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There is a significant interest in testing quantum entanglement and Bell inequality violation in high-
energy experiments. Since the analyses in high-energy experiments are performed with events statistically
averaged over phase space, the states used to determine observables depend on the choice of coordinates
through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We
find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states
to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top
and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the 7
threshold production for measuring Bell inequality violation, while at high transverse momentum the basis
that aligns along the momentum direction of the top is optimal.
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I. INTRODUCTION

Quantum mechanics and the theory of relativity are the
two pillars of modern physics. Quantum entanglement and
the violation of Bell’s inequality [1] are the unambiguous
tests of quantum principles, and have been verified in
numerous low-energy experiments. Recently, there has been
a significant interest in testing quantum entanglement and
Bell inequality violation in high-energy experiments [2].
While it is important to test the principles of quantum
mechanics deeply into the relativistic kinematic regime,
certain aspects of high-energy experiments make these test
nontrivial and even ambiguous.

Quantum states, represented by density matrices, are the
fundamental objects in quantum mechanics. The process to
reconstruct the density matrix of a quantum state, known
as quantum tomography, requires measurements of an en-
semble of events. In high-energy experiments, each event
specified by a multidimensional phase space point is a
measurement of an underlying quantum state. Collecting a
large data sample with different phase space configurations
is equivalent to a phase space integration weighted by a
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matrix element squared, which does not result in a quantum
state when the average is done in event-dependent frames.
Such an object has been labelled a “fictitious state” [3].

Fictitious states are a convex sum of quantum substates,
but are not added in a way that corresponds to a quantum
state. Consequently, fictitious states lose many properties
that are held by quantum states. While observables com-
puted using quantum states are basis independent, observ-
ables computed using fictitious states are basis dependent
in general. For instance, the Bell inequality violation of a
fictitious state becomes basis dependent.

In this work, we show that the fictitious states do
maintain some properties of quantum states. In particular,
the Bell inequality violation of a fictitious state implies the
same for some quantum substate. This allows us to identify
the basis that extremizes the Bell inequality violation of a
fictitious state. Using the top pair production process at the
Large Hadron Collider (LHC) as an example, we present
the optimal basis choice for constructing fictitious states
which leads to the largest possible observation of Bell
inequality violation in the top system at the LHC.

II. FICTITIOUS STATES
AND THEIR BASIS DEPENDENCE

Consider a quantum state that is described by the density
matrix p. With N measurements, we construct the quantum
state p

=

1 N
p= Zpa’ (1)
a=1
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where p, is a quantum substate from a single measure-
ment a.

We first start with the simple example of a spin
measurement on a single qubit, where we can decompose
a quantum substate as

1 3
2 (Hz + ;Ba,i0i> : (2)

The reconstructed quantum state is an average over the N
measurements

VAN b B LY
p :E <H2+2Biai> with Bi :NZBa,i-
i—1 a=1

The spin of the qubit is measured by (o;)

N N 3
<61> :NZTr(Gzpa) D) ZTI‘ (Gi (z Ba,j6'>>
a=1 a=1 j=1
3
= %Tr <a, (; Bjaj>> = B; = Tr(o;p) (4)

Next, consider reconstructing the state with a different
measurement scheme where rather than using the same
reference axis for each measurement a: 6; = G - ¢;, instead a
different reference axis is used for each measurement a:
6,4 =0 - &;,. We call this scheme using an event-dependent
basis, and the previous event-independent scheme using a
fixed basis. They are related by an event-dependent rotation
R;j, such that;, = ), lea

Using an event-dependent basis, the basis for each
measured quantum substate is different

] 3
Pa=35 (Hz + Z B;,i(’i.a>' (5)
i=1

The corresponding reconstructed averaged state is

1 5 1
Pic = 3 <]I2 + ZBZ'G) with B} = NZ B,;. (6)
i=1 a=1

Under the parametrization of Eq. (5), the measured value of
the spin (o;) compares to the calculated value Tr(o;p5.) as

33T 5 31V )

a=1

| N3 . ]
:NZZ Ry;, aB/ ) # B} = Tr(opnic). (7)

a=1 j=1

where we have used Tr(a,aja)/2 = R;j,- As such, the
fictitious state reconstructed using the event-dependent
basis does not yield the same result as the genuine quantum
state.

Fictitious states, given by py,, are still a convex sum of
quantum substates, but they are not added in a way that
corresponds to a quantum state. This drawback is more
pronounced for other observables beyond spin. For any
space-time-dependent observable O, the predicted result
Tr(Opy;.) would depend on the phase space configuration
and thus on the choice of the Lorentz frame, as well as the
coordinate axes.

