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Abstract

The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical
management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate
the parameters by minimising the sum of the squared distances between actual observations and simulation
outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are
developed based on certain simplifications of reality, also known as imperfect models which are commonly
used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a
smaller estimation variance than the least-squares estimator, and achieves the semiparametric efficiency.
Numerical studies are performed to examine the finite sample performance. The proposed method is applied
to the analysis of the COVID-19 pandemic for 20 countries based on the susceptible-exposed-infectious-
recovered model with both deterministic and stochastic simulations. The estimation of the parameters,
including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks
in each country and provide insights to the design of public health interventions.

Keywords: basic reproduction number, compartmental models, kernel Poisson regression, semiparametric efficiency,
stochastic simulations

1 Introduction

The coronavirus disease (COVID-19) pandemic has shown profound impacts on public health and
the economy worldwide. The development of efficient and effective public health interventions to
prevent major outbreaks and contain the pandemic relies heavily on a quantitative understanding
regarding the spread of the virus, such as the transmission rate and the average incubation period.
A commonly used approach in epidemiology is to estimate these quantities of interest using epi-
demic mathematical models, such as the susceptible-infected recovered model, with agent-based
simulations which capture complex social networks and global scale into the models (Epstein,
2009; Funk et al., 2009; Heesterbeek et al., 2015).

To estimate the parameters of interest, a widely used frequentist approach is to minimise the
sum of the squared distances between the observed data and the simulation outputs, which is often
referred to as the least-squares approach. See, for example, Chowell et al. (2004, 2003), Capaldi
etal. (2012), Chowell (2017), Anastassopoulou et al. (2020), Bentout et al. (2020), Chen and Qiu
(2020), and Giordano et al. (2020). This estimation approach is intuitive and easy to compute;
however, it is shown in this paper that this method is inefficient, that is, its asymptotic variance
is not theoretically minimal, particularly when the mathematical models associated with the sim-
ulators are built under certain assumptions or simplifications, which may not hold in reality. These
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simulators are called imperfect simulators in the computer experiment literature (Kennedy &
O’Hagan, 2001; Plumlee, 2017; Tuo & Wu, 2015). Imperfect simulators are common in epidemi-
ology (Heesterbeek et al., 2015), and therefore estimate parameters of interest in epidemic models
based on the least-squares approach is not efficient.

To improve the estimation efficiency with imperfect epidemic models, a new estimation method
is proposed in this paper. In the computer experiment literature, these unknown parameters asso-
ciated with the mathematical models are often called calibration parameters, and the process of
estimating the parameters such that the model simulations agree with the observed data is called
calibration (Kennedy & O’Hagan, 2001; Santner et al., 2018). Although there are numerous de-
velopments on calibration, most of the work focus on continuous outputs while the discussions on
non-Gaussian outputs, such as count data which are often observed in epidemiology, are scarce
(Grosskopf et al., 2020; Sung, Hung, et al., 2020). In this paper, we propose a new estimation
method for non-Gaussian outputs, particularly for count data for our applications in epidemi-
ology, which minimises the L, projection of the discrepancy between the true mean process and
the simulation outputs. It can be shown that the proposed estimator is asymptotically consistent
and provides a smaller asymptotic variance than the least-squares estimator (LSE). Furthermore, it
can be shown that the proposed estimator achieves the semiparametric efficiency, even when the
model simulations cannot match the reality due to certain assumptions or simplifications.

It is worth noting that there are extensive studies and applications of calibration by Bayesian pro-
cedures (Diekmann et al., 2013; Farah et al., 2014; Wang, Zhou, et al., 2020; Wu et al., 2020).
However, without taking the model imperfection into account in the conventional Bayesian frame-
work, the theoretical justification for the parameter estimation with imperfect simulators are not fully
developed. On the other hand, Bayesian calibration of Kennedy and O’Hagan (2001) takes into ac-
count the model imperfection through Gaussian process (GP) modelling, but it suffers from the us-
identifiability issue when the parameter estimation is of interest (Bayarri et al., 2007; Gramacy
etal., 2015; Han et al., 2009; Hodges & Riech, 2010; Paciorek, 2010). Furthermore, most of the ex-
isting developments are based on continuous outputs with a Gaussian assumption, which is not valid
for the count data in the epidemic models in our applications. Recent studies on addressing the un-
identifiability issue can be found in Plumlee (2017) and Tuo (2019).

The remainder of the paper is organised as follows. Two types of simulators for COVID-19 ana-
lysis, and a new estimation method based on L, projection for the unknown parameters in the sim-
ulators, are introduced in Section 2. Theoretical properties of the proposed estimator are
developed in Section 3. In Section 4, numerical studies are conducted to demonstrate the finite
sample performance of the proposed estimator and the empirical comparison with the LSE. In
Section 5, the estimation method is applied to the study of COVID-19. Discussions and concluding
remarks are given in Section 6. Computational details for the estimation are given in Appendix,
and the mathematical proofs and the R (R Core Team, 2018) code for implementation are pro-
vided in online supplementary material.

