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Abstract
The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical 
management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate 
the parameters by minimising the sum of the squared distances between actual observations and simulation 
outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are 
developed based on certain simplifications of reality, also known as imperfect models which are commonly 
used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a 
smaller estimation variance than the least-squares estimator, and achieves the semiparametric efficiency. 
Numerical studies are performed to examine the finite sample performance. The proposed method is applied 
to the analysis of the COVID-19 pandemic for 20 countries based on the susceptible-exposed-infectious- 
recovered model with both deterministic and stochastic simulations. The estimation of the parameters, 
including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks 
in each country and provide insights to the design of public health interventions.
Keywords: basic reproduction number, compartmental models, kernel Poisson regression, semiparametric efficiency, 
stochastic simulations
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1 Introduction
The coronavirus disease (COVID-19) pandemic has shown profound impacts on public health and 
the economy worldwide. The development of efficient and effective public health interventions to 
prevent major outbreaks and contain the pandemic relies heavily on a quantitative understanding 
regarding the spread of the virus, such as the transmission rate and the average incubation period. 
A commonly used approach in epidemiology is to estimate these quantities of interest using epi-
demic mathematical models, such as the susceptible-infected recovered model, with agent-based 
simulations which capture complex social networks and global scale into the models (Epstein, 
2009; Funk et al., 2009; Heesterbeek et al., 2015).

To estimate the parameters of interest, a widely used frequentist approach is to minimise the 
sum of the squared distances between the observed data and the simulation outputs, which is often 
referred to as the least-squares approach. See, for example, Chowell et al. (2004, 2003), Capaldi 
et al. (2012), Chowell (2017), Anastassopoulou et al. (2020), Bentout et al. (2020), Chen and Qiu 
(2020), and Giordano et al. (2020). This estimation approach is intuitive and easy to compute; 
however, it is shown in this paper that this method is inefficient, that is, its asymptotic variance 
is not theoretically minimal, particularly when the mathematical models associated with the sim-
ulators are built under certain assumptions or simplifications, which may not hold in reality. These 
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simulators are called imperfect simulators in the computer experiment literature (Kennedy & 
O’Hagan, 2001; Plumlee, 2017; Tuo & Wu, 2015). Imperfect simulators are common in epidemi-
ology (Heesterbeek et al., 2015), and therefore estimate parameters of interest in epidemic models 
based on the least-squares approach is not efficient.

To improve the estimation efficiency with imperfect epidemic models, a new estimation method 
is proposed in this paper. In the computer experiment literature, these unknown parameters asso-
ciated with the mathematical models are often called calibration parameters, and the process of 
estimating the parameters such that the model simulations agree with the observed data is called 
calibration (Kennedy & O’Hagan, 2001; Santner et al., 2018). Although there are numerous de-
velopments on calibration, most of the work focus on continuous outputs while the discussions on 
non-Gaussian outputs, such as count data which are often observed in epidemiology, are scarce 
(Grosskopf et al., 2020; Sung, Hung, et al., 2020). In this paper, we propose a new estimation 
method for non-Gaussian outputs, particularly for count data for our applications in epidemi-
ology, which minimises the L2 projection of the discrepancy between the true mean process and 
the simulation outputs. It can be shown that the proposed estimator is asymptotically consistent 
and provides a smaller asymptotic variance than the least-squares estimator (LSE). Furthermore, it 
can be shown that the proposed estimator achieves the semiparametric efficiency, even when the 
model simulations cannot match the reality due to certain assumptions or simplifications.

It is worth noting that there are extensive studies and applications of calibration by Bayesian pro-
cedures (Diekmann et al., 2013; Farah et al., 2014; Wang, Zhou, et al., 2020; Wu et al., 2020). 
However, without taking the model imperfection into account in the conventional Bayesian frame-
work, the theoretical justification for the parameter estimation with imperfect simulators are not fully 
developed. On the other hand, Bayesian calibration of Kennedy and O’Hagan (2001) takes into ac-
count the model imperfection through Gaussian process (GP) modelling, but it suffers from the un-
identifiability issue when the parameter estimation is of interest (Bayarri et al., 2007; Gramacy 
et al., 2015; Han et al., 2009; Hodges & Riech, 2010; Paciorek, 2010). Furthermore, most of the ex-
isting developments are based on continuous outputs with a Gaussian assumption, which is not valid 
for the count data in the epidemic models in our applications. Recent studies on addressing the un-
identifiability issue can be found in Plumlee (2017) and Tuo (2019).

The remainder of the paper is organised as follows. Two types of simulators for COVID-19 ana-
lysis, and a new estimation method based on L2 projection for the unknown parameters in the sim-
ulators, are introduced in Section 2. Theoretical properties of the proposed estimator are 
developed in Section 3. In Section 4, numerical studies are conducted to demonstrate the finite 
sample performance of the proposed estimator and the empirical comparison with the LSE. In 
Section 5, the estimation method is applied to the study of COVID-19. Discussions and concluding 
remarks are given in Section 6. Computational details for the estimation are given in Appendix, 
and the mathematical proofs and the R (R Core Team, 2018) code for implementation are pro-
vided in online supplementary material.