A general remark is in order. Equation (1) can always be
rewritten as a sum of weighted events p « »_, w,p, where
the weight @, denotes the production rate, or it can be
changed from a summation to a phase space integral
D x f 2 padQ. These formulations are often more suitable
for the quantum states produced at collider experiments. All
of our discussion still holds as long as p is a convex sum of
quantum substates. Additionally, while the previous exam-
ple is based on the spin measurement of a spin-1/2 particle,
we emphasize that the preceding discussion applies to any
fictitious state and its corresponding quantum state.

For a generic qubit state, the density matrix can be
expressed as a 2 X 2 matrix p = p,g|a)(f|. Hereafter, the
summation of repeated indices on density matrices is
assumed. With respect to a different basis choice, the qubit
state in the primed basis corresponds to an SU(2) trans-
formation |f') = |a)U,y, which acts on the density matrix
according to p' = U'pU.

For spin-1/2 particles, the quantization basis choice is
made by choosing reference axes é; (i = 1, 2, 3) to measure
their spin. Different reference axes are related by an SO(3)
rotation ¢, = Z Re ;¢j. Consequently, the 2 x 2 density
matrix of a qubit expressed in the basis using &; and the
basis using &} are related by

rﬁr UaapaﬂUﬁﬂ/ (8)

The SO(3) rotation from ¢; to &) is given by R;; =
Tr(U'6,;Us;)/2, which is a generalization from the earlier
example.

Considering the state averaged over a large ensemble
with a different basis &; , for each event a,

N A~
€ia :NZ Z :—ZUZ/)Z’ a» (9)

where p[é; ,| denotes the reconstruction of the state using
an event-dependent basis. This relation recasts our previous
conclusion in a general form. Although the genuine
quantum state averaged in two different—but fixed—bases
are equal with respect to a unitary rotation, as shown in
Eq. (8), the density matrix p[é;,| reconstructed using an
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event-dependent basis is generally not equivalent to the
genuine quantum state reconstructed using a fixed basis:
pléia) # UTp%U. Therefore, the density matrix averaged
using an event-dependent basis is a fictitious state.
Moreover, the density matrix averaged using two different
event-dependent basis schemes are not equivalent, i.e.,
pléia # U'ple},]U. In other words, fictitious states are
basis dependent, which leaves room for an optimal choice
of the basis for a given physical purpose.

This formalism applies equally to two qubits—the
bipartite qubit system—which is the simplest system that
can exhibit entanglement and the Bell inequality violation.
In collider experiments, this system is the most extensively
studied via the production of a top quark and an antitop
quark [2-4].

A bipartite qubit system is constructed by a direct
product of the two qubits, and its density matrix is a
4 x4 matrix p,;z; expressed in the basis [a) ® |a).
Following the previous notation, the 4 x 4 density matrix
of a bipartite qubit system expressed in different bases is
related by

& _ gt e
pﬂ/B/,ar&/ - Uﬂ'B'ﬁBpﬂﬁ,a& Ua&,a’&’ .
Ua(i.a’fz’ = U(m/ ® U&/al. (10)

In the following, we focus on optimizing the choice of
fictitious state for the purpose of testing Bell inequality
violation.

III. THE BELL INEQUALITY VIOLATION
OF FICTITIOUS STATES

To study the Bell inequality violation of a bipartite qubit
system, it is convenient to parametrize the 4 x 4 density
matrix as

1 3 3
P :Z <]I2 ®H2+ZBI+GI ®H2+ZB:H2 ®Gi
i=1 i=1

3
—l—zcijai@gj)- (11)

ij=1

The correlation matrix C—written above in component
form as C;;—encodes the correlations relevant for Bell’s
inequality. The Bell’s inequality for bipartite qubit systems
is the Clauser-Horne-Shimony-Holt inequality (CHSH) [5],
written as

@, -C-(by—by) +ad,-C- (b, +b,)| <2 (12)
where a 1_2(51,2) are normalized directions to measure the

spin of the first (second) qubit. Classical theories, including
theories with local hidden variables, satisfy this inequality.

The violation of Bell’s inequality is a consequence of
genuine quantum mechanical behavior.

The optimal choice of the four spin measurements in
Eq. (12) is known to be [6]

aX_"C_il'C'(51—52)+52‘C'(51+52)|
b

:Zmax\/ﬂ%—i-/tjz-, (13)
i#j

where 47 are the eigenvalues of C”C. In the following, we
assume that the correlation matrix C is symmetric, in which
case u; are eigenvalues of C.

