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Transcranial focused ultrasound to 
human rIFG improves response inhibition 
through modulation of the P300 
onset latency
Justin M Fine*†, Archana S Mysore¶, Maria E Fini, William J Tyler‡, Marco Santello

School of Biological and Health Systems Engineering, Arizona State University, 
Tempe, United States

Abstract Response inhibition in humans is important to avoid undesirable behavioral action 
consequences. Neuroimaging and lesion studies point to a locus of inhibitory control in the right 
inferior frontal gyrus (rIFG). Electrophysiology studies have implicated a downstream event-related 
potential from rIFG, the fronto-central P300, as a putative neural marker of the success and timing 
of inhibition over behavioral responses. However, it remains to be established whether rIFG effec-
tively drives inhibition and which aspect of P300 activity uniquely indexes inhibitory control—ERP 
timing or amplitude. Here, we dissect the connection between rIFG and P300 for inhibition by using 
transcranial-focused ultrasound (tFUS) to target rIFG of human subjects while they performed a 
Stop-Signal task. By applying tFUS simultaneously with different task events, we found behavioral 
inhibition was improved, but only when applied to rIFG simultaneously with a ‘stop’ signal. Improved 
inhibition through tFUS to rIFG was indexed by faster stopping times that aligned with signifi-
cantly shorter N200/P300 onset latencies. In contrast, P300 amplitude was modulated during tFUS 
across all groups without a paired change in behavior. Using tFUS, we provide evidence for a causal 
connection between anatomy, behavior, and electrophysiology underlying response inhibition.

Editor's evaluation
This study presents a valuable finding on the causal contribution of the inferior frontal gyrus (IFG) 
in behavioral control. State-of-the-art transcranial ultrasonic stimulation in combination with EEG 
is used to stimulate the IFG and find changes in speed and accuracy in a stop-signal task. This 
convincing work will be of interest to a wide range of basic neuroscientists.

Introduction
Cognitive control allows a person to actively maintain and regulate goal-relevant thoughts and 
behaviors while suppressing context-irrelevant information (Cohen, 2017). The latter also entails 
overriding or stopping already initiated and prepotent actions and is often referred to as response 
inhibition (Logan and Cowan, 1984; Wessel and Aron, 2017). Response inhibition has been exten-
sively studied given its centrality to human interactions with the environment and preventing adverse 
events (Verbruggen and Logan, 2008). Moreover, impaired inhibitory control has been associated 
with several neuropsychiatric disorders, for example attention-deficit/hyperactivity disorder (ADHD), 
impulse control disorders and addiction (Bari and Robbins, 2013). Hence, a deeper understanding 
of the neural dynamics and mechanisms of inhibitory control will contribute to developing better 
interventional techniques.
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To identify neurophysiological markers of response inhibition, studies have utilized electro-
encephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG studies have 
provided substantial evidence about the fronto-central P300 event-related potential (ERP) as a key 
marker of response inhibition as it tracks the success of inhibitory outcomes (Bekker et al., 2005; 
Greenhouse and Wessel, 2013; Kok et al., 2004). Specifically, increased P300 amplitudes have 
been observed for trials that require response inhibition compared to trials that do not (Enriquez-
Geppert et  al., 2010). However, the P300 peaks after stop response timing — the stop signal 
reaction time (SSRT) — indicating that this amplitude modulation occurs too late to be an indi-
cator of an inhibition response (Huster et al., 2020). Thus, an alternative interpretation is that the 
P300 amplitude may reflect outcome monitoring (Huster et al., 2013) or an attentional orienting 
process (Corbetta et al., 2008; Polich, 2007) that likely occurs after inhibition. Recent evidence 
has pointed to the P300 onset latency as being a candidate marker of response inhibition for two 
reasons: it tracks inhibition success and stopping speed (Huster et al., 2020; Wessel and Aron, 
2015).

Although the P300 itself has a fronto-central topography in EEG studies, hinting at generation 
from medial prefrontal cortex (MPFC), areas comprising MPFC, such as pre-supplementary motor 
area, have been linked to inhibitory control and acting downstream from the right inferior frontal 
gyrus (rIFG; Aron et al., 2016). A plethora of fMRI and clinical lesions studies have identified the 
rIFG as a central node in triggering response inhibition (for review see Aron, 2011). This would 
suggest that rIFG might be responsible for the modulation of the P300 signal. However, this putative 
link between rIFG and P300 modulation remains to be determined. The reason for this gap stems 
from the issue that EEG and fMRI studies are mostly correlational in nature. These limitations have 
motivated others to use neuromodulation of brain areas in the inhibitory control network to establish 
their role (Neubert et al., 2010). For example, offline repetitive transcranial magnetic stimulation 
(rTMS) to rIFG during a stop signal task significantly disrupted inhibitory control by increasing SSRT 
(Chambers et al., 2006; Chambers et al., 2007). An EEG- rTMS study further reported that offline 
stimulation to rIFG reduced right frontal beta power and decreased inhibitory performance, thus 
establishing right frontal beta as a functional marker of inhibitory control (Sundby et  al., 2021). 
These transcranial magnetic stimulation (TMS) studies further bolster rIFG as a central node in the 
inhibitory control network. However, the debate surrounding P300 timing as a reliable marker of 
inhibitory control and its connection to rIFG remains unresolved. Furthermore, when TMS is applied 
offline, it becomes challenging to identify the cognitive processing steps that are being perturbed 
in response inhibition.

The present study was designed to determine whether neuromodulation of rIFG can modify P300 
amplitude, onset latency, or both while tracking behavioral inhibition. We simultaneously modulated 
rIFG activity with transcranial focused ultrasound (tFUS) during EEG recordings of subjects performing 
a Stop-Signal task (Logan and Cowan, 1984). Based on the above-reviewed evidence provided by 
EEG and TMS studies, we hypothesized that (1) P300 onset latency would track the speed of inhibitory 
control (SSRT) and (2) rIFG is causally related to inhibitory control through modulation of the P300 
onset latency. Our findings corroborate these predictions, as we show that tFUS to rIFG improved 
stopping behavior by shortening the SSRT and P300 onset latency.

Results
Human participants performed a Stop-Signal task while receiving time-locked, online tFUS on a subset 
of Go and Stop trials (Figure 1). Subjects were divided into groups according to tFUS stimulation 
type: (1) an experimental group that received active stimulation to right pars opercularis (rIFG), (2) a 
control group that received active stimulation to ipsilateral primary somatosensory cortex to account 
for non-site specific tFUS effects (S1), and (3) a second control group that received sham stimulation 
to account for possible tFUS-induced auditory artifacts (sham rIFG). tFUS simulation results are shown 
in Figure 1—figure supplement 1, with simulation outputs provided in detail in the methods. In the 
following, we use this stop signal task and tFUS to test the hypothesis that rIFG is causally related 
to inhibitory control through modulation of the P300 onset latency. According to this hypothesis, we 
predicted that the behavioral effects induced by tFUS should be limited to the alteration of stopping 
when tFUS is applied simultaneously with the Stop signal.

https://doi.org/10.7554/eLife.86190


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Fine et al. eLife 2023;12:e86190. DOI: https://doi.org/10.7554/eLife.86190 � 3 of 20