2 Estimation for compartmental models in epidemiology
2.1 Imperfect epidemic models for COVID-19 analysis
Mathematical models are commonly used in epidemiology to provide scientific insights. These 
models are often developed based on certain simplifications of reality; therefore, they are imperfect 
(Heesterbeek et al., 2015). For example, the susceptible-exposed-infectious-recovered (SEIR) 
model, which consists of four compartments, Susceptible-Exposed-Infectious-Recovered, is wide-
ly recommended for COVID-19 simulations because it accounts for the incubation period through 
the exposed compartment (Annas et al., 2020; Carcione et al., 2020; He et al., 2020; Mwalili et al., 
2020; Wu et al., 2020), and is thus adopted in this paper. Mathematically, a deterministic SEIR 
model can be written as

dS
dx

= − βIS
N

,
dE
dx

= βIS
N

− κE,
dI
dx

= κE − γI,
dR
dx

= γI (1) 

where S, E, I, and R represent the numbers of cases in the corresponding compartment, N = S + 
E + I + R is the total population, x is the time, β is the contact rate that represents the average 
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number of contacts per person per time in the susceptible compartment, γ is the recovery rate from 
the infectious compartment, and κ is the incubation rate which represents the rate of latent indi-
viduals becoming infectious, or equivalently, the average incubation period is 1/κ. There are six 
unknown parameters in the model (1): β, κ, γ and the initial numbers of infectious, exposed, 
and recovered cases (denoted by I(0), E(0), and R(0), respectively), which are denoted by 
θ = (β, κ, γ, I(0), E(0), R(0)).

In this paper, we focus on two types of SEIR simulators: a deterministic simulator and a stochastic 
simulator. For a deterministic simulator, the simulation outputs are obtained by numerically solving 
the ordinary differential equations shown in (1) using numerical solvers, such as the ODEPACK 
(Hindmarsh, 1983). On the other hand, a stochastic SEIR simulation provides a more sophisticated 
and realistic framework to integrate infection dynamics in different compartments as continuous-time 
Markov chains (Allen, 2008, 2017; Andersson & Britton, 2012). To conduct these simulations, we 
implement an R package, SimInf (Widgren et al., 2019), in which the simulation results are obtained 
by the Gillespie stochastic algorithm (Gillespie, 1977). Stochastic SEIR simulations are computation-
ally more demanding. For example, it takes more than 10 min to produce one simulation result for 
one country under a given parameter setting. It is computationally infeasible to perform simulations 
for all the possible combinations of the parameters; therefore, an emulator is constructed as an effi-
cient surrogate to the actual simulation in our later implementation.

An accurate estimation of the unknown parameters in the SEIR model is often of great interest in 
epidemiology because it offers valuable insights into the dynamics of infectious diseases, which are 
essential for effectively predicting transmission patterns and assessing intervention strategies. For 
example, 1/κ indicates the average incubation period and the basic reproduction number, 
R0 = β/γ, represents the expected number of new infected cases from an infectious individual in 
a population where all subjects are susceptible. An accurate and efficient estimation of these pa-
rameters is not only important for the public safety but it also has significant impacts on global 
economy. The main objective in this paper is to provide a new estimation method that enhances 
the estimation efficiency of parameters despite the inherent imperfections and limitations of epi-
demic models.

2.2 LSE and maximum likelihood estimator
Let f (x, θ) denote the number of infected cases at time x ∈ Ω ⊆ R+, where θ ∈ Θ ⊆ Rq is a set of 
unknown calibration parameters associated with the compartmental model. In the case of SEIR 
model (1), q = 6 and f (x, θ) = κE(x), where E(x) is the solution of E in the ordinary differential 
equations of (1). Suppose that yi is the reported number of infected cases at time xi. Then, given 
the reported number of infected cases in n days, {(xi, yi)}n

i=1, the commonly used approach to es-
timate the parameters is to minimise the sum of squared differences between actual numbers of 
infected cases and simulation outputs from compartmental models. The estimated parameters 
are denoted by θ̂LS

n , where LS stands for least-squares, and they are obtained by

θ̂LS
n = arg min

θ∈Θ

Xn

i=1

(yi − f (xi, θ))2 (2) 

In addition to the LSE, the maximum likelihood estimator (MLE) is also a commonly used estima-
tion approach. Assume that yi ∼ Poi(f (xi, θ)), where i = 1, . . . , n, we obtain the MLE for the cali-
bration parameters by

θ̂MLE
n = arg max

θ∈Θ

Xn

i=1

yi log f (xi, θ) −
Xn

i=1

f (xi, θ) (3) 

2.3 Estimate calibration parameters by L2 projection
Despite the wide applications of the least-squares approach and MLE, it can be shown that the LSE 
does not achieve the semiparametric efficiency when the simulator f (x, θ) is imperfect, meaning 
that the simulation output cannot perfectly fit the response, even with the best fit of θ. The 
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asymptotic variance can be reduced by the proposed estimator introduced in this section. It can 
also be shown that MLE is asymptotically inconsistent when the simulator f (x, θ) is imperfect. 
Theoretical justifications are provided in Section 3.