When we reparametrize the density matrix using another
spin basis: |a@) = |f)Up,, the correlation matrix C trans-
forms as an SO(3) tensor: C — RTCR. Therefore, for a
genuine quantum state, (p) is basis independent. For a
fictitious state, however, its correlation matrix is obtained
by averaging the correlation matrices of quantum substates
using an event-dependent basis

_ 1L, 1
Clewa] = NZ; Ci* = N;RZ CiR..  (14)

where Cf,” is the correlation matrix of the substate «a
expressed in a fixed basis and R, is an event-dependent
rotation from a fixed basis ¢; to the event-dependent basis
é; .. Generally, the correlation matrices of two fictitious
states averaged in different bases, C[¢;,] and C[¢]],
yield different results and different eigenvalues. Thus,
the violation of Bell’s inequality is also basis dependent,
i'e" B(p[élu]) ;é B(p[é:a})

It is important to realize that establishing the Bell
inequality violation of a fictitious state py. implies the
same for some quantum substate p,. While this fits the
naive expectation, we prove this in the following.

Assume that all quantum substates p, satisfy the CHSH

inequality, i.e., for any four spatial directions a,, d,, b;,
and b,,

G -Cy-(by=by) +dy-C,- (by +by) €]-2,2],  (15)

where C, is the correlation matrix of the a™ substate
expressed in an arbitrary basis. Here, we omit the basis
choice label for simplicity when referring to a general
event-dependent basis such that C.“ is written as C, and
Clé; ] is written as C. The sum of Eq. (15) is convex and

yields

-

1SN . -
NZ[al-Cu-(bl—b2)+a2-cu-(bl+b2)]

— -

:51'C'(bl—gz)‘f’az'c'(1;14—52)6[—2,2].
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This implies that a fictitious state constructed from quan-
tum substates, all of which satisfy Bell’s inequality, must
also satisfy Bell’s inequality. Conversely, establishing
Bell’s inequality violation in a fictitious state shows there
must be a quantum substate that violates Bell’s inequality.

IV. THE OPTIMAL BASIS FOR BELL
INEQUALITY VIOLATION

Since the construction of a fictitious state is basis
dependent, one may hope to find an optimal basis for a
specified physical application. In this work, we analyze the
qq — tt process. At a hadron collider, 7 is produced both
via gq and gg. Our analysis straightforwardly applies to
gg — tt also. We show that the optimal basis to test Bell’s
inequality is the one that diagonalizes the spin correlation
of each quantum substate, and we call it the diagonal basis
(see the Appendix).

For the gg — 17 process, the diagonal basis &{'*¢ can be
obtained by a rotation from the helicity basis (7,7, lAc)
where the axis k of the helicity basis is aligned with the top
quark momentum direction k in the top pair center-of-mass
frame, 7 is the direction normal to the scattering plane, and
# = A x k. The rotation to the diagonal basis is

2 — fpeosé + ksing, (16a)
25" = 1, (16b)
5" = kcos & — Fsiné, (16¢)

with tan & = tan 0/y [7], where 0 is the scattering angle in
the top pair center-of-mass frame, y = v/3/(2m,) is the

boosted factor, and /3 is the center-of-mass energy of top
pair system.

Another useful basis is the beam basis (%,9, %), where
the z direction is fixed as the beam direction for all 7
events, while the second direction y = 7 is perpendicular to
the scattering plane and X = Z x y. The correlation matrix
in each of these three bases is appropriately averaged, using
Eq. (14), and we calculate the Bell inequality violation B[p]
for each basis. To obtain the diagonal basis, the rotation
angle (£) from the beam basis angle (0) is shown in Fig. 1(a)
for the gg — 17 process. The diagonal basis approaches the
beam basis when the top pair is produced near threshold
(v/3 = 350 GeV), while the diagonal basis approaches the
helicity basis in the boosted region (v/§ = 2 TeV). Rather
than the commonly used beam or helicity basis, a proper
choice of spin axis according to the different scattering
angle and center-of-mass energy in Fig. 1(a) provides a
clear improvement on testing the violation of Bell’s
inequality. This is compared in Fig. 1(b) for the Bell
inequality violation of /7 measured in the three bases. While

V3 [Tev
05 1 510
05
/,' _ _
qq -1t //’: qq - tt ‘
04 sy
S 22
e
7
03 0,
5 fi=350Gey, ” = Diagonal
02 e L 216 - ==~ Beam
7" A3=800Gev FI— Helicity
0.1 L £
P V3=2Tev
0.oldait @ 20 ()
00 01 02 03 o4 os Y 2 5 10 20
o/n Y
FIG. 1. (a) The rotation angle £ from the helicity basis to the

diagonal basis. (b) Bell inequality violation of ¢z produced from
qq annihilation, measured in different event-dependent bases.

