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ABSTRACT. The purpose of this article is to give a characterization of families
of expander graphs via right-angled Artin groups. We prove that a sequence
of simplicial graphs {I'; };cn forms a family of expander graphs if and only if a
certain natural mini-max invariant arising from the cup product in the coho-
mology rings of the groups { A(T';) };en agrees with the Cheeger constant of the
sequence of graphs, thus allowing us to characterize expander graphs via co-
homology. This result is proved in the more general framework of vector space
expanders, a novel structure consisting of sequences of vector spaces equipped
with vector-space-valued bilinear pairings which satisfy a certain mini-max
condition. These objects can be considered to be analogues of expander graphs
in the realm of linear algebra, with a dictionary being given by the cup product
in cohomology, and in this context represent a different approach to expanders
that those developed by Lubotzky-Zelmanov and Bourgain-Yehudayoff.

1. INTRODUCTION

Expander graphs, which are infinite sequences of graphs of bounded valence
which are uniformly difficult to disconnect, are of fundamental importance in dis-
crete mathematics, graph theory, knot theory, network theory, and statistical me-
chanics, and have a host of applications in computer science including to probabilit-
stic computation, data organization, computational flow, amplification of hardness,
and construction of hash functions [6, 13, 16]. Many constructions of graph ex-
pander families are now known, though originally explicit constructions were few
despite the fact that their existence is relatively easy to prove through probabilistic
methods (see [23, 1, 26] for discussions of both explicit and probabilistic construc-
tions).

In this paper, we provide a new perspective on graph expander families that
relates them to fundamental objects in geometric group theory, and which allows
them to be probed in a novel way through linear algebraic methods. In particular,
we characterize families of expander graphs through their associated right-angled
Artin groups, and in the process define the notion of vector space expander families.

Recall that a simplicial graph (sometimes known in the literature as a simple
graph) is an undirected graph with no double edges between any pair of vertices
and with no edges whose source and target coincide. If I is a finite simplicial graph
with vertex set Vert(T") and edge set Edge(T"), we define the right-angled Artin group
on I' by

A(T) = (Vert(T') | [v;,v;] = 1 if and only if {v;,v;} € Edge(T)).
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It is well-known that the isomorphism type of a finite simplicial graph is uniquely
determined by the corresponding right-angled Artin group, and thus all the combi-
natorial properties one may assign to I' should be reflected in the intrinsic algebra
of A(T) [10, 28, 22, 21].

If A(T') is given via a presentation as above (as opposed to as an abstract group),
then there is a trivial way to pass between the graph I' and elements of the group
A(T). Indeed, the vertices of I' are then identified with the generators in the
presentation, and the adjacency relation in I' is exactly the commutation relation
among generators of A(I'). The problem with this perspective is that a choice of
generators of A(T") is not canonical. For instance, it is possible to find a generating
set of A(T") that such that commutation relations between generators have nothing
to do with the combinatorics of I'. The point of this paper is to translate between
the combinatorics of I" and the algebraic structure of A(T") in a way that is intrinsic
to A(T"). Specifically, we wish to characterize graph expander families in a canonical
algebraic way, and in particular without any reference to specific generators of the
right-angled Artin group. Some examples of this principle are as follows:

(1) A(T") decomposes as a nontrivial direct product if and only if T is a non-
trivial join [29].

(2) A(T") decomposes as a nontrivial free product if and only if I" is disconnnected [4,
21].

(3) A(T") contains a subgroup isomorphic to a product Fy x Fy of nonabelian
free groups if and only if I has a full subgraph which is isomorphic to a
square [18, 19].

(4) The poly-free length of A(T") is two if and only if I admits an independent
set D of vertices such that every cycle in I meets D at least twice [15].

(5) A(T) is obtained from infinite cyclic groups through iterated free products
and direct products if and only if I' contains no full subgraph which is
isomorphic to a path of length three [19, 20].

(6) A(T) is a semidirect product of two free groups of finite rank if and only if
I is a finite tree or a finite complete bipartite graph [15].

(7) There is a finite nonabelian group acting faithfully on A(T") by outer auto-
morphisms if and only if I' admits a nontrivial automorphism [11].

(8) A graph T" with n vertices is k—colorable if and only if there is a surjective
map

where for 1 < ¢ < k the group F; is a free group of rank m;, and where
k
> iy mi =n [12].

In this paper, we develop this dictionary by characterizing graph expander fami-
lies through the intrinsic algebra of right-angled Artin groups. Recall that a family
{T'; }ien of finite graphs is called a graph expander family if the number of ver-
tices in T'; tends to infinity as ¢ tends to infinity, if the valence of each vertex
of I'; is bounded independently of ¢, and if a certain isoperimetric invariant called
the Cheeger constant (or expansion constant) of each T'; is uniformly bounded away
from zero. We refer the reader to Section 2 for precise definitions. We remark that
in general, graph expander families are not assumed to consist of simplicial graphs,
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though for the purposes of the algebraic dictionary we develop here, we will re-
tain a blanket assumption that all graphs under consideration are simplicial unless
explicitly noted otherwise.

The main result of the present paper is to give an intrinsic algebraic charac-
terization of graph expander families via right-angled Artin groups, without any
reference to distinguished generating sets. In order to achieve this, one must define
a certain analogue hy of the Cheeger constant that can be described from the data
of the right-angled Artin group. This constant is constructed in terms of the triple

{(HI(A(F)7L)a HZ(A(F)v L)7 \/)}7

where H*(A(T), L) is the it" cohomology group of A(T') with coefficients in a field
L, and — the cup product restricted to H!(A(T'), L) (see 2.2.1). The following
result, which is a central pillar of this paper, establishes the link between the two
versions of the Cheeger constant:

Proposition 1.1 (cf. Theorem 4.1). Let T be a finite simplicial graph, let hr denote
the Cheeger constant of ', and let hy denote the Cheeger constant of the triple

{(H'(A(T), L), H*(A(T), L), =)}
Then hr = hv.

Proposition 1.1 is the key in establishing a group-theoretic description of ex-
pander graphs. Our main result is therefore as follows:

Theorem 1.2. Let {T;}ien be a family of finite simplicial graphs, let {A(T;)}ien
denote the corresponding family of right-angled Artin groups, and let L be an arbi-
trary field. Then {T;};en is a graph expander family if and only if:
(1) The rank (i.e. size of the smallest generating set) of A(L';) tends to infinity
as i tends to infinity.
(2) The rank of the centralizer of each nontrivial element of A(T';) is bounded
independently of i.
(8) The Cheeger constant of the family

{(H'(A(Ty), L), H*(A(T3), L), —)}ien
s bounded away from zero.