Assume that the number of cases yi follows a Poisson distribution: yi ∼ Poi(λ(xi)) for 
i = 1, . . . , n, and yi and yj are mutually independent for any i ≠ j, where λ(xi) is the true mean func-
tion of yi. The function λ(x) is often called the true process in the computer experiment literature 
(Kennedy & O’Hagan, 2001; Tuo & Wu, 2015, 2016). Ideally, if the underlying mean function 
λ(x) is known, the true parameter can be defined as the minimiser of the L2 projection of the dis-
crepancy between the true process and the simulation output, that is,

θ⇤ = arg min
θ∈Θ

kλ(·) − f ( · , θ)kL2(Ω) (4) 

where kgkL2(Ω) = ( ∫Ω g(x)2dx)1/2.
In reality, the underlying true process λ(·) is unknown that needs to be estimated by observed 

data. Therefore, given the data {(xi, yi)}n
i=1, we propose to estimate the true process by the kernel 

Poisson regression (Shim & Hwang, 2011; van de Geer, 2000). Similar to the conventional Poisson 
regression (McCullagh & Nelder, 2019), we use the logarithm as the canonical link function, that 
is, log λ̂n(·) = ξ̂n(·), and ξ̂n(·) is fitted by

ξ̂n = arg min
ξ∈N Φ(Ω)

1
n

Xn

i=1

exp {ξ(xi)} − yiξ(xi)
ˇ �

+ κnkξk2
NΦ(Ω) (5) 

where k · k2
N Φ(Ω) is the norm of the reproducing kernel Hilbert space generated by a given positive 

definite reproducing kernel Φ, and κn is a tuning parameter, which can be chosen by cross- 
validation methods. Thus, the proposed estimator of θ, which we call L2-estimator throughout 
this paper, is the minimiser of the L2 projection as follows:

θ̂n = arg min
θ∈Θ

kλ̂n(·) − f ( · , θ)kL2(Ω) (6) 

The optimal solution of (5) has the form of ξ̂n(x) = b̂ + Pn
i=1 âiΦ(xi, x), where b̂ and {âi}n

i=1 can be 
obtained by the iterative re-weighted least-squares algorithm (Green & Yandell, 1985; Hastie & 
Tibshirani, 1990; Wahba et al., 1995). The detail of the algorithm is given in Appendix A. In prac-
tice, the calculation of the L2 norm in (6) can be approximated by numerical integration methods, 
such as Monte Carlo integration (Caflisch, 1998).

As described in Section 2.1, because stochastic SEIR simulations can be quite computationally 
intensive, it is infeasible to obtain f (x, θ) by conducting simulations for all possible combinations 
of the input parameters. Thus, we employ a computationally efficient emulator to approximate the 
simulator. There are extensive studies on the development of statistical emulators in the computer 
experiment literature (Santner et al., 2018). GPs are the most commonly used tools in the construc-
tion of emulators (Gramacy, 2020). Based on computer experiments with sample size N, a statis-
tical emulator is denoted by f̂ N(x, θ), which produces a predictive distribution of f (x, θ) with 
any untried (x, θ) ∈ (Ω, Θ). Specifically, the distribution of f̂ N(x, θ) with any untried (x, θ) ∈ 
(Ω, Θ) is a normal distribution with the mean function, defined by mN(x, θ), and the variance func-
tion, defined by v2

N(x, θ). We refer more details to Gramacy (2020). Thus, by Fubini’s theorem, the 
L2-estimator of (6) can be replaced by

θ̃n = arg min
θ∈Θ

Ekλ̂n(·) − f̂N( · , θ)k2
L2(Ω)

= arg min
θ∈Θ

∫Ω λ̂n(z) − mN(z, θ)
ˇ �2+v2

N(z, θ)dz
(7) 

The applications of the proposed method with various existing emulators are demonstrated in 
Sections 4 and 5.
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It is worth noting that the Poisson regression, yi ∼ Poi(λ(xi)), may encounter overdispersion due 
to the presence of greater variability (McCullagh & Nelder, 2019). That is, the variance of the data 
is larger than the mean, which violates the assumption of Poisson distribution. The deviance 
goodness-of-fit test (McCullagh & Nelder, 2019) can be used to assess the model assumption. 
To take into account the issue of overdispersion, a quasi-Poisson regression can be considered 
which assumes that the variance of yi is ϕλ(x), where ϕ > 1 is the overdispersion parameter. The 
overdispersion parameter can be estimated by the ratio of the deviance to the effective degree free-
dom. The details of the deviance goodness-of-fit test and the estimation of overdispersion param-
eter are provided in Appendix A.

3 Theoretical properties
Theoretical properties of the L2-estimator are discussed in this section, including the asymptotic 
consistency and the semiparametric efficiency. Theoretical comparisons with the LSEs are also 
provided by examining their asymptotic variances. The proofs are given in online 
supplementary material.

The following theorem shows that the L2-estimator θ̂n in (6) is asymptotically consistent and 
normally distributed.

Theorem 1 Under the regularity conditions C1–C10 in Web Appendix B, we have

ÅÅ
n

p
(θ̂n − θ⇤)!d N (0, 4V0(θ⇤)−1W0(θ⇤)V0(θ⇤)−1) 

as n ! ∞, where

W0(θ) = E λ(X)
∂f
∂θ

(X, θ)
∂f

∂θT (X, θ)
 �

and

V0(θ) = E
∂2

∂θ∂θT (λ(X) − f (X, θ))2
 � (8) 

Remark When the overdispersion parameter, ϕ, is present in the Poisson regression, the 
result in Theorem 1 can be rewritten as

ÅÅ
n

p
(θ̂n − θ⇤)!d N (0, 4ϕV0(θ⇤)−1W0(θ⇤)V0(θ⇤)−1) 

By the delta method, the following corollary extends the result of Theorem 1 to a function of the 
L2-estimator, which we denote as g(θ̂n).

Corollary 2 For a function g satisfying the property that rg(θ⇤) exists and is nonzero val-
ued, we have

ÅÅ
n

p
(g(θ̂n) − g(θ⇤))!d N (0, 4rg(θ⇤)TV0(θ⇤)−1W0(θ⇤)V0(θ⇤)−1rg(θ⇤)) 

as n ! ∞.

