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Abstract. We define new families of Tillich-Zémor hash functions, using
higher dimensional special linear groups over finite fields as platforms. The
Cayley graphs of these groups combine fast mixing properties and high girth,

which together give rise to good preimage and collision resistance of the corre-
sponding hash functions. We justify the claim that the resulting hash functions
are post-quantum secure.

1. Introduction. Hash functions obtained from families of expander graphs were
introduced by Charles-Lauter-Goren in [7], where they were in turn inspired by a
scheme of Tillich-Zémor [26]. Charles-Lauter-Goren considered specific families of
expander graphs discovered by Lubotzky-Phillips-Sarnak [15] and Pizer [17]. The
Charles-Lauter-Goren construction is quite general, and can be applied to any ex-
pander family in which finding cycles is hard, and thereby furnishes collision resis-
tant hash functions. Similar schemes have been proposed by several authors; see
[21, 6, 11], and [20] for a survey of this topic.

Interest in hash functions based on novel platforms fits into the context of re-
cent efforts to modernize existing hash functions, and to adapt them to the design
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and security of hash-based consensus mechanisms, most notably with respect to
blockchains [4], and especially in light of the recently proved practicality of finding
collisions in the SHA-1 hashing algorithm [19].

The general idea behind Tillich-Zémor hash functions is the following. Fixing a
base vertex, the input of the hash function is interpreted as a sequence of instruc-
tions, resulting in a non-backtracking path in a d-regular graph. The output of the
hash function is the endpoint vertex of the path. More precisely, the input is a
string of numbers in

[d− 1] := {1, 2, . . . , d− 1}

of arbitrary length, and the output is the vertex obtained by performing a simple
walk starting at a base vertex, using the elements of [d − 1] as transition data for
subsequent steps in the walk. See Definition 2.4 below for details.

A well-constructed hash function is an efficiently computable function which
enjoys two main features. The first is preimage resistance, which means that given
a point in the hash value, it is computationally hard to find an input that maps to
that hash value. The second, is collision resistance, which requires the problem of
finding distinct inputs with the same output to be computationally difficult.

The main goal of this paper is to propose a new Goren-Lauter-Charles–type
scheme, where the hash functions use Cayley graphs of the special linear groups
SLn(Fp) as platforms, where here p is prime and n ≥ 3. The restriction to the fields
Fp comes from the fact that the corresponding groups will be obtained as quotients
of SLn(Z). A crucial observation is that, in schemes using these groups as a platform,
the problem of finding a preimage or a collision corresponds to finding factorizations
of the identity matrix with prescribed factors. With this observation in hand, and by
taking into account recent work of Arzhantseva-Biswas [1] concerning the expanding
properties of the Cayley graphs of these groups, we offer a detailed study of the
security of our protocol. In particular, we have the following:

• Preimage resistance. In Proposition 2.3, we collect the expansion properties
the family of Cayley graphs {Gn,p}p of the groups SLn(Fp), where n ≥ 3 is
fixed and where p tends to infinity. Expansion in this family of graphs guaran-
tees good mixing properties, because under these conditions the random walk
gives a good approximation to the uniform distribution after O(log p) steps.

• Collision resistance. The strength of our hash function with respect to colli-
sion resistance is mainly based on the absence of small cycles in the Cayley
graphs of the underlying groups. In fact, Proposition 3.1 provides a lower
bound on the girth of the graphs {Gn,p}p on the order of log p. It follows that
a factorization of the identity, which is easily seen to be equivalent to finding
a collision for the hash function, is in turn equivalent to solving over a system
of n2 equations in a number of variables that is O(log p), over the field Fp. In
full generality, solving such systems of equations is NP-hard.

Replacing the problem of factoring the identity with the problem of factor-
ing an arbitrary group element yields a similar system of equations, lending
further evidence of resistance of the hash function to finding preimages; see
Section 3.2.

