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Abstract. The purpose of this article is to give a characterization of families

of expander graphs via right-angled Artin groups. We prove that a sequence

of simplicial graphs {Γi}i∈N forms a family of expander graphs if and only if a
certain natural mini-max invariant arising from the cup product in the coho-

mology rings of the groups {A(Γi)}i∈N agrees with the Cheeger constant of the

sequence of graphs, thus allowing us to characterize expander graphs via co-
homology. This result is proved in the more general framework of vector space

expanders, a novel structure consisting of sequences of vector spaces equipped

with vector-space-valued bilinear pairings which satisfy a certain mini-max
condition. These objects can be considered to be analogues of expander graphs

in the realm of linear algebra, with a dictionary being given by the cup product
in cohomology, and in this context represent a different approach to expanders

that those developed by Lubotzky-Zelmanov and Bourgain-Yehudayoff.

1. Introduction

Expander graphs, which are infinite sequences of graphs of bounded valence
which are uniformly difficult to disconnect, are of fundamental importance in dis-
crete mathematics, graph theory, knot theory, network theory, and statistical me-
chanics, and have a host of applications in computer science including to probabilit-
stic computation, data organization, computational flow, amplification of hardness,
and construction of hash functions [6, 13, 16]. Many constructions of graph ex-
pander families are now known, though originally explicit constructions were few
despite the fact that their existence is relatively easy to prove through probabilistic
methods (see [23, 1, 26] for discussions of both explicit and probabilistic construc-
tions).

In this paper, we provide a new perspective on graph expander families that
relates them to fundamental objects in geometric group theory, and which allows
them to be probed in a novel way through linear algebraic methods. In particular,
we characterize families of expander graphs through their associated right-angled
Artin groups, and in the process define the notion of vector space expander families.

Recall that a simplicial graph (sometimes known in the literature as a simple
graph) is an undirected graph with no double edges between any pair of vertices
and with no edges whose source and target coincide. If Γ is a finite simplicial graph
with vertex set Vert(Γ) and edge set Edge(Γ), we define the right-angled Artin group
on Γ by

A(Γ) = 〈Vert(Γ) | [vi, vj ] = 1 if and only if {vi, vj} ∈ Edge(Γ)〉.
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It is well-known that the isomorphism type of a finite simplicial graph is uniquely
determined by the corresponding right-angled Artin group, and thus all the combi-
natorial properties one may assign to Γ should be reflected in the intrinsic algebra
of A(Γ) [10, 28, 22, 21].

If A(Γ) is given via a presentation as above (as opposed to as an abstract group),
then there is a trivial way to pass between the graph Γ and elements of the group
A(Γ). Indeed, the vertices of Γ are then identified with the generators in the
presentation, and the adjacency relation in Γ is exactly the commutation relation
among generators of A(Γ). The problem with this perspective is that a choice of
generators of A(Γ) is not canonical. For instance, it is possible to find a generating
set of A(Γ) that such that commutation relations between generators have nothing
to do with the combinatorics of Γ. The point of this paper is to translate between
the combinatorics of Γ and the algebraic structure of A(Γ) in a way that is intrinsic
to A(Γ). Specifically, we wish to characterize graph expander families in a canonical
algebraic way, and in particular without any reference to specific generators of the
right-angled Artin group. Some examples of this principle are as follows:

(1) A(Γ) decomposes as a nontrivial direct product if and only if Γ is a non-
trivial join [29].

(2) A(Γ) decomposes as a nontrivial free product if and only if Γ is disconnnected [4,
21].

(3) A(Γ) contains a subgroup isomorphic to a product F2 × F2 of nonabelian
free groups if and only if Γ has a full subgraph which is isomorphic to a
square [18, 19].

(4) The poly-free length of A(Γ) is two if and only if Γ admits an independent
set D of vertices such that every cycle in Γ meets D at least twice [15].

(5) A(Γ) is obtained from infinite cyclic groups through iterated free products
and direct products if and only if Γ contains no full subgraph which is
isomorphic to a path of length three [19, 20].

(6) A(Γ) is a semidirect product of two free groups of finite rank if and only if
Γ is a finite tree or a finite complete bipartite graph [15].

(7) There is a finite nonabelian group acting faithfully on A(Γ) by outer auto-
morphisms if and only if Γ admits a nontrivial automorphism [11].

(8) A graph Γ with n vertices is k–colorable if and only if there is a surjective
map

A(Γ)→
k∏

i=1

Fi,

where for 1 ≤ i ≤ k the group Fi is a free group of rank mi, and where∑k
i=1mi = n [12].

In this paper, we develop this dictionary by characterizing graph expander fami-
lies through the intrinsic algebra of right-angled Artin groups. Recall that a family
{Γi}i∈N of finite graphs is called a graph expander family if the number of ver-
tices in Γi tends to infinity as i tends to infinity, if the valence of each vertex
of Γi is bounded independently of i, and if a certain isoperimetric invariant called
the Cheeger constant (or expansion constant) of each Γi is uniformly bounded away
from zero. We refer the reader to Section 2 for precise definitions. We remark that
in general, graph expander families are not assumed to consist of simplicial graphs,
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though for the purposes of the algebraic dictionary we develop here, we will re-
tain a blanket assumption that all graphs under consideration are simplicial unless
explicitly noted otherwise.

The main result of the present paper is to give an intrinsic algebraic charac-
terization of graph expander families via right-angled Artin groups, without any
reference to distinguished generating sets. In order to achieve this, one must define
a certain analogue hV of the Cheeger constant that can be described from the data
of the right-angled Artin group. This constant is constructed in terms of the triple

{(H1(A(Γ), L), H2(A(Γ), L),^)},
where Hi(A(Γ), L) is the ith cohomology group of A(Γ) with coefficients in a field
L, and ^ the cup product restricted to H1(A(Γ), L) (see 2.2.1). The following
result, which is a central pillar of this paper, establishes the link between the two
versions of the Cheeger constant:

Proposition 1.1 (cf. Theorem 4.1). Let Γ be a finite simplicial graph, let hΓ denote
the Cheeger constant of Γ, and let hV denote the Cheeger constant of the triple

{(H1(A(Γ), L), H2(A(Γ), L),^)}.
Then hΓ = hV .

Proposition 1.1 is the key in establishing a group-theoretic description of ex-
pander graphs. Our main result is therefore as follows:

Theorem 1.2. Let {Γi}i∈N be a family of finite simplicial graphs, let {A(Γi)}i∈N
denote the corresponding family of right-angled Artin groups, and let L be an arbi-
trary field. Then {Γi}i∈N is a graph expander family if and only if:

(1) The rank (i.e. size of the smallest generating set) of A(Γi) tends to infinity
as i tends to infinity.

(2) The rank of the centralizer of each nontrivial element of A(Γi) is bounded
independently of i.

(3) The Cheeger constant of the family

{(H1(A(Γi), L), H2(A(Γi), L),^)}i∈N
is bounded away from zero.