Figure 1. Task and trial design. (A) Stop-Signal task and trial types: rIFG group. Each trial type started with a 
fixation. After a randomly chosen delay (350–650ms), subjects were asked to respond to a “Go” signal as fast 
as possible by pressing the up key. On a subset of trials (Stop trials; rows 3–5), a red square appeared at one of 
4 latencies (SSD) after the Go signal, cueing subjects to inhibit their response. Transcranial focused ultrasound 
(tFUS) was delivered to rIFG for 500ms, either at the onset of the Go (rows 2 and 4) or the Stop signal (row 5). SSD: 
stop signal delay. The same design was used for two control groups (S1 and sham rIFG), although tFUS was not 
delivered to a cortical site in the sham rIFG group (see text for details). For a subset of Go and Stop trials, no tFUS 
was delivered (rows 1 and 3). (B) The schematic further expands the display of the top plot, showing the timeline 
for each trial, with the timing of the events (Fixation, Go, and Stop signals). In addition, it shows how the core ERPs 
(P100, N200, and P300) are analyzed following the onset of the Stop signal. In trials that had tFUS, the tFUS was 
started simultaneously with the first monitor frame showing either the ‘Go’ or ‘Stop’ signal (aligned to t=0ms of the 
signal).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. tFUS targeting and simulation.

https://doi.org/10.7554/eLife.86190
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tFUS to rIFG improves stopping behavior
We first addressed how the probability of failing to inhibit (P(respond|signal), Figure 2A) changed 
across tFUS conditions (No-, Go-, and Stop-) and groups. The main analysis of P(respond|signal) used 
a mixed-design ANOVA across the two highest SSD levels, 75% and 95% because these SSDs meet 
assumptions of the independent race model (see Materials and methods); we note that the same 
analysis including all SSDs did not show any tFUS-related changes in the shortest SSDs. Therefore, we 
present the rest of the results focusing on the 75% and 95% SSDs.

The ANOVA with the 75% and 95% SSDs indicated a significant interaction of tFUS and Group 
(F(4,104) = 7.83, p<0.001, ‍η

2
p‍ = .23), and main effects of tFUS (F(2,104) = 25.29, p<0.001, ‍η

2
p‍ = .38) and 

SSD (F(1,52) = 69.78, p<0.001, ‍η
2
p‍ = .57). First, the main effect of SSD is necessary, as we expect the 

P(respond|signal) should always go up with increasing SSD; this pattern can be seen across all groups 
in Figure 3A.

More importantly, the interaction of tFUS and Group indicates an impact of tFUS on inhibitory 
performance that was dependent on the Group. To source this interaction, we ran post-hoc t-tests 
to separately compare the No-tFUS condition to both Go-tFUS and Stop-tFUS P(respond|signal). The 
aim was to determine how tFUS in either condition (Go- or Stop-) deviated from non-stimulated 
stopping performance. The t-tests (Bonferroni corrected for number of tests) were run separately for 
each group and collapsed across SSD because there was no interaction with SSD and tFUS. Follow-up 
indicated a single difference of P(respond|signal) (M=0.15, SD = .10) within the rIFG group between 
No-tFUS and Stop-tFUS (t(20) = 6.84, CI95% = [0.08, 0.23]). Overall, the main and follow-up analysis 

Figure 2. Response inhibition behavior. (A) Inhibition accuracy quantified as the probability of failing to inhibit 
conditioned on whether a stop-signal was presented, P(respond|signal). Results are shown for the 75% and 
95% SSD conditions, for each tFUS condition (different colors), and for each group (columns, from left to right: 
rIFG group, S1 group, and control group). (B) Stop signal reaction times (SSRT) derived from using the Bayesian 
hierarchical fits for each subject (separate dots); each subject has three points, covering the three tFUS conditions. 
All groups are shown across the columns (from left to right: rIFG group, S1 group, and control group).

https://doi.org/10.7554/eLife.86190
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indicate that tFUS had a targeted impact of improving stopping accuracy only in the rIFG group, and 
only when tFUS when applied simultaneously with the Stop signal. This is displayed clearly as a lower 
P(respond|signal) in Stop-tFUS compared to No-tFUS in Figure 3A (left column, showing rIFG group).

Next, we addressed the potential causes for the improvement in inhibitory performance. One possi-
bility is that tFUS improved performance through a faster stopping process or faster stopping speed 
(SSRT). A mixed-design ANOVA with factors of tFUS (No, Go, Stop) and Group indicated a tFUS x 
Group interaction (F(4,104) = 4.1, p=0.004, ‍η

2
p‍ = 0.14). Indeed, examining the mean SSRTs per Group 

and tFUS conditions (Figure 3B), we see that the SSRT during Stop-tFUS group is discernibly shorter 
than that in the No-tFUS condition for the rIFG group (Figure 2B left column). We corroborated this 
observation with two follow-up tests. First, using a simple main effects analysis over tFUS with Group 
as a moderator indicated the effect of tFUS on SSRT was only significant for the rIFG group (F(2) = 

Figure 3. ERP responses modulated by tFUS. (A) Average medial frontal ICA spatial map per group, found from 
clustering. The number of subjects in each group that had a correspondent IC are listed above the maps.(B) Each 
plot in both rows (top and bottom) shows the within-group (per column) mean ICA-based ERP. The ERPs are 
plotted from –100ms before- to 650ms post-stop-signal onset, with the colors (orange and purple, respectively) 
corresponding to the successful (SS) and unsuccessful (US) stopping trials. The top row presents the rERPs for the 
No-tFUS conditions, and the bottom row are the rERPs for the Stop-tFUS condition. The vertical line denotes the 
time at which the Stop Signal was delivered.

https://doi.org/10.7554/eLife.86190
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21.44, p<0.001). Second, we used t-tests (Bonferroni corrected for 6 tests) that compared No-tFUS 
SSRT individually to Stop-tFUS and Go-tFUS separately for each group. Only the rIFG No-tFUS versus 
Stop-tFUS (M=38ms, SD = 40ms; t(20) = 4.40, CI95% = [19ms, 68ms]) and Stop-tFUS versus Go-tFUS 
(M=61ms, SD = 42ms; t(20) = 6.94, CI95% = [32ms, 90ms]) tests were significant. Thus, this result points 
to tFUS improving inhibition through an impact on the speed of the stopping process.

Next, we addressed whether tFUS also affected the Go process independent of Stop trials, that 
is whether any effects found in P(respond|signal) could be explained by an altered, but independent, 
Go process. To do this, we used two mixed-design ANOVAs to separately analyze the mean and 
variability of GoO RTs (see Materials and methods). The two distributional moments for each subject 
were analyzed using a 3x2 mixed-design ANOVA with factors of Groups (3) and tFUS condition (2: 
No-tFUS, Go-tFUS trials). For both the Go RT mean and variability, we found no significant effect of 
tFUS Condition, Group, or their interaction (all p>0.05). These results suggest that neither tFUS (rIFG 
and S1 groups) nor auditory factors alone (sham rIFG group) altered Go RTs independent of a Stop 
signal. Put differently, any tFUS impact on inhibition (codified through P(respond|signal)) could not be 
explained by a modulation of the Go process.

Improvements in inhibition from tFUS could also have emerged from reduced mean or variability in 
the distribution of Go reaction times occurring during Stop Signal trials. Therefore, we analyzed SRRT, 
the Go response reaction times emitted during Stop trials. Two mixed-design ANOVAs were used 
to examine the subject-level means and variability with Group (3 levels) and tFUS (3 levels: No-tFUS, 
Go-tFUS, Stop-tFUS). We found no significant interactions or effects of tFUS on the mean (all p>0.05) 
or its variability (all p>0.05). Overall, these behavioral results indicate that only tFUS to rIFG improved 
response inhibition by shortening one or more processes related to the stopping speed.

