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Abstract

Graphs serve as generic tools to encode the underlying relational structure of data. Often
this graph is not given, and so the task of inferring it from nodal observations becomes
important. Traditional approaches formulate a convex inverse problem with a smoothness
promoting objective and rely on iterative methods to obtain a solution. In supervised settings
where graph labels are available, one can unroll and truncate these iterations into a deep
network that is trained end-to-end. Such a network is parameter efficient and inherits
inductive bias from the optimization formulation, an appealing aspect for data constrained
settings in, e.g., medicine, Ąnance, and the natural sciences. But typically such settings care
equally about uncertainty over edge predictions, not just point estimates. Here we introduce
novel iterations with independently interpretable parameters, i.e., parameters whose values -
independent of other parametersŠ settings - proportionally inĆuence characteristics of the
estimated graph, such as edge sparsity. After unrolling these iterations, prior knowledge over
such graph characteristics shape prior distributions over these independently interpretable
network parameters to yield a Bayesian neural network (BNN) capable of graph structure
learning (GSL) from smooth signal observations. Fast execution and parameter efficiency
allow for high-Ądelity posterior approximation via Markov Chain Monte Carlo (MCMC) and
thus uncertainty quantiĄcation on edge predictions. Informative priors unlock modeling tools
from Bayesian statistics like prior predictive checks. Synthetic and real data experiments
corroborate this modelŠs ability to provide well-calibrated estimates of uncertainty, in test
cases that include unveiling economic sector modular structure from S&P500 data and
recovering pairwise digit similarities from MNIST images. Overall, this framework enables
GSL in modest-scale applications where uncertainty on the data structure is paramount.

1 Introduction

Graphs serve as a foundational paradigm in machine learning, data science, and network science for modeling
complex systems, capturing intricate relationships in data that range from social networks to gene interactions;
see e.g., (Kolaczyk, 2009; Hamilton, 2020). In computational biology, accurate graph structures can offer
insights into gene regulatory pathways, enhancing our ability to treat diseases at the genetic level (Cai et al.,
2013). In Ąnance, the ability to recover precise Ąnancial networks can be useful for risk assessment and market
stability (Marti et al., 2021). In geometric deep learning (Bronstein et al., 2017), the lack of observed graph
structure underlying data often limits the use of efficient learning models such as graph neural networks
(GNNs); see e.g., (Cosmo et al., 2020). Yet, despite their importance, existing methodologies for graph
structure learning (GSL) from multivariate nodal data face signiĄcant limitations.
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This work addresses the GSL problem where nodal observations are used to predict the completely unob-
served graph structure. Traditional approaches summarize the nodal observations with a pairwise vertex
(dis)similarity matrix, e.g., correlation or Euclidean distance matrices, and formulate GSL as a regularized
convex inverse problem (Mateos et al., 2019; Dong et al., 2019). The primary objective encourages data
Ądelity, according to a chosen model linking the nodal observations and the sought latent graph, while the
regularization objectives capture prior structural knowledge, such as edge sparsity or desired connectivity
patterns. These model-based methods solve the inverse problem using optimization algorithms, which often
come with convergence rate guarantees (Saboksayr & Mateos, 2021; Wang et al., 2023). However, as noted
in (Pu et al., 2021) their expressiveness is constrained to graph characteristics that can be modeled via convex
criteria and they may suffer complexity and scalability issues. SpeciĄcally, these model-based approaches
typically necessitate an outer loop for grid-based optimization of regularization parameters (and often
other algorithm parameters, e.g., a step-size), and an inner loop that, given this fully deĄned optimization
problem, may demand thousands of iterations to converge on a solution. When nodal observations come
with corresponding graph labels, recent supervised GSL approaches partially overcome these obstacles using
Śalgorithm unrollingŠ (Shrivastava et al., 2020; Pu et al., 2021; Wasserman et al., 2023). Unrollings truncate
these inner-loop iterations to yield a deep network architecture that is trained end-to-end to approximate
the solution to the inverse problem (Monga et al., 2021). The choice of a custom loss function, which need
not be convex, plus optional architectural reĄnements of an already well-motivated initial network tend to
improve performance on the task of interest. Truncation depth provides explicit control on the complexity of
prediction, now a forward pass in the network. And the use of backpropogated gradients makes learning the
regularization (and step-size) parameters, now network parameters, more scalable. Additionally, the unrolled
deep networks tend to inherit appealing aspects from the original model-based formulation, namely inductive
bias and low dimensionality, as their outputs are approximations to solutions of the original inverse problem.

1.1 Towards interpretability and uncertainty quantiĄcation: Desiderata and contributions

In composite inverse problems with multiple regularizers, understanding how each regularization parameter
values affect desirable solution traits (e.g., image sharpness or number of graph edges) may be complex and
often beyond the modelerŠs knowledge. This obscurity necessitates a naiveŮand consequently costlyŮmulti-
dimensioanl grid search for suitable parameter values; see e.g., the numerical study in (Dong et al., 2016,
Section V-B). When the relationship between the regularization parameters and a solution characteristic is
clear, we say the parameters are interpretable with respect to (w.r.t.) the output characteristic. When an
output characteristic is inĆuenced by a single parameter, independent of all others, we call this parameter
independently interpretable w.r.t. the output characteristic. Such instances make interpretability actionable,
namely they allow prior knowledge on the solution characteristic to be incorporated onto the value of the
independently interpretable parameter. A key contribution of this work is: i) in recognizing optimization
problems with independently interpretable parameters as ripe for the adoption of unrollings, which inherit
this interpretability because they approximate inverse problem solutions; and ii) in leveraging the Bayesian
framework to seamlessly incorporate such prior knowledge into the parameters of the unrolled network.

