS statistics, which is allowed by many institutions
including the NIH [37]). Thus, our results show that the
workflow output (i.e., research results) can be verified with
high confidence in a privacy-preserving way. Such statistical
solutions can also be a step towards providing provenance in a
privacy-preserving way while providing guarantees to the users
about the correctness of the results.

B. Addressing challenges in GWAS in different settings

We illustrate the pipeline for different GWAS settings in Figure
2. We illustrate the challenges of achieving the considered
requirements in local and collaborative GWAS in Table 1.
Also, a step by step guide with best practice approaches is
presented in Figure 3.

1) Local (non-collaborative) GWAS. The research dataset
is created by a single party (researcher or research site) as a
result of data collection from the study participants. The
research is completed without collaborating with external
researchers and datasets. GWAS computation can be done
either (i) directly at the research site (referred as “local GWAS
computing”) or (ii) it can be outsourced to a cloud service
provider (referred as “outsourced GWAS computing”).

Since local GWAS computing is done at the research site,
achieving privacy is relatively easier and it has low overhead
compared to the other settings. In terms of privacy risks, only
membership inference or attribute inference are possible due to
the shared GWAS results, which is a common risk for all
settings. Privacy-preserving quality control of the research
dataset is also less challenging in this setting, since the

researcher can locally control the quality of the entire dataset
before conducting GWAS. In contrast, achieving verifiability is
challenging in the local setting, mainly due to the privacy
requirements. To have both computation and results verified by
external parties, the researcher needs to share information about
the research dataset, which should be done by considering the
privacy and liability requirements.

The case of outsourced GWAS computing implies that
researchers may opt to benefit from the rich computational and
storage capabilities of a cloud service to provide. Here, the
computation at the cloud server should also be done in a
privacy-preserving way using the techniques discussed in
Section III.A. The main privacy risks are deanonymization or
membership inference are possible due to the shared dataset. If
the quality control is done before outsourcing the data to the
cloud server, it is the same as the previous setting. However, if
the quality control is done in the cloud, it becomes more
challenging due to the privacy requirement. As discussed in
[29], Cho et al. consider conducting the quality control steps in
an outsourced environment in a privacy-preserving way using
secure multiparty computation. There are challenges to comply
with the requirements of privacy-preserving verifiability -
similar to what was the case in the absence of outsourcing. As
an additional step, the researcher may also verify the
correctness of the server’s computation.

Figure 3 illustrates the steps to conduct GWAS in a local
setting: from data collection and pre-processing to the sharing
of results (GWAS statistics).

2) Collaborative GWAS. For many diseases, the amount of
data collected at any single site may be insufficient for a GWAS
with high statistical power. Collaborative genomic data
analysis is an essential tool that can unlock the potential of
genomic data while minimizing the costs and other constraints
associated with carrying out very large studies. In a
collaborative GWAS setting, two or more researchers aim to
conduct collaborative research and each researcher has its own
research dataset. The research protocol requires IRB approval
in order to exchange the research datasets. After combining the
datasets, the scenario becomes similar to the local setting.
Alternatively, researchers may outsource the computation of
GWAS to a third party or may establish distributed computation
directly among themselves. All these alternatives can be done
under certain privacy guarantees, as discussed in Section III.A.

In general, achieving privacy in the collaborative setting is
more challenging since each party contributes its own dataset
with different privacy requirements. One trivial solution is to
pool all research datasets in a cloud server and conduct GWAS
on the federated dataset, however such an approach results in
re-identification risk for the dataset participants, and hence it is
not allowed by many institutions. In addition, in the
collaborative setting, homomorphic encryption-based solutions
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Figure 3: Guidelines for the researchers for the best practices while conducting GWAS under different settings.

typically do not scale well. De-anonymization or membership
inference are possible due to the shared datasets.

Achieving     quality     control     together     with     the     privacy
requirement in the collaborative setting is also more
challenging compared to the local setting. New solutions, such
as recent work [51], that addresses the kinship elimination step
of the quality control pipeline in a privacy-preserving way, are
required. Similarly, achieving privacy-preserving verifiability
is more challenging than in the local setting since the
collaborators first need to verify the correctness of each
researcher’s (or the cloud servers’) computations first, and then
they need to collaboratively provide information to other
researchers for the verifiability of the entire computation.
Doing these while also achieving the privacy requirements
becomes non-trivial.

