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ABSTRACT: Quantum entanglement is a fundamental property of quantum mechanics. Re-
cently, studies have explored entanglement in the t¢ system at the Large Hadron Collider
(LHC) when both the top quark and anti-top quark decay leptonically. Entanglement is
detected via correlations between the polarizations of the top and anti-top and these polar-
izations are measured through the angles of the decay products of the top and anti-top. In
this work, we propose searching for evidence of quantum entanglement in the semi-leptonic
decay channel where the final state includes one lepton, one neutrino, two b-flavor tagged jets,
and two light jets from the W decay. We find that this channel is both easier to reconstruct
and has a larger effective quantity of data than the fully leptonic channel. As a result, the
semi-leptonic channel is 60% more sensitive to quantum entanglement and a factor of 3
more sensitive to Bell inequality violation, compared to the leptonic channel. In 139 fb~!
(3 ab™1) of data at the LHC (HL-LHC), it should be feasible to measure entanglement at a
precision of < 3% (0.7%). Detecting Bell inequality violation, on the other hand, is more
challenging. With 300 fb~! (3 ab™!) of integrated luminosity at the LHC Run-3 (HL-LHC),
we expect a sensitivity of 1.30 (4.10). In our study, we utilize a realistic parametric fitting
procedure to optimally recover the true angular distributions from detector effects. Compared
to unfolding this procedure yields more stable results.
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1 Introduction

Quantum mechanics is at the foundation of modern physics. One of the novel features of
a quantum mechanical system is that it can exhibit entanglement between sub-systems.



Entanglement is a correlation between sub-systems where properly describing one sub-
system requires knowledge of the other sub-system, even when the sub-systems are space-like
separated.

Another landmark in the understanding of quantum mechanics was the discovery of
Bell inequalities [3]. These are inequalities that are satisfied in any classical theory or, more
generally, in any local theory that can include hidden variables. Violations of Bell inequalities,
so-called Bell non-localities, indicate that a local classical theory cannot be used to describe
these phenomena. Observations of violations of Bell inequalities are among the strongest
experimental evidence for quantum mechanics.

High energy particle colliders fundamentally rely on quantum field theory for their
quantitative description and aspects of quantum mechanics are observable throughout the
theoretical and experimental landscape. For instance, interference effects in production cross
sections and detection methods for particles rely on quantum mechanics, while precision
physics depends on higher-order quantum corrections from all relevant energy scales. In
recent work, the final state in a collider is cast as a system of two qubits which allows us
to perform a number of experiments using this system. Treating the outgoing particles
at a collider as a quantum state is a novel experiment that measures and tests quantum
mechanics in an unprecedented high-energy regime, many orders of magnitude in energy
above conventional quantum experiments.

Adapting to the collider environment presents interesting challenges as there is much less
control over the experimental set-up. On the other hand, at a collider there is an enormous
amount of data collected, a wide range of kinematics and energies are explored, and effects
that are enhanced at higher energies, like higher dimensional operators, may be visible [4, 5].

Recently, there has been a growing body of work on the tt system as a quantum state.
First, it was shown that in the fully leptonic channel, where both the top and the anti-top
decay leptonically, entanglement could be measured at the Large Hadron Collider (LHC)
when only events near threshold are used [1]. It was predicted that Bell inequality violation,
using the same spin correlation observables, could be probed at the high luminosity LHC (HL-
LHC) [2]. Other studies found the expected significance to be less than 20 using a different
observable [6]. Ref. [7] noted that one could use expectation values of spin correlations rather
than spin correlations themselves to identify entanglement and Bell inequality violation.
Additional significance may be gained by directly measuring an observable sensitive Bell
inequality violation, rather than first reconstructing the quantum state and then computing
observables from it [8]. Beyond Bell inequality violation, other quantum properties can be
studied in the ¢t system like quantum steering and quantum discord [9].

The issue of spin correlations at colliders is a well-studied topic. The tt system, in
particular, has been studied since before the LHC era [10-15]. What is new in the current
iteration of work is carefully casting the tf system into a quantum state rather than just
correlations between two spins. This allows us to make quantitative statements about the
quantum aspects of the ¢t system.

In this work, we continue the study of the ¢t final state, but instead of studying the
leptonic channel, we consider the semi-leptonic channel where either the top or anti-top
decays leptonically and the other decays to a light quark and anti-quark. One of the nice



features of the top (or anti-top) decaying leptonically is that the lepton (or anti-lepton)
carries the maximal amount of information about the top polarization. In hadronic decays,
some of that information is typically lost. On the other hand, the branching fraction to
the semi-leptonic channel is much higher, roughly about a factor of six, so the effective
amount of data collected is larger. Combining the more favorable kinematical reconstruction,
we find that the semi-leptonic channel is expected to be more sensitive. While finalizing
this work, ref. [16] presented a study on the semi-leptonic decay of ¢t using unfolding and
machine learning for reconstruction. Our work is complementary as we show that choosing an
appropriate signal region is impactful and we focus on providing intuition through each stage
as well as the theoretical underpinnings. Instead of unfolding, we utilize parametric fitting.

In addition to the tt system, there have been studies on quantum properties of other
systems at colliders. These include entanglement between two vectors [17—20] including
production from h — V'V [21-26] and vector boson fusion [27], between W and t [28],
between 7 and 77 [29, 30], between B-mesons [31], and others [32, 33]. Implications for
higher dimensional operators have been explored [4, 5], as have other quantum properties
like discord and steering [9].!

The rest of the paper is organized as follows. In section 2, we review the basics of quantum
mechanics with an emphasis on entanglement and Bell inequality violation. We discuss the
general features and the quantum mechanical aspects of the ¢t system for production and
decay at hadron colliders in section 3. The results of our analysis on the sensitivity to
test entanglement and Bell inequality violation in the tt system at the LHC are presented
in section 4. In section 5, we summarize our study, compare with the existing literature,
and draw our conclusions. Some technical aspects of our treatment are included in a few
appendices, including a description of different unfolding methods and parametric fitting in
appendix A, numerical comparisons with past works in appendix B, a presentation of the spin
analyzing power for hadronic top decays in appendix C, a discussion on the fictitious states
adopted for detecting entanglement and Bell inequality violation at collider in appendix D.
Finally, the potential of charm tagging is covered in appendix E.

2 Quantum mechanics

In this section we first review a few relevant aspects of quantum mechanics, then we discuss
entanglement and Bell inequalities.

2.1 Review

Consider a bipartite system of two qubits. There is one qubit [14) from sub-system .4 and
one qubit [¢p) from sub-system B. These states are vectors in the Hilbert spaces H 4 and
‘Hpg, respectively. The bipartite state is a vector in the Hilbert space H 4 ® Hp.

A density matrix p is a non-negative operator on Hilbert space. For a state vector |1},
the associated density matrix is the projection operator p = |1)(1p|. We will often call p itself
a quantum state associated with the state vector [i). After choosing a basis, p for a bipartite
qubit state can be written as a 4 x 4 positive semi-definite matrix.

'This was also studied in the 1990’s for e"e™ — 777~ [34-36]. In section 2.3 we reconcile these past works
with our work.



The density matrix formalism is required because it allows us to describe mixed states
where state vectors restrict us to pure states. A mixed state is generically written as

N N
Pmixed = Zpapaa Zpa =1, (2-1)
a=1

a=1

where p, is the fraction of the ensemble for the sub-state a. The case of N = 1 is a pure
state, otherwise, it is a mixed state. In our application to the ¢t system, we will be dealing
with a mixed state.

For a single qubit, the density matrix can be described by the Pauli decomposition

p= %(Hz + zz: Bi0i>7 (2.2)

where o; (i = 1,2,3) are the Pauli matrices and B; are the corresponding vector components
describing the net polarization of the qubit. A bipartite qubit system follows the Pauli
decomposition in a similar way

1
pP=7 Li+Y (B (0i @)+ Bf (b®oy)) + Y Cij (0s@05) | - (2.3)
i i

For a general state, there are 3 + 3 + 9 = 15 degrees of freedom from the vectors B/ and B,
and the matrix Cj;. The B{4 vector is the net polarization of spin A, the BZ»B vector is the
net polarization of spin B, and Cj; is the spin correlation matrix between sub-systems A and
B. In many cases of interest, some of these parameters are zero by symmetry.
Determining all the parameters {Bg“, BJB , Ci;} implies that p can be reconstructed, which
is known as quantum tomography. Omnce the quantum state p has been measured, the

expectation value of any observable O can be computed as
(O) = tr(Op). (2.4)

For instance, the net polarization of qubit A corresponds to the operator O = 0; ® [s. By
eqs. (2.3) and (2.4), this is (0; ® Iy) = BA.

2.2 Entanglement

Consider a state p for a bipartite system with sub-systems A and B. This state is separable
if it can be written as a factorized product

N
p= Pari®py. (2.5)

a=1
If it cannot be written in this separable factorized form, it is entangled. This means that
sub-system A cannot be fully described without knowledge of sub-system B. For a pure

state, N = 1 and p; = 1.

Given a state p there are different ways to determine if p describes an entangled or a
separable state. We choose to use the Peres-Horodecki criterion, also called the positive



partial transpose (PPT) criterion [37, 38]. The PPT criterion performs the transpose on
sub-system B and leaves sub-system A unmodified leading to a matrix p’8 where

p'B = (Iy @ Tp)p. (2.6)

The matrix p’8 may or may not be a state. For a separable, unentangled state Psep, the

Ts
sep

an entangled state pent, however, the associated peTr’ft is no longer a state.

associated pIB can be written as 3", pa p2t @ (pB)T, which corresponds to a valid state. For

In general, a matrix is a valid state if all of its eigenvalues are > 0, or equivalently
stated, the matrix is positive semi-definite. The PPT criterion leads to a list of inequalities,
the violation of any of these inequalities is a sufficient, but not necessary condition for
entanglement. Thus, using the PPT criterion to show entanglement requires just finding
a single inequality that isn’t satisfied, while showing separability requires checking a set
of inequalities.