Corollary 2 provides a theoretical support for the estimation and inference of some commonly 
used quantities of interest in epidemiology, such as the basic reproduction rate, which measures 
the transmission potential of a disease. For instance, in the SEIR model (1), the basic reproduction 
rate is a ratio of two of the calibration parameters, that is, g(θ) = β/γ. The result of Corollary 2 can 
then be applied to construct the confidence intervals for the basic reproduction rate.
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When estimating the unknown parameters in compartmental models, the parameter of interest 
θ⇤ in (4) is q-dimensional, while the parameter space of the Poisson model, yi ∼ Poi(λ(xi)), contains 
an infinite dimensional function space that covers λ. Therefore, the calibration problem is regarded 
as a semiparametric problem. For these problems, the estimation method that can reach the high-
est estimation efficiency is called semiparametric efficient (Bickel et al., 1993; Kosorok, 2008). 
Specifically, let Λ be an infinite dimensional parameter space whose true value is λ0. Suppose 
that Tn is an estimator for θ⇤ and 

ÅÅ
n

p
(Tn − θ⇤) is asymptotically normal. Let Λ0 be an arbitrary 

finite dimensional space of Λ that satisfies λ0 ∈ Λ0. Consider the same calibration problem but 
with the parameter space Λ0, then under this parametric assumption and some regularity condi-
tions, an efficient estimator can be obtained by the maximum likelihood method, which is denoted 
by SΛ0

n . Then, the estimator Tn is called semiparametric efficient if there exists a Λ0 such that SΛ0
n 

has the same asymptotic variance as Tn. More details regarding the semiparametric efficiency can 
be found in Tuo and Wu (2015), Bickel et al. (1993), and Kosorok (2008). It can be shown in the 
following theorem that the proposed L2-estimator is semiparametric efficient.

Theorem 3 Under the regularity conditions in Theorem 1, θ̂n is semiparametric efficient.

When the simulator f is too costly to evaluate like the stochastic SEIR simulator in Section 2.1, as 
discussed in Section 2.3, an statistical emulator can be considered after conducting a computer ex-
periment of size N on the simulator. Suppose that the emulator of f (x, θ), i.e. f̂N(x, θ), follows a 
normal distribution with the mean function, mN(x, θ), and the variance function, v2

N(x, θ), i.e.

f̂N(x, θ) ∼ N (mN(x, θ), v2
N(x, θ)) (9) 

and the L2-estimator is obtained by (7) as θ̃n. Then, the following theorem provides the asymptotic 
distribution of θ̃n.

Theorem 4 Under the regularity conditions C1 and C7–15 in Web Appendix B, we have

ÅÅ
n

p
(θ̃n − θ0N)!d N (0, 4V1(θ0N)−1W1(θ0N)V1(θ0N)−1) 

as n ! ∞, where

θ0N = arg min
θ∈Θ

kλ(·) − mN( · , θ)k2
L2(Ω) + k

ÅÅÅÅÅÅÅÅÅÅ
v2

N( · , θ)
q

k2
L2(Ω)

W1(θ) = E λ(X)
∂mN(X, θ)

∂θ
∂mN(X, θ)

∂θT

 �
and

V1(θ) = E
∂2

∂θ∂θT (λ(X) − mN(X, θ))2 + v2
N(X, θ)

⇣ ⌘ �

With the emulator (9), it is of no surprise that the estimator θ̃n is asymptotic inconsistent. 
However, when the size of the computer experiment, N, is sufficiently large, with an appropriate 
emulator (e.g. GP emulator) and under some regularity conditions, we have mN(x, θ) ! f (x, θ) 
and v2

N(x, θ) ! 0 for any (x, θ) ∈ Ω × Θ (Wang, Tuo, et al., 2020), leading to θ0N ! θ⇤, which im-
plies that θ̃n is asymptotic inconsistent when N is sufficiently large.

In the next theorem, the asymptotic properties of the LSE are developed and compared with 
those of the L2-estimator.

Theorem 5 Under the regularity conditions C1–C4 and C16–C17 in Web Appendix B, we 
have

ÅÅ
n

p
(θ̂LS

n − θ⇤)!d N (0, 4V0(θ⇤)−1W2(θ⇤)V0(θ⇤)−1) 

52                                                                                                                                             Sung and Hung
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/1/47/7275326 by guest on 30 Septem
ber 2024



as n ! ∞, where

W2(θ) = W0(θ) + E (λ(X) − f (X, θ))2 ∂f
∂θ

(X, θ)
∂f

∂θT (X, θ)
 �

Similar to the L2-estimator, it is shown that the LSE is asymptotically consistent and normally 
distributed. It can also be shown that W2(θ⇤) ≥ W0(θ⇤), which leads to

4V0(θ⇤)−1W2(θ⇤)V0(θ⇤)−1 ≥ 4V0(θ⇤)−1W0(θ⇤)V0(θ⇤)−1 (10) 

This implies that the asymptotic variance of the LSE θ̂LS
n is greater or equal to that of θ̂n. The equal-

ity in (10) holds if and only if

E (λ(X) − f (X, θ⇤))2 ∂f
∂θ

(X, θ⇤)
∂f

∂θT (X, θ⇤)
 �

= 0 (11) 

This result indicates that if (∂f/∂θ)(x, θ⇤) ≠ 0 for all x ∈ Ω, then (11) holds only if λ(x) = f (x, θ⇤) 
for all x ∈ Ω, which implies that the LSE θ̂LS

n is less efficient than θ̂n if f is an imperfect simulator, i.e. 
λ(x) ≠ f (x, θ⇤) for some x ∈ Ω.