Neural responses underlying inhibition
Having found an acute impact of tFUS on behavior during Stop-tFUS trials in the rIFG group, next, we 
aimed to understand how these behavioral changes parlay into inhibition-related ERPs. We charac-
terized neural activity by analyzing the mean activity in time windows around different medial frontal 
(Figure 3A) ERP peaks commonly found to modulate during response inhibition. These ERPs primarily 
include the N200 and P300 complex, as well as the P100. As seen in Figure 3B, we see all three of 
these ERPs across the groups. Considering our core hypotheses, in the mixed-design ANOVAs we 
used to analyze the ERP activity (see Materials and methods), our primary focus was the interaction 
of inhibition success and tFUS and their group differences. We next consider these ERPs in temporal 
order.

First, we start with the analysis of the P100 ERP. The ANOVA for the P100 indicated only a main 
effect of stopping success (F(1,46) = 37.88, p<0.001, ‍η

2
p‍ = 0.29). A follow-up t-test comparing mean 

differences of the P100 between SS and US trials showed a larger mean amplitude during unsuccessful 
Stop trials (M=1.49 µV, SD = 1.71 µV; t(45) = 5.92, CI95% = [0.96 µV,1.94 µV]). This result suggests that, 
while P100 amplitudes were indicative of unsuccessful stopping, their modulation was not linked to 
performance changes induced by tFUS.

Next, we consider the results for the N200 ERP. We found a significant three-way interaction of 
Group, tFUS and stopping success (F(2,92)=4.91, p<0.01,‍η

2
p‍=0.11). We also found a main effect of 

stopping success (F(1,46) = 4.75, p<0.05, ‍η
2
p‍ = 0.09). To interpret these results, we decomposed the 

interaction by using a simple effects analysis for each level of stopping success, with the tFUS and 
Group factors as moderators for post-hoc tests; all tests were Bonferroni corrected for the number of 
tests. This analysis showed that the three-way interaction was driven by a difference in N200 ampli-
tude between tFUS (No and Stop) conditions successful stopping trials in the rIFG group. The nega-
tive amplitude was smaller during Stop-tFUS trials (M=–1.96 µV, SD = 1.82 µV; t(19) = –3.88, CI95% 
= [–3.71 µV,–0.32 µV]). This result indicates that Stop tFUS had a targeted effect of reducing N200 
amplitude in the rIFG group.

Analysis of the P300 amplitude indicated only a marginal interaction of stopping success and tFUS 
(F(1,92)=4.05, p<0.05,‍η

2
p‍=0.06), but no Group effects. Visual examination of Figure 4B suggests that 

during No-tFUS trials, unsuccessful stopping had a larger peak, while Stop-tFUS trials points to similar 
peaks in successful and unsuccessful stopping trials. A follow-up simple main effects test comparing 
successful and unsuccessful trials with tFUS as a moderator, and collapsing across groups, confirmed 
this interaction. Unsuccessful stopping trials were characterized by a larger amplitude compared to 

https://doi.org/10.7554/eLife.86190
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successful trials, but only in the No-tFUS conditions (F(1,45)=4.21, p<0.05); however, this effect was 
not significant after adjusting for both tests. These results suggest any significant changes in P300 
amplitude were relatively weak and insensitive to the changes in inhibition performance found in the 
rIFG group.

Finally, we examine the N200/P300 onset latency correlation with SSRT as a means to identify 
a clearer connection between rIFG group performance changes during Stop-tFUS. Specifically, 
we tested the prediction that the change in SSRT accompanying Stop-aligned tFUS to rIFG would 
co-modulate with the onset latency of the N200/P300 ERP complex. To do this, we regressed the 
difference in SSRT between No-tFUS and Stop-tFUS conditions against the difference in onset latency 
between the same conditions. We used a Bayesian approach to estimate the posterior probability of a 
non-zero coefficient (see Materials and methods and Figure 4B for posterior samples) for each group. 
In line with the behavioral change in SSRT in rIFG, we found that the change (regression slope) in SSRT 
co-modulated with ERP onset latency only in the rIFG group (Figure 4A, column one). Only this group 
showed a posterior mean slope having a 95% credible interval outside of zero (Figure 4B). Both the S1 

Figure 4. tFUS alterations to ERP timing modulate with SSRT. (A) Scatterplots of change in N200/P300 onset 
latency as a function of the change in SSRT between the No-tFUS and Stop-tFUS conditions. Dashed lines are 
the mean slope parameters from the posterior MCMC samples of each group’s (separate columns) regression. 
(B). Each plot shows the kernel smoothed density (black line) of posterior MCMC samples for the regression 
coefficients and the 95% credible interval (blue shaded area).

Table 1. The mean and standard deviation (SD), 95% credible interval tails of the regression 
parameters of change in SSRT against change in N200/P300 onset latency, taken from the posterior 
sampling distribution for each group.

Group Mean SD 5% Credible interval 95% Credible interval

rIFG 1.27 0.43 0.23 2.32

S1 0.13 0.24 –0.12 0.31

Control 0.15 0.21 –0.17 0.48

https://doi.org/10.7554/eLife.86190
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and control group had slope parameters that overlapped with zero (Figure 4B, Table 1). This analysis 
provides a more direct link between rIFG tFUS and stopping control through speed.

Discussion
The present study builds on a rich literature that has considered response inhibition from many 
perspectives. By employing online tFUS to rIFG in parallel with EEG, we isolated N200/P300 onset 
latencies as the primary predictor of behavioral outcomes – response inhibition performance via SSRT 
– during No-tFUS and Stop-tFUS trials. This result is consistent with recent work suggesting P300 
onset latencies predict the SSRTs (Huster et al., 2020; Huster et al., 2013; Wessel and Aron, 2015), 
with latency modulation occurring before the SSRT. This close temporal proximity of neural modula-
tion and SSRT is predicted by Stop-Signal task studies of single units in non-human primates (Hanes 
et al., 1998), as well as attractor network (Lo et al., 2009) and related accumulator models (Boucher 
et al., 2007; Logan et al., 2015). By directly stimulating and measuring rIFG simultaneously, while 
showing a concurrent change in P300 onset and behavior in rIFG but not control groups, we estab-
lished a causal connection between inhibitory control, P300 timing, and rIFG.

In terms of neurophysiology, several studies have presented contrasting results on whether the 
P300 or the N200/P300 onset latency is a valid marker of response inhibition. Several of our results 
favor a framework in which the P300 onset latency tracks the inhibition process. For example, we 
found the P100, N200, and the P300 all differentiated successful versus failed inhibition. However, the 
P100 differences were insensitive to tFUS-induced changes in rIFG group inhibition. The N200 inter-
action of successful stopping and tFUS specific to the rIFG group would suggest the relevance of this 
ERP amplitude to inhibition. However, under the assumption that the N200/P300 is a complex of inter-
acting signals, we suspect the reduced N200 amplitude during SS trials during Stop-tFUS in the rIFG 
group is the result of earlier P300 onset. Regarding the P300 itself, the ERP amplitude interaction of 
stopping success and tFUS was apparent across all experimental groups (rIFG, S1 and control groups). 
The P300 amplitude changes were not specific to tFUS changes in performance (i.e. rIFG group), and 
this ERP peaks after the SSRT. These results point to the timing of the N200/P300 onset latency as a 
causal and valid marker of inhibitory control.