Concretely, expanding a quantum state p according to eq. (2.3) allows us to write the
conditions in terms of elements of the spin correlation matrix Cj;. The quantum state p is

— BB 4 031 +i(BE + C32) 1+ Bg — BS — 033 C11 + Caz +i(C12 — C21) Bf' — C13 — i(B3 — Ca3)
P 4 B{' + C13 + i(Bs' + C23) C11 + C22 — i(C12 — Ca1) 1-Bf*+BS — C335 By — C31 — i(By — C32)

1 1+B§4+336+033 B?-‘-Csl —i(326+032) Bf+013—i(354+023) C11 — C22 —i(C12 + C21)
;
Ci1 — C22 +i(C1a + Ca1) Bf* — Ci3 +i(B3' — Ca3) BP — Ca1 +i(BY — C32)  1-Bg' — Bf + Ca3

(2.7)
and the matrix p’8 is

P I BB + C51 — i(BS + C32) 1+ Bg — BS — 035 C11 — Cap — i(C12 + C21) Bi' — C13 — i(B3' — Cas)
4 B{* + C13 + i(B3' + C23) C11 — Caz +i(C12 + C21) 1-Bf*+BY — C335 By — C31 +1i(B3 — C32)

1 < 1+ B3 + B + C33 BB 4 031 4+ i(BS + C32) B{* + C13 — i(B5* 4+ C23) Ci1 +C22+i(012021)>
Ci1 + Ca2 —i(Ciz — Ca1) Bf* — Ciz +i(B3' — Ca3) BP —Ca1 —i(Bf —C32)  1- B3 — BJ + Ca3

(2.8)
One example of a sufficient condition for entanglement can be derived from deleting the 2™¢

and 3" rows and columns of this matrix [1], leading to
|C11 + Caa| > 1+ Css. (2.9)

Whether (C11 + Ca2) is positive or negative leads to two separate cases of C1; + Cag > 14 Css
and —C11 — Cy > 14+ (C33. Rearranging these inequalities we write Ot = +C11£Co%—C33—1
where Of > 0 indicates entanglement. It will be shown in section 3.1 that the quantity Og
corresponds to an observable (’)f such that testing entanglement at a collider becomes

Of =401y + Oy — C33 — 1, and (O) >0 for entanglement. (2.10)

In pre-defined regions, the observable Of corresponds to whether the quantum state p is
entangled or separable.

It is also customary to introduce a quantity called the “concurrence” C [39], which is
defined for bipartite qubit systems as

C(p) = max(0,A\1 — A2 — Az — \a), (2.11)

where \; (1 = 1,2,3,4) are the eigenvalues, sorted by decreasing magnitude, of the matrix

Ry =\/v/PbV/p; p = (02 ® 02)p*(02 ® 02). (2.12)



For a separable state pgep, the concurrence is C(psep) = 0, while for an entangled state pens
the concurrence is 0 < C(pent) < 1.2

Therefore one method of identifying entanglement is to first fully determine p, and
then compute C(p) to be zero or not. It can be shown that in the ¢t system eq. (2.10) is
equal to the concurrence.

2.3 Bell inequality violation

By construction, a Bell inequality holds for any system that can be described by a local
hidden variable theory [3]. Bell inequality violation indicates that a given theory must be
either classically non-local, or quantum-mechanically entangled. This historically was very
strong evidence for quantum mechanics. A separable state always satisfies Bell’s inequality,
while an entangled quantum state may or may not violate a Bell inequality. Therefore, Bell
inequality violation is a stricter test of “quantumness” than entanglement.

For a bipartite system of two qubits, the only Bell inequality is the CHSH inequality
(Clauser-Horne-Shimony-Holt) [40], which reads

<AlBl> — <AlBQ> + <A2.Bl> + <A2B2> < 2. (2.13)

The first term is a simultaneous measurement A; on sub-system A and B; on sub-system B.
The other terms are measured in a likewise manner. A quantum state of a bipartite system
that violates eq. (2.13) exhibits Bell inequality violation (or is Bell non-local).

For the case where the two qubits are spins, A; and Ay can indicate the quantization
axes along which the spin of qubit A is measured while By and By can indicate the axes
along which the spin of qubit B is measured. For instance the choice of

1

1
Ay = o3, Ay =01, By = ———=(01 + 03), BQZE(Q—U:;),

V2

when applied to the Bell state ¥pen = (|01) —|10))/v/2 violates the CHSH inequality.
Given a quantum state, it is crucial to choose the optimal axes in order to determine

(2.14)

if a quantum state violates the CHSH inequality, via eq. (2.13). It has been shown that
while using the optimal axes, the left-hand side of eq. (2.13) becomes 2v/A1 + g, where \;
and Mg are the two largest eigenvalues of C7'C [41]. In a collider environment, however, this
method can lead to a biased estimation [2, 6].

For simplicity we will choose the fixed axes [8]

1 1
Ay = o3, Ay =01, By =+—(03+01), By =+—(—03+ 01). 2.15
1 3 2 1 1 \@(3 1) 2 \/i( 3 1) ( )

For this choice the CHSH inequality becomes

|C11 £ Css| < \/i (2.16)

2For intuition, consider the simplified case when p is a pure state. The concurrence C can be written as
tr(p%) = 1 — C?/2 where p4 is the reduced density matrix obtained by taking the partial trace with respect to
sub-system B of p. The concurrence then measures how far the reduced density matrix is from a pure state.
Generalizing this to mixed states leads to eq. (2.11).



In a similar way to entanglement, we can cast this into an observable as
0% = £(C11 + C33) — V2, and (0F) >0 for Bell inequality violation.  (2.17)

Whether the + or — is used depends on the predicted value of Cq1 + Css.

Finally, we make a comment about the generality of the Bell inequality violation test that
can be performed at a collider. In the 1990’s, it was suggested that Bell inequality violation
could be observed at ete™ colliders in the 777~ final state [34-36]. The conclusion of ref. [36]
was that Bell inequality violation was not observable at a collider because quantities measured
at colliders are commuting while non-commuting quantities are required to violate a Bell
inequality. In this work, we do not perform a fully general test of Bell’s inequality. Instead,
we first identify a quantum state, and then ask whether it is a quantum state that does or
does not violate Bell’s inequality. The non-commutation arises from our assumption that
we are working with a quantum state and thus gain access to spins.

3 The top-antitop system at hadron colliders

In this section, we cover the details that are necessary to identify the tt final state at the
LHC as a quantum state.

3.1 Two-body production at hadron colliders

Consider the two-to-two scattering process XY — AB. The rate for this process is given by the
cross section o(X) — AB) and is calculated by taking the matrix element M (XY — AB),
squaring it, and integrating it over phase space dII. The initial state spins (and other
quantum numbers) are averaged, and when the final state spins are not measured they
are summed. Schematically

o (XY — AB) = /dH S Y MY = AB)pa M (XY — AB)y, (3.1)
initial @b ab

where ab is the spin index of particle A, ab is the spin index of particle B, and Y. indicates
averaging.
The production spin density matriz is

Ry ap = > M(XY = AB)aaM* (XY — AB),;, (3.2)
initial
such that
o(XY — AB) = / dll Y Ry, a5 (3.3)
ab,ab

Taking the trace of R, ;7 and performing the phase space integral gives the cross section,
while the full matrix provides differential spin information. When particles A and B are
both spin-1/2, the matrix R, ap is @ 4 X 4 matrix and can be decomposed into the Pauli
basis according to eq. (2.3).3

3The normalization for a production spin density matrix R is tr(R) = do/dIl while the normalization for a
quantum state p is tr(p) = 1.



If particle A decays, the decay spin density matriz carries the differential spin information
of particle A. Consider the three-body decay of A — ajasas

Ish = M(A = a1aza3) M* (A = arazas)s, (3.4)

where again ab is the spin index of particle A.
In the narrow width approximation the production and decay can be described together

o(XY — AB — (arasas)(bibabs)) = / dIl > (T Ry T). (3.5)
ab,ab
The final state phase space can be partially integrated over to find

/dH Z_(Ffb Rab,&l; F&Bl_)) = /dQAdHAdQBdHB Z_(Fﬁ? Rab,&g Fc%)v
ab,ab ab,ab

— / dQAAQP 3" (T Ry ap T5).
ab,ab

(3.6)

The total phase space dII is divided into the angular phase space of one of the decay products
of particle A: dQA, the angular phase space of one of the decay products of particle B: dQ5,
the remaining phase space of the decay products of particle A: dII#, and remaining phase
space of the decay products of particle B: dIT®. The angular space is two-dimensional (6, ¢)
but we write it as a three-vector §; = (cos ¢ sin 0, sin ¢ sin 6, cos @) to represent the direction
of the decay product of interest. Here, 6 is the polar angle and ¢ is the azimuthal angle
with respect to a reference direction.

While F“a‘}) is the decay spin density matrix for particle A, f;‘}) is the partially integrated
decay width that leaves the angular space of one of the decay products unintegrated. It can
be decomposed as in eq. (2.2) to f‘j;}) X Oab + Dy B;“amb where BZ-A is the net polarization of
particle A. Performing the calculation of f‘a‘}) in the rest frame of particle A leads to

1

A (

r4 (5ab +> BA(ﬂQz‘)Ui,ab), (3.7)
7

where ' is proportional to the decay width of A — ajasas, B4 is the magnitude of the
polarization of particle A, and & is called the spin analyzing power and is associated with
the decay particle that has been left unintegrated. The value of k is between —1 and 1 and
describes how correlated a decay product is with the spin of the mother particle.

Writing the decay spin density matrix according to eq. (3.7), decomposing the production
spin density matrix according to eq. (2.3), and summing over ab, @b in eq. (3.6), the differential
cross section can be written as

1 de 1
o d2QAd2Q8  (47)2

(1 + 3 (kA BAQM + kP BPOP) + > kAKP Qg“C’iij>, (3.8)
i ij

where the angle QA (Qf) is evaluated in the rest frame of particle A (B) relative to the

ith (j*) axis of a chosen basis.



To extract individual parameters, one can select which angular integrals to perform.
For example, to extract a component of the spin correlation matrix Cj;;, one integrates
over ¢* and ¢P to obtain

1 do 1 ARA cocpA o BB B L A B A B
;dcosﬁg“dCOSQf =1 <1+/<; B cos 0 + k” B} cos 0] + kK7 Cij cos 05 cost), (3.9)
where 6/ (6§g ) is the angle between the momentum of the decay product of particle A (B)
and the 7" (j*") axis, in the rest frame of particle A (B).

This distribution can be transformed to

: do L ARB A B A B
Ed(cos&;“cosef) =3 (1 + k7'K°Cj cos 0 cost)log|c059i cos 07|, (3.10)

Thus measuring angles of decay products measures parameters of the production spin
density matrix.

We mention three ways to extract the value of Cj; from data using eq. (3.10). The first
way is to simply perform a fit to the differential cross section.

The second way is to compute the asymmetry of the distribution. The asymmetry
A for a variable z is

Ny — Nz

= == 3.11
CONS+N: (8.11)

where N;F (N;) is the number of events with z > 0 (z < 0):

Tmax 1 da' 0 1 dO’

N+=/ ~——dz, N_:/ — 1 3.12
v 0 cd " v 2o O AT . (3.12)
When the asymmetry variable is x = cos (9;-4 cos (9][3 then Tmax = 1 and zpmin = —1. This

method works because C;; multiplies the component of the differential cross section that
is an odd function with respect to cos @ cos 95-3 .

Each spin correlation matrix entry Cj; is then

4
Cij = W (ACOSOZ‘A COSOJ-B) : (313)

The third way to extract Cj; is to compute the mean of the distribution in eq. (3.10) since
(cos 9;4 cos Hf ) o< Cjj, where the constant of proportionality depends on the distribution.
The variance of the mean is smaller than the variance of the asymmetry, however, the
asymmetry is more robust to systematic uncertainties. In our study we utilize the asymmetry.