2 Estimation for compartmental models in epidemiology

2.1 Imperfect epidemic models for COVID-19 analysis

Mathematical models are commonly used in epidemiology to provide scientific insights. These
models are often developed based on certain simplifications of reality; therefore, they are imperfect
(Heesterbeek et al., 2015). For example, the susceptible-exposed-infectious-recovered (SEIR)
model, which consists of four compartments, Susceptible-Exposed-Infectious-Recovered, is wide-
ly recommended for COVID-19 simulations because it accounts for the incubation period through
the exposed compartment (Annas et al., 2020; Carcione et al., 2020; He et al., 2020; Mwalili et al.,
2020; Wu et al., 2020), and is thus adopted in this paper. Mathematically, a deterministic SEIR
model can be written as

ds IS dE _pIS dI dR
i T R R Sl M

where S, E, I, and R represent the numbers of cases in the corresponding compartment, N=S +
E + 1+ R is the total population, x is the time, f is the contact rate that represents the average
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number of contacts per person per time in the susceptible compartment, y is the recovery rate from
the infectious compartment, and « is the incubation rate which represents the rate of latent indi-
viduals becoming infectious, or equivalently, the average incubation period is 1/x. There are six
unknown parameters in the model (1): B, x, y and the initial numbers of infectious, exposed,
and recovered cases (denoted by I(0), E(0), and R(0), respectively), which are denoted by
0= (B, x, 7, 1(0), E(0), R(0)).

In this paper, we focus on two types of SEIR simulators: a deterministic simulator and a stochastic
simulator. For a deterministic simulator, the simulation outputs are obtained by numerically solving
the ordinary differential equations shown in (1) using numerical solvers, such as the ODEPACK
(Hindmarsh, 1983). On the other hand, a stochastic SEIR simulation provides a more sophisticated
and realistic framework to integrate infection dynamics in different compartments as continuous-time
Markov chains (Allen, 2008, 2017; Andersson & Britton, 2012). To conduct these simulations, we
implement an R package, SimInf (Widgren et al., 2019), in which the simulation results are obtained
by the Gillespie stochastic algorithm (Gillespie, 1977). Stochastic SEIR simulations are computation-
ally more demanding. For example, it takes more than 10 min to produce one simulation result for
one country under a given parameter setting. It is computationally infeasible to perform simulations
for all the possible combinations of the parameters; therefore, an emulator is constructed as an effi-
cient surrogate to the actual simulation in our later implementation.

An accurate estimation of the unknown parameters in the SEIR model is often of great interest in
epidemiology because it offers valuable insights into the dynamics of infectious diseases, which are
essential for effectively predicting transmission patterns and assessing intervention strategies. For
example, 1/x indicates the average incubation period and the basic reproduction number,
Ro = B/7, represents the expected number of new infected cases from an infectious individual in
a population where all subjects are susceptible. An accurate and efficient estimation of these pa-
rameters is not only important for the public safety but it also has significant impacts on global
economy. The main objective in this paper is to provide a new estimation method that enhances
the estimation efficiency of parameters despite the inherent imperfections and limitations of epi-
demic models.

2.2 LSE and maximum likelihood estimator

Let f(x, 0) denote the number of infected cases at time x € Q C R*, where § € ® C R is a set of
unknown calibration parameters associated with the compartmental model. In the case of SEIR
model (1), g =6 and f(x, ) = kE(x), where E(x) is the solution of E in the ordinary differential
equations of (1). Suppose that y; is the reported number of infected cases at time x;. Then, given
the reported number of infected cases in # days, {(x;, y:)}iL;, the commonly used approach to es-
timate the parameters is to minimise the sum of squared differences between actual numbers of
infected cases and simulation outputs from compartmental models. The estimated parameters
are denoted by 0%, where LS stands for least-squares, and they are obtained by

ALS _ N £l 0))?
o —argrgnelc{)l;(% f(xi, 0)) (2)

In addition to the LSE, the maximum likelihood estimator (MLE) is also a commonly used estima-
tion approach. Assume that y; ~ Poi(f(x;, 6)), wherei=1, ..., n, we obtain the MLE for the cali-
bration parameters by

MMLE _ - . . _ .
oy —argrggg;%logﬂx:, 0) Zf(x,, 0) (3)

2.3 Estimate calibration parameters by L, projection

Despite the wide applications of the least-squares approach and MLE, it can be shown that the LSE
does not achieve the semiparametric efficiency when the simulator f(x, ) is imperfect, meaning
that the simulation output cannot perfectly fit the response, even with the best fit of 6. The
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asymptotic variance can be reduced by the proposed estimator introduced in this section. It can
also be shown that MLE is asymptotically inconsistent when the simulator f(x, ) is imperfect.
Theoretical justifications are provided in Section 3.