This result is proved in the more general framework of vector space expanders
(with a precise definition in Subsection 2.2 below). This is a certain sequence of
triples {(Vi,Wi, qi)}i∈N, each of which is defined over a fixed field L, where each
Vi is a finite dimensional vector space such that dimVi → ∞ as i → ∞. Each Wi

is an L–vector space, and qi is a symmetric or anti-symmetric Wi–valued bilinear
pairing on Vi. The family {(Vi,Wi, qi)}i∈N is a vector space expander family if the
pairings {qi}i∈N satisfy certain linear algebraic criteria called bounded qi–valence
and bounded Cheeger constant in a uniform way. As mentioned already, the Cheeger
constant is defined generally for the data (V,W, q) (see Subsection 2.2 for details).

In this context, the previous theorem can be restated succinctly as follows:

Theorem 1.3. Let {Γi}i∈N be a family of finite simplicial graphs, and let {A(Γi)}i∈N
denote the corresponding family of right-angled Artin groups. Then {Γi}i∈N is a
graph expander family if and only if

{(H1(A(Γi), L), H2(A(Γi), L),^)}i∈N
is a vector space expander family.
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Observe that connectedness of the graphs in the family is not assumed as a
hypothesis of the stated theorems, nor shall it be for us in the definition of a
graph expander family. Instead, connectedness of the graphs in both cases is a
consequence of the Cheeger constant being nonzero. We remark that whereas the
cohomology vector spaces of a right-angled Artin group depend on the field over
which they are defined, the property of being a graph expander family or a vector
space expander family is independent of the choice of field. As a further remark
concerning the fields occurring in the previous results, it will become apparent to
the reader that not only can L be arbitrary, but it need not be fixed as the index
i varies. Indeed, the numerical invariants used to define vector space expanders
are all either related to the non-degeneracy of the bilinear pairing or to dimension,
both of which are blind to the intrinsic structure of the field of definition.

The Cheeger constant of a finite graph is an invariant that is computable from
the adjacency matrix of the graph. The Cheeger constant of a vector space equipped
with a pairing is less obviously computable, since its definition quantifies over all
subspaces of up to half the dimension of the ambient space (see Subsection 2.2
below). However, the reader will note that the methods in Section 4 are explicit
and constructive, and they do in fact effectively yield the Cheeger constant of the
relevant vector spaces.

The notion of a vector space expander family is more flexible than that of a
graph expander family, and we will illustrate this with an example of a vector
space expander family which does not arise from the cohomology of the right-
angled Artin groups associated to a graph expander family. This is a reflection of
the relatively lax hypotheses on the input data of a vector space expander family.
For instance, the vector space valued bilinear pairing is more or less arbitrary other
than being assumed to be (anti)–symmetric, which relaxes much of the inherent
structure of the cup product on the cohomology of a right-angled Artin group. The
authors expect that the flexibility of vector space expanders will contribute to their
applicability.

There is another linear-algebraic version of expanders, called dimension ex-
panders, which were proven to exist by Lubotzky–Zelmanov in the case of charac-
teristic zero fields [27], and by Bourgain–Yehudayoff in the case of finite fields [3, 2].
Here, one considers a finite dimensional vector space V and a collection of k linear
maps {Ti : V → V }1≤i≤k. This data is called an ε–dimension expander if for all
subspaces W ⊂ V of dimension at most half of that of V , the dimension of

W +

k∑
i=1

Ti(W )

is at least (1+ε) dimW . The construction of dimension expanders (with ε bounded
away from zero, k bounded above, and the dimension of V tending to infinity) is
much harder over finite fields than over fields of characteristic zero, whereas the
constructions in the present paper are independent of the base field. One bridge
between graph expander families and dimension expanders arises from interpre-
tation of regular graphs of even valence as Schreier graphs, from which one can
use finitary versions of Kazhdan’s property (T) to construct the suitable linear
maps. The authors do not know how to relate dimension expanders to vector space
expanders, since a general right-angled Artin group does not usually admit any
natural endomorphisms of its first cohomology.
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The paper is organized as follows. Section 2 introduces the definitions of the
objects considered in this paper. Section 3 discusses the cohomology of right-angled
Artin groups, and the circle of ideas relating connectedness of graphs, pairing–
connectedness, q–valence, graph valence, and ranks of centralizers of elements in
a right-angled Artin group. Section 4 establishes the main technical result of the
paper, namely that the linear-algebraic Cheeger constant associated to a vector
space with an (anti)–symmetric bilinear pairing agrees with the Cheeger constant
of a finite simplicial graph in the case that the vector space is the first cohomology
of the right-angled Artin group on the graph, and the bilinear pairing is the cup
product. Section 5 builds an example of a vector space expander family not arising
from the cohomology of right-angled Artin groups on a graph expander family.

2. Graph and vector space expanders

In this section, we recall some relevant facts about graph expander families and
define vector space expander families.

2.1. Graph expander families. The literature on graph expander families and
their applications is enormous. The reader may consult [16, 24, 26, 23] and the
references therein, for example. For the sake of brevity, we will only discuss the
combinatorial definition of an expander family.

Let Γ be a finite graph, not necessarily simplicial, with vertex set Vert(Γ) and
edge set Edge(Γ). We assume that Γ is undirected. If A ⊂ Vert(Γ), we write ∂A
for the neighbors of A. That is, ∂A consists of the vertices of Vert(Γ) which are not
contained in A but which are adjacent to a vertex in A.

If in addition |A| ≤ |Vert(Γ)|/2, we consider the isoperimetric invariant

hA =
|∂A|
|A|

.

The Cheeger constant hΓ is defined to be

hΓ = min
A
hA,

where the minimum is taken over all subsets of Vert(Γ) satisfying |A| ≤ |Vert(Γ)|/2.
Let {Γi}i∈N be a sequence of connected graphs such that |Vert(Γi)| → ∞, such

that each vertex in Γi has valence which is bounded independently of i. We say
that {Γi}i∈N is a graph expander family if infi hΓi

> 0.
We note that as is well known, the bound infi hΓi

> 0 makes any connectivity
assumption of the graphs {Γi}i∈N redundant. Indeed, if Γ is disconnected then
there is a component Λ of Γ that contains at most half of the vertices of Γ. Setting
A = Vert(Λ), we obtain ∂A = ∅, and so hΓ = 0.

2.2. Vector space expander families. Throughout this section and for the rest
of the paper, we fix a field L over which all vector spaces will be defined. All
bilinear pairings are assumed to be symmetric or anti-symmetric, so that for all
suitable vectors v and w, we have q(v, w) = ±q(w, v). Our reasons for adopting this
assumption are that it mirrors an intrinsic property of the cup product pairing, and
because otherwise the orthogonal complement of F may be asymmetric depending
on which side it is defined. An asymmetric orthogonal complement would result in
an unnecessary layer of subtlety and complication that would not enrich the theory
at hand.
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2.2.1. The Cheeger constant. Let V be a collection {(Vi,Wi, qi)}i∈N of finite dimen-
sional vector spaces Vi equipped with vector space valued bilinear pairings

qi : Vi × Vi →Wi.