In the next theorem, the asymptotic properties of the MLE as in (3) are developed and compared 
with those of the L2-estimator.

Theorem 6 Under the regularity conditions C1 and C18–C22 in Web Appendix B, we 
have

ÅÅ
n

p
(θ̂MLE

n − θ00)!d N (0, V3(θ00)−1W3(θ00)V3(θ00)−1) 

as n ! ∞, where

θ00 = arg max
θ∈Θ

E[λ(X) log f (X, θ) − f (X, θ)]

V3(θ) = E
1

f (X, θ)
− 1

2
V0(θ) + 1 − λ(X)

f (X, θ)

✓ ◆ ∂f (X, θ)
∂θ

∂f (X, θ)
∂θT

✓ ◆ � (12) 

and

W3(θ) = E
1

f (X, θ)2 (λ(X) − f (X, θ))2 + λ(X)
⇣ ⌘ ∂f (X, θ)

∂θ
∂f (X, θ)

∂θT

" #

Unlike the L2-estimator and the LSE, the MLE asymptotically converges to a value that differs 
from the true parameter defined in (4). For example, suppose λ(x) = x2 and f (x, θ) = θx, by the def-
inition of θ⇤ in (4) we have θ⇤ = 0.75, while by (12), θ̂MLE

n converges to θ00 = 2/3 in probability.

4 Numerical study
In this section, two artificial examples are conducted to examine the finite sample performance of 
the proposed method and compare the estimation performance with the least-squares approach. 
These numerical studies are conducted on a MacBook Pro laptop with Apple M1 Max Chip and 
32Gb of RAM.
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4.1 Imperfect simulator with one calibration parameter
We consider an imperfect simulator adapted from Tuo and Wu (2015) with one calibration par-
ameter. The true process is assumed to be λ(x) = exp (x/2) sin (x/2) + 30, where x ∈ Ω = [0, 2π], 
and it is illustrated in the left panel of Figure 1 as the solid line. The data are generated from equal- 
spaced inputs in [0, 2π] with n = 50 and the outputs are generated from a Poisson distribution with 
the mean process λ(xi) for i = 1, . . . , 50, which are shown as the solid dots in the left panel of 
Figure 1.

We assume that the simulation output is f (x, θ) = λ(x) − 5
ÅÅÅÅÅÅÅÅÅÅÅÅ
θ2 − θ + 1

p
( sin (θx) + cos (θx)), 

where θ ∈ Θ = [ − 1, 1]. This simulator is imperfect because 
ÅÅÅÅÅÅÅÅÅÅÅÅ
θ2 − θ + 1

p
is always positive 

for any θ ∈ Θ. The true parameter can be analytically solved by minimising (4), which gives 
that θ⇤ = −0.1789. Plugging in the true calibration parameter, the simulator f (x, θ⇤) is demon-
strated as the dashed line, which is imperfect because, even with the true minimiser, the discrep-
ancy between the simulation output and the true process is nonzero.

The performance of the L2-estimator is compared with the LSE and MLE based on the 
mean squared errors (MSEs) obtained from 100 replicates, that is, 

P100
i=1 (θ̂i − θ⇤)2/100, where 

θ̂i is the estimate at the ith replicate. Their MSEs are shown in the first three bars in the right panel 
of Figure 1. It shows that the L2-estimator (‘L2’) yields a smaller MSE than the ‘LSE’ and ‘MLE’. 
To quantify the uncertainty of the L2 estimator, the 95% confidence intervals are constructed 
based on the asymptotic result in Theorem 1, where λ, θ⇤, and E are approximated by λ̂, θ̂n, and 
Monte-Carlo integration (Caflisch, 1998), respectively. Out of the 100 replicates, the true param-
eter is contained by the confidence interval 96 times, which appears to be close to the nominal 
coverage 95%.

We further compare the estimation performance for the cases when the simulations are compu-
tationally demanding and therefore statistical emulators are built as surrogates. Before comparing 
the estimation performance, we first examine the emulation performance of two existing emula-
tion methods that are applicable to count data, which are the multiresolution functional analysis 
of variance emulation (Sung, Wang, et al., 2020) and the heteroscedastic GP emulation (Binois 
et al., 2018). Both methods have available packages in R (R Core Team, 2018), which are 
MRFA (Sung, 2020) and hetGP (Binois & Gramacy, 2019), respectively. These emulators are 
trained by conducting a computer experiment, which simulates the model outputs of f (x, θ) of 
size m, where the inputs are sampled from (x, θ) ∈ (Ω, Θ) ∈ R2 using a Latin hypercube design 
(LHD) (McKay et al., 1979). For each input setting, simulations are conducted with a replicates. 
The emulation performance is examined by performing predictions on 10,000 random untried in-
put settings from (Ω, Θ). With four different combinations of m and a, the root mean squared pre-
diction errors (RMSPEs) of the two emulators along with their computational time are reported in 
Table B1 of Appendix B. In this example, it appears that hetGP outperforms MRFA in terms of 
computational time and RMSPE. Thus, we select the emulator built by hetGP as the surrogate 
to the actual simulator in the following analysis.

