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There is a significant interest in testing quantum entanglement and Bell inequality violation in high-

energy experiments. Since the analyses in high-energy experiments are performed with events statistically

averaged over phase space, the states used to determine observables depend on the choice of coordinates

through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.”We

find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states

to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top

and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the tt̄

threshold production for measuring Bell inequality violation, while at high transverse momentum the basis

that aligns along the momentum direction of the top is optimal.
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I. INTRODUCTION

Quantum mechanics and the theory of relativity are the

two pillars of modern physics. Quantum entanglement and

the violation of Bell’s inequality [1] are the unambiguous

tests of quantum principles, and have been verified in

numerous low-energy experiments. Recently, there has been

a significant interest in testing quantum entanglement and

Bell inequality violation in high-energy experiments [2].

While it is important to test the principles of quantum

mechanics deeply into the relativistic kinematic regime,

certain aspects of high-energy experiments make these test

nontrivial and even ambiguous.

Quantum states, represented by density matrices, are the

fundamental objects in quantum mechanics. The process to

reconstruct the density matrix of a quantum state, known

as quantum tomography, requires measurements of an en-

semble of events. In high-energy experiments, each event

specified by a multidimensional phase space point is a

measurement of an underlying quantum state. Collecting a

large data sample with different phase space configurations

is equivalent to a phase space integration weighted by a

matrix element squared, which does not result in a quantum

state when the average is done in event-dependent frames.

Such an object has been labelled a “fictitious state” [3].

Fictitious states are a convex sum of quantum substates,

but are not added in a way that corresponds to a quantum

state. Consequently, fictitious states lose many properties

that are held by quantum states. While observables com-

puted using quantum states are basis independent, observ-

ables computed using fictitious states are basis dependent

in general. For instance, the Bell inequality violation of a

fictitious state becomes basis dependent.

In this work, we show that the fictitious states do

maintain some properties of quantum states. In particular,

the Bell inequality violation of a fictitious state implies the

same for some quantum substate. This allows us to identify

the basis that extremizes the Bell inequality violation of a

fictitious state. Using the top pair production process at the

Large Hadron Collider (LHC) as an example, we present

the optimal basis choice for constructing fictitious states

which leads to the largest possible observation of Bell

inequality violation in the top system at the LHC.

II. FICTITIOUS STATES

AND THEIR BASIS DEPENDENCE

Consider a quantum state that is described by the density

matrix ρ. With N measurements, we construct the quantum

state ρ̄

ρ̄ ¼ 1

N

X

N

a¼1

ρa; ð1Þ
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where ρa is a quantum substate from a single measure-

ment a.
We first start with the simple example of a spin

measurement on a single qubit, where we can decompose

a quantum substate as

ρa ¼
1

2

 

I2 þ
X

3

i¼1

Ba;iσi

!

: ð2Þ

The reconstructed quantum state is an average over the N
measurements

ρ̄ ¼ 1

2

 

I2 þ
X

3

i¼1

B̄iσi

!

with B̄i ¼
1

N

X

N

a¼1

Ba;i: ð3Þ

The spin of the qubit is measured by hσii

hσii ¼
1

N

X

N

a¼1

TrðσiρaÞ ¼
1

2N

X

N

a¼1

Tr

 

σi

 

X

3

j¼1

Ba;jσj

!!

¼ 1

2
Tr

 

σi

 

X

3

j¼1

B̄jσj

!!

¼ B̄i ¼ Trðσiρ̄Þ: ð4Þ

Next, consider reconstructing the state with a different

measurement scheme where rather than using the same

reference axis for each measurement a: σi ¼ σ⃗ · êi, instead a
different reference axis is used for each measurement a:
σi;a ¼ σ⃗ · êi;a.We call this scheme using an event-dependent

basis, and the previous event-independent scheme using a

fixed basis. They are related by an event-dependent rotation

Rij;a such that êi;a ¼
P

j R
T
ij;aêj.

Using an event-dependent basis, the basis for each

measured quantum substate is different

ρa ¼
1

2

 

I2 þ
X

3

i¼1

B0
a;iσi;a

!