This result is proved in the more general framework of vector space expanders
(with a precise definition in Subsection 2.2 below). This is a certain sequence of
triples {(V;, Wi, ¢;) }ien, each of which is defined over a fixed field L, where each
V; is a finite dimensional vector space such that dim V; — oo as ¢ — co. Each W;
is an L—vector space, and ¢; is a symmetric or anti-symmetric W;—valued bilinear
pairing on V;. The family {(V;, W;, ¢;) }ien is a vector space expander family if the
pairings {¢; }ien satisfy certain linear algebraic criteria called bounded g;—valence
and bounded Cheeger constant in a uniform way. As mentioned already, the Cheeger
constant is defined generally for the data (V, W, q) (see Subsection 2.2 for details).

In this context, the previous theorem can be restated succinctly as follows:

Theorem 1.3. Let {T'; }ien be a family of finite simplicial graphs, and let {A(T;) bien
denote the corresponding family of right-angled Artin groups. Then {T';}ien s a
graph expander family if and only if

{(H'(AT), L), H*(A(T), L), <) Yien

s a vector space expander family.
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Observe that connectedness of the graphs in the family is not assumed as a
hypothesis of the stated theorems, nor shall it be for us in the definition of a
graph expander family. Instead, connectedness of the graphs in both cases is a
consequence of the Cheeger constant being nonzero. We remark that whereas the
cohomology vector spaces of a right-angled Artin group depend on the field over
which they are defined, the property of being a graph expander family or a vector
space expander family is independent of the choice of field. As a further remark
concerning the fields occurring in the previous results, it will become apparent to
the reader that not only can L be arbitrary, but it need not be fixed as the index
i varies. Indeed, the numerical invariants used to define vector space expanders
are all either related to the non-degeneracy of the bilinear pairing or to dimension,
both of which are blind to the intrinsic structure of the field of definition.

The Cheeger constant of a finite graph is an invariant that is computable from
the adjacency matrix of the graph. The Cheeger constant of a vector space equipped
with a pairing is less obviously computable, since its definition quantifies over all
subspaces of up to half the dimension of the ambient space (see Subsection 2.2
below). However, the reader will note that the methods in Section 4 are explicit
and constructive, and they do in fact effectively yield the Cheeger constant of the
relevant vector spaces.

The notion of a vector space expander family is more flexible than that of a
graph expander family, and we will illustrate this with an example of a vector
space expander family which does not arise from the cohomology of the right-
angled Artin groups associated to a graph expander family. This is a reflection of
the relatively lax hypotheses on the input data of a vector space expander family.
For instance, the vector space valued bilinear pairing is more or less arbitrary other
than being assumed to be (anti)-symmetric, which relaxes much of the inherent
structure of the cup product on the cohomology of a right-angled Artin group. The
authors expect that the flexibility of vector space expanders will contribute to their
applicability.

There is another linear-algebraic version of expanders, called dimension ex-
panders, which were proven to exist by Lubotzky—Zelmanov in the case of charac-
teristic zero fields [27], and by Bourgain—Yehudayoff in the case of finite fields [3, 2].
Here, one considers a finite dimensional vector space V' and a collection of k linear
maps {T;: V — V}icick. This data is called an e-dimension expander if for all
subspaces W C V of dimension at most half of that of V| the dimension of

k
W+ Ti(W)

i=1

is at least (1+¢) dim W. The construction of dimension expanders (with e bounded
away from zero, k bounded above, and the dimension of V tending to infinity) is
much harder over finite fields than over fields of characteristic zero, whereas the
constructions in the present paper are independent of the base field. One bridge
between graph expander families and dimension expanders arises from interpre-
tation of regular graphs of even valence as Schreier graphs, from which one can
use finitary versions of Kazhdan’s property (T) to construct the suitable linear
maps. The authors do not know how to relate dimension expanders to vector space
expanders, since a general right-angled Artin group does not usually admit any
natural endomorphisms of its first cohomology.



EXPANDERS AND RAAGS 5

The paper is organized as follows. Section 2 introduces the definitions of the
objects considered in this paper. Section 3 discusses the cohomology of right-angled
Artin groups, and the circle of ideas relating connectedness of graphs, pairing—
connectedness, g—valence, graph valence, and ranks of centralizers of elements in
a right-angled Artin group. Section 4 establishes the main technical result of the
paper, namely that the linear-algebraic Cheeger constant associated to a vector
space with an (anti)-symmetric bilinear pairing agrees with the Cheeger constant
of a finite simplicial graph in the case that the vector space is the first cohomology
of the right-angled Artin group on the graph, and the bilinear pairing is the cup
product. Section 5 builds an example of a vector space expander family not arising
from the cohomology of right-angled Artin groups on a graph expander family.

2. GRAPH AND VECTOR SPACE EXPANDERS

In this section, we recall some relevant facts about graph expander families and
define vector space expander families.

2.1. Graph expander families. The literature on graph expander families and
their applications is enormous. The reader may consult [16, 24, 26, 23] and the
references therein, for example. For the sake of brevity, we will only discuss the
combinatorial definition of an expander family.

Let T be a finite graph, not necessarily simplicial, with vertex set Vert(I') and
edge set Edge(I"). We assume that I' is undirected. If A C Vert(T'), we write 0A
for the neighbors of A. That is, A consists of the vertices of Vert(I") which are not
contained in A but which are adjacent to a vertex in A.

If in addition |A| < [Vert(T")|/2, we consider the isoperimetric invariant

_ 04|
Al
The Cheeger constant hr is defined to be

ha

hr = mgnhA,

where the minimum is taken over all subsets of Vert(I") satisfying |A| < |Vert(T")|/2.

Let {I';};en be a sequence of connected graphs such that |Vert(I';)] — oo, such
that each vertex in I'; has valence which is bounded independently of i. We say
that {T';};en is a graph expander family if inf; hy, > 0.

We note that as is well known, the bound inf; Ar, > 0 makes any connectivity
assumption of the graphs {I';};,cny redundant. Indeed, if T is disconnected then
there is a component A of I" that contains at most half of the vertices of I'. Setting
A = Vert(A), we obtain 0A = @, and so hr = 0.