Next, we compare the estimation performance with the hetGP emulator built by m = 25, a = 50 
samples, leading to total sample size N = ma = 750. The L2 estimator is obtained by (7) with the emu-
lator, and the LSE is similarly obtained by minimising 

Pn
i=1 (yi − mN(xi, θ))2 + v2

N(z, θ). For the MLE 
as in (3), the actual simulator f (x, θ) is replaced by the mean of the hetGP emulator, i.e. mN(x, θ). 
The MSEs are shown in the last three bars in the right panel of Figure 1. Similar to the previous result 
without emulators, the L2-estimator provides a smaller MSE than the LSE and MLE. By comparing 
the first three and last three bars, it is not surprising to see that the MSEs of ‘L2+emulator’, ‘LSE+emu-
lator’, and ‘MLE+emulator’ are larger than ‘L2’, ‘LSE’, and ‘MLE’ due to the prediction uncertainty 
from emulation. Similarly, we construct the 95% confidence intervals based on the asymptotic result 
in Theorem 4 for the L2 estimator of (7), and out of the 100 replicates, the true parameter is contained 
by the confidence interval 91 times, which appears to be close to the nominal coverage of 95%.

4.2 Imperfect simulator with three calibration parameters
We consider a more complex problem with three calibration parameters adapted from Plumlee 
(2017). Assume that the true mean process is λ(x) = 3x + 3x sin (5x) + 3 and the simulator is 
f (x, θ) = θ1 + θ2x + θ3x2, where x ∈ [0, 2] and θ ∈ [0, 5]3. Similar to the previous example, the 
three calibration parameters also have analytical solution θ⇤ ≈ (3.56, 0.56, 1.76) by minimising (4).
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The data {yi}50
i=1 are generated from the Poisson distribution with the mean {λ(xi)}50

i=1, where the 
50 inputs are uniformly sampled from [0, 2]. The estimation performance is examined based on 
the MSEs obtained from 100 replicates, and the proposed estimator and the LSE are compared 
for each calibration parameter. The results are shown in the first three bars in each plot of 
Figure 2, in which the y-axis represents the MSEs. Similar to the previous example, it appears 
that the L2-estimator outperforms the LSE and MLE for all of the three parameters.

In this example, we also examine the prediction performance of the two existing emulators, 
MRFA and hetGP. A computer experiment is conducted to train the two emulators by running 
the simulation outputs of f (x, θ) at m unique sample locations with a replicates, in which the 
unique input locations are sampled from (x, θ) ∈ (χ, Θ) ⊆ R4 using an LHD. After the emulators 
are built, the root mean squared error are computed based on the predictions of 10,000 untried 
input locations, and the prediction results are summarised in Table B2 with different settings of 
m and a. Similar to the previous example, the hetGP method outperforms MRFA in terms of pre-
diction accuracy and computational time. With a larger a, i.e. more replicates, the prediction ac-
curacy of hetGP appears to increase without much increase in computational time. Thus, we 
select hetGP as the emulator in the following analysis.

We now compare the estimation performance for the cases where emulators are constructed as 
surrogates to the actual simulations. The emulator is built by hetGP with m = 300, a = 100 and 
based on the emulator, the estimation performance is summarised by the last three bars in each of 
the three plots in Figure 2. The results indicate that, either when the actual simulator is conducted 
or emulated, the L2-estimator provides smaller MSEs compared to other two estimators.

5 Analysis of COVID-19
We revisit the SEIR model in Section 2.1 and apply the proposed method to estimate the unknown 
parameters in the simulators for a better understanding of COVID-19 pandemic. The estimation 
performance based on deterministic SEIR is discussed in Section 5.1 and the stochastic version is 
discussed in Section 5.2. To estimate the unknown parameters, we collect the actual numbers of 
infected cases from Johns Hopkins University CCSE repository (Dong et al., 2020) through an 
R package covid19.analytics (Ponce, 2020). For each country, there are 365 observations 
collected from 1 March 2020 to 28 February 2021, denoted by yi, where i = 1, . . . , 366. The stud-
ies are conducted for the top 20 countries which have the highest cumulative confirmed cases re-
ported on 1 March 2021.

5.1 Parameter estimation based on deterministic SEIR
Before estimating the parameters, a deviance goodness-of-fit test is performed to examine the ker-
nel Poisson regression as in (5), i.e. yi ∼ Poi(λ̂n(xi)). It appears that the p-values of the test are all 
smaller than 0.0001, which indicates that there is a lack-of-fit in the current model. Therefore, a 
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Figure 1. (Left) The true process λ(x) as the solid line and the simulation output f (x, θ⇤) as the dashed line. The real 
outputs are illustrated as the solid dots. (Right) MSEs of the estimates, where the error bars represent the 5% and 
95% quantiles. MSE = mean squared error.
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Table B1. Emulation performance for the example with one calibration parameter (in Section 4.1), where m is the 
sample size of unique locations and a is the number of replicates

Emulator m a Fitting Prediction RMSPE

time (s) time (s)

MRFA 25 50 8 0.4 9.05

25 100 11 0.4 8.47

50 50 11 0.7 2.31

100 100 29 0.7 0.99

hetGP 25 50 0.15 0.02 2.08

25 100 0.15 0.02 1.74

50 50 0.27 0.02 1.02

100 100 1.16 0.07 0.50

Note. Root mean squared prediction errors (RMSPEs) are reported for the two emulators based on 10,000 random 
predictive locations.
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Figure 2. MSEs of the estimates of (left) θ1, (middle) θ2, and (right) θ3, where the error bars represent the 5% and 
95% quantiles. MSE = mean squared error.

Table B2. Emulation performance for the example with three calibration parameters (in Section 4.2), where m is the 
sample size of unique locations and a is the number of replicates

Emulator m a Fitting Prediction RMSPE

time (s) time (s)

MRFA 300 50 258 3 0.66

300 100 545 3 0.63

500 5 27 2 0.82

500 50 448 3 0.52

hetGP 300 50 7 1 0.20

300 100 8 1 0.16

500 5 29 2 0.46

500 50 29 2 0.15

Note. Root mean squared prediction errors (RMSPEs) are reported for the two emulators based on 10,000 random 
predictive locations.
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more flexible model, the quasi-Poisson as described in Section 2.3, is applied to capture the poten-
tial overdispersion.