An issue unrollings often face (within GSL and beyond) is their tendency to produce layers with pre-
activation outputs that are nonlinear functions of the parameters; e.g., parameter products and parameters in
denominators (Monga et al., 2021). This prevents the deep network from being a true neural network (NN),
i.e., a function composed of layers, where each layer consists of affine transformations of data or intermediate
activations followed by non-linear functions applied pointwise (Bishop, 1995). To address this issue, network
designers may opt for reparameterization, but at the expense of parameter interpretability and often degraded
empirical performance (Monga et al., 2021; Shrivastava et al., 2020). Unrollings can be impeded by nuisance
parameters - parameters not of direct interest, but which must be accounted for - like a step-size. Nuisance
parameters are typically a vestige of the chosen optimization algorithm rather than being intrinsic to the
problem formulation. Nuissance parameters can also undermine training stability (see Appendix A.1.1) and
since they lack a clear connection to speciĄc solution characteristics they hinder informative prior modeling.
The preceding discussion motivates the need for innovative GSL techniques to produce true NN unrollings
amenable to incorporation of prior knowledge on their parameters.
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Providing estimates of uncertainty on an inferred graph structure is important for downstream applications,
e.g. in biology, Ąnance, and machine learning with GNNs. In general Bayesian statistics, low-dimensional
models with interpretable parameters are constructed using background information on the speciĄc problem.
Interpretability allows informative prior modeling and thus access to enticing Bayesian modeling tools,
e.g., prior predictive checks (Gabry et al., 2017), while the low dimensionality allows tractable high-quality
posterior inference, typically via Markov Chain Monte Carlo (MCMC) sampling. For example, traditional
Bayesian approaches to GSL tend to address the transductive (tied to a single graph) setting by constructing
a joint model over parameters, observed data, and latent graph structure, use MCMC to draw samples, and
marginalize out all but the graph samples (Butts, 2003; Crawford, 2015; Gray et al., 2020). Stepping back
from the speciĄc case of GSL, the inability to specify a sufficiently expressive model often motivates the use of
Bayesian neural networks (BNNs), an alternative paradigm which typically bypasses domain-speciĄc modeling
opting instead to feed the output of a performant NN directly into the likelihood function; see e.g., (Jospin
et al., 2022). Both traditional Bayesian and BNN approaches derive uncertainty estimates over predictions
by marginalizing out the parameter posterior. However, BNNs present notable challenges, especially in the
incorporation of prior information and posterior approximation. Due to the non-interpretability of parameters,
priors are often selected for computational convenience, such as a zero-mean isotropic Gaussian, which can
inadvertently bias predictions against prior beliefs, a phenomenon known as Śunintentionally informative
priorsŠ (Wenzel et al., 2020), thus negating a key beneĄt of Bayesian methods. Additionally, the parametersŠ
high dimensionality and complex posterior geometry make high-quality posterior approximation a formidable
task, often requiring signiĄcant approximations that undermine the interpretability of the results (Gal &
Ghahramani, 2016; Wenzel et al., 2020; Monga et al., 2021). This highlights the need for an inductive GSL
method that not only provides reliable uncertainty estimates over edge predictions but also combines the
expressive power of BNNs with the traditional Bayesian approachŠs strengths in integrating prior knowledge,
employing robust modeling tools like predictive checks, and ensuring high-Ądelity posterior approximation.

Summary of contributions. In this paper, we introduce the Ąrst BNN for supervised GSL from smooth
signal observations. This BNN produces a distribution over unseen test graphs allowing estimation of
uncertainty over edge predictions. It leverages the independent intepretability of the paramters in the GSL
formulation to allow informative prior modeling over the weights of the NN, itself a result of unrolling novel
iterations for a model-based formulation with well-documented merits. We make the following technical
contributions and offer experimental evidence to support our claims:

• In Section 3, we develop a novel optimization algorithm for GSL from smooth signals (Algorithm 1),
which is step-size free and parameterized to yield independent interpretability w.r.t. edge sparsity.

• In Section 4, we unroll Algorithm 1 to produce the Ąrst strict unrolling for GSL from smooth signals,
which results in a true NN. This is to be contrasted with existing supervised-learning approaches to
GSL, where GLAD (Shrivastava et al., 2020) and Unrolled PDS (Pu et al., 2021) are not true NNs,
and GDN (Wasserman et al., 2023) is not a strict unrolling because it resorts to gradient truncation
and reparameterization. The proposed unrolled NN is used to deĄne our BNN, dubbed ŚDPGŠ since
Algorithm 1 is a dual-based proximal gradient method (Beck & Teboulle, 2014).

• In Section 5, we introduce a methodology to integrate prior knowledge into BNN prior distributions,
speciĄcally for networks derived from unrolled optimization algorithms for inverse problems with
independent interpretability. We show this approach unlocks classical Bayesian modeling tools like
predictive checking, which we fruitfully apply to DPG. High-Ądelity parameter posterior inference
via Hamiltonian Monte Carlo (HMC) sampling enables the Ąrst instance of a model for GSL from
smooth signals, capable of producing estimates of uncertainty over edge predictions.

• In Section 6, we validate DPGŠs ability to produce high-quality and well-calibrated uncertainty
estimates from synthetic data, stock price time series (S&P500), as well as graphs learnt from images
of MNIST digits. The reliability of these estimates is underscored by notable Pearson correlations
between predictive uncertainty and error: 0.70 for the stock data and 0.62 for the MNIST digits.
Additional experimental evidence is provided in the appendices.
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2 Related Work

A recent body of work addresses the GSL task via algorithm unrollings under varying data assumptions.
Noteworthy contributions include GLAD (Shrivastava et al., 2020), which unrolls alternating-minimization
iterations for Gaussian graphical model selection, Unrolled PDS (Pu et al., 2021) which unrolls primal-dual
splitting (PDS) iterations for the GSL problem from smooth signals, and GDN (Wasserman et al., 2023)
which unrolls linearized proximal-gradient iterations for a network deconvolution task that posits a polynomial
relationship between the observed pairwise vertex distance matrix and the latent graph. Here we deal with the
GSL problem from observations of smooth signals as in (Pu et al., 2021), but the optimization algorithm we
unroll is different (cf. DPG in Algorithm 1 versus PDS), more compact and devoid of step-sizes. Additionally,
none of the previous GSL unrollings result in true NNs, provide estimates of uncertainty on their adjacency
matrix predictions, nor leverage the interpretability of network parameters in the modeling process.

Building a probabilistic model to connect observed network data to latent graph structure has a long history
in the computer and social network analysis communities; see e.g., (Coates et al., 2002; Butts, 2003; Kolaczyk,
2009). Gibbs sampling was used mostly as a means to efficiently explore the resulting network posterior rather
than quantify the uncertainty the model placed on particular edges. Since then, Bayesian methods have
been used with alternate network models (e.g., directed acyclic graphs specifying the structure of Bayesian
networks), types of observed data (e.g., information cascades and protein-protein interactions), and posterior
approximation approaches; see (Shaghaghian & Coates, 2016; Gray et al., 2020; Jiang & Kolaczyk, 2011;
Williamson, 2016; Pal & Coates, 2019; Deleu et al., 2022). Such approaches are typically transductive - tying
themselves to a single training graph - and require expensive joint inference of the model and the latent
graph structure. Our approach only requires inference of the BNN model parameters and thus is naturally
inductive, i.e., able to generalize to new nodes, or entirely new graphs. Some recent works build on such
graph distribution modeling approaches in an approximate Bayesian manner, to incorporate the uncertainty
in an observed graph for downstream tasks with GNNs (Zhang et al., 2019; Pal et al., 2020). Others forgo
modeling the distribution of the observed graph but take approximate Bayesian approaches to modeling with
GNNs. For instance, (Opolka & Lió, 2022) uses a deep graph convolutional Gaussian process with variational
posterior approximation for link prediction, and (Sevilla & Segarra, 2023) pre-trains a score-matching GNN
for use in annealed Langevin diffusion to draw approximate samples from the network posterior. All such
Bayesian GNN approaches require (partial) observation of graph structure, and rely on approximate inference
methods due to large dimensionality. Our DPG approach uses no observed graph structure (except for graph
labels during training) and allows for high-Ądelity posterior approximation. To the best of our knowledge,
BNNs have so far not been used for GSL with uncertainty quantiĄcation.

More broadly, unrolling-inspired Bayesian deep networks have recently found success in uncertainty quan-
tiĄcation for computational imaging (Barbano et al., 2020; Zhang et al., 2021; Ekmekci & Cetin, 2022).
The inductive bias provided by the original iterations lead to gains in data efficiency, but still have limited
parameter interpretability and high dimensionality leading to naive priors and coarse posterior approximation.
This exciting line of work inspired some crucial ideas in this paper, cross-pollinating beneĄts to GSL and
with the added value of overcoming the aforementioned Bayesian modeling and inference challenges.