There is also the possibility to perform collaborative GWAS via
meta-analysis. Meta-analysis is the statistical combination of
results from separate studies. The researchers, after they
conduct “local GWAS”, share the locally computed results with
each other and aim to derive the GWAS results that would have
been obtained from the combined/federated dataset (without
sharing the research datasets with each other). Such a setting
benefits from collaborative research without taking high
privacy risks (since parties do not share their research datasets

with each other or with another third party). On the other hand,
it has been shown that sharing of local results reveals
information about the individual datasets, which is the main
privacy risk for this setting. In particular, membership inference
or attribute inference are possible due to the shared GWAS
results by the collaborators, which can be alleviated using the
tools introduced in Section III.A.5.

Achieving quality control in collaborative GWAS via meta-
analysis is similar to the situation in the collaborative setting
with dataset sharing. Quality control operations are done on the
federated dataset, which makes it more challenging to fulfill the
privacy requirements. New solutions, such as our recent work
[51], which proposes a mechanism to identify correlated
records across multiple data repositories in a privacy-
preserving manner, are required. Verifiability in the setting of
collaborative GWAS via meta-analysis requires that each
researcher verify each other’s local computations. The most
challenging part is the verifiability of the global GWAS result.
Similar to the collaborative setting with dataset sharing, our
recent work [52], which proposes a technique to verify the
correctness of the aggregate statistics obtained as a result of
GWAS conducted by a researcher while protecting individuals'
privacy in the dataset, can be an option.
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Table 1: Jointly addressing challenges in various settings.

We note that while the meta-analysis approach is comparatively
simple to implement (compared to other privacy-preserving
collaborative GWAS solutions), it has many limitations. It can
be difficult to assess the quality of the studies included in a
meta-analysis, leading to unreliable results. Additionally, if the
studies included in the meta-analysis are not representative of
the population of interest, the results may be biased. Meta-
analysis also relies heavily on the accuracy and completeness
of the data from the various studies, and it can be difficult to
identify and control for potential confounding factors.
Recently, privacy concerns have also been identified with meta-
analysis [11]. Clearly, better solutions are necessary.
Figure 3 illustrates the steps to conduct GWAS in a
collaborative setting: from data collection and pre-processing
to the sharing of results (GWAS statistics).

C. Addressing challenges in GWAS for different parties

Trust in genomic research can be understood differently for the
general public and the researchers. Here, general public can
include (i) data owners whose data is used to conduct the
research and (ii) patients who potentially benefit from the
findings of the research. On the other hand, researchers may be
(i) individuals or collaborators who conduct the research and
(ii) individuals who use the results of the research. Thus, “trust”
and the set of key requirements that need to be met depends on
the parties and the nature of the genomic study. We discuss the
direct and indirect requirements to establish for each involved
party in the following paragraphs.

Data owners. Such individuals share/donate their data to
construct the research datasets. They want to make sure that
their personal information is collected, stored, processed, and
shared by respecting their privacy preferences and data use
agreements. Their main concern is that their genomic data could
be misused in discriminatory ways or for individual
identification in case of a data breach or privacy leak. This
concern also includes their family members due to the inherent
correlations between the genomes of family members.
Therefore, for them, trust mainly depends on privacy and
transparency.

Patients. Such individuals are the ones who benefit from the
research outcomes (e.g., in terms of more personalized
treatment). They want to make sure that they can benefit from
the research results (e.g., considering the populations of data
donors in the research dataset) and that the research is
conducted in a correct way. Therefore, for them, trust mainly
depends on representation and reproducibility.