2.2. Vector space expander families. Throughout this section and for the rest
of the paper, we fix a field L over which all vector spaces will be defined. All
bilinear pairings are assumed to be symmetric or anti-symmetric, so that for all
suitable vectors v and w, we have ¢(v, w) = £q(w, v). Our reasons for adopting this
assumption are that it mirrors an intrinsic property of the cup product pairing, and
because otherwise the orthogonal complement of F' may be asymmetric depending
on which side it is defined. An asymmetric orthogonal complement would result in
an unnecessary layer of subtlety and complication that would not enrich the theory
at hand.
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2.2.1. The Cheeger constant. Let V be a collection {(V;, W;, ¢;) }ien of finite dimen-
sional vector spaces V; equipped with vector space valued bilinear pairings

qi: Vi x Vi = Wi

The Cheeger constant of V is defined by analogy to graphs. To begin, let V be
a fixed finite dimensional vector space and let

GV XV =W

be a vector space valued bilinear pairing on V. Let ' C V be a vector subspace
such that 0 < dim F' < (dim V')/2. We write C for the orthogonal complement of
F in V, so that

C={veV|q(f,v)=0forall f e F}.
Clearly C' is a vector subspace of V. The Cheeger constant of F' is defined to be

dimV — dim F — dim C 4+ dim(C N F)
hp = - .
dim F'
The Cheeger constant of V' is defined by

hV = inf hF.
dim F<(dim V') /2

We will call hy the Cheeger constant of the triple (V, W, q). We will suppress W
and ¢ from the notation for the Cheeger constant if no confusion can arise.

We note that whereas the Cheeger constant hy may appear strange at first, it
is defined in such a way as to reflect the Cheeger constant of a graph. To see this
last statement illustrated more explicitly, see Lemma 4.2.

2.2.2. The q—valence of a vector space. Let V be a finite dimensional vector space,
and let ¢ be a vector space valued bilinear pairing on V. If ) # S C V and B is a
basis for V', we write

dp(S) =max[{b € B|q(s,b) # 0}, d(S)=  min_ dp(5), d(V)=SSII§;1r{15Vd(S)-

We call d(V') the g-valence of V.

2.2.3. Pairing—connectedness. Let V and g be as before. We say that V' is pairing—
connected if whenever V' = Vi @ V; is a nontrivial direct sum decomposition of V/,
then there are vectors vg € V and v1 € V4 such that g(vg,v1) # 0.

2.2.4. Defining vector space expanders. We are now ready to give the definition of
a vector space expander family.

Definition 2.1. We say that V is a vector space expander family if the following
conditions are satisfied:
(1) We have

lim dim V; = oo.
1—00

(2) There exists an N such that for all i, we have d(V;) < N.
(8) We have

hZinfhw > 0.
7
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The reader may note that the first condition is analogous to the requirement
that the number of vertices in a family of expander graphs tends to infinity. The
second condition is analogous to the finite valence condition in a family of expander
graphs.

As with the connectedness assumption for graph expander families, the pairing—
connectedness of a vector space V' is a formal consequence of hy > 0. Precisely, we
have the following.

Proposition 2.2. Let (V,W,q) be as above, and suppose hy > 0. Then V is
pairing—connected.

Proof. Suppose the contrary, so that V. = Vy @ V4 is a nontrivial splitting of
V' witnessing the failure of pairing—connectedness. Without loss of generality,
dimVy < dimV/2. Set F = V. Note then that V3 C C, the orthogonal com-
plement of F. If C N F # 0 then dim C' > dim Vj + dim(C N F). Tt follows that

dimV —dim F —dimC + dim(CNF) < dimV — dim Vy — dim V; = 0,
which proves the proposition. O

As we will show in Section 3, pairing—connectedness for the triple
(H'(A(D), L), H*(A(T), L), —)

is equivalent to connectedness of T'.

3. COHOMOLOGY, ¢—VALENCE AND PAIRING—CONNECTEDNESS

In this section we establish a generator-free characterization of bounded valence
in a graph through cohomology of the corresponding right-angled Artin group.

3.1. The cohomology ring of a right-angled Artin group. A general refer-
ence for this section is [21], for instance. Let T' be a finite simplicial graph and
A(T) the corresponding right-angled Artin group. The group A(T') is naturally the
fundamental group of a locally CAT(0) cube complex, called the Salvetti complex
S(T") of T'. The space S(T') is a classifying space for A(T'), so that

H*(S(T'),R) =2 H*(A(T), R)

over an arbitrary ring R. The complex S(I') can be built from the unit cube in
RIVertMI with the coordinate directions being identified with the vertices of I'. One
includes the face spanned by a collection of edges if the corresponding vertices span
a complete subgraph of I'. Finally, one takes the image inside R‘Vert(r)‘/ZWm(F)‘,
so that S(T") is a subcomplex of a torus.

With this description, it is clear that one can build S(T") out of a collection of tori
of various dimensions, one for every complete subgraph of I'; and by gluing these
tori together along distinguished coordinate subtori. The reader may compare with
the description of the Salvetti complex given in [7].

Let L be a field, viewed as a trivial A(I')-module. We have that

H*((S")", L) = A(L"),
the exterior algebra of L™. Via Poincaré duality, coordinate subtori of tori mak-
ing up S(T") give rise to preferred cohomology generators in various degrees of the
exterior algebra, and the gluing data of the subtori determines how the exterior al-
gebras corresponding to complete subgraphs assemble into the cohomology algebra

of S(I).
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To give slightly more detail, let A C I" be a subgraph. For us, a subgraph is
always full, in the sense that if A\, Ao € Vert(A) and {A1, A2} € Edge(I') then
{A1, A2} € Edge(A). Full subgraphs are sometimes called induced. It is a well-
known and standard fact that A(A) is naturally a subgroup of A(T") [7]. It is not
difficult to see that A(A) is in fact a retract of A(T"). The homology of A(T) is easy
to compute from the Salvetti complex, and the cohomology with trivial coefficients
in a field can be easily computed using the Universal Coefficient Theorem. Each
complete subgraph A of T' gives an exterior algebra as a subring of H*(A(T"), L)
via pullback along the retraction map A(I') — A(A), and a dimension count shows
that this accounts for all the cohomology of A(T).

We are mostly concerned with H!(A(T), L) and H?(A(T'), L), together with the
cup product pairing on H!(A(T'), L). We remark that the cohomology of right-
angled Artin groups and related groups with nontrivial coefficient modules has
been investigated extensively (see [9, 17] for example), but for our purposes we do
not need any machinery beyond trivial coefficients. The next proposition follows
easily from the description of the cohomology of the Salvetti complex above, and
from the structure of exterior algebras.