Assume that the number of cases y; follows a Poisson distribution: y; ~ Poi(A(x;)) for
i=1, ..., n,and y; and y; are mutually independent for any i # j, where A(x;) is the true mean func-
tion of y;. The function A(x) is often called the true process in the computer experiment literature
(Kennedy & O’Hagan, 2001; Tuo & Wu, 2015, 2016). Ideally, if the underlying mean function
A(x) is known, the true parameter can be defined as the minimiser of the L, projection of the dis-
crepancy between the true process and the simulation output, that is,

6’*=arg131€ier)1 IA¢) = (-5 Dy )

where [igll1, o) = ( Ja g(x)*dx)"/2.

In reality, the underlying true process A(-) is unknown that needs to be estimated by observed
data. Therefore, given the data {(x;, y;)}’,, we propose to estimate the true process by the kernel
Poisson regression (Shim & Hwang, 2011; van de Geer, 2000). Similar to the conventional Poisson
regression (McCullagh & Nelder, 2019), we use the logarithm as the canonical link function, that
is, log An(-) = &,(-), and &,(-) is fitted by

n

o1 )
Go=arg_min =Y (exp (&(x)} — yic(xi) + KallElir, ) (5)

ceNw(@) 1 4

where || - ||/2\/¢(Q) is the norm of the reproducing kernel Hilbert space generated by a given positive
definite reproducing kernel @, and «, is a tuning parameter, which can be chosen by cross-
validation methods. Thus, the proposed estimator of 6, which we call L;-estimator throughout
this paper, is the minimiser of the L, projection as follows:

0n=argr€neig A (:) = £ DIy (6)

The optimal solution of (5) has the form of &,(x) = b+ S, 4®@(x;, x), where b and {a;}?, can be
obtained by the iterative re-weighted least-squares algorithm (Green & Yandell, 1985; Hastie &
Tibshirani, 1990; Wahba et al., 1995). The detail of the algorithm is given in Appendix A. In prac-
tice, the calculation of the L, norm in (6) can be approximated by numerical integration methods,
such as Monte Carlo integration (Caflisch, 1998).

As described in Section 2.1, because stochastic SEIR simulations can be quite computationally
intensive, it is infeasible to obtain f(x, 6) by conducting simulations for all possible combinations
of the input parameters. Thus, we employ a computationally efficient emulator to approximate the
simulator. There are extensive studies on the development of statistical emulators in the computer
experiment literature (Santner et al., 2018). GPs are the most commonly used tools in the construc-
tion of emulators (Gramacy, 2020). Based on computer experiments with sample size N, a statis-
tical emulator is denoted by fy(x, 6), which produces a predictive distribution of f(x, 8) with
any untried (x, 0) € (Q, ©). Specifically, the distribution of fy(x, ) with any untried (x, 0) €
(Q, ©) is a normal distribution with the mean function, defined by mn(x, ), and the variance func-
tion, defined by v%/(x, 0). We refer more details to Gramacy (2020). Thus, by Fubini’s theorem, the
L,-estimator of (6) can be replaced by

5o . ; 2
0, = argrggg Ellda(-) =fn( s 9)||L2(Q)
. 5 (7)
=arg rgneig lo (An(z) = mn(z, 0)) +v3,(z, O)dz

The applications of the proposed method with various existing emulators are demonstrated in
Sections 4 and 5.
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It is worth noting that the Poisson regression, y; ~ Poi(4(x;)), may encounter overdispersion due
to the presence of greater variability (McCullagh & Nelder,2019). That is, the variance of the data
is larger than the mean, which violates the assumption of Poisson distribution. The deviance
goodness-of-fit test (McCullagh & Nelder, 2019) can be used to assess the model assumption.
To take into account the issue of overdispersion, a guasi-Poisson regression can be considered
which assumes that the variance of y; is ¢A(x), where ¢ > 1 is the overdispersion parameter. The
overdispersion parameter can be estimated by the ratio of the deviance to the effective degree free-
dom. The details of the deviance goodness-of-fit test and the estimation of overdispersion param-
eter are provided in Appendix A.

3 Theoretical properties

Theoretical properties of the L,-estimator are discussed in this section, including the asymptotic
consistency and the semiparametric efficiency. Theoretical comparisons with the LSEs are also
provided by examining their asymptotic variances. The proofs are given in online
supplementary material.