For n = 2, certain Cayley graphs of the groups PSL2(Fp) give rise to the cel-
ebrated Lubotzky–Phillips–Sarnak expander graphs [15], which were then used to
build hash functions in [7]. A successful collision attack (i.e. an efficient computa-
tion of a collision) was found in [28], by taking coefficients in Z[i] and then reducing
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to a system of equations of degree two. More recently, Sardari [18] attacked preim-
age resistance by designing a polynomial-time algorithm that represents a number
as a sum of four squares with some restricted congruence conditions. The essen-
tially different nature of higher dimensional special linear groups gives evidence of
additional security, and makes it likely that these attacks are far more difficult to
execute for the hash functions proposed here.

Considering symmetric generating sets enables us to employ results from the
theory of simple random walks in simplicial graphs. Nevertheless, the fact that we
restrict ourselves to non backtracking random walks precludes the use of multiplica-
tivity of the hash function, and thus complicates parallel computation. We discuss
these issues in Section 3.4.
Structure of the paper: In Section 2 we give the relevant group theoretic background,
define the hash functions, prove the expansion property of the Cayley graphs, and
exhibit concrete examples. In Section 3, we describe the various properties of our
scheme: namely, we relate free generation with a lower bound on the girth; we
then describe the role of polynomial equations in preimage finding and in collision
resistance. Finally, we discuss multiplicativity and parallel computing, showing that
the collision attack from Grassl et. al. [9] using palindromes does not break the
scheme presented here. Section 4 concludes the paper.

In Appendix A we provide a Python/Sage implementation of an instance of the
hash functions considered in the paper.

2. Definition of the hash functions. This section defines our hash functions
and exhibits concrete instances. We start by recalling some relevant background
material which will be essential in our construction and in the sequel.

2.1. Background about special linear groups. For general results about spe-
cial linear groups over finite fields, we refer the reader to Hall’s book [14]. In this
section we concentrate on a number of properties established by Arzhantseva-Biswas
in their article [1]. We summarize their results in the following theorem:

Theorem 2.1 (Arzhantseva-Biswas [1]). Let n ≥ 2 and let p a prime. Write
πp : SLn(Z) → SLn(Fp) for the canonical projection given by reduction modulo p.

There exist matrices Ã, B̃ ∈ SLn(Z) such that:

(i) There exists a prime p0 such that for all p ≥ p0, the matrices Ãp := πp(Ã)

and B̃p := πp(B̃) generate SLn(Fp).

(ii) If ⟨Ã, B̃⟩ is the subgroup generated by Ã and B̃ inside of SLn(Z), then ⟨Ã, B̃⟩
is isomorphic to F2, the free group of rank two.

(iii) The diameter of the Cayley graph Gn,p of SLn(Fp) with respect to {Ã±1
p , B̃±1

p }
is O(log p).

Observe that for n ≥ 3, items (i) and (ii) reflect the fact that the subgroup of

SLn(Z) generated by Ã and B̃ is usually a thin subgroup of SLn(R). The fact that

Ãp and B̃p generated the corresponding finite quotients for all but finitely many
values of p is a reflection of strong/superstrong approximation. In turn, item (iii)
implies that the girth of Gn,p is optimal, because the graphs {Gn,p}p form a family
of expander graphs (see Proposition 2.3 below).

Remark 2.2. When using the Cayley graphs Gn,p as a platform, we think of n as
being fixed and p as modulating the level of security, with the trade-off being that
the hash functions become more expensive to compute for large p.
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Possible choices for Ã and B̃ are given by:

Ã =



















1 a 0 0 . . . 0
0 1 a 0 . . . 0
0 0 1 a . . . 0
...

...
. . . a

0 0 0 0 . . . 1



















, B̃ =



















1 0 0 . . . 0
b 1 0 . . . 0
0 b 1 . . . 0
0 0 b . . . 0
...

...
...

0 0 0 . . . b 1



















∈ SLn(Z),

with a, b ≥ 2. These matrices will be crucial in the description of our hash function.

2.2. Expansion. For us to implement the Charles-Lauter-Goren approach, we
must take advantage of the good mixing properties of the expander graphs.

Proposition 2.3. For n ≥ 3 fixed and p → ∞, the sequence {Gn,p}p is a family of
expander graphs.