3.2 The tt system as a quantum state

Consider the tt final state as a bipartite qubit system with the spin of the top and anti-top
identified as each qubit. Then each event at the LHC is a single measurement of this quantum
state. Each event can also be called a quantum sub-state. Let the quantum state that
describes the tt system be p.

The kinematics of the tt system are characterized by the invariant mass, my, of the
top-anti-top pair and by the angle, 6, of the top momentum (in the ¢¢ center-of-mass frame)



relative to the beam. The quantum state for a single point in this phase space is p(my, 6),
while more generally, integrating over a region II leads to the quantum state pr [1].

At a hadron collider, the two partonic processes, at leading order, that produce tt are qg
and gg. This means that p is necessarily a mixed state where the coefficients, as in eq. (2.1),
are given by the relative parton luminosities [1]. Additionally, we can identify the production
spin density matrix, eq. (3.2), as a quantum density matrix for a sub-state (for a given initial
partonic state) when normalized correctly and evaluated in a fixed basis [1].

The ideal final state would be the exclusive production of tt since additional radiation
can disrupt the spin correlations between the ¢ and ¢. In this study, we work at leading order
and leave higher order effects to future work. In the context of spin correlations, higher order
effects have been studied and are known to modify spin correlations at the 10 — 30% level [42].

The main backgrounds for ¢£ in the semi-leptonic channel are single top, W+ jets, multijet,
ttW, ttZ, and tth. Altogether the background has a cross section that is ~ 10% of the size
of the signal when two b-tags are required [43, 44]. In the boosted region this reduces to
~ 4% [45, 46]. In this work the impact of backgrounds is neglected and left to future work.

In Bell inequality tests, loopholes often exist and the t¢ system is no exception. In some
events, the top and anti-top decay while inside of each other’s light cones. This is an example
of the locality loophole. As the invariant mass m,; of the ¢t system increases, the fraction of
events which are space-like separated when decaying approaches 100% and is already at 90%
for m,; > 800 GeV [6]. Another loophole is the fair sampling loophole which asserts that if
the detection efficiency is low then a violation of Bell’s inequality could be faked. The fair
sampling loophole, as well as others, are expected to be difficult to address at colliders.

Spin correlations. The ¢t system has been studied for many years. In 1988 it was known
that when produced via the strong force (gg and ¢q), neither the tops nor anti-tops are
polarized at leading order, but that spin correlations exist between the top and anti-top [10].
Furthermore, these spin correlations can be observed by the angular separations between the
top and anti-top decay products [11, 12]. The gg and ¢q initial states give rise to different
spin correlation behavior which is also the reason that the LHC and the Tevatron are very
complementary probes of this system.

The heuristic intuition for the spin correlations is that near threshold the spins of the
top and anti-top are aligned along the beamline direction. The possible outgoing spin
configurations are controlled by the incoming spins. For the ¢g initial state the ¢ and ¢ have
opposite helicity with the spins aligned along the beam axis. Near threshold the top and
anti-top have mostly opposite helicity with spins aligned along the beam axis, leading to
a configuration with a spin-triplet contribution. At high pp, the top and anti-top are still
opposite in helicity but their spin axes become aligned with their direction of motion. In
between the threshold region and the high pr region, the spin axes of the top and anti-top
interpolate between these directions [13, 14]. The basis for choosing the spin axes is called the
off-diagonal basis and has been shown to optimize the spin correlations from ¢g production.

The situation is different for gg production. Incoming pairs of gluons can have the
same helicity or the opposite helicity. Near threshold same-helicity gluons dominate and the
outgoing top and anti-top have the same helicity with the spin axes aligned along the beam
axis, leading to a configuration with a spin-singlet contribution, in contrast to the ¢q case. At
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Figure 1. Tllustration of the fixed beam basis {%, ¢, 2} and the helicity basis {7, k, #1}. The incoming
beams are blue and the outgoing top and anti-top are orange. 6 is the polar angle between the Z-axis
(the beam direction) and the k-axis (the top quark momentum direction).

high py, the opposite-helicity gluons dominate and the outgoing top and anti-top have opposite
helicity with the spin axes becoming aligned along their direction of motion, leading to a
spin-triplet configuration, which is the same as the gq case. The optimal choice of spin axes for
optimizing spin correlations is aligned along the direction of the top and anti-top [14, 15, 47].

Basis choice. When calculating spin correlations, it is necessary to choose a basis along
which to measure the spins. One common choice is the fixed beam basis which starts from
the center-of-mass frame of the ¢t system and uses {Z,, 2} where 2 points along the beam
and Z and §j are fixed in the plane transverse to the beam. Another common choice is the
helicity basis which starts from the center-of-mass frame and defines {7, 12:, 7} where k points

along the top quark three-momentum. Then

" L 4
= sinH(z — cosOk), (3.14a)
n=7xk, (3.14b)

where 7 is the component of the beam direction that is orthogonal to 12:, 71 is the remaining
orthogonal direction, and cos§ = k-2 Figure 1 illustrates these two bases.*

At the LHC, at threshold the fixed beam basis has the largest spin correlations while in
the high-pr regime, the helicity basis has the largest correlations [48]. At high-ps the helicity
basis is nearly optimal for entanglement and Bell inequality violation too [49].

One very important note is that constructing the total # quantum state (i.e. quantum
tomography) requires a fixed basis for all of the events [1, 7, 50]. In a fixed basis, the
axes are the same for each event which means that each event is a single measurement of a
parameter of eq. (2.3). Using many events then increases the accuracy of the measurement

of the tt quantum state.

“We calculate angles for both the top and anti-top using the axes {7, l%, fi} where k is defined by the top
quark. Sometimes in other studies the angles for decay products from the anti-top are defined relative to a
second set of axes defined by the anti-top.
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The helicity basis, by contrast, is not a fixed basis because the axes change event-by-event.
Performing the summation over many events does not measure a parameter of eq. (2.3) but
rather its expectation value [7, 50] since the basis is different event-by-event. Thus in the
helicity basis, the summation over events does not produce a quantum state, but is simply a
summation over events. In ref. [7] this sum was labelled a “fictitious state.”

Showing that a fictitious state is entangled does not show that the associated ¢t quantum
state is entangled, but it does show that there exists a sub-state (both of the fictitious state
and of the associated quantum state) that is entangled. This follows from the fact that both
the quantum state and fictitious states are convex sums and the positivity of concurrence. The
same considerations apply to Bell inequality violation. Appendix D provides a proof of this
statement, as well as more discussion on fictitious states (ref. [50] provides additional details).

In our study we use the helicity basis for both concurrence and CHSH violation which
means our results indicate the presence of entanglement and of Bell inequality violation,
but not the strength. In the high-pr region, these are naively not detectable using the
fixed beam basis.

3.3 Spin analyzing power

As seen in eq. (3.10) the measured value of spin correlations is impacted linearly by the spin
analyzing power x from the decay of particle A and the spin analyzing power B from
the decay of particle B. To maximize the sensitivity and significance, the daughter particle
with the largest spin analyzing power should be used.

When the top decays leptonically, the anti-lepton (¢1) has x = 1.00 which is maximally
correlated with the spin of the top quark. In the fully leptonic channel of the ¢t system the
lepton and the anti-lepton are used which results in maximal correlation. In the semi-leptonic
channel, that we study here, one side of the ¢t system decay hadronically.

In the hadronic decay of the top, there is a b-jet and two light flavor jets, one of which
is initiated by an up-type quark and one of which is initiated by a down-type quark. If the
down-type-initiated jet could be identified, then the maximal correlation of £ = 1.00 would
be maintained because the leading order matrix element for the down quark and lepton in
top decays is the same. Unfortunately, this is usually not possible. One can consider charm
tagging since charm quarks are present in half of the hadronic top decays. It turns out that
the charm tagging rate is not high enough for this to be better than the optimal hadronic
method that we use. The required charm tagging rate is calculated in appendix E.° In any
case, in many studies of top spin correlations the softer of the two jets was used since one
expects that down-type-initiated jet is more often the softer one. This yields a spin analyzing
power of k£ = 0.50. Using the b-jet is not ideal because its spin analyzing power is x = 0.40.

The optimal spin analyzing power, assuming that one cannot distinguish the up-type-
initiated and down-type-initiated jets, was calculated in ref. [53]. They find an integrated value
of Kopt = 0.64 when one uses a weighted sum of the two jets whose four-vectors are labelled
as Peoft and Phard- The optimal hadronic value is given by using the four-vector pyp; which is

Popt (€08 Oy ) = Pasp, . (€08 0w ) Dot + Paspyara (COS Ow) Phard, (3.15)

5 Another possibility would be incorporating measurements of jet charge, however, this seems challeng-
ing [51, 52].
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Figure 2. Illustration of the top decay system in the rest frame of the ¢ (left) and rest frame of
the W (right). Between the down-type anti-quark and the up-type quark in the ¢ rest frame, the
down-type anti-quark tends to be softer while the up-type quark tends to be harder.

where Oy is the angle between the momentum of the d-quark and the momentum axis of the
W in the rest frame of the W (see figure 2). The function Py_,,_, (cosfy ) is the probability
that the d quark is the softer jet and P,_,,, . (cosfy ) is the probability that the d quark
is the harder jet. These functions are given in appendix C.

The optimal direction for the hadronic decay of anti-top quark is defined likewise and
the resulting spin analyzing power is kopy = —0.64. When extracting the components of the
spin correlation matrix via eq. (3.13) in the semi-leptonic channel one of the spin analyzing
powers is given by the lepton and one is given by the optimal hadronic direction.

3.4 Entanglement in tt

For a general bipartite quantum state, the 15 values of BA, BiB , and C;; need to be specified.

(2

In the tf system at leading order, B/ = 0 and B? = 0 for all i, and C;; = Cj; [54].
Furthermore, in the helicity basis, where 1 = 7, 2 = 12:, and 3 = 7, only (2 is non-zero
leading to a set of only 4 parameters: Ci1, Cog, C33, and Cia.

With only these parameters, a subset of the list of sufficient conditions generated by the
PPT criterion can be shown to be a set of necessary conditions [§]

|C11 + Ca2| > 1+ Css, (3.16a)
4C%, + (C11 — Co2)?? > 1 — Cis. (3.16b)

Instead of {C11, Ca2, Cs3,C12}, one can use the three eigenvalues of the C' matrix {C7, Cy, Cs}.
Using these eq. (3.16) becomes

|Cl + 02| > 1+ Cs, (3.17&)
|C1 — Cg’ >1-—C4s. (3.17b)

These conditions can be shown to be directly related to the concurrence

c(o) Smax(|Cy + Co| — 1 — C3,0), Cs <0 19
p = .
Imax(|C) — Cy| — 1+ C3,0), Cs >0

where the necessary and sufficient condition for entanglement becomes the usual C(p) > 0.
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Figure 3. Concurrence C(p) of the tf system at parton-level in the 6 — m,; plane at /s = 13 TeV
with no phase space cuts. Entanglement is indicated by a value C(p) > 0.