Is there an interpretation of the P300 amplitude that is bolstered by our results? Notably, our find-
ings contrast with some studies (Greenhouse and Wessel, 2013) showing larger P300 amplitudes 
for successful compared to failed inhibition. In contrast, we found a larger amplitude for unsuccessful 
trials as also found by others (Huster et al., 2020; Cunillera et al., 2016). However, it has also been 
previously that the direction of P300 amplitude differences between successful and failed stopping 
depends on whether the SSDs are fixed or dynamically staircased (Waller et al., 2021). We interpret 
this confluence of mixed P300 amplitude results as coherent with another interpretation. The P300 
amplitude indexes the retrospective evaluation of an outcome expectancy (Hajcak et al., 2005), for 
example How surprising was it that I made a stopping error? This interpretation contrasts with a 
simple indexing of inhibitory performance, for example Was the stopping outcome successful or did 
it fail? Our results and others favor the former interpretation. This conclusion is further supported by 
manipulations of stop signal probability (Ramautar et al., 2004) that, in a study like ours, used a fixed 
set of SSDs. They found that P300 amplitudes were larger when stop signal trials were less likely, and 
therefore more surprising. Additionally, Ramautar et al., 2004 found P300 amplitudes were larger in 
unsuccessful than successful stop trials. Our finding of a tFUS by performance interaction supports 
this interpretation as well. Speculatively, the P300 amplitude change may reflect the detection of tFUS 
auditory signals across all groups. If so, the detection of the auditory signal may have increased the 
subject’s retrospective surprise of making a stopping error.

An important consideration is the timing of tFUS effects on stopping in the rIFG group. Effective 
changes were limited to the longest two SSDs, which we focused our analysis on. Possible explanations 
for not observing significant tFUS effects for the shorter SSDs are that, even before the Go process 
has been initiated, the stop/inhibitory process gets initiated, or they get simultaneously initiated but 
the inhibitory process is automatically prioritized based on recognition of the Stop signal. This would 
provide less opportunity for tFUS to impact response inhibition, as short SSDs may simply involve ‘not 
going’ versus ‘inhibiting a Go’, which may proceed with a different chronology. This interpretation 
aligns with the idea that short SSDs violate the independent race model and may invoke different 
processes (Bissett et al., 2021). A further possibility is that tFUS may have a rather delayed (>100ms), 

https://doi.org/10.7554/eLife.86190
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rather than instantaneous impact. For example, tFUS applied directly to cultured cells measured with 
calcium imaging or GCaMP6f revealed a response delay of approximately 200ms for a 6 w/cm2 tFUS 
intensity (Yoo et al., 2022). With increasing intensity, the delay decreased in measurable peak neural 
activity. This finding, though noting a delay in neural response to tFUS, requires caution for interpre-
tation here for several reasons. First, it reveals neural peak response was intensity dependent, which 
does not generalize to transcranial application and implies a non-fixed delay. Second, the measure in 
that study was with calcium measures rather than electrophysiological directly. Calcium imaging has a 
notable delay, and lower sampling rate than EEG (for example), and could filter the neural response 
differently. Therefore, while there must be some delay between tFUS and neural response, several 
more studies in human and animal models across measurement modalities (single units versus EEG) 
are required to dissociate these issues.

Notably, other studies have attempted to address the gap of a causal connection between rIFG 
and response inhibition using offline TMS (Chambers et al., 2006; Chambers et al., 2007; Sundby 
et al., 2021). All studies reported disrupting subjects’ ability to inhibit their responses, paired with 
significant lengthening of SSRT (Chambers et al., 2006; Chambers et al., 2007; Sundby et al., 2021). 
However, offline TMS-induced behavioral effects are problematic for causal interpretations because 
TMS (1) offline TMS stimulation cannot deal with temporal confounds of ERPs, and (2) cannot control 
for carry-over effects between experiment blocks. Using tFUS in our study addresses many of these 
limitations. Second, we delivered tFUS simultaneously with the Go and the Stop cue and used convo-
lutional GLM modeling to remove overlapping neural effects between Stop and Go ERPs. By doing 
so, we found response inhibition effects only when tFUS was delivered simultaneously with the Stop 
cue. Although there is a distinct benefit to tFUS allowing simultaneous stimulation and measurement, 
care must be taken to establish temporal controls for overlap in macroscale neural measurements, 
for example EEG. Third, using a spatial control outside of the inhibitory network (primary somatosen-
sory cortex) allowed us to validate the specificity of tFUS behavioral effects to rIFG. More broadly, 
our study strengthens the evidence for tFUS as a promising technique for neuromodulation to test 
temporally and spatially precise hypotheses about brain function (Fini and Tyler, 2017; Folloni et al., 
2019; Reznik et al., 2020; Sanguinetti et al., 2020; Tufail et al., 2010; Tyler et al., 2018; Verhagen 
et al., 2019; Yaakub et al., 2023).

Materials and methods
Participants
Healthy adult human volunteers (n=63) were randomly assigned to one of three experimental groups. 
The main experimental group received transcranial focused ultrasound (tFUS) stimulation to the right 
inferior frontal gyrus (rIFG) (n=25; 19 males, mean age = 24.1 years, SD = 3.2 years). A second group 
received stimulation to the ipsilateral somatosensory cortex (n=23; 15 males, mean age = 22.4 years, 
SD = 3.3 years) and was used as the cortical site active control group (S1). A third group received 
sham stimulation near the right temple (n=15; 8 males, mean age = 24.2 years, SD = 2.8 years) and 
was used as a control for possible auditory effects of tFUS modulation (sham rIFG). All individuals were 
right-handed (self-reported) and received financial compensation for participation in the study. Before 
enrollment, each subject was screened for neurological disorders and a history of epilepsy, stroke, or 
brain injury. A neurologist from Barrow Neurological Institute (Phoenix, AZ) screened all subjects’ T1 
MRIs and cleared them before study participation.

Behavioral task and transcranial focused ultrasound design
Response inhibition was assessed using the Stop-Signal Task involving both ‘Go’ and ‘Stop’ trials 
(Figure 1) programmed in Opensesame (Mathôt et al., 2012). Each trial started with a central fixa-
tion cross. In every trial, fixations were replaced by a green ‘Go’ circle (3° x 3° visual angle) after an 
exponentially distributed time interval (range: 350–650ms; mean: 500ms; standard deviation: 50ms). 
Subjects were instructed ‘to press the ‘up’ key when detecting the Go circle’ (Figure 1A). In ‘Go’ 
trials (rows 1–2, Figure 1A), the circle vanished either after the subject’s response or 800ms elapsed. 
In ‘Stop’ trials (rows 3–5, Figure 1A), the Stop signal was a red square that appeared around the 
green circle. If the subject successfully inhibited their response with respect to the Stop cue within 
800ms, the red square was extinguished, and the trial was considered a successful inhibition. The time 
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required to inhibit a response following the Stop signal is defined as SSRT (see below). Timing of the 
Stop cue relative to the Go cue, that is the stop signal delay (SSD), was presented at one of four fixed, 
but subject-specific SSDs. The SSDs were chosen by having each subject perform a practice block of 
50 Go trials to determine their baseline Go reaction time (RT). After this block, the 4 SSD levels were 
set to 15, 35, 75, and 95% of the mean Go RT. These SSDs were fixed throughout the experimental 
session and were presented in a random order across Stop trials. All trials were separated by a 2 s 
inter-trial interval ±300ms random jitter.