: ð5Þ

The corresponding reconstructed averaged state is

ρ̄fic ¼
1

2

 

I2 þ
X

3

i¼1

B̄0
iσi

!

with B̄0
i ¼

1

N

X

N

a¼1

B0
a;i: ð6Þ

Under the parametrization of Eq. (5), the measured value of

the spin hσii compares to the calculated value Trðσiρ̄ficÞ as

hσii ¼
1

N

X

N

a¼1

TrðσiρaÞ ¼
1

2N

X

N

a¼1

Tr

 

σi

 

X

3

j¼1

B0
a;jσj;a

!!

¼ 1

N

X

N

a¼1

X

3

j¼1

�

Rij;aB
0
a;j

�

≠ B̄0
i ¼ Trðσiρ̄ficÞ; ð7Þ

where we have used Trðσiσj;aÞ=2 ¼ Rij;a. As such, the

fictitious state reconstructed using the event-dependent

basis does not yield the same result as the genuine quantum

state.

Fictitious states, given by ρ̄fic, are still a convex sum of

quantum substates, but they are not added in a way that

corresponds to a quantum state. This drawback is more

pronounced for other observables beyond spin. For any

space-time-dependent observable O, the predicted result

TrðOρ̄ficÞ would depend on the phase space configuration

and thus on the choice of the Lorentz frame, as well as the

coordinate axes.

A general remark is in order. Equation (1) can always be

rewritten as a sum of weighted events ρ̄ ∝
P

a ωaρa where

the weight ωa denotes the production rate, or it can be

changed from a summation to a phase space integral

ρ̄ ∝
R

dσ
dΩ

ρΩdΩ. These formulations are often more suitable

for the quantum states produced at collider experiments. All

of our discussion still holds as long as ρ̄ is a convex sum of

quantum substates. Additionally, while the previous exam-

ple is based on the spin measurement of a spin-1=2 particle,
we emphasize that the preceding discussion applies to any

fictitious state and its corresponding quantum state.

For a generic qubit state, the density matrix can be

expressed as a 2 × 2 matrix ρ ¼ ραβjαihβj. Hereafter, the
summation of repeated indices on density matrices is

assumed. With respect to a different basis choice, the qubit

state in the primed basis corresponds to an SUð2Þ trans-

formation jβ0i ¼ jαiUαβ0 , which acts on the density matrix

according to ρ0 ¼ U†ρU.

For spin-1=2 particles, the quantization basis choice is

made by choosing reference axes êi (i ¼ 1; 2; 3) to measure

their spin. Different reference axes are related by an SOð3Þ
rotation ê0i ¼

P

j R
T
ijêj. Consequently, the 2 × 2 density

matrix of a qubit expressed in the basis using êi and the

basis using ê0i are related by

ρ
ê0
i

α0β0 ¼ U†

α0αρ
êi
αβUββ0 : ð8Þ

The SOð3Þ rotation from êi to ê0i is given by Rij ¼
TrðU†σiUσjÞ=2, which is a generalization from the earlier

example.

Considering the state averaged over a large ensemble

with a different basis êi;a for each event a,

ρ̄½êi;a� ¼
1

N

X

N

a¼1

ρ
êi;a
a ¼ 1

N

X

N

a¼1

U†
aρ

êi
a Ua; ð9Þ

where ρ½êi;a� denotes the reconstruction of the state using

an event-dependent basis. This relation recasts our previous

conclusion in a general form. Although the genuine

quantum state averaged in two different—but fixed—bases

are equal with respect to a unitary rotation, as shown in

Eq. (8), the density matrix ρ̄½êi;a� reconstructed using an
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event-dependent basis is generally not equivalent to the

genuine quantum state reconstructed using a fixed basis:

ρ̄½êi;a� ≠ U†ρ̄êiU. Therefore, the density matrix averaged

using an event-dependent basis is a fictitious state.