The concurrence for tf is shown in figure 3 as a function of phase space position (6, m,s)
generated at parton-level at 13 TeV with no phase space cuts applied. There is one region
of sizable entanglement near threshold (due to like-helicity gluons producing a spin-singlet
state) and a second region at high boost and large 6 (due to unlike-helicity gluons producing
a spin-triplet state).

Since we have specified the final state to be tt, for a given phase space region we can
identify which case of eq. (3.16a) applies. This can be done either semi-analytically through
the spin production matrix in eq. (3.2) or numerically from figure 3. Consider first the
entangled region near threshold. Here C1; < 0, Cag < 0, and Cs3 < 0, therefore by eq. (3.18)
the inequality is

—C1p —Cyp —C33—1>0. (3.19)
In the boosted region C'11 > 0, Cos > 0, and C53 < 0, which leads to the inequality
Ci1+Cop—C33—-1>0. (3.20)
Converting these into operators, like in eq. (2.10), we find
D= é(C’n + Cao + Cl3), D < —é for entanglement, (3.21)
D3 = é(—C’n — Co + Cs3), D3 < —é for entanglement. (3.22)

Through eq. (3.8) both D and D3 can be related directly to measurements

1 d 1
—ﬁ = 5(1 —+ I{AI{BD COS HAB), (323)
g A COS
1 d 1
7 ~(1 + k6B D3 cos 0'4B), (3.24)

o dcos @AB ~ 9
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where the angles are given by

cos A8 = Z QA05, (3.25)
cos 048 = Z QfPUQf (3.26)
Y]

The vector Q;“ is the normalized three-momentum of the decay product of the top in the

top rest frame and the vector QZB is the normalized three-momentum of the decay product

of the anti-top in the anti-top rest frame. In the fully leptonic channel these would be the

anti-lepton and lepton. In the semi-leptonic channel these would be anti-lepton or lepton and

the optimal hadronic direction defined in section 3.3. The matrix P;; is diag(—1,—1,1) [8].
Extracting D and D3 via the asymmetry yields

4

D=——(A 3.27

KAKB( cos GAB) 5 ( )
4

D3 = ——— (Acospr . 3.28

3 HAHB( cos 9AB ) ( )

Measuring a quantity with a single observable was called the “direct” method in ref. [8].
By contrast, measuring a quantity by first measuring each C;; value individually, then
combining them, was called the “individual” method. In the case of (C1; 4+ Ca + C33)/3
using eq. (3.27) is the direct method while using eq. (3.13) is the individual method. Ref. [§]
argued that the direct method naively has slightly better sensitivity since there is only one
uncertainty whereas for the individual method, multiple quantities are measured so their
uncertainties are combined.

From egs. (3.18), (3.21), and (3.22) one sees that C(p) = —3D — 1 in the threshold
region and C(p) = —3D3 — 1 in the boosted region. D is basis-independent because it is
proportional to the trace of the spin correlation matrix C. Dj is basis-dependent and we use
the helicity basis. Experimentally, D has been measured by CMS [55]. They found a value
of —0.237 £ 0.011 without implementing an upper cut on my [1]. More recently, ATLAS
measured —0.547 £ 0.02 using an upper cut of 380 GeV on my; [56].

3.5 Bell inequality violation in tt

To test Bell’s inequality, we use the CHSH inequality, given in eq. (2.13). Using fixed axes in
the CHSH inequality, in the helicity basis this corresponds to the operator®

B =C. — Cun, B >+/2 for Bell inequality violation. (3.29)

In figure 4, we show B — /2 in the phase space plane of # — m,;. We see that Bell inequality
violation is more appreciable at large m,; and large 6.

At high pr the helicity basis is known to result in large spin correlations [11] while near threshold the fixed
beam basis has larger spin correlations. In the tf system due to the contributions from the gg and ¢q initial
states, the Bell inequality violation near threshold is very small. For that reason we use the helicity basis and
focus on the boosted region. Eq. (2.16) allows different choices for C11 — Css and we choose Crr — Cryr since
it leads to the largest Bell inequality violation.
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Figure 4. The CHSH violation (B — /2) of the I system at parton-level in the 6 — m,; plane at
/s = 13 TeV with no phase space cuts. CHSH violation is indicated by a value (B — /2) > 0. Values
of (B — +/2) that are < 0 are plotted as 0.

We show how to construct the direct observable for B = C,., — C,,,,, following ref. [8].
Consider the azimuthal angles ¢** and ¢B. The azimuthal angle ¢ is the angle around the
k direction with the ¢ = 0 in the 1 — k plane. We construct

A B A B
_|_ —
b, = %’ 6 = % (3.30)
From eq. (3.8) one obtains
1 dU 1 HAHB Cnn + Crr Cnn - CT'T'
;W = ﬁ + 32 ( COS(QQS*) + f COS(2¢+) (3 31)
Cm" Crn . Crn - Cm" . ‘
—|—L sin(2¢4 ) + ———— sm(2¢)) .

The term proportional to Cy,, — C.., is the only term that is an even function with respect
to ¢4 so it can be extracted through the asymmetry

B=Ch— (= — 20 (ACOS@M) . (3.32)

m Ii‘AIiB

Alternatively, we derive the full functional form by integrating out ¢_ and making a change of

variable. Defining ¢p = § — |5 — |7 — ¢+||, after integrating out ¢_, the distribution is then

ldoe 2 7m™ 45
- + 67 (Chn — Crr) cos(2¢0p). (3.33)

Since we have derived the full functional form in eq. (3.33), the value of B = C,, — C),
can also be extracted by a fit.
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4 Results at the LHC

4.1 Sketch of expected results

Consider an observable O that is sensitive to the presence of entanglement. One example
would be the observable in eq. (2.10). A useful observable will have a large difference between
the measured value Oeptangled for an entangled state and the predicted value Oy for a
separable state with no entanglement.

Let the measured value of the observable be Ogntanglea £ 6O (corresponding to one
standard deviation). The significance can be approximated by

Oentangled - Onull
. 1
00 (41)

significance ~

The sensitivity of the observable can be increased either by reducing the uncertainty 6O (for
example, by collecting more data) or by choosing a quantum state with a larger expected
value of Oeptangled (for example, through phase space cuts).

Reducing the uncertainty: the leptonic decay channels of W — fv (¢ = e, ) have a
branching fraction BR(W — fv) = 0.21 [57]. The branching fraction of ¢¢ into the fully
leptonic channel is thus

BR(tt — 0£) = 0.0455. (4.2)

There the complete final state consists of ¢~ vblT Db, but we write it as ¢¢ for simplicity.
The hadronic branching fraction of the W decay is BR(W — hadrons) = 0.67 [57], so the
branching fraction of tt into the semi-leptonic channel is

BR(tf — () = 0.2877, (4.3)

which is about a factor of 6 larger than the fully leptonic channel. Again, we’ve written the
final state as ¢j which represents either £~ vbqq'b or qg'bl*tvb.

Assuming that the uncertainty on O is statistics dominated, the uncertainty in the
channel ij will scale as 1/y/BR(tt — ij).” Relative to the fully leptonic channel, we ex-
pect that the uncertainty on O in the semi-leptonic channel is decreased by a factor of
\/BR(ft — 00)/BR(tt — £j) or a gain of a factor of 2.5.

Naive Expectation: the correlation between the polarization of the top (or anti-top) and
one of its decay products 7 is given by the spin analyzing power k;, as discussed in section 3.3
and appendix C. The spin analyzing power of the anti-lepton (or lepton) in the top (or
anti-top) decay is |k¢| = 1; it is maximally correlated with the polarization of the top (or
anti-top). For the hadronic decay of the top (or anti-top) the spin analyzing power is smaller
and it is |k4| = 0.64. In the semi-leptonic channel, the leptonically-decaying top (or anti-top)
uses the anti-lepton (or lepton) as a proxy for the polarization and the hadronically-decaying
top (or anti-top) uses the jets as a proxy for the polarization. The observable for semi-leptonic

"Results in recent measurements are still systematics dominated [58]. Systematic uncertainties are typically
under better control and consequently reduced as more dataset is collected.
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channel has a different pre-factor (see eq. (3.13)) than the fully leptonic channel which scales
the uncertainty by a factor of |(kekr)/(kekq)| = 1/0.64.

Combining both of the previous effects, we expect that the relative significance between
the decay channel tt — ab and tt — cd is given by

significance (tt — ab)  kqkp [BR(tt — ab)

— = = . 4.4
significance (tt — cd)  kckq | BR(tt — cd) (44)
Comparing the semi-leptonic to the leptonic we have
significance (tt — £q) 0.2877
= =0.64 = 1.60. 4.5
significance (tt — £/) 0.0455 (45)

We naively expect an improvement of 60%. There will also be a further improvement in
the reconstruction efficiency of the semi-leptonic channel because there is a single neutrino
as opposed to the fully leptonic channel which has two neutrinos, as we will exploit in our
full analysis of the semi-leptonic channel. Following the scaling as in eq. (4.5), the fully
hadronic channel is expected to gain 29% over the fully leptonic channel. Given the challenges
for the signal identification and background suppression for the fully hadronic channel, we
leave this to a future study.

4.2 Simulation

We perform our analyses in two stages. The first is “parton-level”, where events are generated
without parton shower or hadronization. The uncertainty for parton-level events is always
just statistical from the number of events. We further carry out a “detector-level” (or
“reconstructed”) study, which includes parton showering, hadronization, detector simulation,
and event reconstruction. Parameters extracted from the detector-level analysis are always
corrected using parametric fitting (see section 4.3) and the uncertainties include the impact
of the parametric fitting. In the few instances where detector-level results are shown without
parametric fitting it will be noted explicitly.

All events are generated with Madgraph 5 [59] at /s = 13 TeV using the NNPDF 2.3
parton distribution function [60]. Three samples are generated: a tt sample that decays
through the fully leptonic channel and two ¢t samples that decay through the semi-leptonic
channel. In all samples we generate pp — tt at leading order and then the events are decayed
using Madspin [61]. We apply a flat k-factor of 1.8 to account for the QCD correction to
the total cross section [62].