Proposition 3.1. Let I' be a finite simplicial graph.
(1) We have isomorphisms of vector spaces:

Hl(A(F),L) o~ LIVert(I‘)I) HZ(A(F),L) o 7 |Edge(I)|
2) There is a basis {v],..., v for HY(A(T), L) which is in bijection
1 [Vert(T)|

with the set {v1, ..., Vvery(ry } of vertices of I', and there is a basis {e7, ..., erEdge(F)‘}
of H*(A(T), L) which is in bijection with the set {ey,. .., €|Edge(r)|} of edges
of T.

(3) The bases in the previous item can be chosen to have the following property:
if e = {vi,v;} € Edge(I") then v; — vj = +e*, and if {v;,v;} ¢ Edge(I")

then vf — vi = 0.

If {e1,...,es} denotes the set of edges of T', then Proposition 3.1 implies that
H?(A(T")) is generated (over any field) by the dual vectors {ef,...,e’}, and that
these vectors are linearly independent. We fix the basis {e},... e’} for H? once
and for all, so that if d is a 2—cohomology class then

i=1

With respect to this fixed basis, we call the elements e! for which A; # 0 the
support of d, so that d is supported on the e} for which A\; # 0. We will also fix
the basis {v],..., v\*Vert(F)\} for H' once and for all, and all computations involving
cohomology classes will implicitly be with respect to these bases unless explicitly
noted to the contrary.

3.2. Centralizers in right-angled Artin groups. Recall that a graph J is called
a join if its complement is disconnected. Equivalently, there are two nonempty
subgraphs J; and Jo of J which partition the vertices of J, and such that every
vertex in Ji is adjacent to every vertex in Jo. We write J = Jj * Jo.

Let T be a finite simplicial graph and let 1 # 2 € A(T') be a nontrivial element,
which is expressed as a word in the vertices {v1,...,V|very(r)|} of I and their in-
verses. We say that x is reduced if it is freely reduced with respect to the operation
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of commuting adjacent vertices. That is,  cannot be shortened by applying moves
of the form:
e Free reduction: ---a-vF'wF - b--- — -ca-b---;
e Commutation of adjacent vertices: - -- v;tlvjil e — - ~vjﬂvii1 .
vided {v;,v;} spans an edge of T'.

BN pro_

An element of A(T") is nontrivial if and only if it cannot be reduced to the identity
via applications of these two moves [5, 8, 14]. We say that x is cyclically reduced if
all cyclic permutations of = are also freely reduced. The centralizer of x is described
by a theorem of Servatius [29]:

Theorem 3.2. Suppose that x is nontrivial, cyclically reduced, and has non-cyclic
centralizer. Then there is a join J = JyxJax---xJ, C T such thatx € A(J) < A(T),
and such that J; does not decompose as a nontrivial join for 1 < i <n. Moreover:

(1) The element x can be uniquely represented as a product Tix9-- - T, where
(2) Up to re-indexing, the centralizer of x is given by
ZF x A(Jig1) x - x A(Jn),
where x; is nontrivial for i <k and trivial for ¢ > k.

Let J = JyxJox---%xJ, be a join and let v be a vertex in J;. Then v is adjacent
to each vertex of .J; for ¢ > 2, whence it follows that the valence of v is at least

n
> 1l
i=2
The following consequence is now straightforward:

Corollary 3.3. Let N denote the maximum valence of a vertex in T and let R(x)
denote the rank of the centralizer of a nontrivial element of x € A(T). Then

N+1= max R(z).
1#z€ A(T)

In Corollary 3.3, the rank of a group is the minimal cardinality of a set of
generators.

Remark 3.4. Note that Corollary 3.3 gives an intrinsic bound on valence of ver-
tices in the defining graph of a right-angled Artin group without any reference to a
set of generators.

3.3. Centralizers and g¢—valence. Let L be a fixed field. In this subsection we
prove the following linear algebraic version of valence in a graph:

Lemma 3.5. Let V.= H*(A(T),L), let W = H*(A(T"),L)}, and let q denote the
cup product pairing

—: H'(A(T),L) x H'(A(T), L) — H*(A(T'), L)
Then the g—valence d(V') coincides with the mazimum valence of a vertex in T.
Proof. We write d(I") for the maximum valence of a vertex in I'. Let
B=S={u],... ’UrVert(FH}
be the basis for V' furnished by Proposition 3.1. Then clearly
d(I") = max |[{b € B | q(s,b) # 0},
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whence it follows that d(V) < d(T).

We now consider the reverse inequality. Note first that we need only consider
sets S which are bases for V, since if B is fixed and if S C S’ then dp(S) < dp(5").

Let S be an arbitrary basis for V', and let v; be the vertex of I' with highest
valence. If s € S then we may write s in terms of the basis {v], ... ,Ul*vert(r)l}. Since
S forms a basis for V, there is some s € S such that the corresponding coefficient
for v is nonzero. We fix such an s for the remainder of the proof.

Write {w1,...,wg} for the vertices of T" which are adjacent to vy, with corre-
sponding duals {wy,...,w;}, and let B be another arbitrary basis for V. Observe
first that g(v},w}) # 0 for {1 <1 < k}. Moreover, the set

{Q(viﬂa wf)}lgigk

is linearly independent in W. It follows that the set

{a(s,wi) h<izk

is linearly independent in W.
Thus, we may consider the linear map

qs:V—->W

given by ¢s(v) = q(s,v). Clearly this is a linear map and its image is a vector sub-
space of W. The considerations of the previous paragraph show that the dimension
of ¢5(V) is at least k, which coincides with the valence of v; and hence with d(T").
Suppose that there were fewer than k elements b € B for which ¢(s,b) # 0. Then
qs(B) € W would span a subspace of dimension strictly less than k. However, B
is a basis, so that the span of ¢4(B) coincides with ¢s(V'), which is a contradic-
tion. Thus, we have that dg(S) > d(I"). Since B and S were arbitrary, we have
d(V) > d(T). O

3.4. Pairing—connectedness. In this subsection, we show that pairing—connectedness,
which was already shown to be implied by positive Cheeger constant hy > 0 by
Proposition 2.2, is equivalent to the connectedness of I' under the assumptions

V =HY(A),L), W=H?A®I),L), q=—.