For each country, the L2-estimator of θ is obtained by minimising (6), and the corresponding 
estimated reproduction number R0 can be calculated by R0 = β/γ. The point estimates of R0 
and their 95% confidence intervals, which are obtained by the result of Corollary 2, are summar-
ised in Figure 3 for the 20 countries. It shows that, from March 2020 to March 2021, all of the 20 
countries have the basic reproduction numbers greater than 1, which means that the COVID-19 
outbreak still post threats to these countries. Note that the recovery rate γ is in the denominator of 
R0, and therefore the variation of R0 appears to be higher for the countries having smaller recovery 
rates.

Plugging in the L2-estimators, the simulation results (solid lines), f (x, θ̂n), along with their con-
fidence intervals (dashed lines), for the top 12 countries that have the highest R0 values, are dem-
onstrated in Figure 4. Note that the confidence intervals are similarly constructed based on 
Corollary 2. That is, the variance of f (x, θ̂n) can be approximated by

4rθf (x, θ̂n)TV0(θ̂n)−1W0(θ̂n)V0(θ̂n)−1rθf (x, θ̂n) (13) 

where rθ is the partial derivative with respect to θ. In general, it appears that the simulation results 
can reasonably capture the overall trend observed from the actual numbers of infected cases, 
which are shown as dots. For Iran, Czechia, and Spain, the discrepancy between the simulation 
results and actual observations is relatively larger than the other countries. This is partly because 
SEIR is an imperfect simulator which is built based on some assumptions or simplifications, and 
these assumptions may have larger deviations from the reality for certain countries. Another rea-
son is that the intrinsic dynamics are neglected in the deterministic simulations. To take into ac-
count the dynamics, a stochastic simulator is considered in the next section.

5.2 Parameter estimation based on stochastic SEIR
Conducting stochastic simulations based on SEIR is computationally intensive, therefore emula-
tors are developed as a faster surrogate to the actual stochastic simulations. In this study, we con-
sider the hetGP emulator, which is built based on the simulations generated using a 60-run LHD 
for parameter settings with 20 equal-spaced time steps in x, which leads to the total sample size of 
m = 1,200. For each parameter-input setting, 50 replicates are simulated, i.e. a = 50, so the total 
sample size of this computer experiment is N = ma = 60,000. Based on this emulator, it takes less 
than 2 s to emulate the result for an untried parameter setting, which is significantly faster than the 
actual stochastic simulation.
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Figure 3. The estimated reproduction numbers for top 20 infectious countries based on the deterministic SEIR 
model. SEIR = susceptible-exposed-infectious-recovered.
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With the hetGP emulator, which has the form of (9), the L2-estimators are obtained by mini-
mising (7). The corresponding estimates of R0 and their 95% confidence intervals are summarised 
in Figure 5, where the variance is obtained based on the result of Theorem 4. It appears that South 
Africa and Argentina have their basic reproduction numbers controlled below 0.9, which also 
show small basic reproduction numbers in the deterministic simulations (less than 1.05). We fur-
ther report the estimated incubation period, 1/κ, for each country and the corresponding 95% con-
fidence intervals in Figure 6. The overall average incubation period is 5.15 as indicated by the 
dashed line. When comparing with the deterministic version, the estimation uncertainty based 
on the stochastic model is smaller. For example, the confidence intervals in Figure 5 are generally 
narrower than the ones in Figure 3. The main reason is that the stochastic SEIR model accounts for 
the randomness and therefore the estimation is more robust to the noise, which leads to smaller 
uncertainty in the R0 values compared to its deterministic counterpart. Having a slightly larger 
sample size for some countries may also be a factor of smaller uncertainty. Furthermore, we em-
ployed a frequentist framework and plugged the point estimate in the asymptotic variance in 
Corollary 2, which may lead to an underestimation of the uncertainty from parameter estimation. 
To address this concern, an alternative approach is to adopt a Bayesian framework that incorpo-
rates prior distributions on the parameters. Further discussions regarding this Bayesian frame-
work can be found in Section 6.

In Figure 7, the actual numbers of infected cases are illustrated as dots. By plugging in the 
L2-estimators, the simulation results for the top 12 countries with the highest R0 are illustrated as 
curves, along with the 95% confidence intervals as dashed lines. Overall, the simulation results 
show a much better agreement with the actual observations compared to the deterministic ones in 
Section 5.1. In particular, by taking into account the intrinsic dynamics, the simulation discrepancy 
for Czechia is significantly reduced from the deterministic one shown in Figure 4. Note that the 
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Figure 4. The solid circle dots are the actual numbers of daily infected cases. The solid lines are the results from 
deterministic SEIR simulators by plugging in the L2 estimates, and the dashed lines are their corresponding 95% 
confidence intervals. SEIR = susceptible-exposed-infectious-recovered.
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confidence intervals are computed based on V[ f̂N(x, θ̃)] = E[V[ f̂N(x, θ̃n)|θ̃n]] + V[E[ f̂N(x, θ̃n)|θ̃n]], 
which can be approximated by

v2
N(x, θ̃n) + 4rθmN(x, θ̃n)TV1(θ̃n)−1W1(θ̃n)V1(θ̃n)−1rθmN(x, θ̃n) (14) 

using the result of Theorem 4. When comparing with the predictive uncertainty of the determin-
istic model as shown in (13), the stochastic version as in (14) introduces an additional source of 
uncertainty captured by the term v2

N(x, θ̃n), which accounts for the uncertainty due to emulation. 
This term contributes a dominating effect to the overall uncertainty, especially when stochastic 
models are computationally expensive and the emulators are constructed based on a limited num-
ber of computer experiments. As a result, even though the estimation uncertainty is relatively 
smaller with the stochastic model, the predictive uncertainty presented in Figure 7 is generally 
wider than the ones from the deterministic SEIR in Figure 4.