Sketch of proof. By item (i) of Theorem2.1, there exists a prime p0 such that for all

p ≥ p0, the matrices Ãp := πp(Ã) and B̃p := πp(B̃) generate SLn(Fp). Now, since
SLn(Z) has property (T) for n ≥ 3 [3], and SL2(Z) has property (τ) with respect
to the family of congruence subgroups[16], the proposition follows.

An immediate consequence of this proposition is that the random walk approxi-
mates the uniform distribution after O(log p) steps in the corresponding graph Gn,p,
as we will elaborate in Section 3.3. We note that in [6], random walks are conducted
on Cayley graphs with respect to non-symmetric generating sets, and thus their as-
ymptotic behavior is less clear. Similar issues arise in [25], since then hash values
could be restricted to a proper subgroup. As stated in [1], we note that one can
effectively compute the lower bound p0. No explicit bound on p0 has been given,
though by combining existing results one can probably prove that p need not be
very large, likely on the order of magnitude of n; see for instance [13, Appendix]
and [12, Theorem D]. Note that the larger the value of the prime p, the more secure
the hash function.

2.3. The general construction. We now use matrices given in [1] to define an
explicit family of hash functions.

Definition 2.4 (Special linear group based hash functions). Let n ≥ 3 and let p
be a prime number. Let a, b, ℓ ≥ 2 that satisfy:

• If n = 3, a ≡ 1(mod 3), b ≡ −1(mod 3) and ℓ = 4k for some positive integer
k.

• If n ≥ 4, there exists a prime q such that n ≡ a ≡ b ≡ 1(mod q) and ℓ is at
least 3(n− 1) and is of the form qk+1 + 1 for some integer k.

Consider the matrices Ã and B̃ from the previous section. In the following we
will denote A ≡ Ãℓ and B ≡ B̃ℓ.

We use the notation [k] to denote the set of integers from 1 to k, and [k]∗ to
denote the set of finite strings of integers in [k]. We now define the hash function
φ : [3]∗ → SLn(Fp). We start by choosing bijections

s : [4] → {A±1, B±1}, sλ : [3] → {A±1, B±1} \ s(λ)

for each λ ∈ [4].
Then, given

x = (xi)1≤i≤k ∈ [3]k,
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we have the following inductive definition:

• B1 = s1(x1),
• Bi = sλ(xi) with λ = s−1(B−1

i−1), for 2 ≤ i ≤ k.

Finally, we set φ(x) := B1 · · ·Bk ∈ SLn(Fp).

Remark 2.5. Note that Gn,p is 4–regular, so that after the first digit x1 of the
input x, there are exactly three non-backtracking edges in the graph by which to
proceed. The input x can thus be viewed as encoding a reduced word in the free
group F2. The lack of backtracking in the resulting walk on Gn,p is crucial for the
avoidance of collisions, as well as for the reduction of mixing time.

As stated in [1], the elements {A,B} generate a free subgroup of SLn(Z) and
generate SLn(Fp) for all but finitely many values of p, and these facts give rise to
strong preimage and collision resistance of the resulting hash functions.

2.4. A concrete example. We finish this section by describing a family of concrete
examples of hash functions, which are constructed for the specific values a = 4, b = 2
and ℓ = 4. We do not know what minimal value of n would ensure security.

Definition 2.6. Let p be a prime, and let

A =



















1 4 0 0 . . . 0
0 1 4 0 . . . 0
0 0 1 4 . . . 0
...

...
. . . 4

0 0 0 0 . . . 1



















4

, B =



















1 0 0 . . . 0
2 1 0 . . . 0
0 2 1 . . . 0
0 0 2 . . . 0
...

...
...

0 0 0 . . . 2 1



















4

∈ SLn(Fp),

Let s(1) = A, s(2) = B, s(3) = A−1, s(4) = B−1. We define the functions
{sλ}λ∈[4] as follows:

• s1(1) = B, s1(2) = A−1, s1(3) = B−1,
• s2(1) = A, s2(2) = A−1, s2(3) = B−1,
• s3(1) = A, s3(2) = B−1, s3(3) = B,
• s4(1) = A, s4(2) = A−1, s4(3) = B,

Given an input sequence x = {xi}i∈[1,k] ∈ [3]k, we inductively define:

• B1 = s1(x1)
• Bi = sλ(xi), with λ = s−1(B−1

i−1), for each k ∈ [2, k].