The following theorem shows that the L;-estimator 6, in (6) is asymptotically consistent and
normally distributed.

Theorem 1  Under the regularity conditions C1-C10 in Web Appendix B, we have
il = 67) 5 N(0, 4Vo(6°) Wo(6) Vo(67)™)

as n — oo, where

B of of
Wo(0) = [E|:/1(X)£(X, H)aaﬁ(x, 9):| and
(8)
Vol6) = E[—al (A(X) - fIX 9))2}
M= a0ag™ ’

Remark When the overdispersion parameter, ¢, is present in the Poisson regression, the
result in Theorem 1 can be rewritten as

V(b — 0) -5 N0, 46Vo(6%)™ Wo (%) Vo(6¥) ™)

By the delta method, the following corollary extends the result of Theorem 1 to a function of the

L,-estimator, which we denote as g(6,).

Corollary 2 For a function g satisfying the property that Vg(6*) exists and is nonzero val-
ued, we have

Jr(g(0,) — g(07) > N(0, 4Vg(0%) Vo (6 )™ Wio(6) Vo (67) ' Vg(67))

as n — o0.

Corollary 2 provides a theoretical support for the estimation and inference of some commonly
used quantities of interest in epidemiology, such as the basic reproduction rate, which measures
the transmission potential of a disease. For instance, in the SEIR model (1), the basic reproduction
rate is a ratio of two of the calibration parameters, that is, g(6) = B/y. The result of Corollary 2 can
then be applied to construct the confidence intervals for the basic reproduction rate.
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When estimating the unknown parameters in compartmental models, the parameter of interest
6" in (4) is g-dimensional, while the parameter space of the Poisson model, y; ~ Poi(4(x;)), contains
an infinite dimensional function space that covers 4. Therefore, the calibration problem is regarded
as a semiparametric problem. For these problems, the estimation method that can reach the high-
est estimation efficiency is called semiparametric efficient (Bickel et al., 1993; Kosorok, 2008).
Specifically, let A be an infinite dimensional parameter space whose true value is 9. Suppose
that T, is an estimator for 8* and +/7n(T, — 6*) is asymptotically normal. Let Ag be an arbitrary
finite dimensional space of A that satisfies 19 € Ag. Consider the same calibration problem but
with the parameter space Ay, then under this parametric assumption and some regularity condi-
tions, an efficient estimator can be obtained by the maximum likelihood method, which is denoted
by S%0. Then, the estimator T, is called semiparametric efficient if there exists a Ag such that S
has the same asymptotic variance as T,,. More details regarding the semiparametric efficiency can
be found in Tuo and Wu (2015), Bickel et al. (1993), and Kosorok (2008). It can be shown in the
following theorem that the proposed L;-estimator is semiparametric efficient.

Theorem 3 Under the regularity conditions in Theorem 1,6, is semiparametric efficient.

When the simulator fis too costly to evaluate like the stochastic SEIR simulator in Section 2.1, as
discussed in Section 2.3, an statistical emulator can be considered after conducting a computer ex-
periment of size N on the simulator. Suppose that the emulator of f(x, ), i.e.fy(x, 8), follows a
normal distribution with the mean function, my(x, 6), and the variance function, v%(x, 0), i.e.

flac, 0) ~ N (mn(x, 0), v (x, 0)) 9)

and the L,-estimator is obtained by (7) as 6,.. Then, the following theorem provides the asymptotic
distribution of 6.

Theorem 4  Under the regularity conditions C1 and C7-15 in Web Appendix B, we have

Vil = 0) 5 N0, 4V (04) Wi (0 Vi (0)) ™)

as n — oo, where

O =argmin () = mn( -5 OlIT, ) + Iy 7R (-5 OllL, 0

amn(X, 0) amn(X, 6)
W1(9)=[E[/1(X) g T ] and

7 2, 2
Vi) =E | (600 = (X, 007 + 1,0 |

With the emulator (9), it is of no surprise that the estimator 8, is asymptotic inconsistent.
However, when the size of the computer experiment, N, is sufficiently large, with an appropriate
emulator (e.g. GP emulator) and under some regularity conditions, we have my(x, ) — f(x, )
and v%(x, 0) — 0 forany (x, 0) € Q x © (Wang, Tuo, etal., 2020), leading to &y — ¢*, which im-
plies that 6, is asymptotic inconsistent when N is sufficiently large.

In the next theorem, the asymptotic properties of the LSE are developed and compared with
those of the L,-estimator.