The Cheeger constant of V is defined by analogy to graphs. To begin, let V be
a fixed finite dimensional vector space and let

q : V × V →W

be a vector space valued bilinear pairing on V . Let F ⊂ V be a vector subspace
such that 0 < dimF ≤ (dimV )/2. We write C for the orthogonal complement of
F in V , so that

C = {v ∈ V | q(f, v) = 0 for all f ∈ F}.
Clearly C is a vector subspace of V . The Cheeger constant of F is defined to be

hF =
dimV − dimF − dimC + dim(C ∩ F )

dimF
.

The Cheeger constant of V is defined by

hV = inf
dimF≤(dimV )/2

hF .

We will call hV the Cheeger constant of the triple (V,W, q). We will suppress W
and q from the notation for the Cheeger constant if no confusion can arise.

We note that whereas the Cheeger constant hV may appear strange at first, it
is defined in such a way as to reflect the Cheeger constant of a graph. To see this
last statement illustrated more explicitly, see Lemma 4.2.

2.2.2. The q–valence of a vector space. Let V be a finite dimensional vector space,
and let q be a vector space valued bilinear pairing on V . If ∅ 6= S ⊂ V and B is a
basis for V , we write

dB(S) = max
s∈S
|{b ∈ B | q(s, b) 6= 0}|, d(S) = min

B a basis
dB(S), d(V ) = min

S spans V
d(S).

We call d(V ) the q–valence of V .

2.2.3. Pairing–connectedness. Let V and q be as before. We say that V is pairing–
connected if whenever V ∼= V0 ⊕ V1 is a nontrivial direct sum decomposition of V ,
then there are vectors v0 ∈ V0 and v1 ∈ V1 such that q(v0, v1) 6= 0.

2.2.4. Defining vector space expanders. We are now ready to give the definition of
a vector space expander family.

Definition 2.1. We say that V is a vector space expander family if the following
conditions are satisfied:

(1) We have

lim
i→∞

dimVi =∞.

(2) There exists an N such that for all i, we have d(Vi) ≤ N .
(3) We have

h = inf
i
hVi > 0.
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The reader may note that the first condition is analogous to the requirement
that the number of vertices in a family of expander graphs tends to infinity. The
second condition is analogous to the finite valence condition in a family of expander
graphs.

As with the connectedness assumption for graph expander families, the pairing–
connectedness of a vector space V is a formal consequence of hV > 0. Precisely, we
have the following.

Proposition 2.2. Let (V,W, q) be as above, and suppose hV > 0. Then V is
pairing–connected.

Proof. Suppose the contrary, so that V = V0 ⊕ V1 is a nontrivial splitting of
V witnessing the failure of pairing–connectedness. Without loss of generality,
dimV0 ≤ dimV/2. Set F = V0. Note then that V1 ⊂ C, the orthogonal com-
plement of F . If C ∩ F 6= 0 then dimC ≥ dimV1 + dim(C ∩ F ). It follows that

dimV − dimF − dimC + dim(C ∩ F ) ≤ dimV − dimV0 − dimV1 = 0,

which proves the proposition. �

As we will show in Section 3, pairing–connectedness for the triple

(H1(A(Γ), L), H2(A(Γ), L),^)

is equivalent to connectedness of Γ.

3. Cohomology, q–valence and pairing–connectedness

In this section we establish a generator-free characterization of bounded valence
in a graph through cohomology of the corresponding right-angled Artin group.

3.1. The cohomology ring of a right-angled Artin group. A general refer-
ence for this section is [21], for instance. Let Γ be a finite simplicial graph and
A(Γ) the corresponding right-angled Artin group. The group A(Γ) is naturally the
fundamental group of a locally CAT(0) cube complex, called the Salvetti complex
S(Γ) of Γ. The space S(Γ) is a classifying space for A(Γ), so that

H∗(S(Γ), R) ∼= H∗(A(Γ), R)

over an arbitrary ring R. The complex S(Γ) can be built from the unit cube in
R|Vert(Γ)|, with the coordinate directions being identified with the vertices of Γ. One
includes the face spanned by a collection of edges if the corresponding vertices span
a complete subgraph of Γ. Finally, one takes the image inside R|Vert(Γ)|/Z|Vert(Γ)|,
so that S(Γ) is a subcomplex of a torus.

With this description, it is clear that one can build S(Γ) out of a collection of tori
of various dimensions, one for every complete subgraph of Γ, and by gluing these
tori together along distinguished coordinate subtori. The reader may compare with
the description of the Salvetti complex given in [7].

Let L be a field, viewed as a trivial A(Γ)–module. We have that

H∗((S1)n, L) ∼= Λ(Ln),

the exterior algebra of Ln. Via Poincaré duality, coordinate subtori of tori mak-
ing up S(Γ) give rise to preferred cohomology generators in various degrees of the
exterior algebra, and the gluing data of the subtori determines how the exterior al-
gebras corresponding to complete subgraphs assemble into the cohomology algebra
of S(Γ).
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To give slightly more detail, let Λ ⊂ Γ be a subgraph. For us, a subgraph is
always full, in the sense that if λ1, λ2 ∈ Vert(Λ) and {λ1, λ2} ∈ Edge(Γ) then
{λ1, λ2} ∈ Edge(Λ). Full subgraphs are sometimes called induced. It is a well-
known and standard fact that A(Λ) is naturally a subgroup of A(Γ) [7]. It is not
difficult to see that A(Λ) is in fact a retract of A(Γ). The homology of A(Γ) is easy
to compute from the Salvetti complex, and the cohomology with trivial coefficients
in a field can be easily computed using the Universal Coefficient Theorem. Each
complete subgraph Λ of Γ gives an exterior algebra as a subring of H∗(A(Γ), L)
via pullback along the retraction map A(Γ)→ A(Λ), and a dimension count shows
that this accounts for all the cohomology of A(Γ).

We are mostly concerned with H1(A(Γ), L) and H2(A(Γ), L), together with the
cup product pairing on H1(A(Γ), L). We remark that the cohomology of right-
angled Artin groups and related groups with nontrivial coefficient modules has
been investigated extensively (see [9, 17] for example), but for our purposes we do
not need any machinery beyond trivial coefficients. The next proposition follows
easily from the description of the cohomology of the Salvetti complex above, and
from the structure of exterior algebras.

Proposition 3.1. Let Γ be a finite simplicial graph.

(1) We have isomorphisms of vector spaces:

H1(A(Γ), L) ∼= L|Vert(Γ)|, H2(A(Γ), L) ∼= L|Edge(Γ)|.

(2) There is a basis {v∗1 , . . . , v∗|Vert(Γ)|} for H1(A(Γ), L) which is in bijection

with the set {v1, . . . , v|Vert(Γ)|} of vertices of Γ, and there is a basis {e∗1, . . . , e∗|Edge(Γ)|}
of H2(A(Γ), L) which is in bijection with the set {e1, . . . , e|Edge(Γ)|} of edges
of Γ.

(3) The bases in the previous item can be chosen to have the following property:
if e = {vi, vj} ∈ Edge(Γ) then v∗i ^ v∗j = ±e∗, and if {vi, vj} /∈ Edge(Γ)
then v∗i ^ v∗j = 0.