Then, the sequence x is hashed to the matrix:

φ(x) = B1 · · ·Bk.

Thus, we obtain a hash function for every n ≥ 3.

Example 2.7. With n = 3 we have:

A =





1 16 96
0 1 16
0 0 1



 , B =





1 0 0
8 1 0
24 8 1



 ∈ SL3(Fp),

For example, if we consider the sequence x = 2232221, following the procedure
above we obtain the sequence:

• B1 = s1(2) = A−1

• B2 = s1(2) = A−1, where we use the map s1 because B−1
1 = s(1),
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• B3 = s1(3) = B−1, where we use the map s1 because B−1
2 = s(1),

• B4 = s2(2) = A−1, where we use the map s2 because B−1
3 = s(2),

• B5 = s1(2) = A−1, where we use the map s1 because B−1
4 = s(1),

• B6 = s1(2) = A−1, where we use the map s1 because B−1
5 = s(1),

• B7 = s1(1) = B, where we use the map s1 because B−1
6 = s(1),

Finally, x is mapped to B1B2 . . . B7:

φ(x) = A−2B−1A−3B =





694190977 233260720 29297952
−38379648 −12896255 −1619792
1191936 400512 50305



 ∈ SL3(Fp).

We refer to Appendix A for a Python/Sage implementation of this example.

3. Properties of the constructed hash functions. In this section we use graph
and group-theoretic machinery to describe the security of the hash functions defined
above. We center our analysis on resistance to preimage and collision breaking. The
exposition is divided into five parts: first, we establish a lower bound in the girth
of the Cayley graphs of the group SLn(Fp) with respect to the generating system
{A±1

p , B±1
p }; second, we describe the consequences of girth bounds for collision

resistance; third, we investigate mixing properties of the suggested platform. Two
last subsections are devoted to multiplicativity properties of the hash function, and
showing that the so-called palindromic attack from [9] is inapplicable.

3.1. Free groups and girth. The following proposition is in the spirit of [6].

Proposition 3.1. Let A,B ∈ SLn(Z) such that the entries of A±1 and B±1 are
bounded in absolute value by a positive constant c. If A and B generate a free
subgroup of SLn(Z), then the girth of the Cayley graph of ⟨Ap, Bp⟩ ≤ SLn(Fp), with
respect to {A±1

p , B±1
p } is at least

⌊

log(p− 1)

log nc

⌋

.

Proof. For any reduced word w in A±1 and B±1, we write wZ (resp. wFp
) for the

projection of w to SLn(Z) (resp. SLn(Fp)). It follows by a straightforward induction
on k that, if w has length k, then the entries of wZ cannot exceed (nc)k in absolute
value. Now, let ℓ be the girth of the corresponding Cayley graph. Then, there exists
a nontrivial reduced word w of length ℓ such that wFp

= 1. It follows that wZ is
of the form 1 + pM , where M is an integer matrix. Since w is nontrivial and since
{A,B} generate a rank two free subgroup of SLn(Z), the matrix M is nonzero. We
conclude that wZ has an entry of absolute value at least p− 1. Since the entries of
wZ cannot exceed (nc)k in absolute value, we have that the length ℓ of w is bounded

below by ⌊ log(p−1)
lognc

⌋, and the desired conclusion holds.

3.2. Preimage and collision resistance, and post-quantum heuristics. We
now analyze the resistance of our model to finding preimages and to collisions.
Observe that finding a preimage of a particular hash value (resp. finding a collision
of hash values) is equivalent to finding a factorization of a given group element
(resp. of the identity) in SLn(Fp) with respect to the generating set. We note that
in general, Tillich–Zémor hash functions seem to have robust collision resistance;
see [24].
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The matrices Ap, Bp involved have order p, so a factorization can be seen as a
family of equations {(Em)}m≥0 with variables

k1, . . . , km, ℓ1, . . . , ℓm ∈ Fp

satisfying:

Ak1Bℓ1 . . . AkmBℓm = M, (Em)

for a given challenge M ∈ SLn(Fp). This problem is equivalent to attacking the
preimage resistance of the hash function. In the case whereM is the identity matrix,
this is equivalent to attacking the collision resistance. Note that there are trivial
solutions to preimage and collision breaking of the hash function, given that Ap

p is
the identity. Since the girth of Gn,p is O(log p), we consider nontrivial solutions to
preimage or collision breaking to be ones where

C1 log p ≤
m
∑

i=1

(ki + ℓi) ≤ C2 log p,

where C1 and C2 are positive constants depending on n but not on p. Note that
estimates for C1 and C2 can be produced, and that Proposition 3.1 furnishes an
estimate for C1, for instance. Sharp values for C1 and C2 are of relatively minor
consequence for us.

