
Feedback-Driven Automated Whole Bug Report Reproduction for
Android Apps

Dingbang Wang
University of Connecticut

USA
dingbang.wang@uconn.edu

Yu Zhao
University of Cincinnati

USA
zhao3y3@ucmail.uc.edu

Sidong Feng
Monash University

Australia
sidong.feng@monash.edu

Zhaoxu Zhang
University of Southern California

USA
zhaoxuzh@usc.edu

William G. J. Halfond
University of Southern California

USA
halfond@usc.edu

Chunyang Chen
Technical University of Munich

Germany
chun-yang.chen@tum.de

Xiaoxia Sun
China Mobile(Suzhou) Software

Technology Co., Ltd.
China

18896724798@139.com

Jiangfan Shi
Zhejiang University

China
shijiangfan@dragontesting.cn

Tingting Yu
University of Connecticut

USA
tingting.yu@uconn.edu

Abstract

In software development, bug report reproduction is a challeng-

ing task. This paper introduces ReBL, a novel feedback-driven ap-

proach that leverages GPT-4, a large-scale language model (LLM),

to automatically reproduce Android bug reports. Unlike traditional

methods, ReBL bypasses the use of Step to Reproduce (S2R) enti-

ties. Instead, it leverages the entire textual bug report and employs

innovative prompts to enhance GPT’s contextual reasoning. This

approach is more flexible and context-aware than the traditional

step-by-step entity matching approach, resulting in improved accu-

racy and effectiveness. In addition to handling crash reports, ReBL

has the capability of handling non-crash functional bug reports. Our

evaluation of 96 Android bug reports (73 crash and 23 non-crash)

demonstrates that ReBL successfully reproduced 90.63% of these

reports, averaging only 74.98 seconds per bug report. Additionally,

ReBL outperformed three existing tools in both success rate and

speed.

CCS Concepts

· Software and its engineering→ Software testing and debug-

ging;

Keywords

Android, Automated Bug Reproduction, Large Language Model,

Prompt Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16ś20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680341

ACM Reference Format:

Dingbang Wang, Yu Zhao, Sidong Feng, Zhaoxu Zhang, William G. J. Hal-

fond, Chunyang Chen, Xiaoxia Sun, Jiangfan Shi, and Tingting Yu. 2024.

Feedback-Driven Automated Whole Bug Report Reproduction for Android

Apps. In Proceedings of the 33rd ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA ’24), September 16ś20, 2024, Vienna, Aus-

tria. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.

3680341

1 Introduction

In software development, debugging and fixing are crucial, espe-

cially in the mobile app marketplace. According to [11], 88% of app

users are likely to abandon an app if they encounter recurring is-

sues, underlining the need for swift issue resolution to retain users.

One major challenge developers face is effectively reproducing bugs

reported by users, which often lack crucial details like the sequence

of user interactions [17, 20, 33, 39]. To address this, the software

engineering community is increasingly interested in automating

the bug reproduction process.

Several existing approaches have been developed to automate

bug reproduction [26, 28, 52, 54, 55]. These methods follow two

phases in bug reproduction: 1) extracting entities from steps to

reproduce (S2Rs), and 2) explicitly matching the extracted enti-

ties with the actual app UI to find the sequence of events that

replays the S2Rs or reproduces the reported bug. However, these

approaches have limitations. First, S2Rs are often unclear, impre-

cise, or ambiguous, posing a significant challenge to state-of-the-art

NLP techniques [28]. Second, explicitly matching bug reports with

app UI can result in missing reproduction steps due to incomplete

bug reports. Existing techniques use resource-intensive dynamic

exploration algorithms and human-defined heuristics to address

this issue, leading to reduced effectiveness and higher costs.

Recentwork, AdbGPT [28] utilizes large languagemodels (LLMs),

i.e., GPT-3.5, to extract S2R entities from bug reports and then

iteratively employs ChatGPT [14] to make decisions for selecting UI

1048



ISSTA ’24, September 16ś20, 2024, Vienna, Austria D. Wang, Y. Zhao, S. Feng, Z. Zhang, W. Halfond, C. Chen, X. Sun, J. Shi, and T. Yu

widgets to replay the extracted S2Rs. In S2R Entity Extraction, few-

shot learning is applied to guide the LLM in recognizing entities

related to bug reproduction. The Guided Replay phase uses the

LLM to explore the apps, matching S2R entities with GUI events

to reproduce the bugs. This approach leverages the remarkable

capabilities of LLMs to comprehend natural language and act as an

expert developer of extracting S2Rs and guiding GUI exploration.

While AdbGPT represents improvements over previous approaches

in effectiveness and efficiency, it still faces several challenges. First,

like many existing approaches [52ś54], it strictly adheres to the

use of S2R entities, following a two-phase structure: the S2R Entity

Extraction phase and the subsequent matching with UI widgets. As

acknowledged in existing work [20, 25, 39], bug reports often suffer

from a substantial cognitive and lexical gap between reporters and

developers, leading to ineffective communication of crucial repro-

duction steps and inconsistent report quality. The use of S2R entities

can exacerbate this situation because (i) the Entity Extraction phase

may omit essential details; (ii) the original S2R may be ambiguous

or inaccurate; and (iii) extracted entities overlook the actual UI con-

text encountered during bug reproduction. Second, when implicit

input values are involved, AdbGPT uses a łTESTž placeholder for

text fields, risking invalid GUI exploration. However, text inputs are

crucial for triggering some bugs and significantly influence testing

and bug detection. Third, it overlooks the inherent randomness in

large language models’ outputs, potentially resulting in inaccura-

cies in matching GUI widgets and diminishing effectiveness. Finally,

AdbGPT terminates UI exploration when all S2Rs are covered, lack-

ing the capacity to assess whether the bug is being triggered or

not.

In this paper, we introduce ReBL, a novel feedback-driven ap-

proach utilizing GPT to automate bug reproduction. Unlike existing

methods, ReBL utilizes the entire bug report, eliminating the need

to use S2R entities. This streamlines the process and ensures the

original bug report’s description remains intact, avoiding potential

omissions during the S2R Extraction phase. The feedback-driven de-

sign enriches the GPT model with rich UI context, enabling flexible,

context-aware actions crucial for accurate bug reproduction. Dur-

ing reproduction, ReBL diverges from a rigid step-by-step approach,

unlike AdbGPT. Instead, it employs a feedback-driven methodol-

ogy that considers the bug report, the current app state, and the

reproduction history to make informed decisions. ReBL uses in-

novative techniques to capture UI context, addressing incomplete

and ambiguous bug report information. Additionally, it integrates

novel strategies to mitigate randomness in LLMs’ responses and

automatically adapt to correct behavior.

Overall, ReBL is a tool that average software developers can eas-

ily adopt and benefit from without requiring in-depth knowledge

of LLMs technology. First, it is designed to be end-to-end, requiring

users to input only the bug report and APK file. Second, it automat-

ically generates feedback based on the bug report, app state, and

action status, eliminating the need for manual input. Third, ReBL

integrates seamlessly into existing workflows and bug tracking sys-

tems, allowing for easy incorporation into bug resolution processes

without disruption.

ReBL has been implemented as a powerful software tool built on

top of GPT-4 [15] and UI Automator2 [9]. To assess the effectiveness

of our approach, we conducted extensive experiments by running

ReBL on a substantial dataset comprising 73 crash bug reports and

23 non-crash bug reports. The results show that ReBL demonstrated

an impressive success rate by successfully reproducing 87 bugs (69

crash and 18 non-crash bugs), accounting for 90.63% of the total

bug reports in the dataset, with an average reproduction time of

74.98 seconds. To provide further insights into the advantages of

our approach over the state-of-the-art, we conducted a comparative

analysis of 73 crash bug reports against three existing tools: ReC-

Droid [55], ReproBot [52], and AdbGPT [28]. The success rates for

these tools are 45.21%, 65.75%, and 73.97%, respectively, while ReBL

achieved an impressive 94.52%. Moreover, our approach stands out

as the fastest, with an average time of 72.11 seconds, compared to

ReCDroid (534.92s), ReproBot (413.72s), and AdbGPT (89.80s).

In summary, our paper makes the following contributions:

• ReBL, the first tool capable of reproducing bugs using the

whole bug reports without the use of S2R entities and specific

bug type domains, streamlining the debugging process.