3 Model-based Formulation and Optimization Preliminaries

Let G(V, E , A) be an undirected graph, where V = ¶1, . . . N♢ are the vertices (or nodes), E ⊆ V × V are the
edges, and A ∈ R

N×N
+ is the symmetric adjacency matrix collecting the non-negative edge weights. For

(i, j) /∈ E we have Aij = 0. We exclude the possibility of self loops, so that A is hollow meaning Aii = 0, for all
i ∈ V. For the special case of unweighted graphs that will be prominent in our models, then A ∈ ¶0, 1♢N×N .

In this paper, we consider that A is unknown and we want to estimate the latent graph structure from nodal
measurements only1. To this end, we acquire graph signal observations x = [x1, . . . , xN ]⊤ ∈ R

N , where xi

denotes the signal value (i.e., a nodal attribute or feature) at vertex i ∈ V. When P such signals are available
we construct matrix X = [x1, . . . , xP ] ∈ R

N×P , where each row x̄⊤
i ∈ R

P , i = 1, . . . , N , of X represents a

1This is different to the link prediction task, where one is given measurements of edge status for a training subset of node
pairs (plus, optionally, node attributes), and the transductive goal is to predict test links from the same graph(Kolaczyk, 2009)
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vector of features or nodal attributes at vertex i. We can summarize this dataset using a pairwise vertex
dissimilarity matrix, here the Euclidean distance matrix E ∈ R

N×N
+ , where Eij = ∥x̄i − x̄j∥2

2. Assuming our
data lie on a smooth manifold, we interpret G as a discrete representation of this manifold. When nodes
i ≠ j ∈ V have large edge weight Aij , reĆecting close points on the manifold, Eij will be small. Accordingly,
smooth (w.r.t. G) vectors in X have small total variation or Dirichlet energy (Belkin & Niyogi, 2001), namely

TVG(X) =
1

2

∑

i,j

Aij∥x̄i − x̄j∥2
2 = ∥A ◦E∥1,1, (1)

where ∥Z∥1,1 =
∑

i,j ♣Zij ♣ is the entrywise ℓ1-norm of matrix Z and ◦ is the Hadamard (entrywise) product.
The prevalence of smooth network data, for instance sensor measurements (Chepuri et al., 2017), protein
function annotations (Kolaczyk, 2009), and product ratings (Huang et al., 2018), justiĄes using a smoothness
criterion for the GSL task.

3.1 Graph structure learning from smooth signals

Given X assumed to be smooth on G, a popular model-based GSL approach is to minimize the Dirichlet
energy in (1) w.r.t. A; see e.g., (Hu et al., 2013; Dong et al., 2016; Kalofolias, 2016; Kalofolias & Perraudin,
2017). The inverse problems posed in these works can be uniĄed under the general composite formulation

A∗ = arg min
A∈A

¶∥A ◦E∥1,1 + h(A)♢ , (2)

where the feasible set is A := ¶A ∈ R
N×N : diag(A) = 0, Aij = Aji ≥ 0,∀i, j ∈ V♢, i.e., hollow, symmetric,

non-negative matrices. The regularization term h(A) typically promotes desired structure on the estimated
edge set (e.g., sparsity, no isolated nodes) and can be used to avoid the trivial solution A∗ = 0. We henceforth
use h(A) = −α1

⊤log(A1) + β
2 ∥A∥2

F (α, β ≥ 0 are regularization parameters), which excludes the possibility
of isolated nodes and has achieved state-of-the-art results (Kalofolias, 2016).

It is convenient to reformulate (2) in an unconstrained, yet equivalent form. We start by compactly representing

variable A and data matrix E with their vectorized upper triangular parts a, e ∈ R
N(N−1)/2
+ , implicitly

enforcing symmetry and hollowness, while also halving the problem dimension. To enforce non-negativity the
indicator function I¶a ≥ 0♢ = ¶0 if a ≥ 0 else ∞♢ is included in the objective. Finally, we substitute the
nodal degrees d = A1 with the vectorized equivalent d = Sa, where S ∈ ¶0, 1♢N×N(N−1)/2 is a Ąxed binary
matrix that maps vectorized edge weights to degrees. The resulting optimization problem is given by

a∗(e, α, β) = arg min
a∈RN(N−1)/2



2a⊤e− α1
⊤log(Sa) +

β

2
∥a∥2

2 + I¶a ≥ 0♢


, (3)

which is convex and admits a unique optimal solution; see e.g., (Saboksayr & Mateos, 2021). Next, we
comment on the role of the regularization parameters α, β and their interpretability properties. We then offer
a brief discussion on optimization algorithms to tackle problem (3). These ingredients will be essential to
build a BNN model for supervised GSL in Sections 4 and 5.

Independent interpretability of regularization parameters. DeĄnition 1 formalizes the notion of
independent interpretability of regularization parameters in inverse problems such as (3).

DeĄnition 1. Let x∗(µ1, . . . , µn) ∈ X be the solution to an inverse problem that depends on regularization
parameters µ1, . . . , µn. Consider some scalar function of the solution f : X 7→ R. In general, the value f(x∗)
depends on all µ1, . . . , µn. When f(x∗) depends solely on a single regularization parameter µi, then we say
that µi is independently interpretable w.r.t. f(x∗).

The weights α and β are not independently interpretable w.r.t. to relevant graph characteristics, frustrating
straightforward interpretation of their effect on the solution a∗(e, α, β). SpeciĄcally, for Ąxed α, increasing β
leads to denser edge patterns, as we have (quadratically) increased the relative cost of large edge weights.
Indeed, the sparsest graph is obtained for β = 0. But in general, many interesting graph characteristics, e.g.,
sparsity, connectivity, diameter, and edge weight magnitude, are non-trivial functions of both α and β; see
also (Dong et al., 2016) for a similar issue.
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To facilitate independent control over the sparsity pattern and scale of the edge weights of recovered
graphs, (Kalofolias, 2016, Prop. 2) introduced an equivalent (θ, δ)-parameterization of (3), namely

a∗(e, α, β) =

√

α

β
a∗



1√
αβ

e, 1, 1



= δa∗(θe, 1, 1). (4)

We can map from the former parameterization to the latter by Ąrst scaling e by θ = 1/
√

αβ, solving (3) with
θe using α = β = 1, and Ąnally scaling the recovered edges by the constant δ =

√

α/β; we refer the reader
to (Kalofolias, 2016; Kalofolias & Perraudin, 2017) for a proof of the equivalence claim. Due to the separable
structure of the right-hand-side of (4), any GSL algorithm would require a single input parameter θ, and the
obtained solution a∗(θe, 1, 1) can then be scaled by δ > 0. All in all, the sparsity level of a∗ is determined
solely by θ, making θ independently interpretable w.r.t. sparsity. Indeed, this satisĄes DeĄnition 1 with the

identiĄcations x∗(µ1, . . . , µn)← δa∗(θe, 1, 1), X ← R
N(N−1)/2
+ , µi ← θ, and f(x∗)← ∥δa∗(θe, 1, 1)∥0, where

∥ · ∥0 counts the number of non-zero elements of its vector argument. Moreover, δ is interpretable w.r.t. edge
weight magnitude, but not independently so, as larger θ produces smaller weights [see Figure 3 (bottom-left)].