Theorem 5 Under the regularity conditions C1-C4 and C16—C17 in Web Appendix B, we
have

VA - 07) 5 (0, 4Vo(6%) T Wa(6F) Vo (7))
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as n — oo, where

2 df 91(

Wa(0) = Wa(0) + E| ) = (X, O (X, 0) -

(X, 9)]

Similar to the L,-estimator, it is shown that the LSE is asymptotically consistent and normally
distributed. It can also be shown that W (6*) > W (6"), which leads to

4Vo (%) W (%) Vo (0%) ™1 = 4Vo(67) ™ Wo(6%) Vo (67) ™ (10)

This implies that the asymptotic variance of the LSE #%° is greater or equal to that of 8,,. The equal-
ity in (10) holds if and only if

[E[(A(X) FX, 0 L (x, ) f(X e*)]—o (11)

This result indicates that if (9f /d0)(x, %) # O for all x € Q, then (11) holds only if A(x) = f(x, 6%)
forall x € Q, which implies that the LSE 65 is less efficient than 8, if fis an imperfect simulator, i.e.
x) # f(x, %) for some x € Q.
In the next theorem, the asymptotic properties of the MLE as in (3) are developed and compared
with those of the L,-estimator.

Theorem 6  Under the regularity conditions C1 and C18-C22 in Web Appendix B, we
have

JHONE — ) S N0, V(@) W0 Vi(e') )
as n — oo, where

0" = arg max E[L(X) log (X, 0) = (X, 0)]

1 HX) \of(x, 0)0fx, 00\ 12
vio=l g (-390 (1-7%5) o )]

and

(600 = X, 00 + 100)) L DA, 9)}

90 06T

Unlike the L;-estimator and the LSE, the MLE asymptotically converges to a value that differs
from the true parameter defined in (4). For example, suppose A(x) = x% and f(x, 6) = 6x, by the def-
inition of 6" in (4) we have 6* = 0.75, while by (12), 8*F converges to 7 = 2/3 in probability.

4 Numerical study

In this section, two artificial examples are conducted to examine the finite sample performance of
the proposed method and compare the estimation performance with the least-squares approach.
These numerical studies are conducted on a MacBook Pro laptop with Apple M1 Max Chip and
32Gb of RAM.
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4.1 Imperfect simulator with one calibration parameter

We consider an imperfect simulator adapted from Tuo and Wu (2015) with one calibration par-
ameter. The true process is assumed to be A(x) = exp (x/2) sin (x/2) + 30, where x € Q = [0, 2x],
and it is illustrated in the left panel of Figure 1 as the solid line. The data are generated from equal-
spaced inputs in [0, 27] with 7z = 50 and the outputs are generated from a Poisson distribution with
the mean process A(x;) for i=1, ..., 50, which are shown as the solid dots in the left panel of
Figure 1.

We assume that the simulation output is f(x, 8) = A(x) — 5v/&* — 0+ 1(sin (6x) + cos (6x)),
where € ® =[ -1, 1]. This simulator is imperfect because v — @+ 1 is always positive
for any 0 € ©. The true parameter can be analytically solved by minimising (4), which gives
that 6 = —0.1789. Plugging in the true calibration parameter, the simulator f(x, 6*) is demon-
strated as the dashed line, which is imperfect because, even with the true minimiser, the discrep-
ancy between the simulation output and the true process is nonzero.

The performance of the L,-estimator is compared with the LSE and MLE based on the
mean squared errors (MSEs) obtained from 100 replicates, that is, Ztl:o]o (6; — 6*)*/100, where
0; is the estimate at the ith replicate. Their MSEs are shown in the first three bars in the right panel
of Figure 1. It shows that the L,-estimator (‘L2’) yields a smaller MSE than the ‘LSE’ and ‘MLE’.
To quantify the uncertainty of the L, estimator, the 95% confidence intervals are constructed
based on the asymptotic result in Theorem 1, where 4, 6, and E are approximated by 4, 8, and
Monte-Carlo integration (Caflisch, 1998), respectively. Out of the 100 replicates, the true param-
eter is contained by the confidence interval 96 times, which appears to be close to the nominal
coverage 95%.

We further compare the estimation performance for the cases when the simulations are compu-
tationally demanding and therefore statistical emulators are built as surrogates. Before comparing
the estimation performance, we first examine the emulation performance of two existing emula-
tion methods that are applicable to count data, which are the multiresolution functional analysis
of variance emulation (Sung, Wang, et al., 2020) and the heteroscedastic GP emulation (Binois
et al., 2018). Both methods have available packages in R (R Core Team, 2018), which are
MRFA (Sung, 2020) and hetGP (Binois & Gramacy, 2019), respectively. These emulators are
trained by conducting a computer experiment, which simulates the model outputs of f(x, 8) of
size m, where the inputs are sampled from (x, 6) € (Q, ©) € R? using a Latin hypercube design
(LHD) (McKay et al., 1979). For each input setting, simulations are conducted with a replicates.
The emulation performance is examined by performing predictions on 10,000 random untried in-
put settings from (Q, ©). With four different combinations of 7z and a, the root mean squared pre-
diction errors (RMSPEs) of the two emulators along with their computational time are reported in
Table B1 of Appendix B. In this example, it appears that hetGP outperforms MRFA in terms of
computational time and RMSPE. Thus, we select the emulator built by hetGP as the surrogate
to the actual simulator in the following analysis.