• An empirical study demonstrating the effectiveness of ReBL

in reproducing both crash and non-crash functional bugs for

Android bug reports.

• We made the implementation and dataset publicly available

for future research work [16].

2 Preliminaries and Motivation

In this section, we introduce the essential preliminaries for auto-

mated bug reproduction and provide motivating examples. These

examples highlight the limitations of existing approaches and show-

case the advantages of our approach.

2.1 Preliminaries

A UI widget is a graphical element of an app, such as a button, a

text field, and a check box. A UI action is the action performed

by the app. It can either be an explicit action on a UI widget (e.g.,

click) or an implicit action (e.g., wait, phone call). In our setting,

a state represents an app page (i.e., a set of widgets shown on the

current screen. If the set of widgets is different, we have another

state).UI information represents the content of thewidgets extracted

from the current app state. Successful reproduction is defined as the

scenario in which the buggy behavior specified in the bug report is

accurately triggered during the bug reproduction process.

2.2 Comparison with Existing Techniques

Current state-of-the-art bug report reproduction techniques typi-

cally focus on using steps to reproduce (S2Rs) as the initial input for

reproduction [26, 28, 52, 53]. Some approaches propose automated

techniques to extract S2Rs. For example, ReCDRoid+ [54] uses a

deep learning algorithm to extract S2Rs from the full bug reports.

The extracted S2Rs are typically represented as <action, target UI

widget, input values>.

For the actual bug report reproduction, existing approaches use

various techniques and algorithms to explicitly match S2R with

the app UI. This matching process determines the priority of UI

widgets in the reproduction approaches’ exploration. For example,

ReCDroid [53] uses Word2Vec to match S2R entities (e.g., the tar-

get UI widget) with the UI widgets in the app and then employs a

guided DFS to find the most relevant GUI widget iteratively. Zhang

1049



Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps ISSTA ’24, September 16ś20, 2024, Vienna, Austria

Figure 1: Motivation Example

et al.[52] calculate a similarity score to measure the similarity be-

tween an action’s UI event and S2R. It then uses Q-learning to learn

how to match UI events with the S2Rs and bridge missing steps to

calculate a UI event sequence that can lead to the observed failure.

ScopeDroid [31] matches the S2R with the state transition graph

(STG) generated from the app. The matching results are used to

plan a path in STG to guide bug report reproduction. Despite their

contributions, they have inherent limitations, which manifest in

at least one of the following aspects: (1) Difficulties in accurately

extracting S2R from bug reports, mainly due to the complexity and

diversity of sentence structures found in these reports; (2) Chal-

lenges in inferring missing steps due to the limited knowledge or

understanding of the bug reproduction context; (3) Significant costs

associated with the matching and dynamic analysis phases, making

the bug reproduction process resource-intensive.

The most recent work, AdbGPT [28], addresses the above lim-

itations using large language models (LLMs). By leveraging their

advanced natural language understanding and decision-making

capabilities, AdbGPT significantly enhances the accuracy and ef-

ficiency of reproducing Android bugs automatically. Similar to

conventional approaches, AdbGPT initially identifies S2R entities

from manually supplied S2R sentences and then use these extracted

entities as prompts against the UI widgets to determine the optimal

widget for replaying the S2Rs. Nevertheless, like other techniques,

AdbGPT exhibits the following limitations:

Challenge 1: Overlooking non-S2R information. Existing ap-

proaches focus on extracting entities from the S2R segment, which

risks overlooking other essential information for bug reproduction.

Figure 1 exemplifies a bug report that failed to be reproduced by ex-

isting approaches with S2R entity extraction. Figure 1A displays the

entity extraction result from AdbGPT [28]. This result reveals an

omission of crucial information, łWhat:MultiselectSampleActivityž,

because it is not in the S2R segment. The oversight of this non-S2R

information results in inadequate information to bridge the missing

steps from the home page (state#1) to this specific page (state#3), es-

pecially since many pages in this app feature a similar UI structure

as state#3, e.g., many pages have items numbered 1-100. Failing

to consider this non-S2R information during the reproduction pro-

cess makes it challenging to determine the exact location where

the S2R should be performed. Conversely, our approach utilizes

the whole bug report and bypasses the Entity Extraction phase,

comprehending the bug report as a cohesive whole.

Challenge 2: Incapable of handling incomplete or ambiguous

S2Rs. The S2Rs written by users might be incomplete or ambiguous,

and further extraction of S2R entities could potentially exacerbate

these issues. Additionally, the extracted entities might lack flexi-

bility, as they are derived from the S2Rs without considering the

actual UI context. Continuing with the example from Figure 1, as-

sume that Challenge 1 has been addressed, allowing AdbGPT to

proceed with the reproduction process from state#3. In the Entity

Extraction phase, "Select at least 5 last items (from 96-100)" has

been broken down by AdbGPT into 5 steps, with the first step being

[łtapž] [ł96ž]. As presented in Figure 1A, we demonstrate how Ad-

bGPT uses prompt engineering queries in LLMs for suggestions on

executing this step. However, while [łtapž] [ł96ž] may appear valid

according to the bug report and the extraction process, it proves

to be invalid in the actual reproduction process. As can be seen

in state#3 in Figure 1B, a toast, which is a widget that disappears

quickly, suggests łLongClick to enable Multi-Selectionž, implying

that to multi-select items 96-100, one must first long-click on item

96. Since AdbGPT is only looking to match the extracted entities

<[łtapž] [ł96ž]> to the UI page, it will not be able to perform the

long click/tap action.

To address this problem, our approach eliminates the use of

S2R entities, thereby avoiding presuming the action for each step

and instead relying on a holistic approach, considering both the

complete bug report and the rich UI context to determine the most

appropriate action. In this scenario, it recognizes the presence of

the quickly disappearing toast message and takes into account its

context to perform a long click on the target widget.

Challenge 3: Less sophisticated text input generation. Exist-

ing bug reproduction tools adopt less sophisticated strategies in

filling text fields when explicit inputs are lacking in S2Rs, which can

lead to invalid inputs, potentially resulting in failed reproduction.

These methods include generating random text [31], employing

the generic placeholder [52], relying on predefined dictionaries to

fill text boxes, and defaulting to placeholders when unsuitable [53].

AdbGPT [28] specifically uses the generic placeholder łTEST.ž Par-

ticularly challenging are scenarios involving text fields with com-

plex requirements, such as password fields illustrated in Figure 2A.

These password fields necessitate a minimum length, and it is com-

mon for such fields to demand a combination of letters and numbers,

making simplistic placeholders insufficient. Furthermore, password

1050



ISSTA ’24, September 16ś20, 2024, Vienna, Austria D. Wang, Y. Zhao, S. Feng, Z. Zhang, W. Halfond, C. Chen, X. Sun, J. Shi, and T. Yu

confirmation fields require matching inputs, rendering random gen-

eration methods unsuitable. Figure 2B is another example with

fields requiring numeric, alphabetic, and unspecified types of in-

put(e.g., the 𝑆𝑒𝑐𝑟𝑒𝑡 text field) on the same page. Therefore, a more

versatile fill-blank method is necessitated. Addressing these, our

approach, ReBL, intelligently infers input values to fill in blanks

leveraging the UI context of the current page. Furthermore, due to

the feedback mechanism and flexibility of ReBL, it is also capable of

correcting any invalid inputs, provided there is a warning message,

thereby ensuring the accuracy and appropriateness of the inputs.

A. Fill Blank #1 B. Fill Blank #2

Figure 2: Example of Inferring Input Values

Challenge 4: Lack of LLM responsemanagement.AdbGPT [28]

leverages the advanced capabilities of LLMs but lacks effective

mechanisms for managing their outputs. When integrating the

LLM’s output into a program, defining a custom format for au-

tomated interpretation is crucial. However, due to the inherent

randomness of LLMs, the output might not always adhere to the de-

sired format or could be in the correct format but contain incorrect

information, leading to execution failures or program errors. De-

spite the potential benefits of setting temperature, complete control

is not achievable. Moreover, AdbGPT lacks mechanisms to capture

specific output patterns for enhancing bug report reproduction. For

instance, the reproduction process may stall when encountering

a repeated sequence of actions. To address these concerns, our ap-

proach uses a feedback mechanism to consistently update the LLMs

with feedback on the effectiveness of their responses. This process

guides them toward more accurate and relevant outputs for subse-

quent actions, thereby enhancing the consistency and reliability of

the bug reproduction process.