If {e1, . . . , es} denotes the set of edges of Γ, then Proposition 3.1 implies that
H2(A(Γ)) is generated (over any field) by the dual vectors {e∗1, . . . , e∗s}, and that
these vectors are linearly independent. We fix the basis {e∗1, . . . , e∗s} for H2 once
and for all, so that if d is a 2–cohomology class then

d =

s∑
i=1

λie
∗
i .

With respect to this fixed basis, we call the elements e∗i for which λi 6= 0 the
support of d, so that d is supported on the e∗i for which λi 6= 0. We will also fix
the basis {v∗1 , . . . , v∗|Vert(Γ)|} for H1 once and for all, and all computations involving

cohomology classes will implicitly be with respect to these bases unless explicitly
noted to the contrary.

3.2. Centralizers in right-angled Artin groups. Recall that a graph J is called
a join if its complement is disconnected. Equivalently, there are two nonempty
subgraphs J1 and J2 of J which partition the vertices of J , and such that every
vertex in J1 is adjacent to every vertex in J2. We write J = J1 ∗ J2.

Let Γ be a finite simplicial graph and let 1 6= x ∈ A(Γ) be a nontrivial element,
which is expressed as a word in the vertices {v1, . . . , v|Vert(Γ)|} of Γ and their in-
verses. We say that x is reduced if it is freely reduced with respect to the operation
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of commuting adjacent vertices. That is, x cannot be shortened by applying moves
of the form:

• Free reduction: · · · a · v±1
i v∓1

i · b · · · −→ · · · a · b · · · ;
• Commutation of adjacent vertices: · · · v±1

i v±1
j · · · −→ · · · v

±1
j v±1

i · · · , pro-

vided {vi, vj} spans an edge of Γ.

An element of A(Γ) is nontrivial if and only if it cannot be reduced to the identity
via applications of these two moves [5, 8, 14]. We say that x is cyclically reduced if
all cyclic permutations of x are also freely reduced. The centralizer of x is described
by a theorem of Servatius [29]:

Theorem 3.2. Suppose that x is nontrivial, cyclically reduced, and has non-cyclic
centralizer. Then there is a join J = J1∗J2∗· · ·∗Jn ⊂ Γ such that x ∈ A(J) < A(Γ),
and such that Ji does not decompose as a nontrivial join for 1 ≤ i ≤ n. Moreover:

(1) The element x can be uniquely represented as a product x1x2 · · ·xn where
xi ∈ A(Ji).

(2) Up to re-indexing, the centralizer of x is given by

Zk ×A(Jk+1)× · · · ×A(Jn),

where xi is nontrivial for i ≤ k and trivial for i > k.

Let J = J1 ∗J2 ∗ · · · ∗Jn be a join and let v be a vertex in J1. Then v is adjacent
to each vertex of Ji for i ≥ 2, whence it follows that the valence of v is at least

n∑
i=2

|Ji|.

The following consequence is now straightforward:

Corollary 3.3. Let N denote the maximum valence of a vertex in Γ and let R(x)
denote the rank of the centralizer of a nontrivial element of x ∈ A(Γ). Then

N + 1 = max
16=x∈A(Γ)

R(x).

In Corollary 3.3, the rank of a group is the minimal cardinality of a set of
generators.

Remark 3.4. Note that Corollary 3.3 gives an intrinsic bound on valence of ver-
tices in the defining graph of a right-angled Artin group without any reference to a
set of generators.

3.3. Centralizers and q–valence. Let L be a fixed field. In this subsection we
prove the following linear algebraic version of valence in a graph:

Lemma 3.5. Let V = H1(A(Γ), L), let W = H2(A(Γ), L)}, and let q denote the
cup product pairing

^ : H1(A(Γ), L)×H1(A(Γ), L)→ H2(A(Γ), L)

Then the q–valence d(V ) coincides with the maximum valence of a vertex in Γ.

Proof. We write d(Γ) for the maximum valence of a vertex in Γ. Let

B = S = {v∗1 , . . . , v∗|Vert(Γ)|}
be the basis for V furnished by Proposition 3.1. Then clearly

d(Γ) = max
s∈S
|{b ∈ B | q(s, b) 6= 0}|,
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whence it follows that d(V ) ≤ d(Γ).
We now consider the reverse inequality. Note first that we need only consider

sets S which are bases for V , since if B is fixed and if S ⊂ S′ then dB(S) ≤ dB(S′).
Let S be an arbitrary basis for V , and let v1 be the vertex of Γ with highest

valence. If s ∈ S then we may write s in terms of the basis {v∗1 , . . . , v∗|Vert(Γ)|}. Since

S forms a basis for V , there is some s ∈ S such that the corresponding coefficient
for v∗1 is nonzero. We fix such an s for the remainder of the proof.

Write {w1, . . . , wk} for the vertices of Γ which are adjacent to v1, with corre-
sponding duals {w∗1 , . . . , w∗k}, and let B be another arbitrary basis for V . Observe
first that q(v∗1 , w

∗
i ) 6= 0 for {1 ≤ i ≤ k}. Moreover, the set

{q(v∗1 , w∗i )}1≤i≤k
is linearly independent in W . It follows that the set

{q(s, w∗i )}1≤i≤k
is linearly independent in W .

Thus, we may consider the linear map

qs : V →W

given by qs(v) = q(s, v). Clearly this is a linear map and its image is a vector sub-
space of W . The considerations of the previous paragraph show that the dimension
of qs(V ) is at least k, which coincides with the valence of v1 and hence with d(Γ).
Suppose that there were fewer than k elements b ∈ B for which q(s, b) 6= 0. Then
qs(B) ⊂ W would span a subspace of dimension strictly less than k. However, B
is a basis, so that the span of qs(B) coincides with qs(V ), which is a contradic-
tion. Thus, we have that dB(S) ≥ d(Γ). Since B and S were arbitrary, we have
d(V ) ≥ d(Γ). �

3.4. Pairing–connectedness. In this subsection, we show that pairing–connectedness,
which was already shown to be implied by positive Cheeger constant hV > 0 by
Proposition 2.2, is equivalent to the connectedness of Γ under the assumptions

V = H1(A(Γ), L), W = H2(A(Γ), L), q =^ .

Lemma 3.6. Let Γ be a finite simplicial graph, let V = H1(A(Γ), L), and let q be
the cup product pairing on V . The vector space V is pairing–connected if and only
if the graph Γ is connected.

Proof. Let {v1, . . . , vn} be the vertices of Γ, so that the dual vectors {v∗1 , . . . , v∗n}
form a basis for V . Suppose that Γ is not connected. Then after reindexing, we
may write B0 = {v∗1 , . . . , v∗j } and B1 = {v∗j+1, . . . , v

∗
n} with j < n, and where there

is no edge in Γ of the form {vi, vk} with i ≤ j and k > j. We let V0 be the span of
B0 and V1 be the span of B1. Note that V = V0 ⊕ V1. It is clear that if w0 ∈ V0

and w1 ∈ V1 then q(w0, w1) = 0, so that V is not pairing–connected.
Conversely, suppose that Γ is connected, and suppose that V ∼= V0 ⊕ V1 is an

arbitrary nontrivial direct sum decomposition. We assume for a contradiction that
for all pairs w0 ∈ V0 and w1 ∈ V1, we have q(w0, w1) = 0. We argue by induction
that either V0 = 0 or V1 = 0, using a sequence {b1, . . . , bm} of vertices of Γ, such
that each vertex of Γ appears in this sequence, and such that for all i < m we have
{bi, bi+1} spans an edge of Γ. We write b∗i ∈ V for the vector dual to the vertex bi.
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Note that it is possible for there to be repeats on the list {b1, . . . , bm}, since Γ may
not contain a Hamiltonian path.