Moreover, the density matrix averaged using two different

event-dependent basis schemes are not equivalent, i.e.,

ρ̄½êi;a� ≠ U†ρ̄½ê0i;a�U. In other words, fictitious states are

basis dependent, which leaves room for an optimal choice

of the basis for a given physical purpose.

This formalism applies equally to two qubits—the

bipartite qubit system—which is the simplest system that

can exhibit entanglement and the Bell inequality violation.

In collider experiments, this system is the most extensively

studied via the production of a top quark and an antitop

quark [2–4].

A bipartite qubit system is constructed by a direct

product of the two qubits, and its density matrix is a

4 × 4 matrix ραᾱ;ββ̄ expressed in the basis jαi ⊗ jᾱi.
Following the previous notation, the 4 × 4 density matrix

of a bipartite qubit system expressed in different bases is

related by

ρ
ê0i
β0β̄0;α0ᾱ0

¼ U†

β0β̄0;ββ̄
ρ
êi
ββ̄;αᾱ

Uαᾱ;α0ᾱ0 ;

Uαᾱ;α0ᾱ0 ≡Uαα0 ⊗ Uᾱ0ᾱ0 : ð10Þ

In the following, we focus on optimizing the choice of

fictitious state for the purpose of testing Bell inequality

violation.

III. THE BELL INEQUALITY VIOLATION

OF FICTITIOUS STATES

To study the Bell inequality violation of a bipartite qubit

system, it is convenient to parametrize the 4 × 4 density

matrix as

ρ ¼ 1

4

 

I2 ⊗ I2 þ
X

3

i¼1

Bþ
i σi ⊗ I2 þ

X

3

i¼1

B−
i I2 ⊗ σi

þ
X

3

i;j¼1

Cijσi ⊗ σj

!

: ð11Þ

The correlation matrix C—written above in component

form as Cij—encodes the correlations relevant for Bell’s

inequality. The Bell’s inequality for bipartite qubit systems

is the Clauser-Horne-Shimony-Holt inequality (CHSH) [5],

written as

�

�a⃗1 ·C ·
�

b⃗1 − b⃗2
�

þ a⃗2 ·C ·
�

b⃗1 þ b⃗2
��

� ≤ 2 ð12Þ

where a⃗1;2ðb⃗1;2Þ are normalized directions to measure the

spin of the first (second) qubit. Classical theories, including

theories with local hidden variables, satisfy this inequality.

The violation of Bell’s inequality is a consequence of

genuine quantum mechanical behavior.

The optimal choice of the four spin measurements in

Eq. (12) is known to be [6]

BðρÞ ¼ max
a⃗1;a⃗2;b⃗1;b⃗2

�

�a⃗1 ·C ·
�

b⃗1 − b⃗2
�

þ a⃗2 ·C ·
�

b⃗1 þ b⃗2
��

�

¼ 2max
i≠j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2i þ μ2j

q

; ð13Þ

where μ2i are the eigenvalues of C
TC. In the following, we

assume that the correlation matrixC is symmetric, in which

case μi are eigenvalues of C.

When we reparametrize the density matrix using another

spin basis: jαi → jβiUβα, the correlation matrix C trans-

forms as an SOð3Þ tensor: C → RTCR. Therefore, for a
genuine quantum state, BðρÞ is basis independent. For a

fictitious state, however, its correlation matrix is obtained

by averaging the correlation matrices of quantum substates

using an event-dependent basis

C̄½êi;a� ¼
1

N

X

N

a¼1

C
êi;a
a ¼ 1

N

X

N

a¼1

RT
aC

êi
a Ra; ð14Þ

where C
êi
a is the correlation matrix of the substate a

expressed in a fixed basis and Ra is an event-dependent

rotation from a fixed basis êi to the event-dependent basis

êi;a. Generally, the correlation matrices of two fictitious

states averaged in different bases, C̄½êi;a� and C̄½ê0i;a�,
yield different results and different eigenvalues. Thus,

the violation of Bell’s inequality is also basis dependent,

i.e., Bðρ½êi;a�Þ ≠ Bðρ½ê0i;a�Þ.
It is important to realize that establishing the Bell

inequality violation of a fictitious state ρ̄fic implies the

same for some quantum substate ρa. While this fits the

naive expectation, we prove this in the following.