Challenge 5: Incapable of handling non-crash functional

bug reports. The wide range of non-crash bug symptoms poses

a substantial challenge in bug reproduction. Existing works are

primarily focused on crash bug reports [26, 52ś54], or S2Rs re-

play without concern for automatically verifying the symptoms,

such as AdbGPT [28]. Crash symptoms are often easy to identify

through error messages in Logcat or UI changes, while non-crash

bug symptoms are diverse and may need different test oracles for

detection. [45, 50]. Given the advanced text comprehension capa-

bilities of LLMs, we see LLMs’ potential to recognize some types

of non-crash bug symptoms. For example, a non-crash symptom

described as łSee no resultsž can be effectively determined by LLMs

based on the warning łNo dataž displayed on the screen. Therefore,

in this paper, we also investigate whether LLMs can accurately

identify content-related non-crash bug symptoms based on the UI

context and the symptom described in the bug report, excluding

issues related to images such as blurriness, size, and color variations.

Figure 3: ReBL Approach Overview

3 ReBL Approach

ReBL is a feedback-driven approach for automated whole bug report

reproduction in Android apps utilizing the capabilities of LLMs. The

architectural framework of ReBL is illustrated in Figure 3. ReBL

is end-to-end, requiring users to input the bug report and APK

file. Therefore, developers without knowledge of LLMs can con-

veniently utilize the tool. The ultimate objective is to generate an

event sequence that precisely reproduces the reported bug. The

instructions transform the general-purpose LLM into a bug repro-

duction tool [12, 41], adhering to our design. App UI Information

offers the app’s UI context. The inherent feedback mechanism of

ReBL is fully automated to generate feedback and provide a richer

context of the reproduction process by offering additional observa-

tions related to the format of responses, UI context, or actions.

This is an iterative process. In each iteration, ReBL leverages

the above information to generate prompts and update the prompt

history, which are then used to query the LLM for a response. Upon

receiving the response, ReBL interprets it and utilizes the execu-

tion engine to perform the suggested actions. Following this, it

updates the feedback and app’s state, informing the generation of

the next prompt and updating the prompt history. This process con-

tinues until the LLM determines the reproduction process should

be concluded.

The prompt history preserves all information during the repro-

duction process, enabling LLMs to maintain a consistent under-

standing and to reference any detail, such as the bug report and

previous UI information, at any time. By utilizing the entire textual

bug report, ReBL bypasses the two traditional phases, S2R entity ex-

traction and S2R entity matching. It directly addresses Challenge#1.

It ensures that every piece of textual information in the bug report

is considered. Moreover, the description of bug symptoms in the

whole bug report combined with the App UI Information aids in de-

termining whether the bug has been triggered, effectively tackling

Challenge#5.

In contrast to AdbGPT, which employs prompts to inquire about

precise actions and target S2R entities for each step, our approach

1051



Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps ISSTA ’24, September 16ś20, 2024, Vienna, Austria

takes a significantly different path. ReBL utilizes the LLM in a dis-

tinctive, feedback-driven manner. By providing comprehensive App

UI Information and thorough feedback, the LLM is empowered to

make well-informed decisions relevant to the current page. This

strategy significantly enhances flexibility in bug reproduction, effec-

tively addressing both Challenge#2, Challenge#3, and Challenge#4.

Furthermore, in Challenge#3, if the input for filling a blank gener-

ates an invalid response, preventing page progression, the design

of feedback can aid in correcting the input.

3.1 Instructions Description

The instructions serve as a foundational guide for the LLM in the

workflow of automated bug reproduction. Although LLMs possess

extensive knowledge, they lack the tailored specialization required

for specific tasks such as bug reproduction. The instructions trans-

form the general-purpose LLM into a bug reproduction tool, adher-

ing to the design of our approach. They clearly define the objective

and workflow of the task, followed by a comprehensive explanation

of the workflow, ensuring that the LLM can perform this specialized

task effectively. The structure and components of the instructions

are shown in Table 1.

Equipped with these meticulous prompt instructions, ReBL ac-

quires the capability to conduct feedback-driven bug report repro-

duction. This includes supporting advanced actions, executing these

actions, gathering UI context, interpreting the LLM response for

feedback provision, and establishing criteria for termination. The

prompt instructions act as a guiding beacon, steering the entire

reproduction process.

Table 1: Instructions Description

COMPONENT DETAILS

〈Objective〉 I need your assistance in reproducing bug reports for Android
apps. Our goal is not just to follow the steps leading to where
the bug occurs in the app, but also to verify that the buggy
behavior specified in the bug report is indeed triggered.

〈Workflow〉 To initiate the reproduction process, I will provide the app
name, bug report, and initial UI information. Your role will be to
offer one suggestion at a time, such as clicking a button. After
executing your suggestion, I will update you with feedback
and the current UI state. This iterative process will continue
until either triggering the bug or determining reproduction has
failed.

〈Explanation〉 1. Available Actions: click, long_click,set_text, scroll,...; 2. Your
Response Rormat:...; 3. Termination criteria:
2. Your response format should be...;
3. The condition to terminate: (a) Successful Reproduction (b)
Failed Reproduction.

1 Due to space constraints, this table aims to present the structure and components
of the instructions. Full details are available in [16].

3.2 Extracting App UI Information

App UI Information showcases the app’s current state. It can be used

to validate the effectiveness of previous actions and to help make

the decision for the next step. In our design, the UI information is

composed of two distinct parts: the activity name and the UI widget

information.

3.2.1 Activity Name. The activity name serves as a unique iden-

tifier for the activity within the app. It offers extra context about

the functionality or purpose of the current page, aiding in progress

checking of bug reproduction.

3.2.2 UI Widgets Information. UI widgets showcase the app’s cur-

rent state. Existing reproduction approaches [28, 52, 54, 55] leverage

individual UI widgets to perform entity matching between the UI

widgets’ identifiers (either by their resource-id, content-description,

or text) and the extracted S2R entities. We have followed the same

method of selecting identifiers to represent single widgets, such

as [class: identifier]. If all three identifier fields are empty, then

coordinates are used. However, focusing solely on individual UI

widgets can lead to a lack of context, making it difficult to manage

complex UI pages, such as those with too many widgets or widgets

that have identical or semantically similar identifiers on the same

page. It is crucial to group widgets to enhance understanding and

facilitate automation tasks [48, 49], such as bug reproduction.

Figure 4: Illustration of Grouping

Figure 4 shows an app page featuring many widgets. Viewing

these widgets in isolation makes it challenging to discern their

specific functions and relationships. Even for the common widget

łMorež (known as łmore optionsž), the presence of five such widgets

complicates identifying their distinctions when viewed separately.

However, grouping them adds organizational context, which eases

the differentiation and prediction of widget relationships and func-

tions. In this example, after grouping, there is a group containing a

widget łTop Storiesž followed by four uniformly structured groups.

For instance, each group contains the same number of widgets,

including a long text and a URL-like text, suggesting that each

group represents a story. The lengthy text likely serves as the title,

and the URL-like text acts as the link to that story. Furthermore,

one łMorež widget in the header group suggests global functionali-

ties for the page, while the other four łMorež widgets, distributed

among the story groups, indicate local functionalities related to

their respective story groups.

3.2.3 Grouping UI Widgets. To group UI widgets, we analyze the

XML of the app page and use the layout structure to systematically

group widgets. This approach primarily follows the app developer’s

intention to organize and contextualize them. In the XML, a layout

is an element whose class type is ViewGroup or a subclass of View-

Group, such as LinearLayout or FrameLayout, designed to contain

and organize UI components (views) on the screen. A clickable

layout is a layout with its clickable attribute set to true, meaning

that interacting with any part of the layout triggers a response. A

child is an element that is directly contained within another ele-

ment and is exactly one level below it in the hierarchy. A leaf is a

1052



ISSTA ’24, September 16ś20, 2024, Vienna, Austria D. Wang, Y. Zhao, S. Feng, Z. Zhang, W. Halfond, C. Chen, X. Sun, J. Shi, and T. Yu

child that does not have any children. A nested layout is a layout

element and serves as a child of another layout element. Widgets

on a page are organized following the format łGroup #[Number]:

[List of Widgets]ž, where each individual widget within the group

maintains the format of a single widget. The rules of grouping work

as follows, with the order of steps being critical:

1. For a clickable layout that contains no nested clickable lay-

outs, all widgets within it are considered a group. This rule

is adopted because interacting with any part of the layout

triggers a response. Widgets within this group collectively

convey the group’s overall functionality.