We delivered Transcranial Focused Ultrasound (tFUS) simultaneously with the Go signal during 
Go trials. During stop trials, there were two separate tFUS conditions. In one set, tFUS was delivered 
simultaneously with the Go signal, and in the other set it was delivered simultaneously with the stop 
signal (Figure 1B); simultaneous here means that tFUS was delivered at time = 0ms – time synched to 
either the Go signal or the Stop signal. This mixture of Go, Stop and tFUS delivery factors generated 
5 trial types (Figure 1A). The first two consisted of Go trials with no tFUS or with tFUS time-locked to 
the Go signal (No-tFUS and Go-tFUS trials, respectively; rows 1–2, Figure 1A). The other three trial 
types consisted of Stop trials with no tFUS, and tFUS time-locked to either the Go or Stop signal (No-
tFUS, Go-tFUS, and Stop-tFUS trials, respectively; rows 3–5, Figure 1A). tFUS delivery for Stop trials 
was evenly distributed across the 4 SSD levels. The overall probability of the occurrence of a Stop trial 
was 44% of all trials. This proportion of trials accommodates the need for a sufficiently large number of 
Stop trials to examine tFUS effects on Stop trials across all SSD levels while enabling a more frequent 
occurrence of Go than Stop trials (56%; the percentage of each trial type is shown in Figure 1A).

Each experimental session consisted of 1200 trials distributed across 12 blocks of 100 trials 
each. Blocks were segmented into stimulation/no-stimulation and no-stimulation blocks, the former 
consisting of trials with and without tFUS, and the latter consisting of trials with no tFUS. Trial types 
(Go and Stop trials) were randomly distributed throughout the experiment. We chose a blocked 
design to mitigate possible carry-over effects of tFUS across trials. By using two control groups (S1 
and sham rIFG), we could determine the extent to which behavioral and/or neural responses associ-
ated with tFUS were specific to the target site (rIFG). The rationale for the two control conditions is 
provided in detail below.

EEG and structural imaging acquisition
EEG recording
EEG was recorded using a 64-channel ActiCap system (BrainVision, Morrisville, NC), with a 10–20 
layout. Data was recorded at a sampling rate of 5 kHz, with 0.1 μV resolution and bandpass filter of 
0.1–100 Hz. Impedances were kept <5 kΩ. Online recordings utilized a ground at AFz and left mastoid 
reference. At the beginning of each session, electrode layouts with respect to each individual’s head 
shape were registered using the left and right preauricular, and nasion as fiducial landmarks. This 
allowed for later co-registration with each individual’s T1 structural MRI scan and for source-localized 
analysis (see below).

Structural MRI (T1)
For guiding tFUS neuronavigation and co-registering EEG electrode placement for source analysis 
and modeling, we obtained a structural T1 MRI scan for each participant. T1 volumes were collected 
using a 3D MPRAGE sequence (TR = 2300ms, TE = 4.5ms, 1x1 x 1.1 mm3 voxels, field of view 240x256 
mm2, 180 sagittal slices) in a Philips Ingenia 3T scanner with a 32-channel head coil. Brainsuite was 
used to process T1s, which included cortical extraction sequence and a surface label-registration 
procedure with the BCI-DNI atlas. After labeling, we checked the locations and created a mask of 
either pars opercularis (rIFG group) or the centroid of ipsilateral S1 (S1 group). This volume labeling 
and mask creation procedure were used for guiding tFUS target identification.

tFUS targeting, setup and parameters
A BrainSight neuronavigation system (Rogue industries) along with subjects’ T1 scans were used to 
guide the placement of the focused ultrasound transducer beam profile for stimulation. This was 
done separately with respect to each individual’s neuroanatomy and mask created from T1 scans. The 
first step involved creating a subject-specific mask from cortical atlas registration and projecting it 
into the Montreal Neurologic Institute (MNI) coordinate system. When planning the tFUS target, we 
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considered both MNI coordinates and individual anatomy. For example, meta-analysis studies have 
shown specific activation of the pars opercularis (around x=48, y=16, z=18) for contrasts of successful 
inhibition versus Go trials and successful versus failed inhibition trials (Chikazoe et al., 2009; Levy and 
Wagner, 2011). For the rIFG group, we first identified the pars opercularis MNI coordinates. During 
target planning, we confirmed the coordinates were inside the anatomical region of pars opercularis. 
We visually confirmed each subject’s pars opercularis tFUS target was rostral to the inferior precentral 
sulcus and dorsal to the sylvian fissure, and ventral to the inferior frontal sulcus. For the S1 group, 
tFUS was targeted near MNI coordinates of x=-43, y=-29, z=54 and within the left post-central gyrus.

Before tFUS transducer setup, neuronavigation registered subjects’ T1 scans in virtual space, with 
their head and the ultrasound transducer in real space. Alignment and cortical registration were 
performed using nasion, tip of the nose, philtrum, and left and right periauricular notch and tragus 
as fiducial landmarks. A 3D-printed housing held the tFUS transducer, optical trackers, and silicon 
spacers (ss-6060 Silicon Solutions, Cuyahoga Falls, OH). Acoustic gel was applied to both the trans-
ducer and scalp. We recorded stimulation target coordinates after placing the transducer in target 
alignment. In the sham rIFG group, we delivered sham tFUS (Legon et al., 2018). The transducer 
pointing away and perpendicular to the scalp, placing the transducer where electrode F8 would have 
been. This is the same electrode that was also not used during the active TFUS rIFG group and was 
chosen to approximate the area where the transducer was typically placed in the rIFG experimental 
group. The logical basis of this sham was that we (a) wanted to emulate the sound that is cranially 
detectable during active TFUS, and (b) did not want substantial ultrasound energy transmitted. The 
choice of this sham was codified as producing a detectable sound when placed against the skull.

Here, we clarify the logic of our control groups more thoroughly. We used the sham condition 
to control for auditory effects, as we found that coupling the transducer to the scalp and placing it 
perpendicular to the scalp would prevent sonication, but still induced an auditory ringing similar to 
active tFUS. We reasoned that if an auditory effect drove our behavioral or neural results, then we 
would find similar changes in inhibition performance effects in the Sham, S1 control, and rIFG group. 
The S1 control group was used as an active sonication and auditory control to discern the specificity 
of the rIFG tFUS. Put differently, if the S1 and rIFG group exhibited similar behavioral changes, at 
minimum, this could result from an auditory artifact specific to active tFUS as both groups would expe-
rience similar auditory sensations. Thus, while the literature (Braun et al., 2020) remains uncertain 
about how to best define a sham control for auditory effects, we approached the problem by using 
both active tFUS (S1 group) and sham tFUS to control for auditory effects. To preface our results, we 
find support for the specificity of our results in that the joint impact of tFUS in behavior and neural 
data was limited to the rIFG group and not present in the S1 group or control group.

For the rIFG and S1 groups, we measured the accuracy of stimulation target coordinates by tracking 
the deviation of the tFUS beam profile from the cortical target throughout the experiment. During 
the experimental session, we sampled the tFUS transducer spatial target deviation during each break. 
Accuracy was very high, with an average deviation of ±1.5 mm displacement across all subjects and 
sessions.