Next, we compare the estimation performance with the hetGP emulator built by m =25, a = 50
samples, leading to total sample size N = ma = 750. The L, estimator is obtained by (7) with the emu-
lator, and the LSE is similarly obtained by minimising Y -, (v; — mn(x;, 6) ) + v%,(z, 0). For the MLE
as in (3), the actual simulator f(x, 6) is replaced by the mean of the hetGP emulator, i.e. my(x, ).
The MSEs are shown in the last three bars in the right panel of Figure 1. Similar to the previous result
without emulators, the L;-estimator provides a smaller MSE than the LSE and MLE. By comparing
the first three and last three bars, it is not surprising to see that the MSEs of ‘L2+emulator’, ‘LSE+emu-
lator’, and ‘MLE+emulator’ are larger than ‘L2, ‘LSE’, and ‘MLE’ due to the prediction uncertainty
from emulation. Similarly, we construct the 95% confidence intervals based on the asymptotic result
in Theorem 4 for the L, estimator of (7), and out of the 100 replicates, the true parameter is contained
by the confidence interval 91 times, which appears to be close to the nominal coverage of 95%.

4.2 Imperfect simulator with three calibration parameters

We consider a more complex problem with three calibration parameters adapted from Plumlee
(2017). Assume that the true mean process is A(x)=3x + 3xsin (5x) + 3 and the simulator is
f(x, 0) = 01 + Orx + 03x2, where x € [0, 2] and 0 € [0, 5]°. Similar to the previous example, the
three calibration parameters also have analytical solution * ~ (3.56, 0.56, 1.76) by minimising (4).
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Figure 1. (Left) The true process A(x) as the solid line and the simulation output f(x, §*) as the dashed line. The real
outputs are illustrated as the solid dots. (Right) MSEs of the estimates, where the error bars represent the 5% and
95% quantiles. MSE = mean squared error.

The data {y,-},~5=01 are generated from the Poisson distribution with the mean {/l(xi)}f:ol, where the
50 inputs are uniformly sampled from [0, 2]. The estimation performance is examined based on
the MSEs obtained from 100 replicates, and the proposed estimator and the LSE are compared
for each calibration parameter. The results are shown in the first three bars in each plot of
Figure 2, in which the y-axis represents the MSEs. Similar to the previous example, it appears
that the L,-estimator outperforms the LSE and MLE for all of the three parameters.

In this example, we also examine the prediction performance of the two existing emulators,
MRFA and hetGP. A computer experiment is conducted to train the two emulators by running
the simulation outputs of f(x, 0) at m unique sample locations with a replicates, in which the
unique input locations are sampled from (x, 6) € (y, ©®) C R* using an LHD. After the emulators
are built, the root mean squared error are computed based on the predictions of 10,000 untried
input locations, and the prediction results are summarised in Table B2 with different settings of
m and a. Similar to the previous example, the hetGP method outperforms MRFA in terms of pre-
diction accuracy and computational time. With a larger a4, i.e. more replicates, the prediction ac-
curacy of hetGP appears to increase without much increase in computational time. Thus, we
select hetGP as the emulator in the following analysis.

We now compare the estimation performance for the cases where emulators are constructed as
surrogates to the actual simulations. The emulator is built by hetGP with 72 = 300, a = 100 and
based on the emulator, the estimation performance is summarised by the last three bars in each of
the three plots in Figure 2. The results indicate that, either when the actual simulator is conducted
or emulated, the L,-estimator provides smaller MSEs compared to other two estimators.

5 Analysis of COVID-19

We revisit the SEIR model in Section 2.1 and apply the proposed method to estimate the unknown
parameters in the simulators for a better understanding of COVID-19 pandemic. The estimation
performance based on deterministic SEIR is discussed in Section 5.1 and the stochastic version is
discussed in Section 5.2. To estimate the unknown parameters, we collect the actual numbers of
infected cases from Johns Hopkins University CCSE repository (Dong et al., 2020) through an
R package covidl9.analytics (Ponce, 2020). For each country, there are 365 observations
collected from 1 March 2020 to 28 February 2021, denoted by y;, where i =1, ..., 366. The stud-
ies are conducted for the top 20 countries which have the highest cumulative confirmed cases re-
ported on 1 March 2021.