The leptonic sample includes the decays tt — (b1 vy) (b0~ 1) where £ = e, pu. It is
generated with no phase space cuts or event selection and only at parton-level. The semi-
leptonic samples include both t — (b0*1y)(bqq’) and tt — (bqq') (b0~ ;) where ¢, ¢ are light
flavor quarks. The partonic final states are then showered and hadronized with Pythia 8 [63]
and go through the detector simulation Delphes 3 [64]. The detector simulation applies
smearing to detected particles and applies realistic detector resolutions. Other more involved
systematic uncertainties are not included (see ref. [58] for a realistic list). We have two
semi-leptonic samples in two kinematic regions according to the invariant mass of the ¢ system.
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Resolved sample: we first start with the semi-leptonic sample with no additional phase
space cuts, which we call the “resolved sample.” The event selection used is

pr(j) > 25 GeV, In(4)] < 2.5, (4.6a)
pr(€) > 25 GeV, In(0)| < 2.5, (4.6b)
Er > 30 GeV. (4.6¢)

Jets are clustered with the anti-kp algorithm with a separation AR = /A¢? + An? = 0.5 [65].
This is approximately the event selection corresponding to a single lepton trigger [43, 44].

To compute the spin correlation matrix, it is necessary to fully reconstruct the final state
kinematics. This requires identifying two b-jets, estimating the four-vector of the neutrino
(or anti-neutrino), and assigning each b-jet to either the leptonic pair or the jet pair. We
employ a modified version [66] of the pseudo-top algorithm [67, 68]. If the event contains
only one b-tagged jet, the hardest jet from the non-b-tagged jet is assumed to be the second
b-jet. The neutrino (or anti-neutrino) four-vector is determined from the two components of
the missing transverse energy vector and from solving the on-shell condition of the neutrino
and the on-shell condition of the leptonically-decaying W boson.

The resulting reconstruction efficiency is defined as the number of events that are success-
fully reconstructed compared to the total events generated. The differential reconstruction
efficiency is shown in figure 5. We find that the reconstruction efficiency peaks around 19%
near threshold and decreases as the invariant mass of the system, and consequently the
boost of the top and anti-top, increases.

Boosted sample: the other semi-leptonic sample is generated with
myz > 800 GeV, (4.7)

at parton-level and we call it the “boosted sample.” This corresponds to a boost factor
~ > 2.3 in the center-of-mass frame for a fast-moving top quark.

We first cluster events with the anti-k7 algorithm into jets with ARgyp = 0.2 and apply
the event selection from eq. (4.6). In the boosted sample we will call these subjets, even
though they are clustered from the full event. We then recluster the event into “fat jets”

ARg = 1.5, In| < 2.5, pr > 200 GeV. (4.8)

A single fat jet J is matched to three subjets jqup by selecting the three highest pr subjets
that satisfy

AR(J, jsub) < ARt (4.9)

The three matched subjets are required to constitute most of the transverse momentum
of the fatjet

pT(.jsubl + .jsubg + jsubg)
pr(J)

The hadronic top is then taken to be the four-vector sum of the three subjets piop = Do, T

> 0.9. (4.10)

Pjsuby T Pisuby - This procedure approximately corresponds to the fat jets and corresponding
subjets that would result from the trimming procedure [69].
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Figure 5. Reconstruction efficiency in the 6 — m,; plane for the resolved semi-leptonic sample at
Vs =13 TeV. The weak (orange line) and strong (red line) regions correspond to signal regions in
section 4.4.

One of the three matched subjets is expected to be b-tagged. If none are b-tagged,
the highest pr of the matched subjets is assumed to be the b-jet. Finally, the mass of the
hadronic top m = \/]?Op is required to be close to the 175 GeV, and we choose it in the
range (150 GeV,225 GeV).

The differential reconstruction efficiency for the boosted selection is shown in figure 6.

For moderately boosted tops where m; < 1000 GeV the resolved sample has a higher

reconstruction efficiency. For tops with m,; 2 1000 GeV the reconstruction efficiency of
the boosted selection is better by more than an order of magnitude. We find that even for

my =~ 2 TeV the reconstruction efficiency remains above 3% in the signal regions where
0 ~ /2.

4.3 Unfolding and parametric fitting

While the events selection cuts in eq. (4.6) are very minimal in terms of the event identification,
they have a sizable impact on the angular distributions that are used to extract the spin
correlation coefficients.

For example, consider the distribution of cos 6’;? cos 05 which, by eq. (3.10), can be used
to measure C,,. In figure 7, the red line shows the differential distribution of cos 6 cos 63
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Figure 6. Reconstruction efficiency in the 8 — m,; plane for the boosted semi-leptonic sample
generated at /s = 13 TeV. The weak (orange line) and strong (red line) regions correspond to signal
regions in section 4.4. The reconstruction efficiency is higher in the boosted sample than in the
resolved sample for these two signal regions.
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Figure 7. Parton-level differential distribution of cos 6! cos 0% at /s = 13 TeV with no cuts applied
(red) and with event selection from eq. (4.6) (blue) and with detector simulation (yellow).

with no phase space cuts. This is the distribution that would be used to extract the value of
Chn. The effect of the event selection is shown by the blue line. The selection distorts the
distribution which invalidates the parameter estimation. The yellow line shows the effects
of the detector simulation which further alters the distribution. In order to measure spin
correlations accurately, it is necessary to restore distributions to their inclusive shapes.
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Let Zirutn be the data if it could be measured with no detector effects or phase space
cuts, and Tgetected D€ the measured data. We call the effect of the detector and cuts “folding”

. folding _, =
Ttruth — Tdetected = £+ Tiruth, (411)

where the matrix R is the response matrix.

Unfolding is the procedure that attempts to undo both detector effects and phase space
cuts via Ziuth = R - Tgetected. Generally, this is an ill-defined inversion problem which
means that algorithm and regularization choices are required to obtain a result. These
choices are actually very important in the case of entanglement and Bell inequality violation
because the experimental sensitivity is entirely driven by the obtainable uncertainty on spin
correlation measurements. Ideally the unfolding procedure itself would not substantially
increase the uncertainty.

Let the uncertainty from statistics only be Agiat and let the uncertainty after detector
effects and unfolding be Ay, such that for a given measurement the increase from statistics
only is a factor of Aior/Agtas- In ref. [6] the increase is a factor of 1.46 — 1.53 while in
ref. [16] the factor is 0.88 (meaning that the final uncertainty is smaller than the statistics
only uncertainty).

Past studies on this topic, including refs. [2, 6, 16], have used either the Iterative Bayesian
(IB) method [70] or the Singular Value Decomposition (SVD) method [71] implemented in
either the RooUnfold package [72] or TSVDUnfold package [71]. For both of these methods
one needs to choose both the number of bins to use in the unfolding and a parameter related
to regularization. In previous studies it was stated that the resulting uncertainty of spin
correlation measurements was stable with respect to different choices.

By contrast we find that variations to these parameters can change the resulting un-
certainty by up to 75%. As there are many fewer events in the detected sample compared
to the truth sample, some level of instability is expected. These variations are shown in
detail in appendix A along with results from an alternative unfolding method called the
One-at-a-time Strict Bound method (OSB) [73].

In our work, we apply the more common procedure used by the LHC experiments of
parametric fitting. While unfolding is typically applied at the level of distributions, parametric
fitting is applied to the parameter estimation. Consider a parameter ©, then schematically
parametric fitting can be described as
) fOId—mg> fpredicted(@) =R ftruth(@)- (412)

The data Zetected 15 fit t0 Tpredicted (©) to extract the value of ©. Here there is no need to

ftruth (@

invert the response matrix and therefore it is not dependent on a regularization parameter.
We find this method to be more stable and more intuitive than unfolding. The uncertainty
on the parameter © can be calculated by performing pseudo-experiments. In our work, we
carry out 1000 pseudo-experiments. More details are presented in appendix A.

4.4 Signal regions

From figures 3 and 4, it is clear that the size of entanglement and of Bell inequality violation
differs over phase space. To maximize the observable signals we specify four signal regions.
These are shown graphically in figure 8 as non-rectangular cuts in the 6§ — m,; plane.
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Figure 8. Signal regions in the & — m,; plane. The regions for entanglement are: threshold (green)
and boosted (blue). The regions for Bell inequality violation are: weak (orange, which overlaps the
red region) and strong (red).

The “threshold” region (the green region in figure 8) selects events that are very close to
threshold. There is an additional cut in this region to further enhance the significance, which
is requiring the velocity of the tt system in the lab frame, 8 = p;;/my;, to satisfy

8] < 0.9, (4.13)

as proposed by ref. [8]. In this region, the tf pair is primarily produced in a spin singlet
state from gluon fusion [15]. The #f cross section is also largest near threshold. These facts
together make this region ideal for detecting entanglement.

The “boosted” region (the blue region in figure 8) selects events where the top and
anti-top are moderately boosted and the angle 8 is sizable. This region corresponds to the
other entangled region from figure 3. At high pr, the tf pair is primarily produced in a spin
triplet state from incoming gluons, however due to the falling cross section at larger m,;z we
expected lower detection significance compared to the threshold region.

The “weak” region (the orange region in figure 8) selects events at larger my; and larger
f. From figure 4, it can be seen that unlike for entanglement, Bell inequality violation is
only observable for large my;.

Finally, the “strong” region (the red region in figure 8) is even more restrictive on my;
and . While the strong region is expected to more effectively isolate the phase space with
Bell inequality violation, there are fewer events with the more restrictive cuts. We include
this region in addition to the weak region because a priori we do not know which region will
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parton-level n r k
n —0.500+0.006 0.000 + 0.006 0.000 + 0.006
T —0.004+£0.006 —0.3614+0.006 —0.0104+0.006
k —0.006 £0.006 —0.0044+0.006 —0.656 4 0.006
detector-level n r k
n —0.510£0.012 0.000 +0.023 0.001 +0.019
T 0.001 £0.022 —0.35940.023 0.000 +0.030
k —0.005+0.019 0.0004+0.026 —0.655+0.020

Table 1. The spin correlation matrix C;; at parton-level (top) and at detector-level (bottom) in the
threshold region generated at /s = 13 TeV with £ = 139 fb~'.

have more sensitivity. Note that the weak region is a subset of the boosted region and the
strong region is a subset of both the boosted region and the weak region.

4.5 Entanglement results

Before presenting results on entanglement, in table 1 we show the measured values of the
elements of the spin correlation matrix Cj; in the helicity basis in the threshold region. The
values of Cj; are measured using eq. (3.13). Parton-level results contain no event selection
and detector-level results are fully corrected.

The uncertainties on parton-level results are purely statistical while the uncertainties
on detector-level results are larger because they include additional sources of uncertainty
from the detector simulation and from the parametric fitting. The uncertainties are different
for different entries of the (;; matrix because each distribution gets distorted by detector
effects in different ways. The distribution itself also impacts the resulting uncertainty. For
the entries of the spin correlation matrix parametric fitting increases the uncertainties by a
factor of 2 — 4. The outcomes, however, are quite stable and robust.

Results for entanglement are given by two times the concurrence 2C(p), where the
concurrence is given by eq. (3.18). Entanglement is indicated by 2C(p) > 0. The factor
of two is included for easier comparison with other studies [6, 8]. Results at parton-level
are shown in table 2 (top). The uncertainty is purely statistical taking the number of
events as €Nparton Where € is the average reconstruction efficiency for that signal region and
Nparton = k X L X 01,0, where the k-factor is 1.8 and the luminosity for the existing LHC
data is 139 fb~!. The individual results are calculated from eq. (3.13) and the direct results
are calculated from eqs. (3.27) and (3.28). Since all results are well above a significance of
50, we show the precision which is given by AC(p)/C(p).