Assume that all quantum substates ρa satisfy the CHSH

inequality, i.e., for any four spatial directions a⃗1; a⃗2; b⃗1,

and b⃗2,

a⃗1 · Ca ·
�

b⃗1 − b⃗2
�

þ a⃗2 ·Ca ·
�

b⃗1 þ b⃗2
�

∈ ½−2; 2�; ð15Þ

where Ca is the correlation matrix of the ath substate

expressed in an arbitrary basis. Here, we omit the basis

choice label for simplicity when referring to a general

event-dependent basis such that C
êi;a
a is written as Ca and

C̄½êi;a� is written as C̄. The sum of Eq. (15) is convex and

yields

1

N

X

N

a¼1

�

a⃗1 · Ca ·
�

b⃗1 − b⃗2
�

þ a⃗2 · Ca ·
�

b⃗1 þ b⃗2
��

¼ a⃗1 · C̄ ·
�

b⃗1 − b⃗2
�

þ a⃗2 · C̄ ·
�

b⃗1 þ b⃗2
�

∈ ½−2; 2�:
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This implies that a fictitious state constructed from quan-

tum substates, all of which satisfy Bell’s inequality, must

also satisfy Bell’s inequality. Conversely, establishing

Bell’s inequality violation in a fictitious state shows there

must be a quantum substate that violates Bell’s inequality.

IV. THE OPTIMAL BASIS FOR BELL

INEQUALITY VIOLATION

Since the construction of a fictitious state is basis

dependent, one may hope to find an optimal basis for a

specified physical application. In this work, we analyze the

qq̄→ tt̄ process. At a hadron collider, tt̄ is produced both

via qq̄ and gg. Our analysis straightforwardly applies to

gg → tt̄ also. We show that the optimal basis to test Bell’s

inequality is the one that diagonalizes the spin correlation

of each quantum substate, and we call it the diagonal basis

(see the Appendix).

For the qq̄ → tt̄ process, the diagonal basis ê
diag
i;a can be

obtained by a rotation from the helicity basis ðr̂; n̂; k̂Þ,
where the axis k̂ of the helicity basis is aligned with the top

quark momentum direction k̂ in the top pair center-of-mass

frame, n̂ is the direction normal to the scattering plane, and

r̂ ¼ n̂ × k̂. The rotation to the diagonal basis is

ê
diag
1

¼ r̂ cos ξþ k̂ sin ξ; ð16aÞ

ê
diag
2

¼ n̂; ð16bÞ

ê
diag
3

¼ k̂ cos ξ − r̂ sin ξ; ð16cÞ

with tan ξ ¼ tan θ=γ [7], where θ is the scattering angle in

the top pair center-of-mass frame, γ ¼
ffiffiffi

ŝ
p

=ð2mtÞ is the

boosted factor, and
ffiffiffi

ŝ
p

is the center-of-mass energy of top

pair system.

Another useful basis is the beam basis ðx̂; ŷ; ẑÞ, where
the z direction is fixed as the beam direction for all tt̄
events, while the second direction ŷ ¼ n̂ is perpendicular to

the scattering plane and x̂ ¼ ẑ × ŷ. The correlation matrix

in each of these three bases is appropriately averaged, using

Eq. (14), and we calculate the Bell inequality violation B½ρ̄�
for each basis. To obtain the diagonal basis, the rotation

angle (ξ) from the beam basis angle (θ) is shown in Fig. 1(a)

for the qq̄→ tt̄ process. The diagonal basis approaches the
beam basis when the top pair is produced near threshold