5.1 Parameter estimation based on deterministic SEIR

Before estimating the parameters, a deviance goodness-of-fit test is performed to examine the ker-
nel Poisson regression as in (5), i.e. y; ~ Poi(4,(x;)). It appears that the p-values of the test are all
smaller than 0.0001, which indicates that there is a lack-of-fit in the current model. Therefore, a
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Table B1. Emulation performance for the example with one calibration parameter (in Section 4.1), where mis the
sample size of unique locations and a is the number of replicates

Emulator m a Fitting Prediction RMSPE
time (s) time (s)
MRFA 25 50 8 0.4 9.05
25 100 11 0.4 8.47
50 50 11 0.7 2.31
100 100 29 0.7 0.99
hetGP 25 50 0.15 0.02 2.08
25 100 0.15 0.02 1.74
50 50 0.27 0.02 1.02
100 100 1.16 0.07 0.50

Note. Root mean squared prediction errors (RMSPEs) are reported for the two emulators based on 10,000 random
predictive locations.
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Figure 2. MSEs of the estimates of (left) 81, (middle) #,, and (right) 83, where the error bars represent the 5% and
95% quantiles. MSE = mean squared error.

Table B2. Emulation performance for the example with three calibration parameters (in Section 4.2), where mis the
sample size of unique locations and a is the number of replicates

Emulator m a Fitting Prediction RMSPE
time (s) time (s)

MRFA 300 50 258 3 0.66
300 100 545 3 0.63
500 N 27 2 0.82
500 50 448 3 0.52

hetGP 300 50 7 1 0.20
300 100 8 1 0.16
500 5 29 2 0.46
500 50 29 2 0.15

Note. Root mean squared prediction errors (RMSPEs) are reported for the two emulators based on 10,000 random
predictive locations.
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more flexible model, the quasi-Poisson as described in Section 2.3, is applied to capture the poten-
tial overdispersion.

For each country, the L,-estimator of 6 is obtained by minimising (6), and the corresponding
estimated reproduction number Ry can be calculated by Ry = /y. The point estimates of Ry
and their 95% confidence intervals, which are obtained by the result of Corollary 2, are summar-
ised in Figure 3 for the 20 countries. It shows that, from March 2020 to March 2021, all of the 20
countries have the basic reproduction numbers greater than 1, which means that the COVID-19
outbreak still post threats to these countries. Note that the recovery rate y is in the denominator of
Ry, and therefore the variation of Ry appears to be higher for the countries having smaller recovery
rates.

Plugging in the L,-estimators, the simulation results (solid lines), f(x, 8,), along with their con-
fidence intervals (dashed lines), for the top 12 countries that have the highest R values, are dem-
onstrated in Figure 4. Note that the confidence intervals are similarly constructed based on
Corollary 2. That is, the variance of f(x, §,) can be approximated by

4Vof (x, 0,) Vo (0, Wo(8,) V() Viaf (x, 0,,) (13)

where Vy is the partial derivative with respect to 6. In general, it appears that the simulation results
can reasonably capture the overall trend observed from the actual numbers of infected cases,
which are shown as dots. For Iran, Czechia, and Spain, the discrepancy between the simulation
results and actual observations is relatively larger than the other countries. This is partly because
SEIR is an imperfect simulator which is built based on some assumptions or simplifications, and
these assumptions may have larger deviations from the reality for certain countries. Another rea-
son is that the intrinsic dynamics are neglected in the deterministic simulations. To take into ac-
count the dynamics, a stochastic simulator is considered in the next section.

5.2 Parameter estimation based on stochastic SEIR

Conducting stochastic simulations based on SEIR is computationally intensive, therefore emula-
tors are developed as a faster surrogate to the actual stochastic simulations. In this study, we con-
sider the hetGP emulator, which is built based on the simulations generated using a 60-run LHD
for parameter settings with 20 equal-spaced time steps in x, which leads to the total sample size of
m =1,200. For each parameter-input setting, 50 replicates are simulated, i.e. a = 50, so the total
sample size of this computer experiment is N = ma = 60,000. Based on this emulator, it takes less
than 2 s to emulate the result for an untried parameter setting, which is significantly faster than the
actual stochastic simulation.
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Figure 3. The estimated reproduction numbers for top 20 infectious countries based on the deterministic SEIR
model. SEIR = susceptible-exposed-infectious-recovered.
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Figure 4. The solid circle dots are the actual numbers of daily infected cases. The solid lines are the results from
deterministic SEIR simulators by plugging in the L, estimates, and the dashed lines are their corresponding 95%
confidence intervals. SEIR = susceptible-exposed-infectious-recovered.