Researchers who conduct the study. Such parties are the ones
who create the research datasets, conduct the research, and
disseminate the results. In the local setting (in Section IV.B.1),
they want to make sure the shared research results do not result
in additional privacy risks. In the collaborative setting (in
Section IV.B.2), each collaborator (researcher) want to ensure
the privacy requirements for their local dataset and they also
want to make sure that collaborative research is done correctly
(e.g., correctness of the computations that are done by other
collaborators or a centralized server). Also, in both settings,
researchers want to make sure that the data owners have trust in
the system, so that they can construct large and diverse research
databases. Therefore, for researchers who conduct the study,
trust     mainly     depends     on     privacy,     transparency,     and
reproducibility.

Research followers. Such parties are the ones who are only
interested in the research findings (e.g., to use them in their own
research initiatives). They want to make sure that the
researchers who conduct the research share the results in a
transparent way. They also want to make sure that the research
is conducted correctly and that all populations can benefit from
its findings. Therefore, for research followers, trust mainly
depends on transparency, representation, and reproducibility.

V. CONCLUSIONS

In this paper, we highlighted requirements to support
reproducibility, transparency, representation, and privacy in
GWAS using technologies that provide privacy protection,
quality control, and verifiability of the studies. We outlined
conflicts across technical solutions and new research directions
for different GWAS settings. This paper aimed thus at
promoting technologies that would enhance the acceptance of
genetic research. However, this paper does not discuss one of
the greatest challenges of GWAS research: the
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misappropriation or misinterpretation of GWAS results to
promote or justify harmful or discriminatory ideologies. Some
of the most impactful GWAS have involved studies of socially
relevant traits and outcomes including educational attainment,
intelligence, same-sex sexual behavior, and even household
income. While there are no technical solutions to these
challenges, some GWAS authors have begun to provide FAQs
together with the study results. The purpose of such FAQs is
precisely to advance socially responsible GWAS by explaining
the nature of the study and implications of results in a manner
accessible to broader audiences. “FAQs on Genomic Studies”
(FoGS) is a repository of GWAS FAQs accessible to the public
and     designed     to     help     mitigate     misinterpretation     and
misapplication of socially sensitive GWAS research [53].
Enhancing trust and acceptance of GWAS results cannot be
managed solely through technical solutions, and requires
further study and interdisciplinary collaboration to develop
comprehensive solutions. Finally, we are in a transition phase
between execution of GWAS and a new generation of studies
that use whole exome and genome sequencing data. As such,
we view the experience in GWAS as important to the use of that
technology, but also as a set of tools and principles that need to
be implemented, and expanded to serve the unique features of
sequencing data.

VI. ACKNOWLEDGEMENT

Research reported in this publication was supported by the
National Institutes of Health under awards R35GM134927,
R01LM014520, U54HG012510, R01LM013429, and
R01LM013712, and by the National Science Foundation (NSF)
under awards 2141622, 2050410, 2200255, and OAC-2112606.
The content is solely the responsibility of the authors and does
not necessarily represent the official views of the agencies
funding the research.

REFERENCES

[Internet] New York, New York, USA: ACM Press; 2012. [doi:
10.1145/2342441.2342453]

[8]     Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying
personal     genomes     by     surname     inference.     Science     2013     Jan
18;339(6117):321–324. PMID:23329047

[9]     Humbert M, Huguenin K, Hugonot J, Ayday E, Hubaux J-P. De-
anonymizing genomic databases using phenotypic traits. Proceedings on
Privacy Enhancing Technologies [Internet] 2015;2015(2). Available
from:     https://sciendo.com/downloadpdf/journals/popets/2015/2/article-
p99.xml

[10] Humbert M, Ayday E, Hubaux J-P, Telenti A. Addressing the concerns
of the lacks family: quantification of kin genomic privacy. Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security New York, NY, USA: Association for Computing Machinery;
2013. p. 1141–1152.

[11] Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J,
Pearson JV, Stephan DA, Nelson SF, Craig DW. Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using
high-density SNP genotyping microarrays. PLoS Genet 2008 Aug
29;4(8):e1000167. PMID:18769715

[12] Humbert M, Ayday E, Hubaux J-P, Telenti A. On Non-cooperative
Genomic Privacy. Financial Cryptography and Data Security Springer
Berlin Heidelberg; 2015. p. 407–426.