(
ffiffiffi

ŝ
p

¼ 350 GeV), while the diagonal basis approaches the

helicity basis in the boosted region (
ffiffiffi

ŝ
p

¼ 2 TeV). Rather

than the commonly used beam or helicity basis, a proper

choice of spin axis according to the different scattering

angle and center-of-mass energy in Fig. 1(a) provides a

clear improvement on testing the violation of Bell’s

inequality. This is compared in Fig. 1(b) for the Bell

inequality violation of tt̄measured in the three bases. While

Fig. 1 is only for the qq̄ → tt̄ process, it can be proved, in

general, that the diagonal basis is the optimal basis that

maximizes the Bell inequality violation for any bipartite

qubit system (see Appendix), and the diagonal basis can

also be obtained analytically for realistic top pair produc-

tion processes at the LHC [8]. Moreover, our formalism of

fictitious states in Eqs. (9) and (14) are also fit for event-

dependent Lorentz frame choices, and the diagonal basis

defined in the center-of-mass frame of the bipartite qubit

system is found to be the optimal reference frame to

construct fictitious states and test Bell inequality violation

[8]. Our finding is applicable to future development of

quantum observables at colliders for a better understanding

of the connection between quantum information and

collider physics.

V. CONCLUSIONS

The density matrix of a quantum state is reconstructed

from the expectation value of observables, which are

measured from an average over a large event ensemble.

When the measurements are performed in an event-

dependent frame, one reconstructs a fictitious state, rather

than a genuine quantum state.

We showed that, although the fictitious state loses most

properties of a genuine quantum state and its construction is

basis dependent, an observation of Bell inequality violation

based on an analysis of a fictitious state would still imply

Bell inequality violation for a quantum substate. Moreover,

the basis dependence of fictitious states leaves a freedom

of a basis choice for its construction. We further demon-

strated the optimal basis choice for the qq̄→ tt̄ process that
maximizes the violation of Bell’s inequality, and find

significant improvement on the signal of Bell inequality

violation using the optimal basis.

Our observations can be generalized to any qubit

system, and have important consequences for quantum sys-

tems observables. In particular, quantum mechanical

systems, constructed from the spins of final state particles

at colliders commonly use event-dependent bases. For a

(a) (b)

FIG. 1. (a) The rotation angle ξ from the helicity basis to the

diagonal basis. (b) Bell inequality violation of tt̄ produced from

qq̄ annihilation, measured in different event-dependent bases.
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given kinematic configuration, the axes of the diagonal

basis can change, which impacts how the spins should be

measured.

Given the widespread applications of fictitious states at

particle colliders, there are many possible future directions

exploring other properties of fictitious states. Beyond Bell

inequality violation, it can also be shown that the diagonal

basis yields the optimal fictitious state for entanglement [8].

The orientation of the diagonal basis depends on the

specific process in question and is potentially different

in each application.

In closing, the use of event-dependent bases in quantum

experiments leads to the reconstruction of fictitious states

rather than quantum states. We have shown that fictitious

states still have utility in demonstrating the presence of

Bell inequality violation in a quantum system and that the

optimal basis, which diagonalizes the spin correlation

matrix, maximizes the violation of Bell’s inequality. We

hope these observations about fictitious states will clarify

their usage in high-energy experiments and establish the

groundwork for future developments.
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APPENDIX: PROOF OF THE MAXIMIZATION

Here, we provide a proof that the diagonal basis max-

imizes the violation of Bell’s inequality. The correlation

matrix of each quantum substate in the diagonal basis is

C
diag
a ¼

0

B

@

μ1;a 0 0

0 μ2;a 0

0 0 μ3;a

1

C

A
: ðA1Þ

Without loss of generality, the eigenvalues are ordered as

μ1;a ≥ μ2;a ≥ μ3;a. The correlation matrix of the fictitious

state averaged in the diagonal basis,

C̄
diag ¼ 1

N

X

N

a¼1

Cdiag; ðA2Þ

is also diagonal, and three eigenvalues of C̄
diag are

μ̄i ≡
1

N

P

N
a¼1

μi;a.

Next, consider another arbitrary basis êi;a that is related to

the diagonal basis by a possibly event-dependent rotationRa.