Before starting the induction, we explain the inductive step. Let w0 ∈ V0 and
w1 ∈ V1, and write

w0 =

n∑
i=1

λiv
∗
i , w1 =

n∑
i=1

µiv
∗
i .

Suppose that {vi, vj} spans an edge in Γ. By expanding the cup product q(w0, w1) =
0, we see that we must have λiµj = λjµi. If these products are nonzero, it follows
that the pairs (λi, λj) and (µi, µj) must satisfy a proportionality relation (i.e. there
is a nonzero α such that (λi, λj) = (αµi, αµj)). The vector space V is a free L–
module on {v∗1 , . . . , v∗n}, so that there are vectors in V whose coefficients do not
satisfy this proportionality relation. Therefore there exist vectors

w′0 =

n∑
i=1

λ′iv
∗
i ∈ V0 or w′1 =

n∑
i=1

µ′iv
∗
i ∈ V1

such that (λ′i, λ
′
j) is not proportional to (λi, λj) or (µ′i, µ

′
j) is not proportional to

(µi, µj). Indeed, since V is spanned by V0 and V1, if there were no such vectors in
both V0 and V1 then every vector in V would satisfy this proportionality relation,
which is not the case. We then see that either q(w′0, w1) 6= 0 or q(w0, w

′
1) 6= 0,

which contradicts the assumption that q(w0, w1) = 0 for all w0 ∈ V0 and w1 ∈ V1.
It follows that λiµj = λjµi = 0.

We can now begin the induction. Suppose that w0 ∈ V0 is expressed with respect
to the basis {v∗1 , . . . , v∗n}. After relabeling, we may assume v1 = b1 and v2 = b2.
Assume that the coefficient λ1 of v∗1 = b∗1 is nonzero; if no such vector exists then
we simply choose one in V1 and proceed in the following argument with the roles
of V0 and V1 switched. Let w1 ∈ V1 be similarly expressed, and suppose that the
coefficient µ2 corresponding to b∗2 is nonzero. Then we must have λ1µ2 = λ2µ1,
and these products are both nonzero. The argument of the inductive step shows
that since V0 ⊕ V1 = V , we cannot have λ1µ2 = λ2µ1 6= 0. It follows that µ2 = 0.
Since w1 was arbitrary, the vanishing of this coefficient holds for all vectors in V1.
Again using the fact that V0 and V1 span V , there is a vector w′0 ∈ V0 which has a
nonzero coefficient λ′2 for b∗2. Arguing symmetrically shows that the coefficient µ1

of b∗1 vanishes for all vectors in V1.
By induction on m and using the fact that each vertex of Γ occurs on the list

{b1, . . . , bm}, it follows that if w1 ∈ V1 then all coefficients of w1 with respect to
the basis {v∗1 , . . . , v∗n} vanish, so that V1 is the zero vector space. This contradicts
the assumption that V ∼= V0 ⊕ V1 was a nontrivial direct sum decomposition. �

4. Graph and vector space Cheeger constants

In this section we show that a vector space equipped with a vector space valued
bilinear pairing can compute the Cheeger constant of a graph, which will allow us
to establish Theorem 1.3 and its consequences.

4.1. Comparing Cheeger constants. The main technical result of this section is
the following, which provides a precise correspondence between Cheeger constants
in the combinatorial and linear algebraic contexts:
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Theorem 4.1. Suppose that Γ is a connected simplicial graph and let A(Γ) be
the corresponding right-angled Artin group. Let hΓ denote the Cheeger constant
of Γ, and let hV denote the Cheeger constant of the triple (V,W, q), where V =
H1(A(Γ), L), where W = H2(A(Γ), L), and where q denotes the cup product. Then
hΓ = hV .

The proof of Theorem 4.1 is rather involved, and so will be broken up into
several more manageable lemmata. We begin by proving that the Cheeger constant
associated to a subspace F ⊂ V generated by duals of the vertex generators is given
by the Cheeger constant associated to the corresponding subgraph. To fix notation,
let {v1, . . . , vn} denote the vertices of Γ, and let {v∗1 , . . . , v∗n} be the corresponding
dual generators of V . If B = {v1, . . . , vj}, we write B∗ = {v∗1 , . . . , v∗j } and use ∂B
to denote the vertices Γ which do not lie in B but which are adjacent to vertices in
B.

Lemma 4.2. Let 0 6= F ⊂ V be generated by B∗ = {v∗1 , . . . , v∗j }. Then

hF =
|∂B|
|B|

.

Proof. Recall that we use the notation C for the orthogonal complement of B∗ with
respect to q. The subspace C ⊂ V is generated by vertex duals {y∗1 , . . . , y∗m}, where
for each i either yi /∈ B ∪ ∂B or yi is an isolated vertex of B (i.e. yi is not adjacent
to any other vertex of B).

To see this, note that {y∗1 , . . . , y∗m} ⊂ C. Conversely, suppose that x ∈ C and
write

x = a1v
∗
1 + · · ·+ anv

∗
n,

where a1 6= 0. If v1 is adjacent to a vertex w ∈ B then clearly q(x,w∗) 6= 0, since
the resulting cohomology class will be supported on the dual of the edge connecting
v1 and w (see Subsection 3.1 for a discussion of the definition of support). It follows
that if x ∈ C then v1 is either an isolated vertex of B or v1 /∈ B ∪ ∂B.

We now claim that

hF =
|∂B|
|B|

.

To establish this claim, note that C ∩ F is generated by the duals {v∗1 , . . . , v∗` } of
singleton vertices of B. Write |∂B| = k. It follows now that

dimC − dim(C ∩ F ) = n− |B ∪ ∂B| = n− k − j.
We thus obtain the string of equalities

|∂B|
|B|

=
k

j
=
n− j − (n− k − j)

j
=

dimV − dimF − dimC + dim(C ∩ F )

dimF
= hF ,

which establishes the lemma. �

The following lemma clearly implies Theorem 4.1.

Lemma 4.3. Let 0 6= F ⊂ V be of dimension j. Then there exists a subspace F ′ ⊂
V of dimension j with a basis contained in {v∗1 , . . . , v∗n}, and such that hF ′ ≤ hF .