2. If a non-clickable layout has all its children as leaves, and at

least one of them is clickable, all widgets within this layout

are considered a group. This rule is based on the understand-

ing that non-clickable widgets can serve as supplementary

explanations for clickable widgets in the same group.

3. If the previous rules do not apply, a clickable widget can be a

group by itself. This ensures that widgets not covered by the

previous two rules are also taken into consideration.

Figure 5 depicts a UI page for adjusting app display settings. The

layout encompassing the łText sizež and łSmallž widgets constitutes

a group because clicking anywhere within this layout prompts the

item list for font size. This group is established based on the first

rule, as the clickable layout contains no nested clickable layouts.

All widgets (i.e., łText sizež, łSmallž) within this clickable layout are

grouped. For the second rule, a common example is a non-clickable

label next to an editable text box.

Figure 5: Grouping Example

3.3 Interpretation and Feedback on LLM

Responses

3.3.1 Interpreting the Response. During each iteration of the bug

reproduction process, ReBL relies on the LLM’s response to execute

action(s) on the current page. The response can be a single action,

such as [𝑎1], or a sequence of actions taken in order, such as [𝑎1,

𝑎2, 𝑎3]. Here, 𝑎 represents a single action, each paired with its

necessary components, such as the target UI widget, input value,

direction, and duration. See Table 2 for the list of available actions.

Compared with existing approaches, ReBL can handle multiple

actions on one page in a single response, which speeds up the repro-

duction process, saving time from conducting multiple interactions

(e.g., sending subsequent prompts and waiting for responses). This

proves particularly effective when the bug report requires the se-

lection of multiple items or filling out several text fields on the

same page. Moreover, there are scenarios where rapid execution of

multiple actions is needed to trigger a bug, such as "Do multiple

fast clicks on Play/Stop button" [5]. In these instances, existing

Table 2: Actions and LLM Responses Format

UI Actions

Action 𝑎 Required Format Example

𝑏𝑎𝑐𝑘 [action] ['back']
𝑐𝑙𝑖𝑐𝑘
𝑙𝑜𝑛𝑔 − 𝑐𝑙𝑖𝑐𝑘

[action, target] ['click', 'theme']

𝑠𝑐𝑟𝑜𝑙𝑙
𝑠𝑤𝑖𝑝𝑒
𝑟𝑜𝑡𝑎𝑡𝑒

[action, direction] ['scroll', 'up']

𝑠𝑒𝑡_𝑡𝑒𝑥𝑡 [action, target, input] ['set_text', 'name', 'joh']

System Actions

𝑟𝑒𝑠𝑡𝑎𝑟𝑡 [action] ['back']
𝑠𝑙𝑒𝑒𝑝 [action, duration] ['sleep', 0.5]

Termination Actions

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 [action] ['success']
𝑓 𝑎𝑖𝑙 [action] ['fail']

LLM Response

Example1 [a1] [['click ', 'A']]
Example2 [a1, a2] [['set_text', 'email', 'conf@test.com'],

['set_text', 'password', '123456']]

approaches that execute actions step by step may prove inadequate,

while ReBL, utilizing the multi-actions response from the LLM, is

able to handle the rapid execution of a sequence of actions.

3.3.2 Feedback on the Response. Our approach’s design empha-

sizes the necessity of providing extra feedback on the LLMs’ re-

sponses at every iteration. This includes (i) execution status, con-

firming whether the actions were successfully executed; (ii) analysis

of whether actions might cause repetition or loops; (iii) observing

if actions trigger quick-disappearing widgets that appear and dis-

appear quickly, often unnoticed but might be crucial.

Action execution status. The Execution Result handler informs

the LLM models of the execution status, indicating whether the

previously suggested actions were executed successfully, thereby

aiding in the checking of reproduction progress. Due to the prob-

abilistic nature of language models, the LLM might occasionally

produce unexpected responses. For instance, it might suggest per-

forming an action on a UI widget that does not currently exist on

the app’s current page, leading to a failure in execution as the target

widget cannot be located. Alternatively, the LLM might identify

the correct target but output the response in an incorrect format,

leading to execution failure as the response cannot be interpreted

accurately. To address this, we include the execution result in the

prompts. This feedback enables the LLM to acknowledge the cur-

rent status, indicating whether it is appropriate to proceed to the

next step or necessary to reformulate the response due to a failed

execution.

Repeated sequence. The Repeated Sequence handler detects pat-

terns where a sequence of actions has been executed at least twice,

leading to a situation where the reproduction process might get

stuck on the same page or enter a loop. This handling is particularly

crucial because our approach is feedback-driven and does not ask

the LLMs to match specific entities with UI widgets. Consequently,

there is an inherent potential for the process to become stuck on a

page, necessitating the need for this handler to monitor the history

of actions, providing crucial oversight to prevent repetitive loops

and ensure a smoother reproduction process. Our algorithm checks

if the newly suggested action(s) cause any sequence of actions to

repeat from some point until the new actions in each iteration. For

example, if the current action history is A → B → C → D → B

1053



Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps ISSTA ’24, September 16ś20, 2024, Vienna, Austria

→ C, and the LLM suggests D as the next action, then a repeated

sequence (B→ C→ D→ B→ C→D) is detected. When a repeated

sequence is detected, we remind the LLM models. This reminder

helps the LLM decide if ReBL should avoid these repetitions in

future explorations.

Quick-disappearing widgets. A quick-disappearing widget refers

to awidget that appears in the UI when it is relevant, often following

the execution of an action, but then disappears quickly. Common

examples include pop-up notifications, toast, and data-loading di-

alogs. Existing approaches typically involve a brief waiting period

(e.g., 5 seconds) after an action to gather information from the stable

UI page, frequently neglecting the existence of quick-disappearing

widgets. However, quick-disappearing widgets can be crucial in

various aspects of bug reproduction. First, quick-disappearing wid-

gets are crucial for providing information for S2Rs. As exemplified

in Challenge 2 in Section 2.2, a quick-disappearing toast provides

critical information for choosing the correct action. Second, they

act as termination indicators, particularly when bug symptoms,

such as error messages, are presented as quick-disappearing toast

messages. Third, there are situations where the target of reproduc-

tion steps is a quick-disappearing widget. To address this challenge,

ReBL is adept at considering the presence and context of quick-

disappearing UI widgets, thereby effectively managing scenarios

that involve this kind of widget and enhancing the accuracy of the

bug reproduction process.

3.4 Handling Token Limit

The token limit in LLMs restricts the total amount of text that can be

included in both the prompt and the model’s response, highlighting

the necessity for effective management strategies. For instance,

GPT-4 offers options for specifying token limits Ð 8K and 32K,

depending on user preference and budget availability [15]. In our

experiment, we opted for a token limit of 8K.

Our approach employs summarization to address the token limit.

With the max token limit (𝐿), ReBL continuously monitors the to-

ken count of the prompt history, denoted as 𝐶 . When 𝐶 surpasses

a set threshold (𝐶 > 𝐿 ×𝑇𝐻 with 𝑇𝐻 being the threshold propor-

tion, e.g., 0.7), ReBL queries the underlying LLM to condense the

current prompt history. Due to the robust semantic comprehension

of LLMs, this method preserves crucial information while signifi-

cantly reducing the size of prompt history without losing context

and eliminating less relevant details for assisting the bug reproduc-

tion. To the best of our knowledge, none of the existing literature

has explicitly mentioned specific strategies for addressing the issue

of token limits. Our experiment validates the effectiveness of the

summarization strategy.

3.5 Termination

The reproduction process terminates, signaling either a successful

or failed reproduction.

3.5.1 Successful Reproduction. The successful reproduction of a

bug report is defined by the manifestation of the reported bug

symptom. ReBL leverages the underlying LLM to assess whether a

bug has been triggered, utilizing the bug symptom outlined in the

report, in conjunction with the current UI information (Section 3.2)

and the prompt history. The actions executed in the prompt history

are used to ensure the mentioned steps in the bug reports have

been executed, while the current UI information is employed to

verify the presence of bug symptom mentioned in the bug report.