Our tFUS setup and parameters were nearly identical to those used by Legon et al., 2014. Briefly, 
we used a single-element tFUS transducer with a center frequency of 0.5 MHz, a focal depth of 
30 mm, a lateral spatial resolution of 4.5 mm, and an axial spatial resolution of 18 mm (Blatek). tFUS 
waveforms were generated using a two-channel, 2 MHz function generator (BK Precision). The system 
operated by channel 1 produced a pulse repetition frequency (PRF) of 1.0 kHz. Channel 1 also trig-
gered channel 2, which produced short bursts at the 0.5 MHz acoustic frequency. This produced an 
ultrasound waveform with a carrier frequency of 0.5 MHz, PRF of 1.0 kHz, and a duty cycle of 24%. 
Each stimulation duration was 0.5 s. Transducer power was driven by output from a 40 W linear RF 
amplifier (E&I 240 L; Electronics and Innovation).

Computational simulation and validation of tFUS propagation
We quantified peak pressure amplitude, peak intensity and accuracy of the tFUS beam distribution 
delivered to rIFG using the pseudospectral simulation method in K-wave (Treeby and Cox, 2010). 
Reference peak pressure planes for the simulations were derived from previous data (Legon et al., 
2014). Simulation parameters were first validated by simulating the transducer in water to compare 
the simulation results with those from previous water tank tests (Legon et al., 2014). The maximum 
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pressure plane at the 30 mm focus was used as a source input pressure for the transducer during the 
simulation. The transducer was modeled to have a 30 mm radius of curvature. For water simulations, 
we used a homogenous medium of water density (1000 kg/m3) and speed of sound (1482 m/s). We 
created a computational grid (270x280 x 231) with 1 mm spacing. The points per wavelength were 6, 
Courant–Friedrichs–Lewy = 0.1, and simulation time was set to 6 pulses (duration = 250 μs) to ensure 
simulation stability.

For simulating transcranial ultrasound stimulation, we extracted 3-dimensional maps of the skull 
from a CT (1 mm resolution) and brain from T1 MRI scans (1 mm resolution) from three preoperative 
patients at Barrow Neurological Institute. The MRI and CT were both co-registered and normalized 
to the MNI space in SPM12. To mimic our approach of tFUS targeting used in the experiments, we 
surface-registered the gray matter volume to the BCI-DNI atlas and identified the centroid of pars 
opercularis. The average stimulation location for these three subjects was x=48, y=18, and z=6. This 
allowed us to map from world coordinates of the scan to MNI coordinates of the target. Figure 1—
figure supplement 1A shows T1 and scalp from one subject, together with renderings of the trans-
ducer housing, the pars opercularis mask, and the tFUS target applied to all MRIs from the rIFG group. 
Figure 1—figure supplement 1B shows side views of non-normalized T1s, pars opercularis masks, 
and the tFUS targets (red dots) for four subjects (Figure  1—figure supplement 1B). Conversion 
from Hounsfield units in the CT to sound speed and density was done using the relations described 
in Aubry et al., 2003. All skull materials were set using these parameters, while other tissues were 
treated as homogeneous with parameters set to that of water. Attenuation was modeled as a power 
law with a β=0.5 while absorption was modeled with b=1.08 (Treeby and Cox, 2010).

To assess transcranial stimulation accuracy, the simulated transcranial transmission was compared 
against simulations of tFUS transmission through water. Differences between these simulations show 
the estimated effect of any power absorption and change in acoustic profile after skull transmis-
sion. Numerical simulation parameters (see above) were derived to ensure the water simulation here 
matched the water tank results from a previous study using the same transducer and tFUS experimental 
parameters (Legon et al., 2014). Simulation of ultrasound through water predicted a maximum pres-
sure (Pmax) of 0.82 MPa, spatial peak pulse average intensity (ISPPA) of 22.43 W/cm2 at the focus, spatial 
peak temporal average intensity (ISPTA) of 5.38 W/cm2 at the focus, lateral full-width at half maximum 
of the maximum pressure (FWHM) of 3.56 mm and mechanical index (MI) of 1.15. (Figure 1—figure 
supplement 1C).

Comparison of simulations and previous water tank data (Legon et al., 2014) using the same 
transducer and experimental tFUS parameters indicated a 97% match of pressure/intensity at the 
focus taken over a 5 mm3 voxel section in all three planes at the focus. Next, modeling of transcranial 
transmission predicted Pmax 0.54, ISPPA 10.01 W/cm2 and ISPTA 2.40 W/cm2, which is the intensity range 
of non-thermal neuromodulation and that exhibits nearly instantaneous measurable effects on EEG 
(Legon et al., 2014). Comparing the water and transcranial simulation, accuracy was assessed by 
comparing shifts in peak pressure. Skull transmission compared to water was shifted 1.25 mm later-
ally and had a lateral beam profile full-width half maximum of 6.13 mm (Figure 1—figure supple-
ment 1C). These transcranial simulations indicate high spatial precision, with >95% of pressure or 
energy (kPa) being constrained to pars opercularis in the rIFG group (Figure 1—figure supplement 
1D). We note that Legon et al., 2014 used acoustic gel only, whereas we used a silicone puck and 
acoustic gel. Therefore, to accommodate for tFUS attenuation caused by the silicone puck, we 
also simulated the ultrasound environment by simulating the silicone puck interposed between 
the transducer and the skull in a water environment. As the acoustic properties of our silicone 
puck were unavailable, we simulated two densities corresponding to the minimum and maximum 
possible values of undoped silicone (1200 and 1550 kg/m3). All the simulation results are presented 
in Table 2.

Statistical analysis
Behavioral variables
Our behavioral analyses focused on the following variables: Go trial reaction time (Go RT), percentage 
of failed inhibition responses given a stop signal was present (P(respond|signal)), signal response reac-
tion time (failed inhibitions; SRRT), and SSRT. We next describe our steps for estimation of each of the 
relevant variables.
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The SSRT was estimated using a hierarchical Bayesian parametric approach (Matzke et al., 2013) 
that estimates the distribution of SSRTs while assuming an ex-gaussian parametric form. We chose 
this approach as Matzke et al., 2013 showed that it performs well even when there are only a few 
trials available per SSD level. This SSRT estimation procedure was run separately per subject and 
group (rIFG, S1, and Sham rIFG). Within each subject’s fit, trial types (No-tFUS Stop trials, Go-tFUS 
Stop trials, and Stop-tFUS Stop trials; Figure 1) were combined to create a hierarchical, within-subject 
model estimation of SSRT. For these analyses, we used Go RTs combined from Go trials with and 
without tFUS because stimulation did not alter the Go RT (shown in Results).

In our SSRT estimation and the rest of our analyses, we only included the two longest SSDs (75% 
and 95%). This choice is based on conforming to the assumptions of the underlying estimation 
methods, the independent race model of inhibition, and to avoid bias in the estimation of key param-
eters (i.e. SSRT) induced by violating model assumptions. Specifically, the above method of SSRT 
estimation and nearly all others (e.g. Verbruggen et al., 2019) relies on independence assumptions 
put forth by the independent race model of inhibition (Bissett et  al., 2021; Logan and Cowan, 
1984; Matzke et al., 2013; Verbruggen et al., 2019). An important assumption for the validity of 
the method is context independence (Logan and Cowan, 1984). Context independence assumes 
the finishing times of the Go RT distribution are unaltered by the presence of the stop signal. The 
context-independence assumption predicts that SRRT (across SSD levels) should be shorter than the 
Go RTs that occur without a stop signal. This is because the fastest Go responses during a stop trial are 
the ones that escape inhibition (Logan and Cowan, 1984). Notably, several studies have shown that 
violations measured by SRRT being longer than Go RT tend to occur at short SSDs (<200ms; Colo-
nius et al., 2001; Logan and Cowan, 1984). Bissett et al., 2021 noted these studies were severely 
underpowered. Important for the present study is the work by Bissett et al., 2021 who showed that 
meaningful violations were limited to SSDs less than 100–150ms. In our study, the 75% and 95% SSDs 
were generally above this range where violations are presumed to occur, leading us to focus our SSRT 
estimation and analyses on these 2 levels. Across all groups and subjects, the mean 75% and 95% SSD 
were 205ms (SD:±31ms) and 260ms (±38ms).