[13] Atutornu J, Milne R, Costa A, Patch C, Middleton A. Towards equitable
and trustworthy genomics research. EBioMedicine 2022 Feb;76:103879.
PMID:35158310

[14] Mills MC, Rahal C. The GWAS Diversity Monitor tracks diversity by
disease     in     real     time.     Nat     Genet     2020     Mar;52(3):242–243.
PMID:32139905

[15] Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP,
Zondervan KT. Data quality control in genetic case-control association
studies. Nat Protoc 2010 Sep;5(9):1564–1573. PMID:21085122

[16] Weale ME. Quality Control for Genome-Wide Association Studies
[Internet]. Methods in Molecular Biology. 2010. p. 341–372. [doi:
10.1007/978-1-60327-367-1_19]

[17] Coleman JRI, Euesden J, Patel H, Folarin AA, Newhouse S, Breen G.
Quality control, imputation and analysis of genome-wide genotyping data
from the Illumina HumanCoreExome microarray. Brief Funct Genomics
2016 Jul;15(4):298–304. PMID:26443613

[18] Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C,
Derks EM. A tutorial on conducting genome-wide association studies:
Quality control and statistical analysis [Internet]. International Journal of
Methods      in      Psychiatric      Research.      2018.      p.      e1608.      [doi:
10.1002/mpr.1608]

[19] Duchi JC, Jordan MI, Wainwright MJ. Local Privacy and Statistical
Minimax Rates. 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science 2013. p. 429–438.

[1]     Erlich Y, Narayanan A. Routes for breaching and protecting genetic
privacy. Nat Rev Genet 2014 Jun;15(6):409–421. PMID:24805122

[2]     Bonomi L, Huang Y, Ohno-Machado L. Privacy challenges and research
opportunities for genomic data sharing. Nat Genet 2020 Jul;52(7):646–
654. PMID:32601475

[3]     Naveed M, Ayday E, Clayton EW, Fellay J, Gunter CA, Hubaux J-P,
Malin BA, Wang X. Privacy in the Genomic Era. ACM Comput Surv
[Internet] 2015 Sep;48(1). PMID:26640318

[4]     Workflows     [Internet].     [cited     2022     Apr     7].     Available     from:
https://www.myexperiment.org/workflows

[5]     Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T,
Glover K, Pocock MR, Wipat A, Li P. Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics
2004 Nov 22;20(17):3045–3054. PMID:15201187

[6]     Bowers S, Ludäscher B. Actor-Oriented Design of Scientific Workflows.
Conceptual Modeling – ER 2005 Springer Berlin Heidelberg; 2005. p.
369–384.

[7]     Handigol N, Heller B, Jeyakumar V, Maziéres D, McKeown N. Where is
the debugger for my software-defined network? Proceedings of the first
workshop on Hot topics in software defined networks - HotSDN ’12

[20] Kairouz P, Oh S, Viswanath P. Extremal Mechanisms for Local
Differential Privacy [Internet]. arXiv [csIT]. 2014. Available from:
http://arxiv.org/abs/1407.1338

[21] Dwork C. Differential Privacy: A Survey of Results. Theory and
Applications of Models of Computation Springer Berlin Heidelberg;
2008. p. 1–19.

[22] Erlingsson Ú, Feldman V, Mironov I, Raghunathan A, Talwar K,
Thakurta A. Amplification by Shuffling: From Local to Central
Differential Privacy via Anonymity [Internet]. Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. 2019.
p. 2468–2479. [doi: 10.1137/1.9781611975482.151]

[23] Cheu A, Smith A, Ullman J, Zeber D. Distributed differential privacy via
shuffling. Conference on the Theory … [Internet] Springer; 2019;
Available from: https://link.springer.com/chapter/10.1007/978-3-030-
17653-2_13

[24] Murakami T, Kawamoto Y. ${Utility-Optimized}$ Local Differential
Privacy Mechanisms for Distribution Estimation. 28th USENIX Security
Symposium (USENIX Security 19) 2019. p. 1877–1894.