Each entry of the left-hand side matrix in equation (Em) is polynomial in

k1, . . . , km, ℓ1, . . . , ℓm.

Thus, the equation (Em), equivalent to attacking preimage of the hash function,
corresponds to a system of n2 multivariate polynomial equations over Fp.

Solving multivariate polynomial equations over a finite field is known to be NP-
hard [10], which suggests a good level of security. Moreover, the reduction to solving
multivariate polynomials, a class of hardness problems considered for standardiza-
tion by the NIST, provides a certain degree of confidence that the hash function is
post-quantum. We contrast this approach with schemes based on isogeny graphs,
which reduce to a more well-defined problem, albeit one not known to be NP-hard.

NP-hardness of a class of problems is a worst case complexity property, and for
certain NP-hard classes of problems, relatively simple and efficient algorithms can
find solutions in the vast majority of cases. Thus, NP-hardness of the underlying
problem is not a guarantee of post-quantum behavior of the hash function.

A more compelling case for the hash function to be post-quantum arises from
empirical difficulty of factoring in special linear groups over finite fields. For in-
stance, in [8], subexponential factorization algorithms were found for SL2(F2k), and
these were only found in 2011. These algorithms rely essentially on the fact that
the matrices are 2 × 2, and on the fact that the underlying field has characteristic
two. Thus, the methods do not generalize in any straightforward way to larger
dimensional special linear groups nor to fields with odd characteristic. In practice,
factoring matrices over finite fields is quite difficult, and implemented algorithms
are inefficient. Hardness appears to be optimized when the system of equations
resulting from (Em) is neither underdetermined nor overdetermined, i.e. when the
number of equations and variables is comparable. Thus, the larger the value of p
the more secure the hash function, at the expense of computational time and space,
and the balance of degrees of freedom and constraints occurs when n2 ∼ log p, or
in other words when n is approximately the square root of the logarithm of p. This
is precisely the balance to required so that the number of equations and number of



8 C. LE COZ, C. BATTARBEE, R. FLORES, T. KOBERDA AND D. KAHROBAEI

variables are comparable, as per the foregoing discussion. We may then expect the
factorization problem to take exponential time in the number of variables in this
case.

3.3. The mixing property. By the mixing property, we mean that the output
vertex of a random input — in our case a random walk — approaches the uniform
distribution on the hash space. When the random walk approaches the uniform
distribution quickly, mixing is observed even when the input messages have rela-
tively small length, say polynomial in log p. More precisely, we have the following
corollary of result of Alon-Benjamini-Lubetzky-Sodin [2], which characterizes the
rate at which a random walk on a graph converges to the uniform distribution in
terms of the spectral properties of its adjacency matrix:

Theorem 3.2. [2, Theorem 1.1, cf. proof of Theorem 1.3] Suppose d > 2. Let
X0, X1, . . . , Xℓ be a non backtracking random walk on a d–regular connected graph
G with N vertices. There is a constant C > 0 such that whenever ℓ ≥ C · logN we
have

|Pr(Xℓ = v)− 1/N | ≤ 1/N2,

for every vertex v of G.

Examining the proof given in [2], one finds that the rate of mixing depends not
so much on the graph G, but rather on the eigenvalues of the adjacency matrix of
G. Thus, if G is a member of a sequence {Gi}i∈N of expander graphs, we may take
the constant C in Theorem 3.2 to depend only on the expansion constant of the
family.

It is well-known that mixing properties are desirable in Tillich-Zémor hashing
schemes; see [7, 28]. As explained in [28], mixing is particularly relevant when the
hash functions are used in protocols whose security relies on the random oracle
model; see [5] for example of such protocols.