6 Discussions and concluding remarks
Epidemic models for the analysis of COVID-19 are often imperfect. A new calibration method is 
proposed to estimate the unknown parameters in the imperfect epidemic models. The proposed 
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Figure 5. The reproduction numbers of top 20 infectious countries based on the stochastic SEIR model. SEIR =  
susceptible-exposed-infectious-recovered.
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Figure 6. The estimated average incubation period based on the stochastic SEIR model, along with the overall 
average as indicated by the dashed line. SEIR = susceptible-exposed-infectious-recovered.
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estimator outperforms the LSE by providing a smaller estimation variance and achieving the semi-
parametric efficiency. The proposed method is applied to the SEIR model for the analysis of 
COVID-19 pandemic. The estimates of the quantities of interest, such as the basic reproduction 
number and the average incubation period, and their confidence intervals are obtained based on 
the asymptotic results.

Apart from the frequentist approach studied in this paper, we are currently developing a 
Bayesian framework that extends the recent developments of Bayesian calibration to count 
data. For example, the orthogonal GP models (Plumlee et al., 2016) or the Bayesian projected cali-
bration (Tuo, 2019; Xie & Xu, 2021) can be used to model the model discrepancy, which ad-
dresses the unidentifiability issue for continuous outputs, and it is conceivable to further extend 
the modelling to count data by incorporating the idea of the generalised calibration in 
Grosskopf et al. (2020). This framework is particularly useful when the goal is to provide a better 
fit to the data. Moreover, by incorporating prior distributions on the parameters and allowing for 
a range of plausible values, a Bayesian analysis can provide a more comprehensive assessment of 
uncertainty of the estimates. It is also worth investigating the confidence set on the calibration pa-
rameters using the method of Plumlee (2019) for the application herein. Another interesting dir-
ection that deserves further studies is to relax the constant parameter assumption. Instead, the 
calibration parameters can be assumed to be functions of some factors, such as time or tempera-
ture, which not only increases the model flexibility but also can provide further insights to the 
time-course dynamics of the COVID-19 infection.
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Figure 7. Number of infectious (solid circle dots) and the best fit of the stochastic SEIR models (solid lines) of top 12 
most infectious countries, where the dashed lines are their corresponding 95% confidence intervals. SEIR =  
susceptible-exposed-infectious-recovered.
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Appendix A. Algorithm to Estimate ȟ�in (3) and Estimate Overdispersion 
Parameter ׋
Since the optimal solution has the form of ξn(x) = b + Pn

i=1 aiΦ(xi, x), one can show that the pe-
nalised likelihood in (5) can be rewritten as

1
n

Xn

i=1

exp b + aTȥ(xi)
ˇ �

− yi b + aTȥ(xi)
ˇ ��  

+ κnaTĭa 

where a = (a1, . . . , an), ȥ(x) = (Φ(x, x1), . . . , Φ(x, xn)), and ĭ = (Φ(xi, xj))1≤i,j≤n. The optimal so-
lution of a and b can then be obtained by taking the first-order partial derivatives of the objective 
function with respect to a and b and setting them equal to zero, which can be solved by the iterative 
re-weighted least-squares algorithm as follows. Denote

ĭ0 = 0 0T
n

0n ĭ

✓ ◆
, ĭ1 = 1n ĭ

ˇ �

where 1n = [1, . . . , 1]T and 0n = [0, . . . , 0]T, and denote W as an n × n diagonal matrix with di-
agonal elements Wii = exp (b + aTȥ(xi)). Then, in each step, one first solves for ȕ := (b, aT)T in

ĭT
1 Wĭ1 + 2nκnĭ0

ˇ �
ȕ = ĭT

1 WȘ�

with an initial guess of Ș, which is a vector of size n, and then update each element of Ș�by

Și = (b + aTȥ(xi)) + yi − exp (b + aTȥ(xi))
exp (b + aTȥ(xi)) 

The estimate ȕ̂�can then be obtained by continuing solving for ȕ�and Ș�iteratively until some con-
vergence criterion is met.

To examine the goodness-of-fit of the Poisson regression, the following deviance goodness-of-fit 
test is considered. Since it can be shown that the deviance of the model follows a chi-square dis-
tribution asymptotically, that is

D = 2
Xn

i=1

yi log (yi/λ̂n(xi)) − (yi − λ̂n(xi))
ˇ �

!d χedf 

when n is sufficiently large, where the effective degree freedom, edf = trace(S), where

S = ĭ1 ĭT
1 Wĭ1 + 2nκnĭ0

ˇ �−1ĭT
1 W 
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If the test indicates that overdispersion is present in the Poisson model, the overdispersion param-
eter ϕ can be estimated by ϕ̂ = D/edf.

Appendix B. Numerical Comparison of Emulators
The numerical comparisons of the two emulators, MRFA and hetGP, for the numerical studies in 
Sections 4.1 and 4.2 are given in this section.
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