Fig. 1 is only for the gg — ff process, it can be proved, in
general, that the diagonal basis is the optimal basis that
maximizes the Bell inequality violation for any bipartite
qubit system (see Appendix), and the diagonal basis can
also be obtained analytically for realistic top pair produc-
tion processes at the LHC [8]. Moreover, our formalism of
fictitious states in Eqs. (9) and (14) are also fit for event-
dependent Lorentz frame choices, and the diagonal basis
defined in the center-of-mass frame of the bipartite qubit
system is found to be the optimal reference frame to
construct fictitious states and test Bell inequality violation
[8]. Our finding is applicable to future development of
quantum observables at colliders for a better understanding
of the connection between quantum information and
collider physics.

V. CONCLUSIONS

The density matrix of a quantum state is reconstructed
from the expectation value of observables, which are
measured from an average over a large event ensemble.
When the measurements are performed in an event-
dependent frame, one reconstructs a fictitious state, rather
than a genuine quantum state.

We showed that, although the fictitious state loses most
properties of a genuine quantum state and its construction is
basis dependent, an observation of Bell inequality violation
based on an analysis of a fictitious state would still imply
Bell inequality violation for a quantum substate. Moreover,
the basis dependence of fictitious states leaves a freedom
of a basis choice for its construction. We further demon-
strated the optimal basis choice for the gg — 7 process that
maximizes the violation of Bell’s inequality, and find
significant improvement on the signal of Bell inequality
violation using the optimal basis.

Our observations can be generalized to any qubit
system, and have important consequences for quantum sys-
tems observables. In particular, quantum mechanical
systems, constructed from the spins of final state particles
at colliders commonly use event-dependent bases. For a
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given kinematic configuration, the axes of the diagonal
basis can change, which impacts how the spins should be
measured.

Given the widespread applications of fictitious states at
particle colliders, there are many possible future directions
exploring other properties of fictitious states. Beyond Bell
inequality violation, it can also be shown that the diagonal
basis yields the optimal fictitious state for entanglement [8].
The orientation of the diagonal basis depends on the
specific process in question and is potentially different
in each application.

In closing, the use of event-dependent bases in quantum
experiments leads to the reconstruction of fictitious states
rather than quantum states. We have shown that fictitious
states still have utility in demonstrating the presence of
Bell inequality violation in a quantum system and that the
optimal basis, which diagonalizes the spin correlation
matrix, maximizes the violation of Bell’s inequality. We
hope these observations about fictitious states will clarify
their usage in high-energy experiments and establish the
groundwork for future developments.
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APPENDIX: PROOF OF THE MAXIMIZATION

Here, we provide a proof that the diagonal basis max-
imizes the violation of Bell’s inequality. The correlation
matrix of each quantum substate in the diagonal basis is

Hla 0 0
Ce— 1 0 p, O (A1)
0 0 H3a

Without loss of generality, the eigenvalues are ordered as
Uia = Maq = M3, The correlation matrix of the fictitious
state averaged in the diagonal basis,

_ A
Cdlag — Cdl‘dg’ A2
N; (A2)

is also diagonal, and three eigenvalues of C%22 are
= _ 1\N
i = NZFI Hia-

Next, consider another arbitrary basis é; , that is related to
the diagonal basis by a possibly event-dependent rotation R,,.
The correlation matrix of the fictitious state in this basis is

c-1 S c, = NRTC‘“agR
_NZ Q_NZ ava a:

a=1 a=1

(A3)

Here and after, we omit the basis choice label for simplicity
when referring to a general event-dependent basis such that

C.“ is written as C, and C[¢, ,] is written as C. The three
eigenvalues of C, which we denote as ¢;, satisfy the
following relations:

G+ 48 = + i+ i3 =Tr(C),  (A4)

gy >¢; > ps (foranyi=1,2,3). (AS)
Equation (A4) is a direct consequence from the trace of
Egs. (A2) and (A3). To prove Eq. (AS5), which states that ¢;
are bounded by ji;, we first denote the three eigenvectors of