The correlation matrix of the fictitious state in this basis is

C̄ ¼ 1

N

X

N

a¼1

Ca ¼
1

N

X

N

a¼1

RT
aC

diag
a Ra: ðA3Þ

Here and after, we omit the basis choice label for simplicity

when referring to a general event-dependent basis such that

C
êi;a
a is written as Ca and C̄½êi;a� is written as C̄. The three

eigenvalues of C̄, which we denote as c̄i, satisfy the

following relations:

c̄1 þ c̄2 þ c̄3 ¼ μ̄1 þ μ̄2 þ μ̄3 ¼ TrðC̄Þ; ðA4Þ

μ̄1 ≥ c̄i ≥ μ̄3 ðfor any i ¼ 1; 2; 3Þ: ðA5Þ

Equation (A4) is a direct consequence from the trace of

Eqs. (A2) and (A3). To prove Eq. (A5), which states that c̄i
are bounded by μ̄i, we first denote the three eigenvectors of

C̄ as v̂i. The corresponding eigenvalue is then

c̄i ¼ v̂i · C̄ · v̂i ¼
1

N

X

N

a¼1

�

v̂i ·Ca · v̂i
�

: ðA6Þ

Applying Eq. (A1) and Ca ¼ RT
aC

diag
a Ra, we find that

v̂i ·Ca · v̂i ¼
X

3

l¼1

jðRa · v̂iÞlj2μl;a ðA7Þ

is a convex sum of μi;a. This leads to

μ1;a ≥ v̂i · Ca · v̂i ≥ μ3;a: ðA8Þ

Therefore, Eq. (A5) holds as a convex sum of Eq. (A8).

The Bell inequality violation of a density matrix ρ is

given by the largest two eigenvalues of its spin correlation

matrix. With Eqs. (A4) and (A5), we are ready to show that

the diagonal basis maximizes Bðρ̄½êi;a�Þ, by proving that for
any i ≠ j, there exist k ≠ l satisfying

c̄2i þ c̄2j ≤ μ̄2k þ μ̄2
l
; ðA9Þ

where μ̄i and c̄i are the eigenvalues of the correlation matrix

averaged in the diagonal basis and an arbitrary basis,

respectively.

The relative signs of μ̄1, μ̄2, and μ̄3 can be divided into

the following three cases, and we prove Eq. (A9) case

by case.

(a) μ̄1 ≥ μ̄2 ≥ μ̄3 ≥ 0,

(b) 0 ≥ μ̄1 ≥ μ̄2 ≥ μ̄3,

(c) μ̄1 ≥ 0 ≥ μ̄3.
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Case (a). In this case both c̄i and c̄j are positive. Without

loss of generality, we assume c̄i ≥ c̄j.

Though c̄i is bounded by μ̄1 and μ̄3, it can be either larger
or smaller than μ̄2:

Case (a1). 0 ≤ c̄i ≤ μ̄2. We have c̄2i þ c̄2j ≤ 2μ̄2
2
≤

μ̄2
1
þ μ̄2

2
.

Case (a2). μ̄2 ≤ c̄i ≤ μ̄1. First, μ̄2 ≤ c̄i ≤ μ̄1 leads to

−
μ̄1 − μ̄2

2
≤
μ̄1 þ μ̄2

2
− c̄i ≤

μ̄1 − μ̄2

2
: ðA10Þ

Second, combining Eqs. (A4) and (A5), we have c̄i þ
c̄j ≤ μ̄1 þ μ̄2 for i ≠ j. Consequently,

c̄2i þ c̄2j ≤ c̄2i þ ðμ̄1 þ μ̄2 − c̄iÞ2: ðA11Þ

Next, we define a function

fðΔÞ ¼
�

μ̄1 þ μ̄2

2
þ Δ

	

2

þ
�

μ̄1 þ μ̄2

2
− Δ

	

2

¼ ðμ̄1 þ μ̄2Þ2
2

þ 2Δ2; ðA12Þ

which satisfies fðΔ1Þ ≤ fðΔ2Þ for jΔ1j ≤ jΔ2j. Then
μ̄2
1
þ μ̄2

2
and the rhs of Eq. (A11) and can be rewritten

using fðΔÞ:

c̄2i þ ðμ̄1 þ μ̄2 − c̄iÞ2 ¼ f

�

μ̄1 þ μ̄2

2
− c̄i

	