3.2 Optimization algorithms

Problem (3) has a favorable structure that has been well documented, and several efficient optimization
algorithms were proposed to obtain a solution a∗(e, α, β) with O(N2) complexity per iteration. SpeciĄcally, a
forward-backward-forward PDS algorithm was Ąrst proposed in (Kalofolias, 2016). PDS introduces a step-size
parameter which must be tuned to yield satisfactory empirical convergence properties, thus increasing the
overall computational burden. We Ąnd that effective step-size values tend to lie on a narrow interval beyond
which PDS exhibits divergent behavior, further frustrating tuning; see Appendix A.1.1 for a supporting
discussion. GSL algorithms based on the alternating-directions method of multipliers (Wang et al., 2021)
or majorization-minimization (Fatima et al., 2022) have been developed as well. Recently, (Saboksayr &
Mateos, 2021) introduced a fast dual proximal gradient (FDPG) algorithm to solve (3), which is devoid of
step-size parameters and Ű different from all three previous approaches Ű it comes with global convergence
rate guarantees. For this problem, the strongest convergence results to date are in (Wang et al., 2023).

Our starting point in this work is the FDPG optimization framework, but different from (Saboksayr &
Mateos, 2021) we: (i) develop a solver for the (θ, δ)-parameterization of (3); and (ii) turn-off the Nesterov-type
acceleration from the proximal-gradient iterations used to solve the dual problem of (3). This yields a dual
proximal gradient (DPG) method, tabulated under Algorithm 1. In a nutshell, during iterations k = 1, 2, . . .

Algorithm 1 updates the vectorized adjacency matrix estimate ak ∈ R
N(N−1)/2
+ , an auxiliary vector of nodal

degrees dk ∈ R
N
+ , as well as dual variables λk ∈ R

N used to enforce the variable splitting constraint d = Sa. A
naive DPG implementation incurs O(N2) computational and memory complexities, and we note all nonlinear
operations involved (i.e., ReLU(·) = max(0, ·), (·)2, and

√

(·)) are pointwise on their vector arguments.
As a result of the design choices (i)-(ii), the DPG algorithm requires the fewest operations per iteration
and the fewest number of parameters among existing solvers of (3), and is devoid of any uninterpretable
nuisance parameters, e.g., step-sizes. FDPG was only considered on the original (α, β)-parameterization of
(3); by instead opting for DPG iterations to solve the (θ, δ)-parameterization of (3), we reveal independent
interpretability of θ w.r.t. sparsity of the optimal graphs.

Next, we will unroll Algorithm 1 to produce a GSL NN which inherits its advantages - namely simple, efficient,
minimally parameterized layers, with independent interpretability - forming the backbone of our BNN.

4 Graph Structure Learning from Smooth Signals with Bayesian Neural Networks

So far we have described a model-based approach to (point) estimation of graphs from smooth signals. In
this work, we assume a labeled training dataset is available. We aim to construct a BNN model to produce
uncertainty estimates on graph predictions for unseen test data.

Our BNN approach for GSL in a nutshell. Here, we restrict ourselves to binary graphs a ∈
¶0, 1♢N(N−1)/2; weighted graphs only require a change to the ensuing likelihood function. We denote
all training data as T = ¶Te, Ta♢ = ¶e(t), a(t)♢T

t=1, an unseen test sample as (ẽ, ã), and the collection of
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learning can easily produce large-enough weight values for divergent behavior, and thus NaNŠs. Attempting
to unroll PDS iterates for the (θ, δ)-parameterization of (3) would not Ąx these practical problems.

We instead advocate unrolling the DPG iterations (Algorithm 1) developed to solve the (θ, δ)-parameterization
of (3). This way, we obtain a true NN without nuisance step-size parameters - avoiding the aforementioned
issues and reducing the parameter count by a third - while inheriting independently interpretable parameter
θ (w.r.t. sparsity of graph outputs). Incidentally, layers in Unrolled DPG [depicted in Figure 1 (right)]
are markedly simpler and require fewer operations than Unrolled PDS. We denote the output of a D-layer
unrolling of Algorithm 1 as δΓD

θ . As we would like probabilities over candidate edges, we subtract a learnable
mean shift b and drive the output through a sigmoid σ(·), producing our desired GSL NN output

p̂ = σ(δΓD
θ (e)− b1) ∈ (0, 1)

N(N−1)/2

, (6)

with parameters Θ = ¶θ, δ, b♢. To see that Unrolled DPG is a true NN, note that θ is only involved in a linear
function θe of the input data. Likewise, δ and b are only involved in an affine mapping of the activations
ΓD

θ (e). All non-linear operations (speciĄcally squaring, square root, and max) are pointwise functions of
intermediate activations. Going back to the design considerations mentioned at the beginning of this section,
here we keep the unrolling strict and share parameters across layers to retain independent interpretability
of θ, minimize parameter count, and simplify upcoming Bayesian inference. Tradeoffs arising with model
expansion using multiple input and output channels per layer are discussed in Section 6.1.

All in all, unrolled DPG is the Ąrst true NN for GSL from smooth signals, and the Ąrst strict unrolling for
GSL which produces a true NN. For the various reasons laid out in the preceding discussion, Unrolled DPG
is of independent interest as a new model for point estimation of graph structure in a supervised setting. As
we show next, it will be an integral component of the stochastic model used to construct a BNN to facilitate
uncertainty quantiĄcation for adjacency matrix predictions.

4.2 Stochastic model

Here we specify a stochastic model for the random variables of interest, namely the binary adjacency matrix
a, nodal data entering via the Euclidean distance matrix e, and the BNN weights Θ. The Bayesian posterior
from which we wish to sample satisĄes p(Θ ♣ T ) ∝ p(Ta ♣ Te, Θ)p(Θ), and a Ąrst step in BNN design is to
specify the likelihood p(a ♣ e, Θ) and the prior p(Θ). An i.i.d. assumption on the training data T allows the

likelihood to factorize over samples p(Ta ♣ Te, Θ) =
∏T

t=1 p(a(t) ♣ e(t), Θ). Moreover, assuming edges within a
graph sample a(t) are mutually conditionally independent given parameters Θ leads to further likelihood

factorization as p(Ta ♣ Te, Θ) =
∏T

t=1

∏N(N−1)/2
i=1 p(a

(t)
i ♣ e(t), Θ). We model ai ♣ e, Θ ∼ Bernoulli(p̂i), where

the success (or edge i ∈ V ×V presence) probability is given by the output of the Unrolled DPG network, i.e.,

p̂i = σ


δ[ΓD
θ (e)]i − b



as in (6). Putting all the pieces together, the Ąnal expression for the likelihood is

p(Ta ♣ Te, Θ) =

T
∏

t=1

N(N−1)/2
∏

i=1

(p̂
(t)
i )a

(t)
i (1− p̂

(t)
i )1−a

(t)
i . (7)

We reiterate that, crucially, the Unrolled DPG outputs enter the stochastic model via the likelihood, as the
means of the edge distributions. The speciĄcation of the prior p(Θ) will be addressed in Section 5.