Lemma 3.6. Let ' be a finite simplicial graph, let V = H'(A(T), L), and let q be
the cup product pairing on V. The vector space V is pairing—connected if and only
if the graph I' is connected.

Proof. Let {v1,...,v,} be the vertices of T', so that the dual vectors {v],...,v}}
form a basis for V. Suppose that I' is not connected. Then after reindexing, we
may write Bo = {v7,...,v;} and By = {v} ,...,v;} with j <n, and where there
is no edge in T of the form {v;, v} with ¢ < j and k& > j. We let V; be the span of
By and V; be the span of By. Note that V =V, @ V;. It is clear that if wg € Vj
and wy € V; then g(wp,w1) = 0, so that V' is not pairing—connected.

Conversely, suppose that I" is connected, and suppose that V' = V, & V] is an
arbitrary nontrivial direct sum decomposition. We assume for a contradiction that
for all pairs wy € Vy and wy € Vi, we have q(wg, w;) = 0. We argue by induction
that either Vj = 0 or Vi = 0, using a sequence {by,...,by} of vertices of I', such
that each vertex of I appears in this sequence, and such that for all i < m we have
{bi,biy+1} spans an edge of I'. We write b € V for the vector dual to the vertex b;.
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Note that it is possible for there to be repeats on the list {b1,...,b,,}, since I' may
not contain a Hamiltonian path.

Before starting the induction, we explain the inductive step. Let wg € V and
wy € Vp, and write

n n

* *

wy = E AV, wp = g iy .
i=1 i=1

Suppose that {v;, v;} spans an edge in I'. By expanding the cup product g(wo, wq) =
0, we see that we must have A\;ut; = Aju;. If these products are nonzero, it follows
that the pairs (A;, A;) and (u;, ;) must satisfy a proportionality relation (i.e. there
is a nonzero « such that (X\;, A;) = (o, ap;)). The vector space V is a free L—-
module on {v],...,v}}, so that there are vectors in V' whose coefficients do not
satisfy this proportionality relation. Therefore there exist vectors

n n
wy = Z)\gv;—* eEVy or wj= Z,u;vf eV

=1 i=1
such that (A}, \}) is not proportional to (A;, A;) or (u;,p) is not proportional to
(i, t5). Indeed, since V' is spanned by V; and V4, if there were no such vectors in
both V and V; then every vector in V' would satisfy this proportionality relation,
which is not the case. We then see that either ¢(wj,w;) # 0 or ¢(wg,w]) # 0,
which contradicts the assumption that g(wo,w;) = 0 for all wy € Vp and w; € V7.
It follows that A\;u; = Aju; = 0.

We can now begin the induction. Suppose that wg € V} is expressed with respect
to the basis {v],...,v}}. After relabeling, we may assume v; = by and vy = ba.
Assume that the coefficient A\; of vi = b} is nonzero; if no such vector exists then
we simply choose one in V; and proceed in the following argument with the roles
of Vi and V; switched. Let w; € Vi be similarly expressed, and suppose that the
coefficient po corresponding to b5 is nonzero. Then we must have Ajps = Aapq,
and these products are both nonzero. The argument of the inductive step shows
that since Vo @ V3 =V, we cannot have A\jus = Aopy # 0. It follows that ps = 0.
Since w; was arbitrary, the vanishing of this coefficient holds for all vectors in V.
Again using the fact that V5 and Vi span V, there is a vector wj, € Vy which has a
nonzero coefficient A} for b5. Arguing symmetrically shows that the coefficient 1
of b} vanishes for all vectors in V;.

By induction on m and using the fact that each vertex of I' occurs on the list
{b1,...,bm}, it follows that if wy; € V; then all coefficients of w; with respect to
the basis {vf,...,v:} vanish, so that V; is the zero vector space. This contradicts
the assumption that V' = Vi @ V; was a nontrivial direct sum decomposition.  []

4. GRAPH AND VECTOR SPACE CHEEGER CONSTANTS

In this section we show that a vector space equipped with a vector space valued
bilinear pairing can compute the Cheeger constant of a graph, which will allow us
to establish Theorem 1.3 and its consequences.

4.1. Comparing Cheeger constants. The main technical result of this section is
the following, which provides a precise correspondence between Cheeger constants
in the combinatorial and linear algebraic contexts:
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Theorem 4.1. Suppose that T is a connected simplicial graph and let A(T) be
the corresponding right-angled Artin group. Let hr denote the Cheeger constant
of T', and let hy denote the Cheeger constant of the triple (V,W,q), where V =
HY(A(T), L), where W = H?(A(T), L), and where q denotes the cup product. Then
hr = hy.

The proof of Theorem 4.1 is rather involved, and so will be broken up into
several more manageable lemmata. We begin by proving that the Cheeger constant
associated to a subspace F' C V generated by duals of the vertex generators is given
by the Cheeger constant associated to the corresponding subgraph. To fix notation,
let {v1,...,v,} denote the vertices of I', and let {v},...,v}} be the corresponding
dual generators of V. If B = {v1,...,v;}, we write B* = {v],...,v}} and use 0B
to denote the vertices I' which do not lie in B but which are adjacent to vertices in
B.

Lemma 4.2. Let 0 # F CV be generated by B* = {v7,...,v}}. Then

_ |9B|

|B| -
Proof. Recall that we use the notation C' for the orthogonal complement of B* with
respect to g. The subspace C' C V is generated by vertex duals {y7, ...,y }, where
for each i either y; ¢ BUOJB or y; is an isolated vertex of B (i.e. y; is not adjacent
to any other vertex of B).

To see this, note that {y7,...,y%} C C. Conversely, suppose that € C' and
write

hr

T =a1v] + -+ apv;,
where a1 # 0. If vy is adjacent to a vertex w € B then clearly ¢(x,w*) # 0, since
the resulting cohomology class will be supported on the dual of the edge connecting
v and w (see Subsection 3.1 for a discussion of the definition of support). It follows
that if © € C then v is either an isolated vertex of B or v; ¢ BUJB.

We now claim that
_ |oB|

Bl
To establish this claim, note that C' N F' is generated by the duals {v},...,v}} of
singleton vertices of B. Write |0B| = k. It follows now that

dimC —dim(CNF)=n—-|BUJIB|=n—Fk—j.

hr

We thus obtain the string of equalities
OB _k _n—j—(n—-k—j) dimV-—dimF —dimC+dim(CNF)
Bl j j B dim F

which establishes the lemma. O

:hF7

The following lemma clearly implies Theorem 4.1.