To analyze the probability of failing to inhibit responses, that is P(respond|signal), across the factors 
of SSD, tFUS and Group, we used a mixed-design ANOVA. In the model, SSD had 2-factor levels 
(75% and 95%), tFUS had three levels (None, Stop, Go), and between-subjects Group factor had three 
levels (rIFG, S1, Control). The tFUS level of None means no tFUS was applied, the Stop level refers to 
tFUS applied simultaneously with the Stop signal, and Go refers to tFUS applied simultaneously with 
the Go signal (during Stop trials).

To analyze Go RT and SRRT, we first extracted their mean and standard deviations by fitting both 
RT types with an ex-gaussian distribution using maximum likelihood (Lacouture and Cousineau, 
2008). This choice was made to ensure alignment between the SSRT estimation procedure and the 
known ex-Gaussian shape of RT distributions (Lacouture and Cousineau, 2008). With the SRRT, we 
estimated the distributional moments using the combined SRRTs from the 75% and 95% SSDs.

Both the Go RT and SRRT were also analyzed with mixed-design ANOVAs, albeit with different 
designs. ANOVAs for Go RT included the factors of Group (3 levels) and tFUS (None and GO). Note 
that the Go tFUS here means tFUS applied simultaneously with the Go signal in Go-only trials where 

Table 2. tFUS simulation results showing intensity measures (Pmax, ISPPA, and ISPTA), lateral target 
focality (FWHM) and mechanical index (MI) measures.
Results are displayed for four different simulations, including only water, transcranial without silicone 
puck, and 2 simulations with silicone pucks of different densities.

Simulation Pmax (in MPa) ISPPA (W/cm2) ISPTA (W/cm2) FWHM (mm) MI

Only water 0.82 22.43 5.38 3.56 1.15

Transcranial without silicone puck 0.54 10.01 2.40 6.13 0.77

With silicone puck (density estimated at 
1200 kg/m3) 0.53 9.82 2.35 5.25 0.76

With silicone puck (density estimated at 
1550 kg/m3) 0.52 9.37 2.25 5.27 0.74
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there was no stop signal. This analysis was performed to assess whether tFUS to a specific brain area 
(rIFG or S1) or auditory effects alone could alter Go responses. The mixed-design ANOVA for SRRT 
was used to assess whether Go processes that escaped inhibition were altered by tFUS or other 
confounds, for example auditory stimuli. If these effects were prevalent, even if brain area specific, 
they would suggest that tFUS impacted the Go and not the Stop process during Stop trials. This 
ANOVA had factors of tFUS (None, Stop, Go) and Group. For both Go RT and SRRT, we used identical 
ANOVAs to separately analyze their means and variability (standard deviation).

EEG pre-processing
Continuous EEG data were first down-sampled to 250 Hz, then high-pass filtered (0.1 Hz) to remove 
baseline drift. All channels with visually identifiable noise artifacts for more than 25% of the recording 
length were then removed. In addition, for each of the active stimulation groups (rIFG and S1), the 
cortical sites of rIFG and S1 were close to the F8 and CP4 electrodes. Therefore, these electrodes 
could not be used for EEG recording in their groups. Continuous EEG segments were then visu-
ally identified and removed where channels exhibited stereotypical muscle and movement activity 
artifacts (removed portions <8% of recording lengths across participants). Out of all participants, 
five subjects were excluded (2 from the S1 group and 3 from the rIFG group) from analyses due to 
EEG recording issues and noise (impedance >25 kΩ across channels). To remove other artifactual data 
segments, we applied artifact subspace reconstruction (ASR) to remove data identified as artifacts. 
This function was implemented using the ‘clean_rawdata()’ function in EEGlab and was used to iden-
tify noisy segments as >16 standard deviations above the mean. This threshold was chosen based on 
previous method sensitivity studies (Chang et al., 2018). Briefly, ASR effectively uses a sliding window 
form of principal components analysis to identify large outlier signals and find non-stationary outliers. 
By removing these non-stationary outliers, ASR has been shown to improve the later decomposition 
of EEG using independent components analysis (ICA) in terms of the quality of dipolar maps returned 
by ICA (Delorme et al., 2012). After removing the segments identified by ASR, all previously removed 
electrodes were interpolated and the data were common average referenced to ensure a zero-sum 
voltage across channels.

Independent components analysis (ICA) was then used to obtain canonical activity maps across 
electrodes for further analysis, a standard approach in inhibitory control electrophysiology (e.g. Huster 
et  al., 2020; Wessel and Aron, 2015; Wessel et  al., 2019). Each subject’s data were processed 
with the Adaptive Mixture of ICA (AMICA; Palmer et al., 2008) approach using one mixture model. 
AMICA was chosen because it has been shown to better separate data into independent components 
with dipolar spatial maps (Delorme and Makeig, 2004).

Because our hypotheses are a priori aimed at determining the link in the N200/P300 ERP to inhi-
bition and tFUS, we next selected a singular ICA component, for each subject, that had the desired 
ERPs (N200/P300) putatively linked to inhibitory control (Huster et al., 2020; Wessel et al., 2013). 
A plethora of studies using this approach have shown that ICs with a medial-frontal topography 
(centered around electrodes Cz and Fcz) exhibit the N200/P300 and are modulated by successful 
stopping during inhibitory control tasks (Huster et al., 2020; Wagner et al., 2018; Wessel and Aron, 
2015).

To obtain desired ICs, we used a similar approach to previous work analyzing ICA components for 
electrophysiological markers during inhibition (Wagner et al., 2018; Wessel and Aron, 2015). Singular 
equivalent current dipoles were fit for each IC scalp map using DipFit 2.2 in the EEGLAB toolbox. Any 
IC with a dipole residual variance of less than 15% for predicting the scalp map was removed as these 
are typically considered to be signals of non-brain activity origin. The remaining ICs across subjects 
were then clustered using a K-medoids algorithm. We chose a K-medoids approach for clustering as 
its similarity metric is more robust to noisy outliers, as compared to K-means approaches that rely on 
centroids (Velmurugan and Santhanam, 2010). To avoid double dipping in our analysis of ERPs, we 
only used the features of 3D (X, Y, Z) dipole position and IC weight spatial maps. We optimized the 
selection of the number of clusters using the adjusted rand index (ARI), which measures the stability 
of the clustering results over multiple runs of the K-medoids algorithm. ARI estimates how similar each 
cluster is across the runs (from 0 to 1 being identical clusters). We found a maximum ARI of 0.82 for 
11 clusters. To select a cluster of ICs for analyzing the N200/P300, we used a previously-employed 
criterion (Wessel et al., 2016) of requiring it to have: (1) a fronto-radial spatial map topography and 
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(2) a maximal IC weight at 1 of the Fcz, Fz, Cz, Fc1, Fc2 electrodes. For each cluster, some subjects had 
multiple ICs. In that case, we retained only the subject IC that maximally correlated with the cluster 
spatial template and had a dipole with a smaller distance from the IC spatial map centroid position 
from the cluster averaged dipole position.