4.3 Inference

We aim to generate M Monte Carlo draws from the posterior Θ
(m) ∼ p(Θ ♣ T ) ∝ p(Ta ♣ Te, Θ)p(Θ). In

modern BNNs based on overparameterized deep networks, high dimensionality and parameter unidentiĄability
are prevalent. This translates to highly multi-modal posteriors which make sampling challenging (Izmailov
et al., 2021). Even when posterior geometries are more benign, the computational and memory requirements
for evaluating the network and its gradients render the generation of Monte Carlo posterior samples impractical.
As a typical workaround one can resort to posterior approximation using inexpensive mini-batch methods
such as mean-Ąeld variational inference or stochastic-gradient MCMC (Izmailov et al., 2021). In contrast, we
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now argue that generation of high-Ądelity Monte Carlo posterior samples using HMC is uniquely compatible
with our proposed BNN; for implementation details see Section 6.1.

For starters, Unrolled DPGŠs repetitive layers simplify model construction and allow straightforward com-
pilation in automatic differentiation software, signiĄcantly boosting runtime efficiency. The low parameter
count of Unrolled DPG facilitates the use of forward-mode auto-differentiation; this eliminates the need to
store intermediate activations and perform a backward pass, thus it ensures memory usage does not increase
with model depth D. Moreover, as Unrolled DPG can effectively approximate inverse problem solutions with
relatively shallow depths (see Section 6), selecting a smaller D signiĄcantly reduces runtime complexity. For
small- to moderately-sized graphs and datasets, our computational and memory requirements for network
and gradient evaluation are low; see Section 6 for GSL problem instances where inference is attainable in
< 2 minutes on a M2 MacBook laptop. The limited parameter count also aids in sampling efficiency as we
avoid the curse of dimensionality that complicates sampling in higher-dimensional models. Finally, the ability
to place informative priors over independently interpretable parameters (as we do in Section 5) is known
to smoothen the posterior geometry, especially in data scarce regimes where the likelihood and prior are of
comparable magnitude (Gelman et al., 1995).

4.4 Prediction

By conditioning on data T and integrating out model parameters Θ, we obtain a predictive distribution
on unseen graph adjacency matrices ã given nodal signals ẽ. As the integral is intractable, we use the
M posterior samples obtained via HMC in the inference stage to approximate the predictive distribution
p(ã ♣ ẽ, T ). This approximation process is summarized in (5). .

Importantly, we can generate samples from the posterior predictive by randomly drawing from the sampling
distribution with each parameter sample plugged in, i.e., ã(m) ∼ p(ã ♣ ẽ, Θ

(m)). Given the form of our BNNŠs
stochastic model as introduced in Section 4.2, such a draw reduces to sampling a Bernoulli distribution for
each possible edge. Randomly drawing from the sampling distribution is critical as it accounts for both forms
of uncertainty in posterior predictive quantities, namely, sampling uncertainty and estimation uncertainty
(Gelman et al., 1995). Using these posterior predictive samples, we can approximate the mean (Śpred. meanŠ)
and standard deviation (Śpred. stdv.Š) of the edge-wise marginals of the posterior predictive as

E[ãi ♣ ẽ, T ] ≈ 1

M

M
∑

m=1

ã
(m)
i and Var[ãi ♣ ẽ, T ]

1
2 ≈



1

M − 1

M
∑

m=1

(ã
(m)
i − E[ãi ♣ ẽ, T ])2

]

1
2

. (8)

Naturally, E[ãi ♣ ẽ, T ] is a Bayesian point estimate for ãi, while Var[ãi ♣ ẽ, T ]
1
2 offers a measure of uncertainty

in such prediction of edge i.

5 Bayesian Modeling of Unrolling-Based BNNs with Independent Interpretability

In this section, we present a method for Bayesian modeling for BNNs which use a network produced by
unrolling an optimization algorithm to solve an inverse problem with independent interpretability. We
instantiate these ideas on the GSL problem (3) - where solutions are undirected graphs - and use prior
knowledge over the sparsity of such graphs to shape prior distributions over the corresponding independently
interpretable parameter θ in Unrolled DPG introduced in Section 4.1.

5.1 Prior modeling

For Bayesian models, priors over unobserved quantities play two main roles: encoding information germane
to the problem being analyzed and aiding the ensuing Bayesian inferences. Despite the name, a prior can in
general only be interpreted in the context of the likelihood with which it will be paired. There are many
types of priors, and we here we list the common ones in order of degree in which it is intended to affect the
information in the likelihood: non-informative, reference, structural, regularizing, weakly informative, and
strongly informative (Gelman et al., 2017). The more domain speciĄc information present, the further to the
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on the replicated data (a histogram) to the same statistic applied to the actual data T (a single scalar). A
well-Ąt model should have a histogram tightly concentrated around the real data statistic.

In typical BNNs, the lack of parameter interpretability prevents effective use of predictive checking. (Wenzel
et al., 2020) highlights this issue by demonstrating that an isotropic Gaussian prior on NN weights (ResNet-20)
fails to generate data consistent with prior expectations in image classiĄcation tasks. But the lack of parameter
interpretability prevents the use of these Ąndings to modify the prior for improved alignment. Below, we
instantiate predictive checking for DPG, with average edge density as our test statistic.

Example (Prior predictive check over DPG parameters). To perform a prior predictive check we
use the 5 inputs from Te and draw 104 replicated data sets arep. Figure 3 (right) shows the histogram of
average edge densities of replicated data sets under the prior settings laid out in Section 5.1, which we call
the Śoriginal priorŠ. We observe that such a prior succeeds in producing data sets that coincide with those
we deem more likely apriori, but falls short of encompassing all plausible data sets, namely those with edge
densities of ≈ 0.9. To address this, we lean on independent interpretability of θ w.r.t. the sparsity of graph
solutions: decreasing the location of p(θ) will increase edge densities (lower sparsity) of graph solutions,
and so we lower p(θ)Šs location parameter from 0 to − 1

2 , with all other parameters of the prior distribution
remaining the same. We call this new prior the Śaltered priorŠ. Repeating the prior predictive check with this
Śaltered priorŠ we now observe ≈ 12% of replicated data sets with edge densities in [.75, 1], as opposed to 4%
before, and we conĄrm through visual inspection that data sets with all possible edge densities are indeed
produced. The Śaltered priorŠ thus encompasses all plausible data sets while still preferentially generating
data sets we feel are more likely apriori.

Example (Posterior predictive check over DPG parameters). Now, we repeat this procedure, but
draw replicated data sets from the joint after conditioning on T . We perform inference drawing M = 104

posterior samples; for each posterior sample we draw a single replicated data set. In Figure 3 (right) we plot
the histogram of the average edge densities of these replicated data sets, denoted ŚposteriorŠ, and compare
against the average edge density of the graph labels in T , denoted ŚlabelsŠ. Because all outcomes are tightly
distributed around the mean edge density of the real data, we can have conĄdence the model parameters
have Ąt appropriately.

6 Experiments

We have introduced DPG, the Ąrst BNN for GSL from smooth signals, which is capable of providing estimates
of uncertainty of its edge predictions. We showed DPG can effectively incorporate prior information into the
prior distribution over its parameters. In this section, we evaluate DPG across synthetic and real datasets,
and introduce other baseline models for comparison, including a more expressive variant of DPG.