Lemma 4.3. Let 0 2 F C V be of dimension j. Then there exists a subspace F' C
V of dimension j with a basis contained in {vy,...,vi}, and such that hpr < hp.

Observe that in order to establish Lemma 4.3, if we write C’ for the complement
of F’ with respect to ¢, it suffices to show that

dimC —dim(C N F) < dimC’ — dim(C' N F’).
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Proving Lemma 4.3 is also rather complicated, so we will gather some preliminary
results and terminology first. We will call a j-tuple {v] ... ,v;‘j} admissible if for
each index iy, there is a vector w;, contained in the linear span of

{vi“,...,v:b}\{vfl,...,v;‘j

so that the vectors of the form f;, = v] + w;, form a basis for F'. Such bases
for F will be called admissible bases. Note that if {v7 ,..., v} } is admissible then
the vectors w;, are uniquely determined for 1 < k < j. It is straightforward to
determine whether a tuple is admissible: indeed, express an arbitrary basis for F’
in terms of the basis {v],...,v}}, the latter of which we view as the columns of
a matrix. A tuple is admissible if and only if the corresponding j X j minor is
invertible.

Let

E* = {v],... 05} C{o],..., 0.}

be admissible, and let E = {vq,...,v;} be the corresponding set of vertices. We
write I'g for the subgraph of I' spanned by F, and Ej for the set of isolated vertices
in . For a given subspace F', there are many possible admissible tuples E* we
might consider. Among those, we will always focus our attention on those for which
|Ep| is minimized. Such a choice of E* may of course not be unique.

Returning to an admissible basis for F', after re-indexing the vertices of I' if
necessary, we will fix a basis for V' now of the form

{f17~ . .,fj,v;+1,. .. ,1}:;},

where f; = v} + w; as before. Such a basis for V' will be called standard relative to
F, and E* will be the corresponding admissible tuple.

We will fix the following notation in the sequel. Suppose F' C V has dimension
J- U {fi,-o, f5, V541, -, v} is a standard basis of V' relative to F, write I’ for
the span of {v], ... ,v;‘}, write C” for its orthogonal complement with respect to g,
and let Y denote the span of {v} ,,...,v;}.

We will in fact prove the following lemma, which implies Lemma 4.3.

Lemma 4.4. If F C V has dimension j then there exists a standard basis

{fl,...,fj,vj+1,...,1};}

of V' relative to F such that if x € C and FNC = 0 then x € C'NY, and if
FNC#Q then
ze(CNFE)+(C'NY).
Lemma 4.4 implies Lemma 4.3, since then
dim C < dim ¢’ — dim(C’ N F') + dim(C' N F).
We first establish it in the simpler cases where dim /' = 1 and in the case where

there exists an admissible basis for F' with Ey = 0.

Proof of Lemma 4.4 when dim F' = 1. Clearly we may assume that dimV > 2.
Suppose F' is the span of a € V. Observe that F' C C. We write {f1,v5,...,v%}
for a standard basis for V relative to F. We have that a is a nonzero multiple of
f1, and F’ is the span of vi. If 2 € C' then we may write

z=Mfi+ Y Aivf.

=2
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We write w = — A1 f1 and we assume A, # 0 for some m > 2. Note that ¢(f1,z) =
q(f1,w). If g(vi,vr,) # 0 then ¢(f1, z) has A1 A, as the coefficient appearing before
the vector dual to the edge {vi,vn,}. So, if # € C then q(vi,v},) = 0, whence
it follows that v}, € C’. Since m was chosen arbitrarily subject to the condition
Am # 0, we have that w € ¢’ NY, where Y is the span of {v3,...,v:}. This
establishes the lemma in this case. O

Proof of Lemma 4.4 when Eo = 0. Let {f1,..., fj,vj1,...,v,} be a standard ba-
sis relative to F, where the admissible tuple E* satisfies £y = (). Each component
of T'g consists of at least two vertices. We write {F’,C’, Y} as before. Let x € C
be written as

J n

SNifit Y Ay

i=1 i=j+1
Suppose first that A,, # 0 for some m < j. The vertex v,, € E is adjacent to
a vertex v € E, so that ¢(Ap fi, fx) # 0, whence it follows that g(z, fx) # 0,
contradicting the fact that x € C. We conclude that \,, = 0 for m < j, so that we
may write

n
T = Z Ay
i=j+1
Mimicking the proof in the case dim ' = 1, we have that z € C'NY, as desired. [

Now let us consider a standard basis

B:{fl,...,fk,karl,...,fj,U;Jrl,...,’U:;}

relative to F, where the vertices in the admissible tuple E with indices 1 <1i < k
are precisely those which are not isolated in I'y. We remind the reader that we
assume here and henceforth that B is chosen in such a way that |Ey| is minimized.

By the proofs of the cases of Lemma 4.4 given so far, we may assume that k < j.
Let © € C as before, and write

i k
r=Y Nfit+ > Nivf
=1

i=j+1
As argued in the proof in the case Eq = (), we have that )\, = 0 for m < k.
Lemma 4.5. Let B be as above. If k+1 <m < j then q(fry1, fm)=0.
Proof. Write

n n
k
fk+1 :vz+l+ Z Ms+1v:a fm:v:n"‘ Z Iu;n,U;k
s=j+1 t=j+1
By assumption, we have that q(v;_;,v;,) = 0, since the corresponding vertices are
isolated. If ¢(fx+1, fm) # O then one of the three following cases must occur.

(1) The coefficient p**1 is nonzero for a suitable s > j with g(v?,v},) # 0.

S s?r"m
(2) The coefficient ;" is nonzero for a suitable t > j with q(v;,v;) # 0.
(3) We have pb+tu # pf™um™ for suitable indices s,t > j with s # ¢ and

q(vg, vy) # 0.
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In the first of these possibilities, we write

E' = (E\ {vgq1}) U{vs}.

We claim that (E’)* remains admissible. This is straightforward to check. Indeed,
we record an n x n matrix M whose columns are labelled by {v],...,v}}, whose
rows are labelled by {f1,..., f;, A ,vr}, and whose entries are the v} coefficient
m; ¢ of the it" row basis element. We have that the j x j block in the upper left
hand corner is the identity matrix. Exchanging vy for vs corresponds to switching
the (k + 1)** and s** columns of M. The (k + 1)* row of the s** column reads
pk+l £ 0. Thus after exchanging these two columns, the upper left hand j x j
block remains invertible. Moreover, g(v¥, v},) # 0, whence v, and vy, are no longer
isolated vertices. It follows that |E{| < |Ey|, which contradicts the minimality of
|Ep|. Thus, the first item is ruled out. We may rule out the second of these items
analogously.