For example, ReBL effectively resolves a non-crash bug report re-

production related to an invalid search. This was accomplished by

utilizing the LLM’s capability to identify the non-crash symptom

described by the reporter in the bug report as "See no results after

search," and subsequently correlating this symptom with the con-

tent "No data" displayed on the current UI page. The bug arose due

to the expected search yielding no valid results. This termination

strategy also applies to crash bugs, where the symptoms are readily

apparent.

3.5.2 Failed Reproduction. Failed reproduction occurs when ReBL

fails to trigger the described bug. In such cases, ReBL continues to

explore the application and makes repeated attempts to reproduce

the bug. This persistent exploration often results in surpassing the

token limit of the prompt history as information accumulates over

time. Consequently, token limit control mechanisms (Section 3.4)

are activated. To optimize resource use and limit endless exploration,

failure is determined either after a specified duration (e.g., one hour)

or upon reaching a predefined token summarization threshold (e.g.,

three times). The one-hour time constraint is aligned with the

settings commonly used in state-of-the-art approaches [52ś54]. Our

empirical study sets the token summarization threshold at three

because we found that typically, one summarization is sufficient

to free up space for continued reproduction, leading to successful

outcomes. Therefore, we chose 3 attempts to ensure a sufficient

number of opportunities. For cases that fail to reproduce after three

attempts at summarization, the primary reasons for the failures are

not due to the token limit, but rather factors such as the underlying

tool’s capabilities or insufficient information in the original bug

report, as detailed in Section 5.1.

4 Empirical Study

To evaluate ReBL, we address three key research questions:

RQ1: How effective and efficient is ReBL at reproducing bug re-

ports?

RQ2: How do individual components contribute to the overall

effectiveness and efficiency of ReBL?

RQ3: How does ReBL’s effectiveness and efficiency in reproducing

bug reports compare to that of three baseline approaches?

4.1 Datasets

To collect datasets, we adopted the established practice for gathering

real-world bug reports for bug reproduction [26, 33, 46, 52, 54, 55].

Specifically, our dataset integrated evaluation datasets from four

state-of-the-art tools: AdbGPT [28], ReproBot [52], ReCDroid/ReC-

Droid+ [54, 55], and Yakusu [26], and AndroR2 [46], a dataset

of manually-reproduced Android bug reports, and an empirical

study on Android bug report reproduction [33]. We refined our

dataset by excluding duplicates, reports related to inaccessible or

non-installable APK files, and reports no longer reproducible (e.g.,

server issues, invalid login). This process resulted in a concise set

of 96 unique bug reports, of which 73 are crash reports and 23 are

non-crash reports.

1054



ISSTA ’24, September 16ś20, 2024, Vienna, Austria D. Wang, Y. Zhao, S. Feng, Z. Zhang, W. Halfond, C. Chen, X. Sun, J. Shi, and T. Yu

4.2 Implementation

We conducted our experiment on a physical x86 machine running

Ubuntu 16.04, equipped with an i7-4790 CPU@ 3.60GHz and 32 GB

of memory. Notably, this machine did not have a GPU. For gathering

GitHub issues, we utilized the GitHub REST API crawling [13].

However, for issues present on other platforms like F-Droid, we

relied on BeautifulSoup [2] for data crawling. Our approach, ReBL,

integrates the underlying language model GPT-4 [15]. To facilitate

interaction with UI widgets on the device, we implemented UI

Automator2 [9] as our execution engine. We executed our approach

three times to ensure the robustness and consistency of results, and

we calculated the average for measuring the execution times. The

implementation of our approach is publicly available, along with

the experiment data [16].

4.3 Study Design

4.3.1 RQ1: How effective and efficient is ReBL at reproducing bug

reports? Effectiveness is determined by the ratio of successful repro-

ductions to the total number of bug reports examined. Efficiency, on

the other hand, is measured by the average time taken for successful

reproductions. (Refer to Section 3.5 for the criteria of successful

reproduction.) The evaluation was conducted within a one-hour

timeframe, with the summarization threshold set to three timesÐa

decision explained in Section 3.5.2. Reproductions that exceeded

this time limit or summarization threshold were considered failures.

To ensure the accuracy of our results and avoid false positives, we

conducted a manual inspection to confirm whether the described

crash or non-crash bug symptom occurred on the specified target

page once ReBL terminated after executing the given S2Rs in the

bug report.

4.3.2 RQ2: How do the individual components enhance ReBL’s over-

all effectiveness and efficiency? We conducted an ablation study to

systematically evaluate the impact of individual components on

the functionality and performance of ReBL by comparing it against

a fully functional version. The study included the following three

ablations: 1) ReBLS2R used only S2Rs provided in the bug report,

excluding title and other details beyond S2R segment, unlike the full

version, which considered the entire textual report; 2) ReBLIndiv

viewed UI widgeted individually, while the full version grouped

widgets to process UI information; and 3) ReBLNoFB retained the

simple guidelines in the instructions and did not incorporate the

feedback mechanism.

4.3.3 RQ3: How does ReBL’s effectiveness and efficiency in repro-

ducing bug reports compare to that of three baseline approaches?

We established three baselines using state-of-the-art automated

bug reproduction approaches: AdbGPT [28], ReproBot [52], and

ReCDroid [55]. Throughout our evaluation, we set a time limit of

one hour for all techniques to complete the bug reproduction pro-

cess. This allowed us to assess their performance under consistent

conditions and determine their effectiveness and efficiency in re-

producing bugs within a reasonable timeframe. Manual inspection

was also integral to validate the results, ensuring the reliability of

our comparative analysis.

5 Results and Analysis

5.1 RQ1: Effectiveness and Efficiency of ReBL

5.1.1 Effectiveness. ReBL successfully reproduces 87 out of 96 bugs,

including 69 of 73 crash bugs (94.52%) and 18 out of 23 non-crash

functional bugs (78.26%), achieving an impressive overall success

rate of 90.63%. The details of bug reproductions are shown in [16].

This performance highlights ReBL’s robustness and versatility in

reproducing bug reports. Within the 8k token limit constraint, the

summarization mechanism is activated for 11 bug reports to man-

age token constraints. Among these cases, two [1, 8] trigger this

mechanism, resulting in successful bug reproduction that would

otherwise fail. However, the remaining nine reports also activate

summarization but fail to reproduce the bug due to reasons other

than the token limit.

Reasons for failed reproductions. Out of the nine cases where

ReBL fails to reproduce the bugs, four are crash bug reports and

five are non-crash bug reports. We identify the following reasons

for the failed reproductions in the crash bug reports:

First, the inability to reproduce bug when involving third-party

services, such as Google Drive. ReBL lacks the capability to navigate

between different apps, which limits its effectiveness in cases like

łODK-360ž [3], where interaction with Google Drive is essential.

Second, the limitation of ReBL’s underlying testing framework,

UI Automator2, appears to be particularly evident in specific apps.

It fails to extract custom views from the hierarchy, preventing

ReBL from accessing the necessary UI widgets to reproduce the

specified bug. A notable example of this is łMemento-169ž [7].

Another critical issue is the framework’s limited ability to execute

certain actions. For example, in łosmeditor-637ž [4], the framework

struggled with 𝑠𝑒𝑡_𝑡𝑒𝑥𝑡 , leading to a failure in the reproduction.

These issues may be specific to the compatibility of our underlying

testing framework rather than a widespread problem.

Third, a severe lack of information significantly impedes accu-

rate bug reproduction, as exemplified by the łAnki-6432ž case [10],

where the bug report omitted 20 out of the 26 required steps [52].

ReBL struggles to identify the bug due to extremely insufficient

information in the bug report. Future improvements could include

using static analysis [30, 51] to gain comprehensive domain knowl-

edge about the app. This could potentially improve LLMs’ under-

standing and enable more precise predictions, even with limited

information in bug reports.

For the five non-crash bug reports, ReBL faces a unique challenge

due to their subtler symptoms compared to crash bugs. This subtlety

might lead to false conclusions that a bug has been triggered. For

example, in the bug report łLrkFM-34ž [6], the S2Rs are outlined as

follows: ł1. Move any file, 2. Try to paste the file, and 3. Observe that

nothing happens.ž However, ReBL fails to reproduce the actual bug

because it performs the łmovež (essentially cutting a file from one

location) and łpastež actions within the same folder. Although this

results in łnothing happensž within the same folder ś a symptom

that seems to match the bug report ś the actual issue involves

failing to paste the item into a different folder, where no files are

added after the paste action.