6.1 Models, metrics, and experimental details

Strict unrollings: DPG and PDS. In the following experiments, the prior used for the DPGŠs parameters
¶θ, δ, b♢ is the Śaltered priorŠ as developed in Section 5: θ ∼ Lognormal(−1/2, 4), δ ∼ Lognormal(2, 2), and
b ∼ Lognormal(1, 2). We similarly refer to the BNN with Unrolled PDS as its NN model - and no change to
the stochastic model - as PDS. As none of PDSŠs parameters ¶α, β, γ, b♢ have independent interpretability,
we cannot use the prior modeling techniques outlined in Section 5. Attempting HMC on PDS produces
signiĄcant number of divergent simulated Hamiltonian trajectories, a phenomenon known to be caused by
high posterior curvature (Betancourt, 2016). This makes HMC run slowly, produce poorly mixed chains,
and ultimately non-performant PDS models. Indeed, we Ąnd that values of step-size γ which produce
divergent behavior (very low likelihood) are close those which are most performant (very high likelihood),
indicating high-curvature in the likelihood function, and thus the posterior; see Figure 8 (left). Because γ
is not interpretable, it is unclear how to shape p(γ) to reduce posterior curvature without Ąrst running a
discrete search. Indeed, to Ąnd a performant PDS model amenable to efficient HMC, we Ąrst run such a
discrete search, Ąx γ to a found performant value of 0.1, and then set priors α, β ∼ LogNormal(0, 10) and
b ∼ N (0, 103). Both model-based algorithms in (Wang et al., 2023) and FDPG Saboksayr & Mateos (2021)
come with faster convergence rate guarantees than DPG in Algorithm 1 - a characteristic found not to be
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critical in the unrolled setting (Monga et al., 2021). They involve complex operations and have not been
unrolled in prior work, unlike PDS. SpeciĄcally, (Wang et al., 2023) use 6 parameters, including 2 step-sizes,
complicating stable unrolling and Bayesian inference, and so we exclude these methods from our comparisons.

Model expansion via MIMO and partial stochasticity: DPG-MIMO and DPG-MIMO-E. Here,
we expand the Unrolled DPG NN for more expressive power by making each layer multi-input multi-output
(MIMO). Each MIMO layer maps inputs ¶λk−1 ∈ R

N×C , ak−1 ∈ R
N(N−1)/2×C♢ to outputs ¶λk ∈ R

N×C ,
ak ∈ R

N(N−1)/2×C♢, where C is the Ąxed number of input and output channels across layers. As before,
layers share parameters, now θ ∈ R

C×C . In the k-th layer, parameter θji ∈ R is used to process λk−1[:, i] and
ak−1[:, i] as in a regular DPG iteration. Doing so for i ∈ ¶1, . . . , C♢ and averaging the reĄned λŠs and aŠs
produces λk[:, j] and ak[:, j], respectively. We use parameters δ ∈ R

C and b ∈ R to produce edge probabilities
σ( 1

C aDδ − b1). The priors are unchanged from the Śaltered priorŠ developed in the non-MIMO setting
from Section 5. The increased parameterization and complexity of operations make the posterior geometry
signiĄcantly more complex, such that we could not Ąnd a setup which produced well-mixed posterior sampling
via HMC. Instead, we resort to Maximum a Posteriori (MAP) estimation, equivalent to maximizing the
posterior with Ąxed observed data, using full gradient descent. We call this non-stochastic setup DPG-MIMO.

A common approach to overcome the intractable posterior inference in BNNs is partial stochasticity, where
we learn point estimates of a subset of the parameters and distributions over the rest. Recent work has
shown partial stochasticity of a BNN can produce similarly useful posterior predictive distributions, even
outperforming fully stochastic networks in prediction in some setting (Sharma et al., 2022). Here, we
ŚdecapitateŚ the MAP trained DPG-MIMO by discarding δMAP and bMAP; instead we feed each of the C
output channels aD[:, j] of the base MAP DPG-MIMO (only parameterized by θMAP) into a new depth 20
stochastic single channel DPG δjΓ20

θj
(aD[:, j]). We average their output, shift by new stochastic b, and drive

through a sigmoid: σ
(

1
C

∑C
j=1 δjΓ20

θj
(aD[:, j])) − b1

)

. We can now run inference on these stochastic head

parameters ¶θ1, δ1, . . . , θC , δC , b♢ keeping θMAP Ąxed. We denote this model as DPG-MIMO-E. All MIMO
models use C = 4: C = 8 offered negligible performance gains and posed (partially stochastic) inference
challenges, while C = 2 was less performant than C = 4.

Metrics. To provide summaries of our modelsŠ predictive accuracy and quality of uncertainty we use two
proper scoring rules: the Negative Log-Likelihood (NLL) p(ã ♣ ẽ, T ) and the Brier Score 1

♣E♣EΘ♣T [∥p̂(ã ♣
ẽ, Θ)− ã]∥2). Beyond proper scoring rules, we use Expected Calibration Error (ECE) (Guo et al., 2017),
which measures the correspondence between predicted probabilities and empirical accuracy, and Error, deĄned
as the percentage disagreement between a thresholded pred. mean EΘ♣T [ã ♣ ẽ, T ] > 0.5 and the actual label
ã. See Appendix A.2 for full details.

Hyperparameters and inference details. Utilizing NumPyroŠs NUTS implementation of HMC (Phan
et al., 2019), our experiments run 4 chains in parallel, each chain taking 500 warm-up steps before generating
1000 samples, accumulating M = 4000 total samples. We use depth D = 200 for all models unless otherwise
speciĄed, as we did not observe signiĄcant improvements in predictive performance beyond this depth. We
choose a0 = 1

2 · 1 (reĆecting prior uncertainty of existent edges) and λ0 = 17 · 1 (approximate average value
of limiting λ when running Algorithm 1 to convergence on RG 1

3
analytical distance matrices for θ = 1) for all

experiments. We did not Ąnd performance to be sensitive to such choices. Further details can be found in
Appendix A.2.

6.2 Synthetic data evaluation

Generative smooth signal model. We build on (Dong et al., 2016)Šs work on probabilistic smooth graph
signal generation to validate our methods using synthetic data. Let L = UΛU⊤ be the eigendecomposition of
the graph Laplacian L = diag(A1)−A, with diagonal eigenvalue matrix Λ having associated eigenvalues λi

sorted in increasing order, ui (i-th column of U) is the eigenvector of L with eigenvalue λi. Further take L†

to be the Moore-Penrose pseudoinverse of L, with eigenvalues λ†
i := λ−1

i when λi > 0, and λ†
i := 0 otherwise.

(Dong et al., 2016) proposed that smooth signals can be generated from a colored Gaussian distribution

as x = µ +
∑

i x̂iui, where x̂i ∼ N (0, λ†
i ) and µ ∈ R

N denotes an arbitrary mean vector. Therefore
x ∼ N (µ, L†). To sample such a distribution, it suffices to draw an initial non-smooth signal x0 ∼ N (0, I)
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latter is a sum over N elements. This results in disparate growth rates for these terms as N increases,
which poses a challenge for parameter optimization across different graph sizes, i.e., we Ąnd parameters
optimized for a graph with Ni nodes are not effective for N >> Ni. Moreover, the differing growth rates
cause standard cardinality-based normalization schemes (dividing each term by its number summands) to
fail, and determining analytically how the parameters should change as a function of size is non-trivial; see
Appendix A.3 for a detailed discussion.