To rule out the third item, we let E” = E\ {vg41,vm} U {vs,v:}. It suffices
to show that (E’)* is admissible, since v, and v; are adjacent in T' under the
assumptions of the third item. We switch the columns with labels £+ 1 and s, and
with labels m and t. Since p*+1um # uf“,ug , the determinant of the upper left
hand j x j block remains nonzero. This establishes the lemma. (]

In order to complete the proof of Lemma 4.4, we will need to describe a process of
modifying a given standard basis B to obtain one with more advantageous features.
Specifically, we will transform B into a standard basis B**! such that if 2 € C is
expressed with respect to Bt then the first k£ + 1 coefficients of  must vanish.
To this end, suppose f,. ¢ C for r > k. Without loss of generality, r = k + 1.

By Lemma 4.5, we see that there is an index m < k+1 such that ¢(f,,, fx+1) # 0.
Since vg41 is isolated, we have q(vj, ,v;,) = 0. Again we write

Jryr = v + z ukH R Z [T

s=j+1 t=5+1

Observe that at least one of items 1, 2, or 3 in the proof of Lemma 4.5 above must
occur for this pairing to be nonzero. We now proceed to modify B to obtain a new
standard basis B**! as follows, according to the reason for which q(fy,, fxt1) # 0.
Namely:

(1) If i # 0 for some index t with (v}, v;) # 0, then we set B*™! = B.

(2) If the previous item does not hold but if there exists an index s with

pktt £ 0 and q(v},,v;) = 0 then we substitute v} for v}, to obtain
an admissible tuple as in Lemma 4.5. We then set B**! to be the standard
basis associated to the corresponding admissible tuple.

(3) If both of the previous items do not hold then at least one of the products
pktLm and ,u””'l ™ is nonzero for suitable choices of indices s and ¢ with
q(vi,vf) #0. We bubbtltute vy for v, ;. As before, the resulting tuple is
admissible. We then write B¥*! for the corresponding standard basis.

As before, these exchanges do not change the size of |Ey|. We now write

] k+1 k+1
Bk+1:{f1+ 7""fj+ 7ej+17"'aen}7

where indices have been renumbered after any substitutions. Note the following.
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Observation 4.6. Forr < j and r # k + 1, we have that f**1 differs from f, by
a (possibly zero) multiple of fri1, and f]fill = fra1-

If x € C, we write it with respect to this new basis, so that

J n
_ k+1 pk+1 k41,
LL‘—Z)\i f; +Z>‘i vy

i=1 i=j+1
The previous considerations show that Af“ =0 fori<k.

Lemma 4.7. The following hold.
(1) If x € C is as above, then )\Eﬂ =0.
(2) For k+1<r,s<j, we have q(f**1, fk+1) = 0.

Proof. Suppose now that )\ZE # 0, and consider the index m as before which was

chosen so that ¢(fm, fx+1) # 0. Then for a suitable constant «, we have

a(fEXY D) = a(fo + @firts for1) = a(foms frr1) # 0.

Moreover, q(fF+1, ,fj:ll) is supported on the dual vector to the edge {vy,, vg41} or
{v4,vp+1} (which was the edge {v.,, vs} or the edge {v, vs} before the vertices were
re-indexed in the definition of B¥*!). No other summand making up the vector z
(i.e. NifFT for i >k +2 or AFTlyf for i > j 4 1) is supported on vy - It follows
that if )\’ljﬁ # 0 then q(x, fE*+1) # 0, which is a contradiction. We may therefore
conclude that \fT1 = 0.

k+1
For the second claim of the lemma, note that for

k+1<rs<y,

we have q(f,, fs) = 0 by Lemma 4.5, which implies that q(f**! fF*1) = 0 as
well since both of these vectors differ from f, and f; respectively by a multiple of
Jry1- O

Now suppose that ff“ ¢ C for some k+2 < i < j, and without loss of generality
we may assume that ¢ = k + 2. Repeating the procedure for the construction of

B**1 we may add multiples of f,’fizl to the basis vectors which are distinct from

fk+1

kto itself in order to obtain a new basis

BFt2 — {f1k+27 e, f]’?+2, Viiqsee s Un e
Since q(f 5, f71%) = 0 for i > k+1, we must have that q(f**+!, fif,) # 0 for some
r < k. As before, if 2 € C, we express z in this basis with coefficients {\F7?}, <<,
and observe that the coefficients satisfy )\f“ =0 for i < k and )\fig =0. Itis
conceivable that in the course of this modification we may find that /\iﬁ #£0,a
conclusion which we wish to rule out.

Lemma 4.8. If z € C is expressed with respect to the basis B**2, then we have
A2 = 0.
+1

Proof. We consider a vector f5*+1 which satisfies ¢(f**!, ,fill) # 0, and for suitable
constants o and 3, we obtain expressions

k+2 _ pk+1 k+1 k+2 _ pk+1 k+1
fm *fm +afk+2a fk.+1 = Jk4+1 +Bfk+2~
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Computing, we have
k+2  pk+2 k41 pk+1 E+1 pk+1
(I(fm+ ) k-tl) ZQ(fm+ ) k.tl)"’BQ(fm—i_ ) kiz)a
using the orthogonality of f,fill and f,fizl

It follows that g(f*+2, ,5112) is supported on the vector dual to the edge {vg41, vy}

for a suitable r, as this was already true of g(f*+!, ,fjrrll) Then, as we argued for
B**1 in Lemma 4.7, we have that )\Zﬁ = 0 again. O

We can now complete the argument.

Proof of Lemma 4.4. We inductively construct a sequence of distinct bases for V'
and corresponding admissible tuples which we write as

{BM2BME Ly (BN (B,

which have the property that if 2 € C' is written with respect to the basis B***
then the coefficients )\’;Jrs of fé”s are trivial for ¢ < k+s. We are able to construct
BFtstl from BFS precisely when there is an index k 4+ s < i < j such that
fi’€+S ¢ C. Since F is finite dimensional, the sequence will terminate after finitely
many terms. This will happen either for k + s = j or for some s < j — k.