Successfully reproduced non-crash bug reports. Figure 6 illus-

trates some non-crash functional bugs adeptly addressed by ReBL:

1055



Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps ISSTA ’24, September 16ś20, 2024, Vienna, Austria

• Varyingwarningmessage. Leveraging the semantic capabilities

of the underlying LLM, ReBL excels in recognizing textual nuances

and correlations. Figure 6-A illustrates an example where the bug

report provides an error message. ReBL identifies that the bug is

triggered through the association between the given message and

the actual error message. Another example, as introduced earlier,

ReBL can associate the łSee no results after searchž symptom and

the łNo dataž text displayed.

• Missing, redundant, or inconsistent widgets. ReBL can ver-

ify the existence of widgets and their states. As demonstrated in

Figure 6-B, ReBL determines the presence of the year widget and

verify the state of the checkbox to confirm whether the bug has

been triggered. Similarly, Figure 6-C shows ReBL handling the

inconsistency between displayed type and actual selection.

• Functionality does not take effect. ReBL excels in comparing

changes across pages by utilizing the historical data in prompt

history. Figure 6-E showcases a bug, the symptom of which is

łsound remaining unchanged.ž ReBL identifies this bug symptom

by accessing and comparing the previous sound settings from

the prompt history with the current settings. Likewise, the bug

symptom in Figure 6-F, łnothing happens in the list,ž requires

analysis of the UI’s state before and after the action. Another

common case is the effectiveness of language setting.

5.1.2 Efficiency. ReBL showcases an impressive level of speed in

bug reproduction. The time required to reproduce the bugs varied

between 19.99 to 243.3 seconds, with a low average time of 74.98

seconds. Notably, the bulk of this time is spent interacting with the

LLM model, such as making API calls and waiting for responses.

In contrast, the processes of action execution, feedback collection,

and prompt generation are extremely swift, each taking less than

0.5 seconds.

RQ1: ReBL successfully reproduces 90.63% of the 96 bug

reports with each bug report taking an average of 74.98

seconds. It also provides insights into how LLMs can verify

non-crash functional bugs, guiding future work in this

area.

5.2 RQ2: The Roles of Individual Components

Table 3 shows the results of the three ablations compared with the

fully functional ReBL.

ReBLS2R achieves an overall success rate of 81.25%, including

90.41% (66/73) for crash reports and 52.17% (12/23) for non-crash

bug reports. This overall success rate is 9.38% lower than that of

ReBL. The performance of ReBLS2R is impacted by the insufficient

information when considering only S2Rs. This shortfall is especially

severe for non-crash bug reports because symptoms of non-crash

bugs are often found in the title or observed behavior sections,

leading to greater oversight. Lacking the symptom of a non-crash

bug makes it impossible to verify its occurrence.

Table 3: Ablation study

ReBL_S2R ReBL_Indiv ReBL_NoFB ReBL

Effectiveness 81.25% 77.08% 73.96% 90.63%

Efficiency 75.50s 78.23s 87.16 s 74.98s

Figure 6: Examples of None-Crash Bug Reports

ReBLIndiv achieves a success rate of 77.08%, which is 13.55% lower

thanReBL.ReBLIndiv excels when target widget identifiers are clear,

similar to existing tools that perform S2R entity match. However, it

struggles when the page contains numerous or semantically similar

widgets. For example, łopen the context menu for an itemž targets

a group of widgets comprising title and URL, rather than individual

ones. Section 3.2 details limitations regarding individual widgets.

ReBLNoFB reports a success rate of 73.96%, reflecting a reduction

of 16.67% compared to ReBL. Its primary challenge is the absence of

detailed instructions. Without explanations for actions, ReBLNoFB
may misinterpret actions in the instructions. For instance, łselect

Až in S2R might be considered a suggestion for łselectž rather than

łclick,ž which is the correct action. Furthermore, the lack of feedback

exacerbates the issue, as there is no system to indicate failure when

attempting to execute łselect.ž

Efficiency remains consistent across both ablated and fully fea-

tured versions, as the absence of certain detailsÐsuch as non-S2R

information in ReBL𝑆2𝑅 or differences in formatÐsuch as widget

format in ReBL𝐼𝑛𝑑𝑖𝑣Ðdoes not significantly alter prompt size or

complexity, thereby not impacting the LLM’s processing time.

RQ2: ReBL significantly outperformes its three ablated

versions, emphasizing the necessity of its full feature set

for optimal performance. This highlights the importance

of using the whole textual bug report to furnish more

comprehensive information, grouping widget to provide

structured and organized UI context, providing detailed

instructions to ensure smooth interaction with LLMs and

implementing a feedback mechanism enables timely mea-

sures when unexpected responses occur.

1056



ISSTA ’24, September 16ś20, 2024, Vienna, Austria D. Wang, Y. Zhao, S. Feng, Z. Zhang, W. Halfond, C. Chen, X. Sun, J. Shi, and T. Yu

5.3 RQ3: Comparison with the State-of-the-Art

Approaches

Table 4 presents the overview of the comparison results, comparing

our approach with three state-of-the-art baselines across a dataset

of 73 crash bug reports.

Table 4: Comparison with Baselines

ReCDroid ReproBot AdbGPT ReBL

Effectiveness 45.21% 65.75% 73.97% 94.52%

Efficiency 534.92s 413.72s 89.80s 72.11s

5.3.1 Effectiveness. As shown in Table 4, ReBL successfully repro-

duces 69 crash bug reports, surpassing the numbers achieved by

ReCDroid, ReproBot, and AdbGPT, which reproduce 33, 48, and 54

bug reports, respectively. For bug reports where ReBL successfully

reproduces while the three state-of-the-art tools fail to address,

we have conducted a thorough analysis of each case. Our findings

reveal four main reasons for these failures, aligning with the chal-

lenges we outlined in the motivation section (Section 2.2). It is

critical to recognize that it is usually not a single isolated reason

leading to the failure, but rather a combination of them.

Reason#1: Overlooking non-S2R information. In Challenge

1 (Section 2.2), the motivating example shows how the S2R Entity

Extraction phase can omit crucial non-S2R information. Another

example that highlights this issue is [5], where one S2R states: łAdd

URL with the streamž. However, the original post does not contain

the specific URL; instead, it is provided as a comment in a different

section. Baseline approaches that rely solely on S2R are unable to

associate the provided URL.

Reason#2: Limitation of S2R entity extraction. The S2R En-

tity Extraction phase sometimes falls short in extracting precise

reproduction steps due to its reliance solely on bug report content,

neglecting actual context encountered during reproduction. Refer

to Figures 7-A and C. They contain ambiguous S2R that make entity

extraction challenging. It is challenging to identify the exact num-

ber of actions and targets without the actual UI context because

łmultiplež and łsome checkboxesž lack specificity. Similarly, łGiven

other detailsž in Figure 7-E and łfill other required fieldsž in Figure

7-F face the same limitation.

Reason#3: Challenges in handling incomplete and ambigu-

ous S2Rs. The motivating example in Challenge 2 (Section 2.2)

underscore this limitation. The experimental results showcase simi-

lar instances, primarily attributed to the limited context-awareness

of UI information and an inability to handle rapid UI actions.