In light of this, we perform an adjusted transfer learning experiment by Ątting the empirical growth trends
of MAP DPG parameter estimates on N = ¶20, 50, 100, 200♢ ER 1

4
graphs and their corresponding analytic

distance matrices. By using a moderate depth D = 200 and T = 10 training samples, MAP inference on
larger graphs with N = 200 nodes takes ∼ 1 hour on a M2 MacBook laptop. Using this empirical parameter
Ąt we can extrapolate parameter values and perform transfer learning on 100 ER 1

4
test graphs of size up

to N = 1000; again done locally without any GPU. The transfer learning experiment reveals an expected
but graceful decay in performance in NLL as N increases. Further information and plots on these scaling
experiments are available in Appendix A.3.

6.3 Ablation studies

Prior modeling. To inspect the inĆuence of informative prior modeling on DPG, we deĄne model ŚDPG-UŠ
which replaces DPGŠs informative priors with the following uninformative priors: log θ ∼ U

[

10−6, 106
]

,
δ, b ∼ N (0, 103

I). What we Ąnd is that in data-rich regimes an informative prior mostly acts to improve
efficiency of posterior inference, e.g., when Ątting to T = 50 RG 1

3
graphs with N = 20 nodes (using analytic

distance matrices) and testing on 100 i.i.d. samples, it reduces the time needed to generate M = 4000 samples
by a factor of 7.8× and increases the effective sample size - a measure of the number of independent samples
with the same estimation power as the observed correlated samples (Gelman et al., 1995) - for θ (ESSθ) by
a factor of 5×. In data poor regimes it also tends to help slow down performance degradation, e.g., when
instead using T = 2 with the same graph data, NLL and ECE are 37% and 13.7% better with the prior than
without. See Table 3 in Appendix A.4 for the full numerical results.

Partial stochasticity. We conducted an ablation study investigating the beneĄts of adding partial
stochasticity to the DPG-MIMO model (C = 4, D = 200) using MAP point estimates; the partially stochastic
setup is described in Section 6.1. The training and test sets are identical to the i.i.d. generalization experiment
above. Our experiments showed that introducing partial stochasticity in DPG-MIMO-E markedly improved
NLL, BS, error, and ECE by 9.1%, 10.3%, 9.0%, and 31.4%, respectively.

6.4 Real data evaluation

Quantifying uncertainty in networks learnt from S&P500 stock prices. To verify that DPG provides
useful measures of uncertainty on edge predictions based on real data, we Ąrst use the Ąnancial dataset
presented in (de Miranda Cardoso et al., 2021). The time series consist of S&P500 daily stock prices from
three sectors (Communication Services, Utilities, and Real Estate), comprising a total of N = 82 stocks.
The data spans the period from Jan. 3rd 2014 to Dec. 29th 2017, yielding P = 1006 daily observations.
We divided these stocks equally into training and testing sets. For both sets, we created a log-returns data
matrix, denoted as X ∈ R

N/2×P . SpeciĄcally, Xi,j = log SPi,j − log SPi,j−1, where SPi,j signiĄes the closing
price of the i-th stock on the j-th day. From each matrix (train and test), we derived a matrix of Pearson
correlation coefficients Σ. We take the input to be E ← 11

⊤−♣Σ♣, thus yielding measure of dissimilarity. We
also constructed a binary label graph, assigning an edge weight value of 1 for stocks within the same sector
and 0 for pairs in different sectors. Thus, our training and testing datasets each contain a single sample.
Nodes from the same sector are numbered contiguously creating a block diagonal adjacency matrix structure,
displayed with the red outline in Figure 7 (left).

We use DPG with depth D = 200 and identify a high-performing parameter value range for θ via predictive
checking as in Section 5.2. Such values aligned closely with those found in the synthetic experiments, and so
we keep the priors unchanged. We run Bayesian parameter inference on a M2 MacBook laptop which takes
about 2 minutes; we visualize the input, empirical mean, and standard deviation of the posterior predictive
on the test sample in Figure 7 (left). Notably, while our mean recovery is robust, there are areas where it
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introduce an optimization algorithm that is simpler than existing methods, without sacriĄcing estimation
performance. We unroll this algorithm producing the Ąrst true NN for GSL from smooth signals. We leverage
independent interpretability to incorporate prior information about sparsity characteristics of sought graphs
into prior distributions over unrolled network parameters, producing the Ąrst BNN for GSL from smooth
signal observations. We lean into the advantages of unrollings - low parameter dimensionality, fast compiler
and auto-grad friendly layers, as well as the empirical need for shallow networks - to perform posterior
approximation using MCMC sampling. Doing so yields high-quality and well-calibrated uncertainty estimates
over edge predictions, as demonstrated via comprehensive experiments with synthetic and real datasets.

The primary limitation of our approach lies in its scalability to moderate- and large-sized graphs and datasets.
The computational and memory requirements to achieve asymptotically exact posterior inference through
MCMC sampling are substantial, owing to the necessity for numerous forward network passes per posterior
sample and the requirement to store the entire data set in memory. Promising directions of future work
include exploration of non-asymptotically exact posterior inference methods, namely variational inference,
which typically requires much less computation and allows for mini-batch training and thus use of larger
datasets (Jospin et al., 2022). As we produce distributions over output graphs, future work can explore
Bayesian decision analysis with the introduction of a utility function, or even using DPG as a module within
a larger system, where propagation of uncertainty over the inferred graph is important.
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A Appendix

A.1 Optimization algorithms for model-based GSL methods

A.1.1 Primal-dual splitting (PDS) algorithm

Algorithm 2 was introduced in (Kalofolias, 2016) to solve the (α, β)-parameterization of (3), and was
subsequently unrolled by (Pu et al., 2021) on the same objective. Note the increased number of operations,
intermediate variables, and parameters as compared to Algorithm 1.

Algorithm 2 Proximal Dual Splitting (PDS)

Inputs: Fixed parameters α, β, γ ∈ R, and data e.
Initialize: a0 and v0 at random.
for k = 1, 2, . . . do

r1,k = ak − γ(2βak + 2e + S⊤vk).
r2,k = vk + γSak.
p1,k = proxγ,Ω1

(r1,k), where proxγ,Ω1
(r1,k) = max¶0, r1,k♢.

p2,k = proxγ,Ω2
(r2,k), where



proxγ,Ω2
(r2,k)



i
= (r2i −

√

r2
2i

+ 4αγ)/2.

q1,k = p1,k − γ(2βp1,k + 2e + S⊤p2,k).
q2,k = p2,k − γSp1,k.
ak+1 = ak − r1,k + q1,k.
vk+1 = vk − r2,k + q2,k.

end for
Return: ak+1

Parameter tuning in the convergent setting. The optimization parameters α, β and γ of Algorithm 2 are
not interpretable, and so performing parameter tuning incurs a O(K3), where K is the number of discretization
values used for each parameter. This is in contrast to Algorithm 1 which has only two parameters θ and
δ. Since θ is independently interpretable w.r.t sparsity, we can Ąrst tune θ to produce outputs with desired
sparsity level, then tune δ for appropriate edge weight scale, reducing reducing tuning costs to O(K).