Observe that in order to establish Lemma 4.3, if we write C ′ for the complement
of F ′ with respect to q, it suffices to show that

dimC − dim(C ∩ F ) ≤ dimC ′ − dim(C ′ ∩ F ′).
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Proving Lemma 4.3 is also rather complicated, so we will gather some preliminary
results and terminology first. We will call a j–tuple {v∗i1 , . . . , v

∗
ij
} admissible if for

each index ik, there is a vector wik contained in the linear span of

{v∗1 , . . . , v∗n} \ {v∗i1 , . . . , v
∗
ij}

so that the vectors of the form fik = v∗ik + wik form a basis for F . Such bases
for F will be called admissible bases. Note that if {v∗i1 , . . . , v

∗
ij
} is admissible then

the vectors wik are uniquely determined for 1 ≤ k ≤ j. It is straightforward to
determine whether a tuple is admissible: indeed, express an arbitrary basis for F
in terms of the basis {v∗1 , . . . , v∗n}, the latter of which we view as the columns of
a matrix. A tuple is admissible if and only if the corresponding j × j minor is
invertible.

Let
E∗ = {v∗1 , . . . , v∗j } ⊂ {v∗1 , . . . , v∗n}

be admissible, and let E = {v1, . . . , vj} be the corresponding set of vertices. We
write ΓE for the subgraph of Γ spanned by E, and E0 for the set of isolated vertices
in E. For a given subspace F , there are many possible admissible tuples E∗ we
might consider. Among those, we will always focus our attention on those for which
|E0| is minimized. Such a choice of E∗ may of course not be unique.

Returning to an admissible basis for F , after re-indexing the vertices of Γ if
necessary, we will fix a basis for V now of the form

{f1, . . . , fj , v
∗
j+1, . . . , v

∗
n},

where fi = v∗i +wi as before. Such a basis for V will be called standard relative to
F , and E∗ will be the corresponding admissible tuple.

We will fix the following notation in the sequel. Suppose F ⊂ V has dimension
j. If {f1, . . . , fj , v

∗
j+1, . . . , v

∗
n} is a standard basis of V relative to F , write F ′ for

the span of {v∗1 , . . . , v∗j }, write C ′ for its orthogonal complement with respect to q,
and let Y denote the span of {v∗j+1, . . . , v

∗
n}.

We will in fact prove the following lemma, which implies Lemma 4.3.

Lemma 4.4. If F ⊂ V has dimension j then there exists a standard basis

{f1, . . . , fj , v
∗
j+1, . . . , v

∗
n}

of V relative to F such that if x ∈ C and F ∩ C = 0 then x ∈ C ′ ∩ Y , and if
F ∩ C 6= 0 then

x ∈ (C ∩ F ) + (C ′ ∩ Y ).

Lemma 4.4 implies Lemma 4.3, since then

dimC ≤ dimC ′ − dim(C ′ ∩ F ′) + dim(C ∩ F ).

We first establish it in the simpler cases where dimF = 1 and in the case where
there exists an admissible basis for F with E0 = ∅.

Proof of Lemma 4.4 when dimF = 1. Clearly we may assume that dimV ≥ 2.
Suppose F is the span of a ∈ V . Observe that F ⊂ C. We write {f1, v

∗
2 , . . . , v

∗
n}

for a standard basis for V relative to F . We have that a is a nonzero multiple of
f1, and F ′ is the span of v∗1 . If x ∈ C then we may write

x = λ1f1 +

n∑
i=2

λiv
∗
i .
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We write w = x−λ1f1 and we assume λm 6= 0 for some m ≥ 2. Note that q(f1, x) =
q(f1, w). If q(v∗1 , v

∗
m) 6= 0 then q(f1, x) has λ1λm as the coefficient appearing before

the vector dual to the edge {v1, vm}. So, if x ∈ C then q(v∗1 , v
∗
m) = 0, whence

it follows that v∗m ∈ C ′. Since m was chosen arbitrarily subject to the condition
λm 6= 0, we have that w ∈ C ′ ∩ Y , where Y is the span of {v∗2 , . . . , v∗n}. This
establishes the lemma in this case. �

Proof of Lemma 4.4 when E0 = ∅. Let {f1, . . . , fj , v
∗
j+1, . . . , v

∗
n} be a standard ba-

sis relative to F , where the admissible tuple E∗ satisfies E0 = ∅. Each component
of ΓE consists of at least two vertices. We write {F ′, C ′, Y } as before. Let x ∈ C
be written as

j∑
i=1

λifi +

n∑
i=j+1

λiv
∗
i .

Suppose first that λm 6= 0 for some m ≤ j. The vertex vm ∈ E is adjacent to
a vertex vk ∈ E, so that q(λmfm, fk) 6= 0, whence it follows that q(x, fk) 6= 0,
contradicting the fact that x ∈ C. We conclude that λm = 0 for m ≤ j, so that we
may write

x =

n∑
i=j+1

λiv
∗
i .

Mimicking the proof in the case dimF = 1, we have that x ∈ C ′∩Y , as desired. �

Now let us consider a standard basis

B = {f1, . . . , fk, fk+1, . . . , fj , v
∗
j+1, . . . , v

∗
n}

relative to F , where the vertices in the admissible tuple E with indices 1 ≤ i ≤ k
are precisely those which are not isolated in ΓE . We remind the reader that we
assume here and henceforth that B is chosen in such a way that |E0| is minimized.

By the proofs of the cases of Lemma 4.4 given so far, we may assume that k < j.
Let x ∈ C as before, and write

x =

j∑
i=1

λifi +

k∑
i=j+1

λiv
∗
i .

As argued in the proof in the case E0 = ∅, we have that λm = 0 for m ≤ k.

Lemma 4.5. Let B be as above. If k + 1 < m ≤ j then q(fk+1, fm) = 0.

Proof. Write

fk+1 = v∗k+1 +

n∑
s=j+1

µk+1
s v∗s , fm = v∗m +

n∑
t=j+1

µm
t v
∗
t .

By assumption, we have that q(v∗k+1, v
∗
m) = 0, since the corresponding vertices are

isolated. If q(fk+1, fm) 6= 0 then one of the three following cases must occur.

(1) The coefficient µk+1
s is nonzero for a suitable s > j with q(v∗s , v

∗
m) 6= 0.

(2) The coefficient µm
t is nonzero for a suitable t > j with q(v∗k+1, v

∗
t ) 6= 0.

(3) We have µk+1
s µm

t 6= µk+1
t µm

s for suitable indices s, t > j with s 6= t and
q(v∗s , v

∗
t ) 6= 0.
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In the first of these possibilities, we write

E′ = (E \ {vk+1}) ∪ {vs}.

We claim that (E′)∗ remains admissible. This is straightforward to check. Indeed,
we record an n × n matrix M whose columns are labelled by {v∗1 , . . . , v∗n}, whose
rows are labelled by {f1, . . . , fj , v

∗
j , . . . , v

∗
n}, and whose entries are the v∗` coefficient

mi,` of the ith row basis element. We have that the j × j block in the upper left
hand corner is the identity matrix. Exchanging vk+1 for vs corresponds to switching
the (k + 1)st and sth columns of M . The (k + 1)st row of the sth column reads
µk+1
s 6= 0. Thus after exchanging these two columns, the upper left hand j × j

block remains invertible. Moreover, q(v∗s , v
∗
m) 6= 0, whence vs and vm are no longer

isolated vertices. It follows that |E′0| < |E0|, which contradicts the minimality of
|E0|. Thus, the first item is ruled out. We may rule out the second of these items
analogously.