(i) Limited context-aware: In Figure 7-B, the second step łgo to an

articlež implies the need to leave the settings page and return to

the home page to find an article. Existing methods strictly follow

sequential steps on the current page, attempting to locate a UI

widget within the settings page labeled łarticlež. However, they may

miss the need to navigate elsewhere. If unsuccessful on the current

page, these methods typically explore widgets on the same page,

rarely considering navigating to a different page unless explicit

heuristics guide them. In contrast, ReBL considers the broader

UI context, including the current page and navigational history,

while recognizing the current reproduction progress. It prioritizes

context-aware actions to achieve the goal of łgo to an article,ž rather

than rigidly focusing on finding a specific S2R entity, łarticle,ž on

Figure 7: Examples of Other Approaches’ Failure Cases

the current page. (ii) Quick actions: Quick actions are common in

using mobile apps and can potentially trigger bugs, as illustrated

in Figures 7-A and D. In Figure 7-A, triggering the bug requires

łmultiple fast clicksž, presenting a scenario where traditional single-

action-per-step approaches fall short. These approaches execute

one action per iteration, often followed by a waiting period (e.g., 5

seconds) for UI stabilization. Additionally, processing the next step,

such as AdbGPT [28] querying LLMs, can take 3-10 seconds, and

NLP matching approaches also require time. This time gap between

actions hinders the triggering of bugs requiring rapid, consecutive

interactions, like multiple clicks without interruption. Figure 7-D

depicts a concurrency bug where the łrefreshž button is part of a

rapidly disappearing loading dialog. To trigger this bug, detecting

the quick-disappearing widget łCancelž and successfully clicking

on it are necessary, requiring immediate quick action. Our approach,

monitoring UI pages to detect rapidly disappearing widgets and

having the flexibility to perform more than one action per step, is

well-suited for handling such bug scenarios.

Reason#4: Fail to generate valid input. As noted in Challenge

3 of the motivation section (Section 2.2), the inability to generate

valid input has been a significant issue in existing works. Consider

Figures 7-E and F, where even when the three state-of-the-art tools

overcome the above limitation and recognize the need to fill in

these blanks, they often provide invalid input. This is primarily

because these tools adopt simpler methods for filling text fields

when explicit inputs are absent in the S2R. Consequently, they lack

the capability to generate context-specific inputs and are unable to

correct invalid inputs when warned.

5.3.2 Efficiency. Regarding efficiency, ReBL demonstrates a signifi-

cant advantage, with an average reproduction time of 72.11 seconds

per bug report. In comparison, ReproBot, ReCDroid, and AdbGPT

exhibit considerably longer average times of approximately 413.72

seconds, 534.92 seconds, and 89.80 seconds, respectively. Thus, ReBL

is 7.42 times faster than ReCDroid, 5.74 times faster than ReproBot,

and 1.25 times faster than AdbGPT in reproducing bug reports.

1057



Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps ISSTA ’24, September 16ś20, 2024, Vienna, Austria

RQ3: Our analysis of 73 crash bug reports shows that

ReBL significantly outperforms ReCDroid, ReproBot, and

AdbGPT in effectiveness and efficiency. Specifically, their

success rates are 45.21%, 65.75%, and 73.97% respectively.

ReBL outperforms them with a remarkable success rate of

94.52%. In terms of efficiency, ReBL reproduces bug reports

in an average time of 72.11 seconds, which is 7.42 times

faster than ReCDroid, 5.74 times faster than ReproBot, and

1.25 times faster than AdbGPT in reproducing bug reports.

6 Threats to Validity

The primary external validity concern in this study revolves around

the representativeness of the apps, bug reports, and tools utilized.

In our evaluation, we aimed to create realistic settings using real

bug reports and Android apps. The emulator and execution engine

(UI Automator) are widely adopted in both industry and academia,

consistent with other Android testing works [28, 44, 52, 54]. Further-

more, existing approaches (e.g.,ReCDroid [55] , AdbGPT [28]]) have

demonstrated the effectiveness of such automated reproduction

tools over manual reproduction by real-world developers. However,

we acknowledge that our results may not be fully generalizable to all

bug reports in different domains. Additionally, the relatively small

number of non-crash bug reports presents an additional constraint,

potentially impacting the breadth of our conclusions.

Regarding internal validity, a notable threat arises from the in-

herent randomness in the responses generated by LLMs. To address

this concern, we ran our experiments three times, thereby reducing

the impact of random variations. However, it is essential to recog-

nize that complete consistency in results cannot be guaranteed in

all instances. ReBL utilizes GPT-4 as the underlying LLM imple-

mentation. While other LLMs [21, 24, 37, 42] could be employed,

variations in their design and training data may result in different

performance outcomes, potentially impacting ReBL’s effectiveness

and accuracy. In the future, we plan to systematically examine the

actual impact of various LLMs on our approach.

7 Related Work

Automated Bug Reproduction.As discussed in Sections 1 and 2.2,

there are existing approaches that specifically target automati-

cally reproducing Android bug reports, including Yakusu [26],

ReCDroid/ReCDroid+ [54, 55], MACA [36], DroidScope [31], and

ReproBot [52]. The most recent work, AdbGPT [28], uses LLMs to

extract S2R entities for guiding bug report reproduction. However,

similar to other existing techniques, AdbGPT’s employment of the

traditional two-phase structureÐconsisting of the S2R Entity Extrac-

tion phase and the Entity Matching phaseÐsuffers from the same

limitations as described in Section 2.2. Our results demonstrate that

ReBL outperforms AdbGPT.

There are other works that approach bug reproduction from dif-

ferent aspects, such as recording and replaying bugs [18, 19, 27, 29,

40], analyzing stack traces [32], and leveraging the call stack [47].

Among these, GIFdroid [27] utilizes screen recordings to automate

bug reproduction by adopting image processing techniques. Crash-

Translator [32] reproduces crash reports directly from stack traces

by leveraging a pre-trained LLM to predict the steps necessary for

reproduction.

Bug Report Study. There have been several research efforts dedi-

cated to studying and analyzing Android bug reports. For instance,

Johnson et al. [33] conducted an empirical study on 180 Android

bug reports to examine their reproduction challenges and the qual-

ity of reported details. Chaparro et al. [23] conducted an empirical

study on user-reported behaviors, reproduction steps, and expected

behaviors, identifying discourse patterns used by reporters. Cha-

parro et al. also developed Euler [22], an automatic technique to

assess the quality of S2R in Android bug reports, using simple gram-

mar patterns. Liu et al. introduced Maca [36], a machine learning-

based classifier that categorizes action words of S2R into standard

categories. However, these techniques all focus on improving the

accuracy of identifying S2Rs.

Some research aims to facilitate the reporting process. For ex-

ample, Fusion, developed by Moran et al. [39], employs dynamic

analysis to obtain UI events of the app to enhance bug reports

during testing. Additionally, Fazzini et al.[25] assist reporters in

writing more accurate reproduction steps using information from

the static and dynamic analysis of the app to predict the next step.

Also, Yang et al. [43] provide a guided reporting systemwith instant

feedback and graphical suggestions to improve the quality of bug

reports. These approaches improve bug report quality. Though not

aimed at reproduction, the improvement in bug report quality could

potentially enhance LLMs’ comprehension in bug reproduction.

LLMs in Analyzing Bug Reports. There has been some work on

using LLMs to analyze and understand bug reports. Lee et al. [35]

use LLMs to analyze bug reports for bug triage. Messaoud et al. [38]

use the BERT model for duplicate bug report detection. Kang et

al. [34] propose an approach to use LLMs to generate test methods

for Java programs from bug reports. This approach focuses on JUnit

tests, which differ from Android UI testing that requires different

modeling and iterative exploration processes.

8 Conclusion

In conclusion, ReBL is an advanced automated approach for re-

producing both crash and non-crash bug reports in Android apps.

Leveraging GPT-4 and well-designed prompts, ReBL interacts effec-

tively with the GPT model for bug reproduction. Our evaluation,

conducted on 96 bug reports from 54 Android apps, showcases

ReBL’s proficiency in successfully reproducing 87 bug reports in

an average time of 74.98 seconds, surpassing three existing tools in

success rate and efficiency. ReBL stands out as a lightweight and

streamlined solution, offering developers a powerful tool to tackle

bug reports efficiently and effectively. In the future, we aim to en-

hance ReBL’s performance in handling a wider range of non-crash

bug symptoms, potentially through static analysis and fine-tuning.

Another goal is to expand ReBL’s capabilities to tackle more com-

plex and ambiguous S2Rs to solve increasingly intricate scenarios.

Acknowledgments

This work was supported in part by the U.S. National Science

Foundation (NSF) under grants CCF-2402103, CCF-2403617, CCF-

2403747, CCF-2342355, and CCF-2211454.