The probability that an attacker finds a collision is at least the probability given
by the birthday paradox, taking samples at random, which is minimized with the
uniform probability [22, Exercise 13.7].

The relevance of this approach depends on the distribution of possible messages
and in particular on how they are encoded, a question we do not address in the
present paper.

Surprisingly few mathematical statements addressing the relationship between
mixing and attacks are present in the literature; an example can be found in [23,
Theorem 3], in the context of commitment schemes. The following proposition is
an immediate consequence of the previous theorem and the discussion above:

Proposition 3.3. Let φ : [3]k → SLn(Fp) be the hash function of Definition 2.4,
and let N = | SLn(Fp)|. Then, there is a positive constant C such that, if k ≥
C · logN , and m is taken uniformly at random in [3]k, then we have

|Pr(φ(m) = M)− 1/N | ≤ 1/N2,

for every M ∈ SLn(Fp).

3.4. Multiplicativity and parallel computing. The hash functions considered
in this article take as input a string of integers in [3], convert each integer into a
matrix of the form {A±1, B±1}, and finally output the product of these matrices.

The fact that we require the underlying walk to be non-backtracking implies that
this mapping is not locally determined: a given digit in the string is mapped to a
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matrix that depends on the previous digits. This dependency can be dramatic: for
example, according to Definition 2.6 a sequence of the form 133 · · · 3 will be mapped
to the product B ·B ·B · · ·B, while a sequence of the form 333 . . . 3 will be mapped
to the product B−1 ·B−1 ·B−1 · · ·B−1. In particular, the last digit 3 of these two
strings can be mapped to different matrices, depending on the first digit in the
string. The endpoints of the corresponding walk in the Cayley graph may be far
away from each other.

As a consequence, the function φ need not be multiplicative under concatenation
of strings, which is generally a desirable feature for hash function. This lack of
multiplicativity makes it difficult to perform parallel computations with the given
hash functions, as we now investigate in more detail.

3.4.1. Good and bad tails. Recall that for a finite set X, the notation X∗ is used for
the set of finite length strings of elements of X. As before, the notation [3] denotes
the set {1, 2, 3}.

Definition 3.4. Let G be a finite group, generated by two elements A and B. Let
φ̃ : [3]∗ → {A±1, B±1}∗.

A string s ∈ [3]∗ is called a good tail with respect to φ̃ if there exists S ∈
{A±1, B±1} such that for every s′ ∈ [3]∗, the last letter of φ̃(s′s) is S, where here
s′s is the string obtained from the concatenation of s′ and s. A string which is not
a good tail is called a bad tail.

Local constraints in Definition 2.6, can be obtained by the following fact:

Fact 3.5. The function

φ̃ : {xi} ∈ [3]∗ 7→ {Bi} ∈ {A±1, B±1}∗

constructed in Definition 2.6 has the following good tails: 11, 31, 22, 32, 13 and 23.

Proof. It is straightforward to check that:

• any string ending in 11 or 31 outputs a string ending in A;
• any string ending in 22 or 32 outputs a string ending in A−1;
• any string ending in 13 outputs a string ending in B;
• any string ending in 23 outputs a string ending in B−1.

The following proposition shows that the mapping above is optimal.

Proposition 3.6. Special linear group based hash functions (Definition 2.4) admit
at most six good tails of length two.

The bound in Proposition 3.6 is sharp, as shown via the mappings from Definition
2.6. The proof of Proposition 3.6 will follow from the following lemma:

Lemma 3.7. Let

φ̃ : {xi} ∈ [3]∗ 7→ {Bi} ∈ {A±1, B±1}∗

be a special linear group based hash function (Definition 2.4), and let b ∈ [3]. Then,
there exists b′ ∈ [3] such that b′b is a bad tail with respect to φ̃.