Comparing the threshold and boosted signal regions, we see that while the boosted region
has a larger concurrence, the threshold region has about an order of magnitude of more events,
yielding an uncertainty about 3 times smaller. Furthermore, the direct method reduces the
uncertainty on the parton-level results by about 20% which is consistent with ref. [8].

Entanglement results at detector-level after parametric fitting are shown in table 2
(bottom). The value of Ngetected accounts for detector efficiencies. The central value of
2C(p) does not change relative to the parton-level result which is expected. The uncertainty,
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. € Nparton 2C 1% ..

Parton-level | Efficiency (139pfb_1) (Individual) (p) (Direct) Precision
Threshold 0.16 1.26 x 105 0.518 £0.010 0.522 4+ 0.008 1.6%
Boosted 0.13 1.15 x 10°  0.576 £0.032  0.566 +0.027 | 4.8%
Ndetected 2C P e

Reconstructed (139 fb_l) (Individual) (p) (Direct) Precision
Threshold 1.26 x 106 0.523 £ 0.033 0.522 +0.016 3.0%
Boosted 1.15 x 10° 0.549 +0.084 0.552 4+ 0.052 9.5%

Table 2. Measurements of 2C(p) generated at /s = 13 TeV and £ = 139 fb~! at parton-level (top)
and after detector simulation, reconstruction, and parametric fitting (bottom). Entanglement is
indicated by 2C(p) > 0. The efficiency indicated is the average over the specified signal region. The
precision uses the direct measurement both at parton-level and at reconstruction-level.

however, is larger than the statistics-only result by roughly a factor of 3 for the individual
method and a factor of 2 for the direct method.

The precision as a function of luminosity is shown in figure 9 (left) at parton-level. With
only statistical errors, the parton-level result predicts that a 1% precision can be achieved
with around 300 fb~!, corresponding to the end of LHC Run-3. The results from the fully
leptonic channel are also shown for comparison. This channel is calculated at parton-level
using the same efficiency that was calculated in the semi-leptonic sample.® Our calculation
from section 4.1 predicted an improvement of 60% which is what the parton-level result also
finds. Our leptonic result is consistent with ref. [8] (see appendix B for a full comparison).

Figure 9 (right) shows the precision as a function of luminosity with the detector
simulation. Including the detector effects increases the data required to reach 1% precision
to roughly 1200 fb~!. Even with the current LHC dataset, a detection of 50 is still easily
obtainable. Note that we only include statistical uncertainties and systematic uncertainties
associated with detector smearing and parametric fitting. There are typically additional
systematic uncertainties for real measurements, which are beyond the scope of our current
analyses.

4.6 Bell inequality violation results

Table 3 (top) presents results for Bell inequality violation at parton-level. Bell inequality
violation is measured by (B — /2) where B is given by eq. (3.29). Results with the individual
method are calculated from eq. (3.13) and with the direct method from eq. (3.32). Bell
inequality violation occurs when (B — 1/2) > 0. With only statistical uncertainties, we find
that Bell inequality violation can only be probed at ~ 2o with 300 fb~!. With the projected
luminosity of the HL-LHC the significance is above 50.

Bell inequality violation at detector-level after parametric fitting is shown in table 3
(bottom). The individual measurements have an uncertainty that increases by a factor of
1.6 compared to the parton-level results. The direct measurements, which use eq. (3.33),
on the other hand increase by a factor of 2.3 and are actually worse than the individual

8The actual efficiency for the leptonic channel [6] is expected to be lower than in the semi-leptonic channel.
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Figure 9. Expected precision of entanglement detection as a function of the integrated luminosity at
the 13 TeV LHC at parton-level (left) and after detector simulation, reconstruction, and parametric
fitting (right).

Parton-level | Efficiency 6Npartﬁ? B-v2 Sj%mﬁcance .
(300fb™")  (Individual) (Direct) (300fb™") (3000fb™ ")
Weak 0.080 6280 0.224+0.11  0.224+0.10 2.20 7.00
Strong 0.078 4127 0.26 £0.14 0.254+0.12 2.00 6.40
Reconstructed Ndewczef B-v2 ijnlﬁcance .
(300fb™ ") (Individual) (Direct) (300fb™")  (3000fb™ ")
Weak 6280 0.23+£0.18 0.224+0.22 1.30 410
Strong 4127 0.27+0.22 0.254+0.28 1.20 3.80

Table 3. Measurements of (B — 1/2) generated at /s = 13 TeV and £ = 139 fb™" at parton-level
(top) and after detector simulation, reconstruction, and parametric fitting (bottom). CHSH violation
is indicated by (B — v/2) > 0. The efficiency indicated is the average over the specified signal region.
The significance uses the direct measurement at parton-level and uses the individual measurement at
reconstruction-level.

measurements. This is because the uncertainty depends on the shape of the distribution
and the properties of the detector smearing. With 300 fb~! the significance is only 1.3¢ and
even at the HL-LHC the significance only reaches 4.10.

The significance as a function of luminosity is shown in figure 10 (left) at parton-level. We
show results from the leptonic channel for comparison. With the estimation from section 4.1,
we expected a 60% improvement over the leptonic result at the parton level, while we obtain
a 54% improvement. Our leptonic result is consistent with ref. [8] (see appendix B for a
full comparison). The detector-level result is shown in figure 10 (right). Comparing to the
detector-level leptonic [6] results we find a factor of 3 improvement thanks to the higher
efficiency in our channel (see appendix B). We confirmed that the weak signal region is in
fact optimal and using different cuts only weakens the sensitivity.
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Figure 10. Expected significance of CHSH violation detection as a function of the integrated
luminosity at the 13 TeV LHC at parton-level (left) and after detector simulation, reconstruction, and
parametric fitting (right).

5 Summary and conclusions

There has been increasing interest in testing quantum entanglement and violations of Bell
inequalities at high-energy colliders, which explore physics at much shorter space-time scales
than traditional quantum experiments. The ¢t system is an exemplar of a two qubit system
where the detailed quantum mechanical properties of the system are exhibited through the
production and decay of the ¢ and ¢. In this article, we explored entanglement in the t¢ system
at the LHC via spin correlations when one of the top quarks decays leptonically and the
other hadronically. This channel has advantages over the fully leptonic channel, namely that
there are roughly six times more events and the kinematic reconstruction is more efficient.

In section 2, after a brief review of quantum entanglement and Bell non-locality, we
identified observables to test these quantum properties. These quantum observables were
related to collider observables in section 3. In particular the spins of the ¢t and t are the
qubits while spin correlations encode the entanglement between qubits. The spins are then
measured through the angles of the decay products of the ¢ and .

In section 4, we showed our results in searching for evidence of quantum entanglement
and Bell inequality violation in the semi-leptonic decay channel where the final state includes
one lepton, one neutrino, two b-jets, and two light-quark-initiated jets from the W decay.
The tt system exhibits entanglement both near threshold and at high pr. We showed that
the events near threshold provide a more sensitive probe of quantum entanglement owing to
a larger number of events relative to the high-pr region. Tests of Bell inequality violation,
on the other hand, require a stronger signal which is only present in the signal region with
highly-boosted top quarks.

The semi-leptonic channel, which is the focus of this work, yields a higher efficiency for
event reconstruction than the leptonic case. Going beyond just the parton-level analysis,
we performed a detector simulation, followed by parametric fitting to correct the detailed
angular observables. We found that this approach leads to a more stable outcome than the
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practice of unfolding. As a result, the sensitivity for quantum entanglement detection is
expected to be 60% better than in the leptonic channel. In 139 fb™! (3 ab™!) of data at the
LHC (HL-LHCQ), it should be feasible to measure entanglement at a precision of < 3% (0.7%)
which is shown in table 2 and in figure 9.

The same expectation of 60% improvement applies to Bell inequality violation detection.
When compared to previous leptonic studies, the improvement reached a factor of 3 better
than for the leptonic channel due to a substantially higher reconstruction efficiency we
achieved. The overall detection of Bell inequality violation, however, is still challenging.
With 300 fb~! (3 ab™!) integrated luminosity at the LHC Run-3 (HL-LHC), we expect a
sensitivity of 1.30 (4.10) as shown in table 3 and figure 10. A full comparison between
previous results is shown in appendix B.

In summary, we demonstrated that the semi-leptonic decay of the ¢t system is the premier
channel for testing entanglement and Bell inequality violation at the LHC. Performing a
detector simulation and correcting the results with parametric fitting are indispensable
components of an accurate prediction. We project that at the HL-LHC entanglement can
be measured nearly to the percent-level and that strong evidence will be obtained for Bell
inequality violation. There are a number of future directions such as studying the fully
hadronic decay channel of the ¢t system and describing the small backgrounds in a quantum
mechanical framework. Additionally, the semi-leptonic channel should be studied in a fully
realistic experimental environment where a larger set of systematic uncertainties will be
present. The LHC is a promising environment to study quantum mechanics at the TeV scale.
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A Unfolding and parametric fitting

Consider a distribution Zi.utn that is produced at a collider experiment. For example, the
invariant mass spectrum or energy spectrum of a particle. This underlying distribution is
not measured directly because the detector itself has limitations and resolutions which result
in smearing. Thus the detected distribution is Fgetected-

The truth and detected distributions can be related by the forward process which can
be called “folding” [74-76]:

- folding _, N
Ttruth — 7 Tdetected = R- Ttruth, (Al)

where the matrix R is the response matrix that describes the effects of detector smearing
and phase space cuts.
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Method Package Regularization

Parameters
Iterative Bayesian (IB) RooUnfoldBayes [72] nr
Singular Value Decomposition (SVD)  RooUnfoldSvd [72] T orm

One-at-a-time Strict Bounds (OSB) ref. [73] -

Table 4. Unfolding algorithms and their regularization parameters.

Only Tgetected 18 measured, but we require Tiqnn to extract the underlying physics
parameters. To do this, first, Ziutn is generated by Monte Carlo. Then a detector simulation
can produce Tgetected from Tirutn Which allows us to compute R from Monte Carlo. Given
R we can make an estimate of Zi.,n that corresponds to some detected data.

A.1 Unfolding

Unfolding is the mathematical procedure of inverting eq. (A.1) in order to solve for i u¢n:

- 1 -
Tunfolded = 17+ Tdetected- (AQ)

Once Tunfolded 1S Obtained, the underlying physics parameters © can be extracted through
a fit, asymmetry measurement, etc.