EEG statistics
Deconvolution GLM for regression ERPs (rERPs) and separating Stop from 
Go response ERPs
For the ERP analysis using the retained subject medial frontal IC components (see above), we first 
performed a general linear model (GLM) with deconvolution at the individual subject level using the 
‘unfold’ toolbox in Matlab (Ehinger and Dimigen, 2019). We used a deconvolution approach to 
separate temporally adjacent ERP activity from the Go response that overlaps with the Stop signal. 
This approach creates regression-based ERPs (rERPs). This is helpful because the different SSD levels 
render different amounts of the Go process that have evolved since the onset of the Go signal. Put 
differently, the Go-related activity will have evolved for a longer time as a function of increasing SSD. 
Therefore, the extent and amplitude of overlaps between Go and Stop ERPs will differ according to 
SSD. By modeling the Go process ERP in a GLM and distinguishing it from the Stop ERP activity, we 
are able to capture a less confounded Stop ERP by minimizing the differences in Stop ERP activity 
that would be related to differences in Go RT caused by different SSDs. In addition, the deconvolution 
approach models the overlap directly rather than making distributional assumptions about the latent 
Go and Stop reaction times (Mattia et al., 2012). For a thorough description of how a deconvolution 
GLM works, the reader is referred to the ‘unfold’ toolbox (Ehinger and Dimigen, 2019) or other 
sources for general explanations of first-level electrophysiological analysis using GLMs (Litvak et al., 
2013).

To obtain each subject’s rERP, we modeled them (GLM) using two events, the Go stimulus event 
and the Stop signal event. To obtain a full design set of Stop signal ERPs, we modeled the Stop ERP 
by crossing all factors of successful and unsuccessful stopping (SS minus US), SSD, and tFUS event-
aligned conditions (None, Stop, and Go). The Go-signal ERP is considered an overlapping confound 
here, and only its intercept was modeled (y~1). Intercept-only modeling allows for removing overlap-
ping additive effects of the Go with the Stop activity (Ehinger and Dimigen, 2019). The stop signal 
rERPs had a full model in Wilkinson Notation as follows:

	﻿‍ rERP(stopsignal) = y ∼ 1 + (SSD)∗(SS − US)∗(tFUS)‍.�

All events and predictors were fit using a cubic-spline basis set (40 splines). The design matrix of 
spline bases was time expanded in a window of –500 ms to 1000 ms around each event of interest. 
The model was fitted using the ‘maximum-likelihood’ function in Matlab. Before fitting each model, 
continuous artifactual segments were rejected using the events found from the ASR cleaning method 
(see EEG pre-processing).

ERPs for each of the Stop signal conditions were then composed from the rERPs by using a contrast 
code. At this level of ERP composition, we only considered the two highest SSDs to follow the same 
logic as in the behavioral analysis, that is to minimize bias from SSDs (<100–150ms) that would, other-
wise, not conform to the independence assumptions of the race model (see above for rationale). 
In addition, we only consider the rERPs related to the successful and unsuccessful stopping during 
the No- and Stop-tFUS conditions. We make this choice because Go-related activity – and there-
fore Go-tFUS activity – is effectively deconvolved out, and to foreshadow the behavior, we found no 
impact of Go-tFUS on behavior.

ERP statistics
Our predictions about the relevant medial frontal ERP (N200/P300) components and their timing 
(P300 onset) were established based on a long history of previous studies. Therefore, we use a circum-
scribed approach of analyzing the mean amplitude around the peaks of the ERP components using 
pre-defined time windows. In all these analyses, we used the ERP activity defined from the first-
level GLM analysis of each IC. First, we defined time windows around canonical components that 
appear in inhibition tasks, including a P100 (25–150ms window), N200 (165–255ms window), and 
P300 (280–450ms window). For each subject and each condition-specific rERP for successful and 
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unsuccessful stopping, and tFUS (No- or Stop-), we estimated the time-index of either the maximum 
(P100 and P300) or minimum (N200) amplitude within their respective windows. Next, we computed 
the weighted amplitude mean by convolving a Gaussian window of size ±30ms (7 points) centered at 
the peak. We used mean amplitude as its linearity provides comparability across conditions, as well as 
being less sensitive to noise, trial numbers, and timing variability than the peak alone (see Luck and 
Gaspelin, 2017 for a thorough explanation).

To quantify these ERP means, we used a mixed-design ANOVA with a two-level factor describing 
inhibition success (successful stopping: SS, or unsuccessful stopping: US), a two-level tFUS factor (No- 
or Stop-), and a three-level between-group factor (rIFG, S1, Control). As multiple ERPs were tested, 
we used a false-discovery rate (FDR) correction of 0.05 within each main effect or interaction. For 
example, we computed the FDR-corrected p-values across the effect for SS and US conditions.

Deriving P300 onset latency and regression with change in SSRT
Recent work has indicated that frontocentral (ERP) P300 onset latency is related to the speed of 
successful inhibition (SSRT) across subjects (Wessel and Aron, 2015). Therefore, we regressed the 
between-subject changes in SSRT as a function of the P300 latency change between No-tFUS and 
Stop-tFUS or Go-tFUS in successful stop trials. To achieve this, we computed the shift in P300 onset 
crossings between the No-tFUS and other tFUS conditions. We first found the zero-crossing around 
the N200 (using the same time windows for ERP amplitude analysis) for each subject’s mean fronto-
central ERP. We then computed the dynamic time warping distance (DTW) between the No-tFUS and 
either Stop- or Go-tFUS ERP waveform in a time-window of ±50ms around the zero-crossing found 
in the No-tFUS waveform; we opted to use DTW to compute P300 onset latency differences because 
previous work has shown its superiority to other latency computation methods (Zoumpoulaki et al., 
2015). Therefore, the DTW provides a temporal distance metric for P300 onset latency differences 
between tFUS conditions and No-tFUS ERPs.

Using the P300 onset differences, we performed a difference-in-differences analysis (Cunningham, 
2021). Specifically, we regressed the onset differences by individual subject differences in SSRT 
between conditions. For example, the difference in latency between No-tFUS and Stop-tFUS P300 
was regressed against the difference in SSRT between the No-tFUS and Stop-tFUS conditions (and 
the same for Go-tFUS compared to No-tFUS). To ascertain measures of the probability of the regres-
sion slope being different from zero, we used a Bayesian regression with a Hamiltonian Monte-Carlo 
(MCMC) sampler in Matlab. This approach has the added benefit of being shown to outperform 
standard bivariate correlations in small sample sizes as exists in the group sizes here (n<25 per group; 
Fosdick and Raftery, 2012). Doing so allowed us to ascertain the posterior probability using the 95% 
posterior credible intervals of the regression slope and their overlap with 0. All prior means on the 
intercept, slope and log variance term were set to 0, assuming no a priori relationship between the 
difference measures. For the sampler, we used a burn-in of 1000 samples, 4 chains, and 10,000 samples 
in total, with a chain step size of 10.

Code availability
Behavioral and ERP Analysis scripts for reproducing figures are available at: https://github.com/Just-
FineNeuro/tFUS_Inhibition_Elife (copy archived at Fine, 2024).
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