1058



ISSTA ’24, September 16ś20, 2024, Vienna, Austria D. Wang, Y. Zhao, S. Feng, Z. Zhang, W. Halfond, C. Chen, X. Sun, J. Shi, and T. Yu

References
[1] 2016. AIMSICD-816. https://github.com/CellularPrivacy/Android-IMSI-Catcher-

Detector/issues/816.
[2] 2016. Beautiful Soup Documentation. https://tedboy.github.io/bs4_doc/.
[3] 2017. ODK-360. https://github.com/getodk/collect/issues/360.
[4] 2017. Osmeditor-637. https://github.com/MarcusWolschon/osmeditor4android/

issues/637.
[5] 2017. transistor-149. https://github.com/y20k/transistor/issues/149.
[6] 2018. lrkFM-34. https://github.com/lfuelling/lrkFM/issues/34.
[7] 2018. Memento-169. https://github.com/alexstyl/Memento-Calendar/issues/169.
[8] 2019. Fdroidclient-1821. https://gitlab.com/fdroid/fdroidclient/-/issues/1821.
[9] 2019. UI Automator2. https://github.com/openatx/uiautomator2.
[10] 2020. Anki-6432. https://github.com/ankidroid/Anki-Android/issues/6432.
[11] 2020. APPLAUSE. https://www.applause.com/blog/app-abandonment-bug-

testing.
[12] 2022. Aligning language models to follow instructions. https://openai.com/

research/instruction-following.
[13] 2022. GitHub REST API documentation. https://docs.github.com/en/rest.
[14] 2022. Introducing ChatGPT. https://chat.openai.com.
[15] 2022. Models -OpenAI API. https://platform.openai.com/docs/models/overview.
[16] 2024. Replication Package. https://github.com/datareviewtest/ReBL.
[17] Vincenzo Ambriola and Vincenzo Gervasi. 1997. Processing natural language

requirements. In Proceedings of the International Conference Automated Software
Engineering. 36ś46.

[18] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. 2013. Chronicler: Lightweight
recording to reproduce field failures. In 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 362ś371.

[19] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, An-
drian Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of
mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE 42nd
international conference on software engineering. 309ś321.

[20] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What makes a good bug report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering. 308ś318.

[21] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877ś1901.

[22] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, Kevin Moran, Andrian Marcus,
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing the
quality of the steps to reproduce in bug reports. In Proceedings of the 2019 27th
ACM joint meeting on european software engineering conference and symposium
on the foundations of software engineering. 86ś96.

[23] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta,
Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detecting missing
information in bug descriptions. In Proceedings of the Joint Meeting on Foundations
of Software Engineering. 396ś407.

[24] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research 24, 240 (2023), 1ś113.

[25] Mattia Fazzini, Kevin Moran, Carlos Bernal-Cardenas, Tyler Wendland, Alessan-
dro Orso, and Denys Poshyvanyk. 2022. Enhancing mobile app bug reporting
via real-time understanding of reproduction steps. IEEE Transactions on Software
Engineering 49, 3 (2022), 1246ś1272.

[26] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically translating bug reports into test cases for mobile apps. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 141ś152.

[27] Sidong Feng and Chunyang Chen. 2022. GIFdroid: automated replay of visual
bug reports for Android apps. In Proceedings of the 44th International Conference
on Software Engineering. 1045ś1057.

[28] Sidong Feng and Chunyang Chen. 2024. Prompting Is All You Need: Automated
Android Bug Replay with Large Language Models. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering. 1ś13.

[29] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran:
Timing-and touch-sensitive record and replay for android. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 72ś81.

[30] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie. 2020. Improving
automated GUI exploration of android apps via static dependency analysis. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 557ś568.

[31] Yuchao Huang, Junjie Wang, Zhe Liu, Song Wang, Chunyang Chen, Mingyang
Li, and Qing Wang. 2023. Context-aware Bug Reproduction for Mobile Apps.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
IEEE, 2336ś2348.

[32] Yuchao Huang, Junjie Wang, Zhe Liu, YawenWang, SongWang, Chunyang Chen,
Yuanzhe Hu, and Qing Wang. 2024. Crashtranslator: Automatically reproducing
mobile application crashes directly from stack trace. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering. 1ś13.

[33] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin,
and Mattia Fazzini. 2022. An empirical investigation into the reproduction of
bug reports for android apps. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 321ś322.

[34] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312ś2323.

[35] Jaehyung Lee, Kisun Han, and Hwanjo Yu. 2022. A Light Bug Triage Frame-
work for Applying Large Pre-trained Language Model. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering. 1ś11.

[36] Hui Liu, Mingzhu Shen, Jiahao Jin, and Yanjie Jiang. 2020. Automated classifi-
cation of actions in bug reports of mobile apps. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 128ś140.

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[38] Montassar Ben Messaoud, Asma Miladi, Ilyes Jenhani, Mohamed Wiem Mkaouer,
and Lobna Ghadhab. 2022. Duplicate bug report detection using an attention-
based neural language model. IEEE Transactions on Reliability (2022).

[39] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and Denys Poshy-
vanyk. 2015. Auto-completing bug reports for android applications. In Proceedings
of the 2015 10th joint meeting on foundations of software engineering. 673ś686.

[40] Dmitry Nurmuradov and Renee Bryce. 2017. Caret-HM: recording and replaying
Android user sessions with heat map generation using UI state clustering. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 400ś403.

[41] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730ś27744.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485ś5551.

[43] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, Andrian
Marcus, and Denys Poshyvanyk. 2022. Toward interactive bug reporting for
(android app) end-users. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
344ś356.

[44] Dingbang Wang, Yu Zhao, Lu Xiao, and Tingting Yu. 2023. An Empirical Study
of Regression Testing for Android Apps in Continuous Integration Environment.
In 2023 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 1ś11.

[45] Jue Wang, Yanyan Jiang, Ting Su, Shaohua Li, Chang Xu, Jian Lu, and Zhendong
Su. 2022. Detecting non-crashing functional bugs in Android apps via deep-
state differential analysis. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
434ś446.

[46] Tyler Wendland, Jingyang Sun, Junayed Mahmud, SM Hasan Mansur, Steven
Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A dataset
of manually-reproduced bug reports for android apps. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 600ś604.

[47] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,
and Denys Poshyvanyk. 2015. Generating reproducible and replayable bug re-
ports from android application crashes. In 2015 IEEE 23rd International Conference
on Program Comprehension. IEEE, 48ś59.

[48] Shuhong Xiao, Yunnong Chen, Yaxuan Song, Liuqing Chen, Lingyun Sun, Yankun
Zhen, Yanfang Chang, and Tingting Zhou. 2024. UI semantic component group
detection: Grouping UI elements with similar semantics in mobile graphical user
interface. Displays (2024), 102679.

[49] Mulong Xie, Zhenchang Xing, Sidong Feng, Xiwei Xu, Liming Zhu, and Chunyang
Chen. 2022. Psychologically-inspired, unsupervised inference of perceptual
groups of GUI widgets from GUI images. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 332ś343.

[50] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang
Pu, Jifeng He, and Zhendong Su. 2023. An empirical study of functional bugs in
android apps. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1319ś1331.

[51] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-
nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. Automated Software Engineering 25 (2018), 833ś873.

1059



Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps ISSTA ’24, September 16ś20, 2024, Vienna, Austria

[52] Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William GJ Halfond.
2023. Automatically reproducing android bug reports using natural language
processing and reinforcement learning. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 411ś422.

[53] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Automati-
cally Extracting Bug Reproducing Steps from Android Bug Reports. In Interna-
tional Conference on Software and Systems Reuse. Springer, 100ś111.

[54] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,
William GJ Halfond, and Tingting Yu. 2022. Recdroid+: Automated end-to-end

crash reproduction from bug reports for android apps. ACM Transactions on
Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1ś33.

[55] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William GJ Halfond. 2019. Recdroid: automatically reproducing android applica-
tion crashes from bug reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 128ś139.

Received 2024-04-12; accepted 2024-07-03

1060


	Abstract
	1 Introduction
	2 Preliminaries and Motivation
	2.1 Preliminaries
	2.2 Comparison with Existing Techniques

	3 ReBL Approach
	3.1 Instructions Description
	3.2 Extracting App UI Information
	3.3 Interpretation and Feedback on LLM Responses
	3.4 Handling Token Limit
	3.5 Termination

	4 Empirical Study
	4.1 Datasets
	4.2 Implementation
	4.3 Study Design

	5 Results and Analysis
	5.1 RQ1: Effectiveness and Efficiency of ReBL
	5.2 RQ2: The Roles of Individual Components
	5.3 RQ3: Comparison with the State-of-the-Art Approaches

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