; ðA13Þ

μ̄2
1
þ μ̄2

2
¼ f

�

μ̄1 − μ̄2

2

	

: ðA14Þ

From Eq. (A10), the rhs of Eq. (A13) is smaller than

the rhs of Eq. (A14), then c̄2i þ ðμ̄1 þ μ̄2 − c̄iÞ2 ≤
μ̄2
1
þ μ̄2

2
. In combination with Eq. (A11), we reach our

conclusion, c̄2i þ c̄2j ≤ μ̄2
1
þ μ̄2

2
.

Case (b). In this case both c̄i and c̄j are negative. Without

loss of generality, we assume jc̄ij ≥ jc̄jj, i.e., c̄i ≤ c̄j.

Case (b1). 0 ≥ c̄i ≥ μ̄2. We have c̄2i þ c̄2j ≤ 2μ̄2
2
≤

μ̄2
2
þ μ̄2

3
.

Case (b2). μ̄2 ≥ c̄i ≥ μ̄3. First, from μ̄2 ≥ c̄i ≥ μ̄3, we

have

−
μ̄2 − μ̄3

2
≤
μ̄2 þ μ̄3

2
− c̄i ≤

μ̄2 − μ̄3

2
: ðA15Þ

Then, combining Eqs. (A4) and (A5), we have c̄i þ
c̄j ≥ μ̄2 þ μ̄3 (note that now both c̄i and c̄j are

negative), which leads to

c̄2i þ c̄2j ≤ c̄2i þ ðμ̄2 þ μ̄3 − c̄iÞ2: ðA16Þ

Similar to case (a), we define a function,

gðΔÞ ¼
�

μ̄2 þ μ̄3

2
þ Δ

	

2

þ
�

μ̄2 þ μ̄3

2
− Δ

	

2

¼ ðμ̄2 þ μ̄3Þ2
2

þ 2Δ
2; ðA17Þ

that satisfies gðΔ1Þ ≤ gðΔ2Þ for jΔ1j ≤ jΔ2j. We re-

write μ̄2
2
þ μ̄2

3
and the rhs of Eq. (A16) as

c̄2i þ ðμ̄2 þ μ̄3 − c̄iÞ2 ¼ g

�

μ̄2 þ μ̄3

2
− c̄i

	

; ðA18Þ

μ̄2
2
þ μ̄2

3
¼ g

�

μ̄2 − μ̄3

2

	

: ðA19Þ

From Eq. (A15), the rhs of Eq. (A18) is smaller

than the rhs of Eq. (A19), which implies that c̄2iþ
ðμ̄2þ μ̄3− c̄iÞ2≤ μ̄2

2
þ μ̄2

3
. IncombinationwithEq.(A16),

we reach our conclusion c̄2i þ c̄2j ≤ μ̄2
2
þ μ̄2

3
.

Case (c). In this case we have no constraints on the sign

of c̄i and c̄j, so we enumerate all the possibilities.

Case (c1). Both c̄i and c̄j are positive. The proof in case

(a) only relies on the fact that both c̄i and c̄j are

positive; therefore, we have c̄2i þ c̄2j ≤ μ̄2
1
þ μ̄2

2
.

Case (c2). Both c̄i and c̄j are negative. The proof in case
(b) only relies on the fact that both c̄i and c̄j are

negative; therefore, we have c̄2i þ c̄2j ≤ μ̄2
2
þ μ̄2

3
.

Case (c3). c̄i is positive while c̄j is negative. Then

jc̄ij< jμ̄1j and jc̄jj< jμ̄3j, andwehave c̄2i þ c̄2j ≤μ2
1
þμ2

3
.

In summary, we have proven that the fictitious state

averaged in the diagonal basis gives the largest violation of

Bell’s inequality, Bðρ̄diagÞ ≥ Bðρ̄Þ.
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