Step size γ frustrates Bayesian PDS. Algorithm 2 has a nuisance step size parameter γ which must be
properly tuned for convergent and performant iterations; problematically such γ values are a functions of α
and β values; see (Kalofolias, 2016). The step size γ introduces several issues for use as a learned parameter
in a BNN. First, we empirically Ąnd that the γ values which produce convergent iterations of Algorithm 2
(within 5× 104 iterations) are very close to γ values which produce divergent iterations, as shown in Figure 8
(left). This presents the practical problem of producing NaNs during Bayesian inference, as the sampler
will be drawn toward such unstable values of γ, causing the unrolling to diverge. Second, the values of γ
which produce divergent unrollings are themselves a function of α, β, and the unrolling depth, frustrating
simple solutions to prevent divergence, e.g., setting p(γ) to be some Ąxed closed interval. Third, the products
γβ and γα ensure the Unrolled PDS is not a neural network; this causes problems in practice as products
of parameters - each of which can vary over many orders of magnitude - can cause problematic gradients.
These observations help explain why we could not Ąnd any prior conĄguration over the three parameters
¶α, β, γ♢ in PDS which produced convergent posterior sampling over multiple depths. Fixing γ to a scalar
value ameliorates these three issues, indeed this was the only conĄguration which produced a performant
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Figure 8: Left: PDS Step Size γ. Running both DPG and PDS iterations with α = β = 1 and θ = 1/
√

αβ = 1,
δ =

√

α/β = 1 for 5× 104 iterations, we plot the mean and standard deviation of the normalized ℓ2 distance
between the output of PDS vs DPG. The value of γ resulting in the most faithful PDS solution is close to
values which yield divergent iterations, problematic for its use as our NN function. Right: PDS vs DPG
inference time using D = 200 on T = 50 RG 1

3
graphs running NUTS with 4 chains (in parallel), each taking

M = 1500 samples.

PDS model. We found γ = 0.1 worked best. Even so, care has to be taken in setting the priors for α and
β: log α and log β ∼ U

[

10−6, 106
]

produced all divergent paths - recall this naive setting for log θ in DPG
worked with no issue in the Ablation Studies of Section 6.3. A successful avenue we followed to produce a
performant PDS model was to use α, β ∼ LogNormal(0, 10) and b ∼ N (0, 103).

Comparing Bayesian inference time of PDS vs DPG. Above we show that Ąnding a range of reasonable
values of the optimisation parameters can be cubic in PDS while linear in DPG, owing to independent
interpretability. Further, PDS takes more than twice as long in performing inference as the DPG (and PDS
with stochastic γ took an order of magnitude longer). This may be due to the increased complexity of PDS
iterates and the fact that both α and β occur inside PDS iterations, compared to only θ for DPG iterates,
increasing the complexity of the computational graph required to compute parameter gradients. See Figure 8
(right) showing the difference in inference runtime for PDS and DPG, both having depth D = 200 using
T = 50 RG 1

3
graphs.

A.2 Experimental Details

A.2.1 Scoring rules and evaluation metrics

Fitting the model to training data T produces samples ¶Θ(m)♢M
m=1 from the posterior p(Θ ♣ T ). Given test

sample ¶ẽ, ã♢ we can evaluate the quality of Ąt using proper scoring rules, e.g., Log Predictive Density and
Brier Score, and discrete metrics, e.g., the Error.
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Log predictive density, i.e., Log Likelihood. The Log Likelihood measures the quality of the probabilistic
predictions of the model. It is deĄned as the predicted probability of the true outcome under the model.

log p(ã ♣ ẽ, T ) = log

∫

p(ã ♣ ẽ, Θ)p(Θ ♣ T )dΘ

≈ log
( 1

M

M
∑

m=1

p(ã ♣ ẽ, Θ
(m))

)

= log

M
∑

m=1

p(ã ♣ ẽ, Θ
(m))− log S

= log-sum-exp
{

log p(ã ♣ ẽ, Θ
(1)), . . . , log p(ã ♣ ẽ, Θ

(M))
}

− log S (9)

The NLL is simply −1 · log p(ã ♣ ẽ, T ). A lower NLL indicates better predictive performance, as it suggests
that the model assigns higher probabilities to the observed outcomes.

Brier Score. The Brier Score is used to assess the accuracy of probabilistic predictions. It measures the
mean squared difference between the predicted probability and the actual outcome. A lower Brier Score
indicates better calibration and accuracy of the probabilistic predictions. Recall the edge-wise probabilities
output by the model for parameters Θ

(m) are denoted p̂(m) = σ(δ(m)ΓD
θ(m)(e)− b(m)). Then the Brier Score is

BS(ã ♣ ẽ, T ) =
1

♣E♣

∫

∥p̂− ã∥2
2 · p(Θ♣T )dΘ

≈ 1

M ♣E♣
M

∑

m=1

∥p̂(m) − ã∥2
2 (10)

Complementary metrics. The NLL is particularly useful for evaluating the overall Ąt of a probabilistic model,
emphasizing the accuracy of the assigned probabilities, especially for less likely events. In contrast, the Brier
Score provides a more intuitive measure of predictive accuracy and calibration, making it easier to interpret
the modelŠs probabilistic predictions in practical scenarios.
Numerical Concerns. Evaluating log p(a♣e, Θ

(m)) can cause numerical issues which stem from underĆow in
computing log â(m) or log (1− â(m)). for some edges. This becomes an issue in the covariate shift experiments
in Section 6, where the data becomes very noisy and the model can conĄdently predict the wrong label. When
this underĆow occurs, the log evaluates to −∞. To solve this we use the softplus parametrization of the log
likelihood: −softplus(−ȳ · (δ(m)ΓD

θ(m)(e)− b(m))), where ȳ = 2y − 1, see Equation (10.13) in (Murphy, 2023).

Error. We take the error to be the percentage of incorrectly predicted edges between our thresholded pred.
mean EΘ♣T [ã ♣ ẽ, T ] > 0.5 and the true label ã.

Calibration for GSL. We follow the calibration procedure laid out in (Guo et al., 2017). To Ąt into this
framework, we take our prediction to be the pred. mean thresholded at 0.5, i.e., EΘ♣T [ã ♣ ẽ, T ] > 0.5. Thus
the conĄdence, i.e., the probabilities associated with the predicted label, will thus always be in ∈ [0.5, 1]. We

will thus construct M uniform bins Im = (.5 + .5∗(m−1)
M , .5 + .5∗m

M ], m = ¶1, . . . , M♢. If an edge conĄdence is
in Im, we assign it to bin Bm. We then evaluate the accuracy acc(Bm) := 1

♣Bm♣

∑

i∈Bm
1(âi = ai) and average

conĄdence conf(Bm) := 1
♣Bm♣

∑

i∈Bm
âi for each bin. The Expected Calibration Error (ECE) is deĄned as the

weighted average the binsŠ accuracy/conĄdence difference:

ECE =

M
∑

m=1

♣Bm♣
B
♣acc(Bm)− conf(Bm)♣,

where B :=
∑M

m=1 ♣Bm♣ are the total number of edges predicted. Thus the ECE provides a measure of
calibration over all edges in the evaluation set.

A.2.2 Inference Details

Details on HMC. To ensure convergence has been achieved in our posterior sampling we simulate multiple
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