To rule out the third item, we let E′′ = E \ {vk+1, vm} ∪ {vs, vt}. It suffices
to show that (E′′)∗ is admissible, since vs and vt are adjacent in Γ under the
assumptions of the third item. We switch the columns with labels k+ 1 and s, and
with labels m and t. Since µk+1

s µm
t 6= µk+1

t µm
s , the determinant of the upper left

hand j × j block remains nonzero. This establishes the lemma. �

In order to complete the proof of Lemma 4.4, we will need to describe a process of
modifying a given standard basis B to obtain one with more advantageous features.
Specifically, we will transform B into a standard basis Bk+1 such that if x ∈ C is
expressed with respect to Bk+1, then the first k + 1 coefficients of x must vanish.
To this end, suppose fr /∈ C for r > k. Without loss of generality, r = k + 1.

By Lemma 4.5, we see that there is an index m < k+1 such that q(fm, fk+1) 6= 0.
Since vk+1 is isolated, we have q(v∗k+1, v

∗
m) = 0. Again we write

fk+1 = v∗k+1 +

n∑
s=j+1

µk+1
s v∗s , fm = v∗m +

n∑
t=j+1

µm
t v
∗
t .

Observe that at least one of items 1, 2, or 3 in the proof of Lemma 4.5 above must
occur for this pairing to be nonzero. We now proceed to modify B to obtain a new
standard basis Bk+1 as follows, according to the reason for which q(fm, fk+1) 6= 0.
Namely:

(1) If µm
t 6= 0 for some index t with q(v∗k+1, v

∗
t ) 6= 0, then we set Bk+1 = B.

(2) If the previous item does not hold but if there exists an index s with
µk+1
s 6= 0 and q(v∗m, v

∗
s ) = 0 then we substitute v∗s for v∗k+1 to obtain

an admissible tuple as in Lemma 4.5. We then set Bk+1 to be the standard
basis associated to the corresponding admissible tuple.

(3) If both of the previous items do not hold then at least one of the products

µk+1
s µm

t and µk+1
t µm

s is nonzero for suitable choices of indices s and t with
q(v∗s , v

∗
t ) 6= 0. We substitute v∗s for v∗k+1. As before, the resulting tuple is

admissible. We then write Bk+1 for the corresponding standard basis.

As before, these exchanges do not change the size of |E0|. We now write

Bk+1 = {fk+1
1 , . . . , fk+1

j , ej+1, . . . , en},

where indices have been renumbered after any substitutions. Note the following.
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Observation 4.6. For r ≤ j and r 6= k + 1, we have that fk+1
r differs from fr by

a (possibly zero) multiple of fk+1, and fk+1
k+1 = fk+1.

If x ∈ C, we write it with respect to this new basis, so that

x =

j∑
i=1

λk+1
i fk+1

i +

n∑
i=j+1

λk+1
i v∗i .

The previous considerations show that λk+1
i = 0 for i ≤ k.

Lemma 4.7. The following hold.

(1) If x ∈ C is as above, then λk+1
k+1 = 0.

(2) For k + 1 ≤ r, s ≤ j, we have q(fk+1
r , fk+1

s ) = 0.

Proof. Suppose now that λk+1
k+1 6= 0, and consider the index m as before which was

chosen so that q(fm, fk+1) 6= 0. Then for a suitable constant α, we have

q(fk+1
m , fk+1

k+1 ) = q(fm + αfk+1, fk+1) = q(fm, fk+1) 6= 0.

Moreover, q(fk+1
m , fk+1

k+1 ) is supported on the dual vector to the edge {vm, vk+1} or
{vt, vk+1} (which was the edge {vm, vs} or the edge {vt, vs} before the vertices were
re-indexed in the definition of Bk+1). No other summand making up the vector x

(i.e. λif
k+1
i for i ≥ k + 2 or λk+1

i v∗i for i ≥ j + 1) is supported on v∗k+1. It follows

that if λk+1
k+1 6= 0 then q(x, fk+1

m ) 6= 0, which is a contradiction. We may therefore

conclude that λk+1
k+1 = 0.

For the second claim of the lemma, note that for

k + 1 ≤ r, s ≤ j,

we have q(fr, fs) = 0 by Lemma 4.5, which implies that q(fk+1
r , fk+1

s ) = 0 as
well since both of these vectors differ from fr and fs respectively by a multiple of
fk+1. �

Now suppose that fk+1
i /∈ C for some k+2 ≤ i ≤ j, and without loss of generality

we may assume that i = k + 2. Repeating the procedure for the construction of
Bk+1, we may add multiples of fk+1

k+2 to the basis vectors which are distinct from

fk+1
k+2 itself in order to obtain a new basis

Bk+2 = {fk+2
1 , . . . , fk+2

j , v∗j+1, . . . , v
∗
n}.

Since q(fk+1
k+2 , f

k+2
i ) = 0 for i ≥ k+1, we must have that q(fk+1

r , fk+1
k+2 ) 6= 0 for some

r ≤ k. As before, if x ∈ C, we express x in this basis with coefficients {λk+2
i }1≤i≤n

and observe that the coefficients satisfy λk+2
i = 0 for i ≤ k and λk+2

k+2 = 0. It is

conceivable that in the course of this modification we may find that λk+2
k+1 6= 0, a

conclusion which we wish to rule out.

Lemma 4.8. If x ∈ C is expressed with respect to the basis Bk+2, then we have
λk+2
k+1 = 0.

Proof. We consider a vector fk+1
m which satisfies q(fk+1

m , fk+1
k+1 ) 6= 0, and for suitable

constants α and β, we obtain expressions

fk+2
m = fk+1

m + αfk+1
k+2 , fk+2

k+1 = fk+1
k+1 + βfk+1

k+2 .
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Computing, we have

q(fk+2
m , fk+2

k+1 ) = q(fk+1
m , fk+1

k+1 ) + βq(fk+1
m , fk+1

k+2 ),

using the orthogonality of fk+1
k+1 and fk+1

k+2 .

It follows that q(fk+2
m , fk+2

k+1 ) is supported on the vector dual to the edge {vk+1, vr}
for a suitable r, as this was already true of q(fk+1

m , fk+1
k+1 ). Then, as we argued for

Bk+1 in Lemma 4.7, we have that λk+2
k+1 = 0 again. �

We can now complete the argument.