[25] Gu X, Li M, Xiong L, Cao Y. Providing Input-Discriminative Protection
for Local Differential Privacy [Internet]. arXiv [csCR]. 2019. Available
from: http://arxiv.org/abs/1911.01402

11

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 30,2024 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.



[26] Yilmaz E, Ji T, Ayday E, Li P. Genomic Data Sharing under Dependent
Local Differential Privacy [Internet]. arXiv [csCR]. 2021. Available
from: http://arxiv.org/abs/2102.07357

[27] Humbert M, Ayday E, Hubaux J-P, Telenti A. Reconciling Utility with
Privacy in Genomics. Proceedings of the 13th Workshop on Privacy in
the Electronic Society New York, NY, USA: Association for Computing
Machinery; 2014. p. 11–20.

[28] Yilmaz E, Ji T, Ayday E, Li P. Preserving Genomic Privacy via Selective
Sharing. Proc ACM Workshop Priv Electron Soc 2020 Nov;2020:163–
179. PMID:34485998

[29] Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using
multiparty computation. Nat Biotechnol Nature Publishing Group; 2018
May 7;36(6):547–551.

[30] Huang Z, Lin H, Fellay J, Kutalik Z, Hubaux J-P. SQC: secure quality
control for meta-analysis of genome-wide association     studies.
Bioinformatics 2017 Aug 1;33(15):2273–2280. PMID:28379351

[31] Lu W-J, Yamada Y, Sakuma J. Privacy-preserving genome-wide
association studies on cloud environment using fully homomorphic
encryption. BMC Med Inform Decis Mak 2015 Dec 21;15 Suppl 5:S1.
PMID:26732892

[32] Froelicher D, Troncoso-Pastoriza JR, Raisaro JL, Cuendet MA, Sousa JS,
Cho H, Berger B, Fellay J, Hubaux J-P. Truly privacy-preserving
federated analytics for precision medicine with multiparty homomorphic
encryption. Nat Commun 2021 Oct 11;12(1):5910. PMID:34635645

[33] Kim D, Son Y, Kim D, Kim A, Hong S, Cheon JH. Privacy-preserving
approximate GWAS computation based on homomorphic encryption.
BMC Med Genomics 2020 Jul 21;13(Suppl 7):77. PMID:32693801

[34] Constable SD, Tang Y, Wang S, Jiang X, Chapin S. Privacy-preserving
GWAS analysis on federated genomic datasets. BMC Med Inform Decis
Mak 2015 Dec 21;15 Suppl 5:S2. PMID:26733045

[35] Nasirigerdeh R, Torkzadehmahani R, Matschinske J, Frisch T, List M,
Späth J, Weiss S, Völker U, Pitkänen E, Heider D, Wenke NK, Kaissis G,
Rueckert D, Kacprowski T, Baumbach J. sPLINK: a hybrid federated tool
as a robust alternative to meta-analysis in genome-wide association
studies. Genome Biol 2022 Jan 24;23(1):32. PMID:35073941

[36] Kockan C, Zhu K, Dokmai N, Karpov N, Kulekci MO, Woodruff DP,
Sahinalp SC. Sketching algorithms for genomic data analysis and
querying in a secure enclave. Nat Methods 2020 Mar;17(3):295–301.
PMID:32132732

[37] NOT-OD-19-023: Update to NIH Management of Genomic Summary
Results Access [Internet]. [cited 2022 Apr 8]. Available from:
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html

[38] Fienberg SE, Slavkovic A, Uhler C. Privacy Preserving GWAS Data
Sharing [Internet]. 2011 IEEE 11th International Conference on Data
Mining Workshops. 2011. [doi: 10.1109/icdmw.2011.140]

[39] Yu F, Fienberg SE, Slavković AB, Uhler C. Scalable privacy-preserving
data sharing methodology for genome-wide association studies [Internet].
Journal     of     Biomedical     Informatics.     2014.     p.     133–141.     [doi:
10.1016/j.jbi.2014.01.008]

[40] Johnson A, Shmatikov V. Privacy-Preserving Data Exploration in
Genome-Wide Association Studies. KDD 2013 Aug;2013:1079–1087.
PMID:26691928

[41] Tramèr F, Huang Z, Hubaux J-P, Ayday E. Differential Privacy with
Bounded Priors: Reconciling Utility and Privacy in Genome-Wide

Association Studies. Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security New York, NY, USA:
Association for Computing Machinery; 2015. p. 1286–1297.