C as #;. The corresponding eigenvalue is then

N R A
E‘i:Ui'C‘U[:NZ(vi'Ca'vi)' (A6)

a=1

Applying Eq. (A1) and C, = RTC3*R,, we find that

3
0;-C,- 0= Z [(Ra - 0i)lHea (A7)

=1

is a convex sum of y; ,. This leads to

Hl.a 2 @i : Ca ' f)i 2 H3.a- (AS)
Therefore, Eq. (AS) holds as a convex sum of Eq. (AS).
The Bell inequality violation of a density matrix p is
given by the largest two eigenvalues of its spin correlation
matrix. With Egs. (A4) and (AS), we are ready to show that
the diagonal basis maximizes B(p[e; ,]), by proving that for

any i # j, there exist k # £ satisfying
(A9)

where ji; and ¢; are the eigenvalues of the correlation matrix
averaged in the diagonal basis and an arbitrary basis,
respectively.

The relative signs of ji;, fi,, and jiz can be divided into
the following three cases, and we prove Eq. (A9) case

by case.
@) py 2 jp 2 i3 20,
(b) 0>p
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Case (a). In this case both ¢; and ¢; are positive. Without
loss of generality, we assume ¢; > ¢;.

Though ¢; is bounded by j1; and i3, it can be either larger
or smaller than ji,:

Case (al). 0<¢; <fi,. We have & +¢7 <2/ <

i+ .

Case (a2). ji, < ¢; < ;. First, ji, < ¢; < ji; leads to
i +M2—Ei <A h

2 2 2

(A10)

Second, combining Eqs. (A4) and (A5), we have ¢; +
¢; < jiy + jip for i # j. Consequently,

G+ <4 (I +a—c) (ALl
Next, we define a function
+ 2 + 2
- ~-\2
_ 2”2) 4 2A2, (A12)

which satisfies f(A;) < f(A,) for |A;| < |A,|. Then
% + i3 and the ths of Eq. (A11) and can be rewritten

using f(A):

A
&+ (i + iy — &)* :f<¥—5i>» (A13)

— _ Hy —j
umg—f(—Z).

5 (A14)

From Eq. (A10), the rhs of Eq. (A13) is smaller than
the ths of Eq. (Al4), then &7 + (fi; + ji, — &;)* <
ﬁ% + ﬁ%. In combination with Eq. (A11), we reach our
conclusion, &; 4 ¢7 < fif + i3

Case (b). In this case both ¢; and ¢; are negative. Without
loss of generality, we assume |¢,| > [¢;|, i.e., ¢; < C;.

Case (bl). 0>¢;>ji,. We have ;4 ¢7 <23 <
5 + B3

Case (b2). jiy, > ¢; > ji3. First, from ji, > ¢; > ji3, we
have

ﬂz—ﬂ3<ﬂ2+ﬂ3_asﬂz—ﬂ3‘ (A15)

) ! 2

Then, combining Eqs. (A4) and (AS), we have ¢; +
Cj 2 iy +ji3 (note that now both ¢; and c; are
negative), which leads to

G+ <+ (i+iz—¢)’.  (Al6)
Similar to case (a), we define a function,
i + I 2 i + 11 2
g(A) — u+ A + u_ A
2 2
= = \2
_ M oA, (A17)

that satisfies g(A;) < g(A,) for |A;| < |A,|. We re-
write ji3 + i3 and the rhs of Eq. (A16) as

—
¢+ (o +ﬁ3_5i)2:g<ﬂ2 2M3_Ei>’ (A18)

2 - Ho— H
ﬂ%ﬂt%:g( = 3)-

From Eq. (A15), the rhs of Eq. (A18) is smaller
than the rhs of Eq. (A19), which implies that ¢+
(fiy + 13 —¢;)? < ji5 + ji3. In combination with Eq. (A16),
we reach our conclusion & + & < fi5 + fi3.

Case (c). In this case we have no constraints on the sign
of ¢; and ¢;, so we enumerate all the possibilities.

Case (cl). Both ¢; and ¢; are positive. The proof in case
(a) only relies on the fact that both ¢; and ¢; are
positive; therefore, we have ¢} + &7 < iif + j13.

Case (c2). Both ¢; and ¢; are negative. The proof in case
(b) only relies on the fact that both ¢; and ¢; are
negative; therefore, we have ¢? + EJZ <@+

Case (c3). ¢; is positive while ¢; is negative. Then
|&i| <|i;| and |¢;] < |z, and we have &7 4-¢7 < uf + 3.

In summary, we have proven that the fictitious state

averaged in the diagonal basis gives the largest violation of
Bell’s inequality, B(p2¢) > B(p).

(A19)
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