Proof of Lemma 4.4. We inductively construct a sequence of distinct bases for V
and corresponding admissible tuples which we write as

{Bk+2, Bk+3, . . .}, {(Ek+2)∗, (Ek+3)∗, . . .},
which have the property that if x ∈ C is written with respect to the basis Bk+s

then the coefficients λk+s
` of fk+s

` are trivial for ` ≤ k+ s. We are able to construct

Bk+s+1 from Bk+s precisely when there is an index k + s ≤ i ≤ j such that
fk+s
i /∈ C. Since F is finite dimensional, the sequence will terminate after finitely

many terms. This will happen either for k + s = j or for some s < j − k.
In the first case, we see that C ∩ F = 0. In the second case, the basis vectors

{fk+s
k+s+1, . . . , f

k+s
j } are orthogonal to F . To complete the proof of the lemma, we

set fi = fk+s
i for 1 ≤ i ≤ j, and F ′ is the span of the associated admissible

tuple (Ek+s)∗. As in the statement of the lemma, we write Y for the span of
{v∗j+1, . . . , v

∗
n}. If x ∈ C then

x =

j∑
i=k+s+1

λk+s
i fi + y

for a suitable vector y ∈ Y . Note that by assumption, we have x − y ∈ C, which
implies that y ∈ C. This shows that y ∈ C ′ ∩ Y , since q(y, fi) = 0 for all i ≤ j and
hence q(y, v∗i ) = 0 for i ≤ j. It follows that if C ∩ F = 0 then x = y ∈ C ′ ∩ Y , and
otherwise that x ∈ (C ∩ F ) + (C ′ ∩ Y ), which completes the proof. �

4.2. Proof of the main results. Theorem 1.2 and Theorem 1.3 now follow almost
immediately. The size of the set of vertices of Γi tending to infinity is equivalent
to the dimension of Vi = H1(A(Γ)) tending to infinity, over any field. Bounded
qi–valence of Vi, bounded valence of Γi, and bounded centralizer rank in A(Γ)
are all equivalent by Corollary 3.3 and Lemma 3.5. Finally, Theorem 4.1 implies
that the Cheeger constant of Γi is equal to the Cheeger constant of the triple
(H1(A(Γ)), H2(A(Γ)), q), over any field. This establishes the main results.

4.3. Generalizations to higher dimension. By considering cohomology of right-
angled Artin groups beyond dimension two, one can use vector space expanders to
generalize graph expanders to higher dimensions. Unfortunately, this does not seem
to give much new information, as might be expected; indeed, the cohomology of
a right-angled Artin group is completely determined by its behavior in dimension
one and the cup product pairing therein. This can easily be seen through a suitable
generalization of Proposition 3.1 to higher dimensional cohomology: the cohomol-
ogy of the right-angled Artin group A(Γ) in each dimension is determined by the
corresponding number of cells in the flag complex of Γ (with a dimension shift),
and the cup product pairing is determined by the face relation. The flag complex,
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moreover, is completely determined by its 1–skeleton. In particular, there does not
seem to be a meaningful connection to more fruitful notions of higher dimensional
expanders (cf. [25], for instance).

5. A vector space expander family that does not arise from a graph
expander family

In this section, we give a method for producing families of vector space expanders
that do not arise from the cohomology rings of right-angled Artin groups of graph
expanders.

Let {Γi}i∈N be a family of finite connected simplicial graphs which form a graph
expander and let L be an arbitrary field. We will write

Vi = H1(A(Γi), L), Wi = H2(A(Γi), L), qi =^,

where ^ denotes the cup product in the cohomology ring of the corresponding
group. For each i, we choose an arbitrary vertex vi of Γi. We set V ′i = Vi, and
we let Wi = W ⊕ L, where the summand L is generated by a vector z∗i . We set
q′i = qi ⊕ q0,i, where q0,i((v

i)∗, (vi)∗) = z∗i , and where q0,i vanishes on inputs of all
other basis vectors arising from duals of vertices, in both arguments. That is, let
{vi1, . . . , vin} be the vertices of Γi, and without loss of generality we may assume
that vi = vi1. We set q0,i((v

i
j)
∗, (vik)∗) = 0 unless both vij and vik are equal to vi1,

and we extend by bilinearity.

Proposition 5.1. If V ′ = {(V ′i ,W ′i , q′i)}i≥0 is as above then:

(1) The family V ′ is a vector space expander.
(2) The family V ′ does not arise from the cohomology of the right-angled Artin

groups associated to a sequence of graphs.

The second item of Proposition 5.1 means that there is no family of finite con-
nected simplicial graphs {Λi}i∈N such that

V ′i = H1(A(Λi), L), W ′i = H2(A(Λi), L), q′i =^ .

Proof of Proposition 5.1. Since V ′i = Vi, we have that dimV ′i →∞. Now consider
q′i–valence, which we denote by di, and we compare with the graph valence d(Γi)
of Γi. By setting B = S = (Vert(Γi))

∗ in the definition of q′i–valence, we see
that di(V ) ≤ d(Γi) + 1. Thus, V ′ has uniformly bounded valence. For each i, the
vector space V ′i is already pairing–connected with respect to the pairing qi, and
qi(v, w) 6= 0 implies q′i(v, w) 6= 0, so that V ′i is pairing–connected with respect to
the pairing q′i.

We now need to estimate the Cheeger constants of V ′. We suppress the i index,
and write {v∗1 , . . . , v∗n} for a basis of V ′ consisting of dual vectors of vertices of Γ.
We assume v1 to be the distinguished vertex of Γ such that q0(v∗1 , v

∗
1) 6= 0. Let

0 6= F ⊂ V ′ be a subspace of dimension at most (dimV ′)/2, and let h0 be the
infimum of the Cheeger constants of the family V ′ with respect to q, the usual cup
product. We denote by Cq the orthogonal complement of F with respect to q, by
C0 the orthogonal complement of F with respect to q0, and by C the orthogonal
complement of F with respect to q′. Clearly, C = Cq ∩ C0.

Now, let f ∈ F be written as

f =

n∑
i=1

µiv
∗
i ,



EXPANDERS AND RAAGS 19

and let x ∈ V be written as

x =

n∑
i=1

λiv
∗
i .

It follows by definition that q0(v∗i , x) = 0 for i 6= 1, so that q0(f, x) = λ1µ1.
Thus, the span of {v∗2 , . . . , v∗n} is always contained in C0, and consequently C0 has
dimension either n or n− 1. Thus, dimC is either equal to dimCq or dimCq − 1.
Similarly, x ∈ C ∩ F if and only if x ∈ Cq ∩ C0 ∩ F , so that dim(C ∩ F ) is either
equal to dim(Cq ∩ F ) or dim(Cq ∩ F )− 1.

Suppose that dim(C ∩ F ) = dim(Cq ∩ F ) − 1. Then C 6= Cq, so that dimC =
dimCq − 1. In this case,

dimC − dim(C ∩ F ) = dimCq − 1− (dim(Cq ∩ F )− 1) = dimCq − dim(Cq ∩ F ).

It follows that dimC − dim(C ∩ F ) ≤ dimCq − dim(Cq ∩ F ), and the difference
between these is at most 1. Writing N = dimV ′ − dimF , the Cheeger constant of
F satisfies

hF =
N − dimC + dim(C ∩ F )

dimF
≥ N − dimCq + dim(Cq ∩ F )

dimF
.

This proves that the Cheeger constant of V ′ is bounded away from zero, which
proves that V ′ is a vector space expander family.

To see that V ′ does not arise from a graph expander family, we note that the cup
product satisfies v∗1 ^ v∗1 = 0, and q′ is constructed so that q′(v∗1 , v

∗
1) 6= 0. This

establishes the proposition. �

Many variations on the construction in this section can be carried out, which
illustrates the fact that vectors space expander families are indeed significantly
more flexible than graph expander families.
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Courses], vol. 26, Société Mathématique de France, Paris, 2019. MR 3931316

24. Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures, Modern
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