[42] Shringarpure SS, Bustamante CD. Privacy Risks from Genomic Data-
Sharing Beacons. Am J Hum Genet 2015 Nov 5;97(5):631–646.
PMID:26522470

[43] von Thenen N, Ayday E, Cicek AE. Re-identification of individuals in
genomic data-sharing beacons via allele inference. Bioinformatics 2019
Feb 1;35(3):365–371. PMID:30052749

[44] Harmanci A, Gerstein M. Quantification of private information leakage
from phenotype-genotype data: linking attacks. Nat Methods 2016
Mar;13(3):251–256. PMID:26828419

[45] Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC,
Crenshaw AT, de Andrade M, Doheny KF, Haines JL, Hayes G, Jarvik
G, Jiang L, Kullo IJ, Li R, Ling H, Manolio TA, Matsumoto M, McCarty
CA, McDavid AN, Mirel DB, Paschall JE, Pugh EW, Rasmussen LV,
Wilke RA, Zuvich RL, Ritchie MD. Quality control procedures for
genome-wide association studies. Curr Protoc Hum Genet 2011
Jan;Chapter 1:Unit1.19. PMID:21234875

[46] Lewis ACF, Molina SJ, Appelbaum PS, Dauda B, Di Rienzo A, Fuentes
A, Fullerton SM, Garrison NA, Ghosh N, Hammonds EM, Jones DS,
Kenny EE, Kraft P, Lee SS-J, Mauro M, Novembre J, Panofsky A, Sohail
M, Neale BM, Allen DS. Getting Genetic Ancestry Right for Science and
Society     [Internet].     arXiv     [q-bioPE].     2021.     Available     from:
http://arxiv.org/abs/2110.05987

[47] Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi
R, Ferreira T, Fall T, Graff M, Justice AE, Luan J ’an, Gustafsson S,
Randall JC, Vedantam S, Workalemahu T, Kilpeläinen TO, Scherag A,
Esko T, Kutalik Z, Heid IM, Loos RJF, Genetic Investigation of
Anthropometric Traits (GIANT) Consortium. Quality control and
conduct of genome-wide association meta-analyses. Nat Protoc 2014
May;9(5):1192–1212. PMID:24762786

[48] Walfish M, Blumberg AJ. Verifying computations without reexecuting
them. Commun ACM New York, NY, USA: Association for Computing
Machinery; 2015 Jan 28;58(2):74–84.

[49] Yu X, Yan Z, Vasilakos AV. A survey of verifiable computation. Mob
Netw Appl Springer Science and Business Media LLC; 2017
Jun;22(3):438–453.

[50] Gennaro R, Wichs D. Fully Homomorphic Message Authenticators.
Advances in Cryptology - ASIACRYPT 2013 Springer Berlin
Heidelberg; 2013. p. 301–320.

[51] Dervishi L, Wang X, Li W, Halimi A, Vaidya J, Jiang X, Ayday E.
Facilitating Federated Genomic Data Analysis by Identifying Record
Correlations while Ensuring Privacy [Internet]. arXiv [csCR]. 2022.
Available from: http://arxiv.org/abs/2203.05664

[52] Halimi A, Dervishi L, Ayday E, Pyrgelis A, Troncoso-Pastoriza JR,
Hubaux J-P, Jiang X, Vaidya J. Privacy-Preserving and Efficient
Verification of the Outcome in Genome-Wide Association Studies
[Internet]. arXiv [csCR]. 2021. Available from:
http://arxiv.org/abs/2101.08879

[53] Martschenko DO, Domingue BW, Matthews LJ, Trejo S. FoGS provides
a public FAQ repository for social and behavioral genomic discoveries.
Nat Genet 2021 Sep;53(9):1272–1274. PMID:34493865

12

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 30,2024 at 12:46:40 UTC from IEEE Xplore. Restrictions apply.