Proof. The only freedom that we have in the construction of Definition 2.4 is how
we define the maps si. We call elements of {A±1, B±1} step matrices. Using φ̃,
we say that the elements of [3] are encoded by step matrices. We summarize the
definitions of the maps si in a table, with one row for each step matrix, and one
column for each element of [3]. Each cell from this tabular contains a step matrix.
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Figure 1. Description of the maps si in Definition 2.6

last step matrix 1 2 3
A−1 B A−1 B−1

B−1 A A−1 B−1

A A B−1 B
B A A−1 B

To use this table, start from a string {xi} ∈ [3]∗. Say that for some i > 1, we
want to find the step matrix associated with xi. Let S be the step matrix encoding
xi−1. Then, the step matrix encoding xi is the step matrix in the cell located in
the row labelled by S and in the column labelled by xi.

It follows from the definition of the maps si that for each step matrix S, the row
labelled by S contains exactly the three matrices in the set {A±1, B±1} \S−1. The
mapping from Definition 2.6 can be described as in Figure 1.

Moreover, since each matrix can actually be the last step matrix used, every
cell of the table can potentially be used. Fix an element b ∈ [3], and assume for a
contradiction that every integer b′ ∈ [3] has the property that b′b is a good tail. The
column corresponding to each b′ has to contain at least two different step matrices.
This implies that, in the row labelled by b, at least two cells contain the same step
matrix. Since this is true for each b′ ∈ [3], this implies in particular that there is a
step matrix S that is contained three times in the column labelled by b. The fourth
cell of this column cannot be part of the row labelled by S since this would give
rise to another S in a different column. This implies that the label S′ of this row
appears in a cell of another column. Additionally, this column contains a cell with
step matrix not equal to S′. Then, the label b′ ∈ [3] of this column gives us an
integer having the property that inputs ending by b′b can have either S or another
matrix as a final matrix. This is a contradiction and concludes the proof of the
lemma.

Proof of Proposition 3.6. From Lemma 3.7, to each integer of [3] corresponds at
least one bad tail, giving three different bad tails.

As remarked previously, Definition 2.6 shows that the estimate in Proposition 3.6
is sharp, and so that in some sense, we have found an optimal way of defining the
maps si.

3.4.2. Multiplicativity. It follows from the discussion of good and bad tails above
that multiplicativity of the hash function can be obtained by restricting to sequences
whose product ends with the matrix s(1)−1.

Fact 3.8. In Definition 2.6, we have φ(s1 ∗ s2) = φ(s1) · φ(s2), provided s1 ends
with 22 or 32.

3.4.3. Parallel computing. Multiplicativity of the hash function under suitable con-
ditions can be leveraged to compute its values by parallel computation. First, look
for good tail substrings, namely: 11, 31, 22, 32, 13 or 23. For generic messages,
one would expect such substrings to be quite common. Next, split the input imme-
diately following one of these strings, and apply a slightly modified hash function
(i.e. using the relevant si instead of s1 in the first matrix mapping). Finally, com-
pute the product of the hash outputs.
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Example 3.9. Say we want to hash the string 1321321323. Observe that:
1321321323. We thus compute: M1 = φ(13213) and M2 = φ′(21323), where φ′

is defined analogously to φ in Definition 2.6, apart from the fact that B1 is set
to be s4(x1) instead of s1(x1), since φ(13213) is a product ending by B. Finally,
φ(1321221323) = M1 ·M2.

3.5. Palindromic attacks. One of several proposals of hashing by walks on Cayley
graphs can be found in [27], wherein the Cayley graph is that of SL2(F2n). A
method for finding collisions for this hash function is presented in [9] (cf. [8]); we
argue that the attack does not apply in our case, though our evidence for this claim
is primarily empirical.

The idea of [9] is to find collisions on palindromes; that is, digit-string entries
that are invariant under reversing the order. To begin, one conjugates generators
of SL2(F2n) to obtain new generators which give rise to an isomorphic graph, but
which are symmetric matrices. That is, if the original generators are {A±1, B±1},

one finds a matrix C such that Â = CAC−1 and B̂ = CBC−1 are both symmetric
matrices.

We first note that in our case, finding C is not easy; for SL3(5) and SL3(7),
about 0.02% of the elements satisfy this criterion. Moreover, there is no obvious
way to compute C; attempts to calculate the entries of such a matrix directly have
proved resistant to equation solving methods in standard computer algebra systems
- indeed, this approach is actually less efficient than just checking all possible matri-
ces. Therefore, we do not have much data for larger primes, since the naive method
used to find a suitable matrix C quickly becomes computationally infeasible.