The response matrix R quantifies the detector smearing and the loss of events which
do not pass phase space cuts, and is therefore often an ill-conditioned matrix. To find a
stable inversion of R, one typically needs to apply regularization where ambiguity arises when
choosing the form and the strength of the regularization. That is why we write Zunfolded i1
eq. (A.2) rather than Ziun. As explained in ref. [77], without a careful choice of regularization
strength one may induce a bias and underestimate the uncertainty. Recent methods have
been proposed to avoid such subtleties [73].

The bias quantifies how far the unfolded distribution Zynfoided is from a true inversion of
the response matrix applied to getected- When R is ill-conditioned, some bias is necessary
but a large bias indicates that Zynfoldeq does not accurately describe Ziuh. The variance
measures how much the unfolded distribution changes with respect to statistically different
detected data.

We list several unfolding algorithms in table 4 along with the package we use for their
implementation and their regularization parameters. The Iterative Bayesian (IB) method [70]
is regularized by the number of iterations n;. The Singular Value Decomposition (SVD)
method [71] is parametrized by 7 which is the coefficient of the regularization term. The value
of 7 is often set by the square of mth singular value (in descending order) of a matrix related
to the second derivative of the truth distribution. Both of these methods are commonly used
in theory studies. The One-at-a-time Strict Bound (OSB) method, on the other hand, is
not commonly used, but is free from any regularization [73]. Instead, the inputs are general
constraints on the expected shape of the unfolded distribution.

To compare methods we consider the two quantities: cos 8 cos#5 and cos 6 cos 65,
Events are restricted to the weak signal region described in section 4.4 which is relevant
for Bell inequality violation. We use an integrated luminosity of 300 fb~!. The functional
form of the truth distribution is given in eq. (3.10).
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Figure 11. Distributions of cos 8! cos 62 (left) and cos #:* cos 62 (right) for parton-level truth data
(red), for detector-level data (orange), and after applying the unfolding methods OSB (blue), IB (light
blue), and SVD (green), computed at /s = 13 TeV.

parameter Nbin IBn;=3 IBn;=4 IBn;=5 IBn;=6
c 6 —0.7524+0.086 | —0.752+0.110 | —0.752 £0.131 | —0.753 £ 0.151
n 12 | —0.749 £0.088 | —0.748 £=0.111 | —0.748 +0.131 | —0.748 & 0.150
c 6 0.895 + 0.064 0.894 4+ 0.083 0.894 +0.102 0.892 £0.117
M 12 0.893 £ 0.062 0.892 4+ 0.081 0.891 £+ 0.099 0.890 +0.115
Coo—Cr B 6 0.232 +£0.107 0.232 £0.138 0.232 £0.166 0.230 +£0.191
12 0.227 £0.108 0.226 £0.137 0.224 £0.165 0.223 £0.189

Table 5. Parameter estimation via unfolding with the IB method.

In figure 11 we show the distribution at parton-level with only signal region cuts (red)
and after detector effects and event selection cuts (orange). The uncertainties are determined
by calculating the variance from performing the same calculation in different instances of the
same dataset, i.e. running pseudo-experiments. The response matrices for these processes
are shown in figure 12.

Figure 11 also shows the unfolding methods: OSB (blue), IB (light blue), and SVD
(green). For the OSB method over the full domain we require the unfolded distribution to
be positive and separately over negative and positive input values we require the unfolded
distribution to be monotonic and convex. We follow the aggregation strategy of starting
with an initial value npy, = 48, before aggregating these into larger bins. For the IB method
we use n; = 4 and npins = 12 while for the SVD method we use m = 4 and npj,s = 12.
The results show a very stable central value for all the methods, however, the uncertainty
varies substantially between methods. The OSB method does not have free parameters
while the IB and SVD methods do have free parameters. We investigate the dependence
on these parameters further below.

Intuitively, as the regularization strength increases, more bias is introduced but the
variance decreases. When the regularization strength decreases, the bias is reduced but the
variance increases. In table 5 we vary the regularization parameter n; and the number of bins
Npin using the IB method. We show results for measuring C,,,, C,, and the combination
Crr — Chn — /2. We find that the unfolded central values are stable under variations in
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Figure 12. Response matrix of cos ¢4 cos 08 (left) and cos ;! cos 0 (right) computed at /s = 13 TeV.
Parton-level events have signal region cuts and no event selection, while detector-level events include
detector effects and the effects of event selection described in section 4.2.

parameter Thin SVDm =3 SVD m =4 SVDm =5 SVDm =6
C 6 —0.749£0.132 | —0.749 £0.161 | —0.749 £ 0.184 | —0.750 £ 0.199
nn 12 | —0.746 £0.115 | —0.748 £0.136 | —0.748 +=0.152 | —0.749 £ 0.169
C 6 0.892 + 0.165 0.892 + 0.230 0.900 £+ 0.260 0.897 + 0.303
o 12 0.894 £+ 0.142 0.899 = 0.189 0.900 +0.209 0.899 + 0.245
Coo —Ch 3 6 0.226 £0.211 0.227 = 0.280 0.235 +0.318 0.232 + 0.363
12 0.226 £+ 0.167 0.232 +£0.219 0.233 £0.247 0.234 £+ 0.287

Table 6. Parameter estimation via unfolding with the SVD method.

both n; and nypy,. The uncertainty, on the other hand, is stable under changes in ny,, but
varies by up to 75% while changing n;. Larger n; reduces the regularization which is why
the uncertainty increases with njy.

Table 6 shows results using the SVD method while varying the regularization parameter
m and the number of bins ny,. Again, the central value is stable with respect to changes in
m and 7pi,, but the uncertainty changes with 7, and with m up to 75%. A larger value of

m means taking a smaller squared singular value which corresponds to less regularization.

A.2 Parametric fitting

When only the extracted physics parameter © is required and not the full distribution Zipytn
one can calculate the dependence of the truth distribution on the parameter ©. This is the
method more commonly used by experimentalists [74-76] and in this work we will call it
“parametric fitting.” This is sometimes called template fitting when the functional dependence
of © is unknown and template distributions are used.

Writing the truth distribution as a function of © we have

5 foldin: o =
xtruth(@) —g> -fpredicted(@) =R xtruth(@)- (AB)

The parameter © is now extracted by fitting Zpredicted (©) t0 Zdetected-

,31,



Truth OSB Unfolding | Parametric Fitting
Chn —0.754 +£0.079 | —0.748 £0.370 —0.754 £ 0.116
Crr 0.884 £ 0.079 0.890 £ 0.472 0.892 £ 0.137
Crp —Chn — V2 | 0.224+0.112 0.223 £ 0.600 0.231 £0.179

Table 7. Parameter estimation via OSB unfolding and parametric fitting computed at /s = 13 TeV
in the weak signal region. The uncertainties on the truth results are statistical.

We perform this parameter extraction by a binned maximum likelihood fit where the
likelihood function is

Npins
L(@) = H Poisson (xdetected,ay xpredicted,a(e))) ) (A4>
a=1
Nhins
= H Poisson T detected, Z Raﬁxtruth,ﬁ<@> ) (A5>
a=1 B

where Poisson(x, \) is the Poisson distribution for random variable z with mean \. The
response matrix R is calculated from simulation, the distribution xt,.h(©) as a function of © is
known analytically in all cases that we study. For example, for © = Cj;, the truth distribution
is given by eq. (3.10). To obtain © we maximize the logarithm of the likelihood function.

As with unfolding, the uncertainty is calculated by performing pseudo-experiments. When
varying the number of bins (np;, = 5, 10,20) we find the uncertainty changes by less than 5%.

Table 7 contrasts the results from parametric fitting with OSB unfolding. The truth
result is used as a baseline where there are no smearing effects, but the number of events
used to determine the uncertainty is rescaled by the average reconstruction efficiency. While
OSB unfolding does not have a dependence on regularization the resulting uncertainties
are substantially larger than the statistical uncertainties. Parametric fitting also does not
depend on regularization and increases the uncertainty, but by a more modest amount. The
increase in uncertainty depends on the detector smearing, the phase space cuts, and the form
of the expected distribution for the parameter. For this reason, each fitted parameter has
a different increase in uncertainty relative to the statistics only uncertainty. In table 7 the
increase is about a factor of 1.4 — 1.7, while for concurrence it is a factor of 1.9 — 3.4 and
for Bell inequality violation it is a factor of 1.6 — 2.2.

B Comparison to previous results

As a validation step, we compare our results with the parton-level results in ref. [8] and the
detector-level results in ref. [6]. Our results are for the semi-leptonic channel and we use the
event selection specified in section 4.2. For the purposes of comparison we do not use our
signal regions but instead use the signal regions from ref. [8] and ref. [6].

The parton-level comparison is shown in table 8. We apply an efficiency of 0.12 and
use a luminosity of 139 fb~! to match ref. [8]. The central values agree relatively well. The
small differences may result from using different PDF sets [8]. As estimated in section 4.1
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Observable Entanglement: |Cy, + Cyr| — Cpp — 1 CHSH: (Cyp — Cpn) — V2
Region Threshold | Threshold g Boosted Boosted
ref. [8] 0.560 £ 0.020 | 0.680 £ 0.022 | 0.671 4+ 0.069 0.218 +0.141

This work | 0.529 +0.013 | 0.634 + 0.015 | 0.650 £ 0.042 0.212 + 0.085

Table 8. Parton-level comparison between leptonic results from ref. [8] with semi-leptonic results
from this work. The semi-leptonic channel is expected to have uncertainties that are 60% smaller.

Observable | Entanglement: |Cy.. + Cyi| — Cpp — 1 | CHSH: (Cy. — Cr) — V2
Region Threshold, strong | High-pr, strong High-pp, strong
ref. [6] 0.38 +0.02 0.42+0.10 0.21 +0.54

This work 0.45+0.04 0.58 £ 0.08 0.19+0.16

Table 9. Detector-level comparison between leptonic results from ref. [6] with the semi-leptonic
results from this work. The semi-leptonic channel is expected to have uncertainties that are 60%
smaller without accounting for differences in reconstruction efficiency. The CHSH result from ref. [6]
is multiplied by 1/4/2 to match our normalization.

our uncertainties should be about 60% smaller than the leptonic results. The table confirms
this is an accurate estimation.

The detector-level comparison is shown in table 9. We use a luminosity of 139 fb~! for
entanglement and 350 fb~! for CHSH violation to match ref. [6]. In the threshold region the
efficiencies are similar: their leptonic sample has an efficiency of 0.08 while our semi-leptonic
sample has an efficiency of 0.12. In the high-pr region their leptonic sample has an efficiency
of 0.011 (taken from appendix B of ref. [8]) while our semi-leptonic sample has an efficiency
of 0.08. The higher efficiency in the semi-leptonic sample is expected.