In the first case, we see that C' N F = 0. In the second case, the basis vectors

{f/:jssﬂ, cel ka+5} are orthogonal to F. To complete the proof of the lemma, we

set f; = fikJrS for 1 <4 < j, and F’ is the span of the associated admissible
tuple (E**%)*. As in the statement of the lemma, we write Y for the span of
{viie, .- on ) If o € C then

J
T = Z Nt fi+y
i=k+s+1
for a suitable vector y € Y. Note that by assumption, we have x — y € C, which
implies that y € C. This shows that y € C' NY, since ¢(y, f;) =0 for all i < j and
hence q(y,v) =0 for i < j. It follows that if CNF =0 then z =y € C'NY, and
otherwise that © € (CNF) + (C’'NY), which completes the proof. O

4.2. Proof of the main results. Theorem 1.2 and Theorem 1.3 now follow almost
immediately. The size of the set of vertices of I'; tending to infinity is equivalent
to the dimension of V; = H'(A(T)) tending to infinity, over any field. Bounded
g;—valence of V;, bounded valence of I';, and bounded centralizer rank in A(T)
are all equivalent by Corollary 3.3 and Lemma 3.5. Finally, Theorem 4.1 implies
that the Cheeger constant of I'; is equal to the Cheeger constant of the triple
(HY(A(T")), H?(A(T)), q), over any field. This establishes the main results.

4.3. Generalizations to higher dimension. By considering cohomology of right-
angled Artin groups beyond dimension two, one can use vector space expanders to
generalize graph expanders to higher dimensions. Unfortunately, this does not seem
to give much new information, as might be expected; indeed, the cohomology of
a right-angled Artin group is completely determined by its behavior in dimension
one and the cup product pairing therein. This can easily be seen through a suitable
generalization of Proposition 3.1 to higher dimensional cohomology: the cohomol-
ogy of the right-angled Artin group A(T") in each dimension is determined by the
corresponding number of cells in the flag complex of T' (with a dimension shift),
and the cup product pairing is determined by the face relation. The flag complex,
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moreover, is completely determined by its 1-skeleton. In particular, there does not
seem to be a meaningful connection to more fruitful notions of higher dimensional
expanders (cf. [25], for instance).

5. A VECTOR SPACE EXPANDER FAMILY THAT DOES NOT ARISE FROM A GRAPH
EXPANDER FAMILY

In this section, we give a method for producing families of vector space expanders
that do not arise from the cohomology rings of right-angled Artin groups of graph
expanders.

Let {T"; }sen be a family of finite connected simplicial graphs which form a graph
expander and let L be an arbitrary field. We will write

Vi =H'(AT;),L), W;=H*AI),L), ¢ =-—,

where — denotes the cup product in the cohomology ring of the corresponding
group. For each i, we choose an arbitrary vertex v® of I'; We set V/ = V;, and
we let W; = W @ L, where the summand L is generated by a vector z. We set
q. = q; ® qo.4, where qo;((v")*, (v})*) = 27, and where o ; vanishes on inputs of all
other basis vectors arising from duals of vertices, in both arguments. That is, let
{vi,...,v.} be the vertices of T';, and without loss of generality we may assume
that v’ = vi. We set go;((v})*, (v},)*) = 0 unless both v} and v}, are equal to vi,
and we extend by bilinearity.

Proposition 5.1. If V' = {(V/,W/,q.) }i>o is as above then:
(1) The family V' is a vector space expander.
(2) The family V' does not arise from the cohomology of the right-angled Artin

groups associated to a sequence of graphs.

The second item of Proposition 5.1 means that there is no family of finite con-
nected simplicial graphs {A;};en such that

‘/;/ = HI(A(A1)7L)a Wzl = H2(A(A1)7L)7 qé =.

Proof of Proposition 5.1. Since V; = V;, we have that dim V/ — oo. Now consider
gi—valence, which we denote by d;, and we compare with the graph valence d(I';)
of T';. By setting B = S = (Vert(I';))* in the definition of ¢j—valence, we see
that d;(V) < d(T';) + 1. Thus, V' has uniformly bounded valence. For each i, the
vector space V; is already pairing—connected with respect to the pairing ¢;, and
gi(v,w) # 0 implies ¢}(v,w) # 0, so that V/ is pairing—connected with respect to
the pairing ¢;.

We now need to estimate the Cheeger constants of V'. We suppress the 4 index,
and write {v},...,v:} for a basis of V' consisting of dual vectors of vertices of T.
We assume v; to be the distinguished vertex of I' such that go(vy,v}) # 0. Let
0 # F C V' be a subspace of dimension at most (dimV”)/2, and let hy be the
infimum of the Cheeger constants of the family V' with respect to ¢, the usual cup
product. We denote by C, the orthogonal complement of F' with respect to g, by
Cy the orthogonal complement of F' with respect to ¢g, and by C' the orthogonal
complement of F with respect to ¢’. Clearly, C = C, N Cp.

Now, let f € F be written as

n
2 : *

f = HiV;
=1
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and let z € V be written as
n
T = Z Ay
i=1

It follows by definition that go(v},x) = 0 for i # 1, so that go(f,z) = Ap.
Thus, the span of {v3,..., v’} is always contained in Cp, and consequently Cj has
dimension either n or n — 1. Thus, dim C is either equal to dim C; or dim Cy — 1.
Similarly, z € C N F if and only if z € C;, N Cy N F, so that dim(C' N F) is either
equal to dim(Cy N F') or dim(Cy N F) — 1.

Suppose that dim(C' N F) = dim(Cy N F') — 1. Then C # Cy, so that dimC =
dim C; — 1. In this case,

dimC —dim(CNF)=dimCy; —1— (dim(Cy N F) — 1) = dim Cy — dim(Cy N F).

It follows that dim C' — dim(C' N F) < dim C,; — dim(C,; N F), and the difference
between these is at most 1. Writing N = dim V'’ — dim F, the Cheeger constant of
F satisfies

o — N —dimC 4+ dim(C N F) S N —dim C, + dim(C,; N F)
= dim F = dim F '
This proves that the Cheeger constant of V' is bounded away from zero, which
proves that V'’ is a vector space expander family.
To see that V' does not arise from a graph expander family, we note that the cup
product satisfies v{ — v] = 0, and ¢’ is constructed so that ¢'(v],v]) # 0. This
establishes the proposition. O

Many variations on the construction in this section can be carried out, which
illustrates the fact that vectors space expander families are indeed significantly
more flexible than graph expander families.
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