Provided one can find a matrix C, it follows that collisions in the hash function
with respect to Â, B̂ as generators are exactly the collisions with A,B as generators;
one can therefore rename the matrices Â, B̂ as A,B. One then proceeds according
[9, Lemma 1]: upon input of a palindromic string v, the output of the product of
conjugated generators in SL2(F2n) will always be a symmetric matrix.

Since our hash function requires avoidance of backtracking in the walk, we are not
guaranteed a palindromic matrix product from a palindromic input string; however,
since one could reverse-engineer the necessary input to obtain a palindromic matrix
product, we proceed to discuss palindromic matrix products without reference to
hash function.

It turns out, as one may check easily by induction, that a palindromic product
in symmetric generators will itself be symmetric. The ultimate goal of [9] is to use
this fact to demonstrate that the function

ρ : M 7→ AMA+BMB,

where M is a palindromic product, outputs a matrix populated with either zeroes
or the square of a field element appearing as an entry in M . One then employs
number theoretic tricks to force the nonzero elements to 0 in M and thus to obtain
ρ(M) = 0. One thus builds distinct palindromic decompositions of the same matrix.

Consider the generators from Definition 2.6 over SL3(F11). Transforming these
generators with respect to the matrix
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C =





2 6 10
5 3 10
2 3 3



 ,

one checks that the palindrome M = ABABA is such that

M =





7 4 2
4 0 6
2 6 6



 , ρ(M) =





2 1 5
1 1 7
5 7 7



 .

In particular, for each i ∈ [10], the matrix ρ(M) contains an entry that is not the
ith power of any entry of M . This furnishes evidence that for p = 11, there is little
hope of extending [9, Corollary 1] to our context; we argue that the lack of closed
form of transformed generators in general, the difficulty of finding them for larger
parameters, and this example with a small value of p, conspire to provide strong
evidence that the approach will fail in general.

4. Conclusions. We have presented new Tillich-Zémor hash functions, with plat-
forms Cayley graphs of SLn(Fp) for n ≥ 3. We show that choosing appropriate
generating matrices produces graphs without small cycles, and having a quick mix-
ing property, both of which are highly desirable for preimage and collision resis-
tance. Moreover, flexibility of choice of generating matrices and of the dimension
n gives the option of increasing the complexity of attacks. Future work includes
the exact computation of the spectral gap and the prime p0 (cf. item (i) of The-
orem 2.1). Moreover, simulations should be carried out in order to compare with
other existing schemes and determine the optimal values of p and n to be taken in
implementations.
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Appendix A. Implementation of the hash function. In this appendix, we
provide an implementation of the hash function given in Example 2.7.

from sage.all import *

# a 1024 bits random prime p

nbits = 1024

p = random_prime(2 ** nbits , lbound = 2 ** (nbits-1))

assert is_prime(p)

# definition of the matrices A, B and their inverses

A = matrix(GF(p),[[1, 16 , 96], [0, 1, 16], [0, 0, 1]])

Ainv = A ** (-1)

B = matrix(GF(p),[[1, 0, 0], [8, 1, 0], [24 , 8, 1]])

Binv = B ** (-1)

# identification between digits (in base 4) and matrices

s = [A, B, Ainv , Binv]

sigma = [[B, Ainv , Binv], [A, Ainv , Binv], [A, Binv , B], [A, Ainv , B]

]

# definition of the hash function

def hash(string):

# input must be a string

# the only characters allowed are ’1’, ’2’ and ’3’

out = identity_matrix(GF(p), 3)

inv_prec = A

for k in range(len(string)):

i = s.index(inv_prec)

step_matrix = sigma[i][int(string[k])-1]

inv_prec = step_matrix **(-1)

out = out * step_matrix

return out

# test of the example given in the paper

string = ’2232221 ’

assert hash(string) == matrix(GF(p),

[[694190977 , 233260720 , 29297952],

[-38379648 , -12896255 , -1619792],

[1191936 , 400512 , 50305]])
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