For entanglement, the central values are similar, but not quite matching. Our central
For the “threshold,
strong” region our uncertainty is larger by a factor of 2. In this region the unfolding adds no

values in these regions, however, do match with those from ref. [8].

uncertainty in ref. [6] while in our work the parametric fitting always increases the uncertainty
by a factor of 1.6 —3. Accounting for the 60% improvement from statistics in the semi-leptonic
these results are consistent. In the “high-pr, strong” region our uncertainty is lower by 25%.
The unfolding from ref. [6] increased the uncertainty by about a factor of 1.5. For CHSH
violation, the central values are consistent. In the “high-pp, strong” our uncertainty is a
factor of 3.4 smaller. While the unfolding from ref. [6] still only increases the statistical
uncertainty by a factor of 1.5, the reconstruction efficiency in our sample is much higher.
Note that ref. [6] uses SVD unfolding while we apply parametric fitting.

Finally, we briefly compare to ref. [16]. They provide detector-level results which include
a deep neural network reconstruction algorithm and SVD unfolding. Our weak signal region
from section 4.4 has approximately a factor of 3 times more events than the signal region used
in ref. [16]. In addition, our parametric fitting increases the statistical uncertainty by a factor
of roughly 3 while in ref. [16] the unfolding decreases the statistical uncertainty slightly.
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C Spin analyzing power for hadronic top decays

Consider an ensemble of polarized top quarks with polarization vector B, where 0 < |§ | <1.
The differential decay width of the top quark is

1 dar 1

fm = B (1 + ’B|K/U COSQU) s (C].)

where cosf, = (B - %)/(|B||7]) for a direction ¥ associated with the decay products. The
coefficient k, is the spin analyzing power associated with the direction .

In the leptonic decay of a top quark, if ¥ = py+ then kp+ = 1.0. The spin analyzing
power ranges from —1 to 41, so the anti-lepton carries the maximum amount of information
about the polarization of the top quark.

The spin analyzing powers of the other decay products can be calculated and, at leading
order, are [78§]

kw+ = 0.40, kp = —0.40, K, = —0.34. (C.2)

For the decay of anti-top quark, the spin analyzing power is equal in magnitude and opposite
in sign for the corresponding anti-particles in the decay product. In hadronic decays of
the top quark, the vertex structure is the same with the replacement of /* — down-type
anti-quark and v — up-type quark. The complication in this case is that the down-type
anti-quark cannot be distinguished from the up-type quark on an event-by-event basis. They
are both detected as jets.

Early on, the softer jet (the jet with the lower energy in the top rest frame) was used and
has a spin analyzing power of kg, = 0.50 [78]. The intuition is that the down-type anti-quark
tends to be emitted closer to the b-quark which makes it more often become the softer jet.

In ref. [53] it was shown that the optimal spin analyzing power uses a weighted sum of
both the quark and anti-quark. The optimal hadronic direction popy is

ﬁopt (COS HW) = Pd—>psoft (COS 9W) ﬁsoft + Pd—>phard (COS QW) ﬁhardv (03)

where Pgoft is the normalized three-momentum of the softer jet, pparq is the normalized three-
momentum of the harder jet, and 0y is the angle between one of the W decay products and the
W momentum axis in the W rest frame (shown in figure 2). The functions Py_,,_, (cos 6w )
and Py, . (cosfy ) are

O f(feost)
Fitospon (C080W) = 5 o) T 7~ cos b))’ (C4)
Py sppaea(COS b)) = J(] cos bw]) (C.5)

f(lcosbwl) + f(—|cosbw|)’

The function f(cosfy ) is the probability distribution of cosfy which depends on the
polarization of the W boson coming from the decay of the top [53]. Neglecting the b mass
the distribution is

3 m2 3 2m2
Oy)=-——Lt —(1— 20 W (- O )2 .
f(cos fw) 4 m? + Qm%/v( cos” Ow) + 8 th + 2m%v( cos O ) (C.6)
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Figure 13. Differential decay width of the top quark at parton-level (red), uncorrected detector-level
(orange), and after unfolding (blue markers).

Theory | Parton-level Unfolded Parametric Fitted
Kopt | 0.638 | 0.640 &£ 0.004 | 0.654 & 0.037 0.642 £ 0.030

Table 10. Calculated values of the optimal hadronic spin analyzing power in top decays at theory-level,
at parton-level, after unfolding, and after parametric fitting. The uncertainties are from Monte Carlo
statistics.

The dependence of eq. (C.3) on cos 0y means that the spin analyzing power also is a function
of cos fyy. The dependence of the spin analyzing power on cosfyy is nearly flat [53].

From theory, the predicted integrated value of the spin analyzing power is Kop; = 0.638.
To ensure the validity of our results for entanglement and Bell inequality violation we
compute the spin analyzing power from simulation.

We use Madgraph 5 [59] to generate a sample of polarized top quarks. The differential
decay width as a function of cosf taken with respect to pop¢ is shown in figure 13. The
parton-level distribution is shown in red and yields a value of rop = 0.640 = 0.004. The
distribution at the uncorrected detector-level is shown in orange. The blue markers indicate
the distribution after unfolding and lead to a value of kqpy = 0.654 £ 0.037. Using parametric
fitting yields ropt = 0.642 £ 0.030. These numbers are summarized in table 10.

Having shown the robustness of the optimal hadronic spin analyzing power we use the
value of Kopy = 0.64 in our results for entanglement and Bell inequality violation.

D Quantum versus fictitious states
In this appendix we highlight relevant differences between quantum states and fictitious states.

Non-spin degrees of freedom. The tt system at a collider is labeled by the top quark
momentum in center-of-mass frame k, the velocity © of the ¢t system relative to the lab
frame, and the spins of the top and the anti-top quarks. We denote the spin as |a) =

|spin of t) ® |spin of ).
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The spin density matrix pgpin for the ¢t system with a given k and @ (which we will refer
to as individual density matrix) can be written as

pspin (K, T) = D~ p(k, T)ays @) (] (D.1)
a8

Each value of k and @ yields a distinct quantum state.

Quantum states. To find the total spin density matrix for the tt system produced in a
collider, we perform the sum over the phase space Il

popin(ID) = 3 ppin(k,8) = - (D2 pl, D)) o) (8] (D.2)
kel a8 kgell
where each matrix element must be evaluated in the same fixed frame.

The pspin (IT) obtained in this way is a “physical” state, in the sense that if we measure
the spin observable O, then its expectation value is simply given by (O) = tr(Opgpin (I1)).
We would also call this a genuine quantum state.

Quantum states, however, can exhibit cancellations in the entanglement of the total
spin density matrix, despite entanglement among individual spin density matrices. This
cancellation occurs due to the summation over the azimuthal angle of the production plane.

For example, consider the case where @ = 0 and each tt pair is produced with an angle 0
in the y — z plane with a spin correlation matrix of C1; & —Cag ~ C33 ~ 1 (all other entries
are 0). The concurrence would be C &~ 1 corresponding to maximal entanglement.

By rotational symmetry around the z-axis, each tt pair with the same polar angle 6, but
different azimuthal angle ¢ is also maximally entangled. The spin correlation matrix is

cos?¢p Ch1 +sin?p Caya  (C11 — Cao) cos psing 0
C = [(C11 — Co2)cospsing sin¢C1q + cos?pCay 0 | . (D.3)
0 0 Cs3

Just as with the total spin density matrix, the total spin correlation matrix C' is given by
the sum of C in eq. (D.3) over ¢. After the summation the diagonal elements become:
(C11 4 C92)/2 = 0, (C11 + Ca2)/2 = 0, and Cs3 ~ 1 leading to a concurrence C = 0.

In this example, the sum of maximally entangled states became non-entangled, which is
the case for the tt system with high pr at the LHC. This is why in the boosted region there
is no significant entanglement in the fixed beam basis. The helicity basis, on the other hand,
does exhibit large entanglement because it does not correspond to a quantum state.

The average of concurrence. Instead of computing the concurrence of a quantum state
pspin(IT), we can use other quantities that will not exhibit the same cancellations, and
consequently will enhance the experimental detection.
This can be accomplished by computing the average of the concurrence C over states
with different k and evaluated in the center-of-mass frame where @ = 0:
C = Clpspin(k,0)). (D.4)
Eg

This should be contrasted with the concurrence of the quantum state C(>_p pspin(E, 0)).
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Since the concurrence is invariant under rotations, we can evaluate each term C(pspin(E, 0))
in the helicity basis. Using the results from eq. (3. 16a) we find
C(pspin(E, 0)) = (1/2) max(—Chn (k) + |Cri(k) + Crr(k)] — 1,0) which leads to

c= % %max(—Cn (F) + |Ci(R) + Co(B)| = 1,0), (D.5)
k,vell
Z;max<— Y +’ S (Culk) + O (K ))’—1,0), (D.6)
kel kel
— O (ID). (D.7)

Going from eq. (D.6) to eq. (D.7) requires } ; - Cpy < 0 and that 3 °p - Crp = 307 - Cy, are
the only two non-vanishing off-diagonal entries of > ~Cj;. These conditions are true for
both near threshold and in the boosted region.

Fictitious states. In eq. (D.7) we define the density matrix of a “fictitious state” pyy, (IT)

(Ppin(1))a,s = Z P(E, O)Q(;g)ﬁ(;gy (D.8)
kel

where o and 8 denote the axes along which we measure the spin. Each term in the summation
should be evaluated in its own center-of-mass frame. In the helicity basis, these axes depend
on k which is why they are written as a(k) and 3(k) on the right-hand side. On the other hand,
a quantum state is given by (pspin(II))a,s = Xz 59 p(k, U)a,p (see eq. (D.2)), where each term
in the sum has a certain center-of-mass Velomty and the spin is measured along the same axes.
There is not an obvious physical interpretation for the fictitious state in eq. (D.8),
however, by egs. (D.5)—(D.7) the average concurrence C is greater than or equal to the

concurrence of the fictitious state. Therefore,

C(Pspin(I1)) > 0 = C > 0. (D.9)
This means that when the concurrence of the fictitious state is positive, there exists a sub-state
that is entangled. The same argument can be applied to CHSH violation. In the main text,
concurrence and CHSH violation are measured using fictitious states. The derivation here
justifies their validity in searches for entanglement and Bell inequality violation.

E Charm tagging

An alternative to using the optimal hadronic direction is to only consider events with charm
quarks. In this case, the down-type quark (the strange quark) can be identified as the jet
that is not charm-tagged. Let the charm-tagging efficiency be e..

Adapting eq. (4.4) we have

significance (tt — £s)  kgry | €.BR(tt — s0)
significance (tt — £0)  kprp \| BR(tt — £4)

= 1.78,/%.. (E.1)

In order for the subset of charm-tagged semi-leptonic events to be more sensitive than all
semi-leptonic events, it is necessary that 1.78,/e. > 1.60 or €, > 0.95. In several analyses,
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the operating point used for charm-tagging has an efficiency of 30 — 40% with a light-quark
jet mistag rate of about 5% [79, 80].

Instead of only using charm-tagged events, it may be beneficial to combine two signal
regions. The first signal region would consist of charm-tagged events and would use the
strange-inferred jet, while the second signal region would consist of the rest of the semi-leptonic
events and would use the optimal hadronic direction.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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