With the hetGP emulator, which has the form of (9), the L,-estimators are obtained by mini-
mising (7). The corresponding estimates of Ry and their 95% confidence intervals are summarised
in Figure 5, where the variance is obtained based on the result of Theorem 4. It appears that South
Africa and Argentina have their basic reproduction numbers controlled below 0.9, which also
show small basic reproduction numbers in the deterministic simulations (less than 1.05). We fur-
ther report the estimated incubation period, 1/, for each country and the corresponding 95% con-
fidence intervals in Figure 6. The overall average incubation period is 5.15 as indicated by the
dashed line. When comparing with the deterministic version, the estimation uncertainty based
on the stochastic model is smaller. For example, the confidence intervals in Figure 5 are generally
narrower than the ones in Figure 3. The main reason is that the stochastic SEIR model accounts for
the randomness and therefore the estimation is more robust to the noise, which leads to smaller
uncertainty in the Ry values compared to its deterministic counterpart. Having a slightly larger
sample size for some countries may also be a factor of smaller uncertainty. Furthermore, we em-
ployed a frequentist framework and plugged the point estimate in the asymptotic variance in
Corollary 2, which may lead to an underestimation of the uncertainty from parameter estimation.
To address this concern, an alternative approach is to adopt a Bayesian framework that incorpo-
rates prior distributions on the parameters. Further discussions regarding this Bayesian frame-
work can be found in Section 6.

In Figure 7, the actual numbers of infected cases are illustrated as dots. By plugging in the
L;-estimators, the simulation results for the top 12 countries with the highest R are illustrated as
curves, along with the 95% confidence intervals as dashed lines. Overall, the simulation results
show a much better agreement with the actual observations compared to the deterministic ones in
Section 5.1. In particular, by taking into account the intrinsic dynamics, the simulation discrepancy
for Czechia is significantly reduced from the deterministic one shown in Figure 4. Note that the
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Figure 5. The reproduction numbers of top 20 infectious countries based on the stochastic SEIR model. SEIR =
susceptible-exposed-infectious-recovered.
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Figure 6. The estimated average incubation period based on the stochastic SEIR model, along with the overall
average as indicated by the dashed line. SEIR = susceptible-exposed-infectious-recovered.

confidence intervals are computed based on \/[?N(x, )] = E[\/[}[N(x, 0,)10,11 + \/[[E[;‘N(x, 8,)10,11,
which can be approximated by

VA (%, B,) + 4Vgmn(x, 0,)TV1(8,) 7 Wi (8,) Vi(8,) " Vormn(x, 6,,) (14)

using the result of Theorem 4. When comparing with the predictive uncertainty of the determin-
istic model as shown in (13), the stochastic version as in (14) introduces an additional source of
uncertainty captured by the term v3,(x, 8,,), which accounts for the uncertainty due to emulation.
This term contributes a dominating effect to the overall uncertainty, especially when stochastic
models are computationally expensive and the emulators are constructed based on a limited num-
ber of computer experiments. As a result, even though the estimation uncertainty is relatively
smaller with the stochastic model, the predictive uncertainty presented in Figure 7 is generally
wider than the ones from the deterministic SEIR in Figure 4.

6 Discussions and concluding remarks

Epidemic models for the analysis of COVID-19 are often imperfect. A new calibration method is
proposed to estimate the unknown parameters in the imperfect epidemic models. The proposed
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Figure 7. Number of infectious (solid circle dots) and the best fit of the stochastic SEIR models (solid lines) of top 12
most infectious countries, where the dashed lines are their corresponding 95% confidence intervals. SEIR =
susceptible-exposed-infectious-recovered.

estimator outperforms the LSE by providing a smaller estimation variance and achieving the semi-
parametric efficiency. The proposed method is applied to the SEIR model for the analysis of
COVID-19 pandemic. The estimates of the quantities of interest, such as the basic reproduction
number and the average incubation period, and their confidence intervals are obtained based on
the asymptotic results.

Apart from the frequentist approach studied in this paper, we are currently developing a
Bayesian framework that extends the recent developments of Bayesian calibration to count
data. For example, the orthogonal GP models (Plumlee et al., 2016) or the Bayesian projected cali-
bration (Tuo, 2019; Xie & Xu, 2021) can be used to model the model discrepancy, which ad-
dresses the unidentifiability issue for continuous outputs, and it is conceivable to further extend
the modelling to count data by incorporating the idea of the generalised calibration in
Grosskopf et al. (2020). This framework is particularly useful when the goal is to provide a better
fit to the data. Moreover, by incorporating prior distributions on the parameters and allowing for
a range of plausible values, a Bayesian analysis can provide a more comprehensive assessment of
uncertainty of the estimates. It is also worth investigating the confidence set on the calibration pa-
rameters using the method of Plumlee (2019) for the application herein. Another interesting dir-
ection that deserves further studies is to relax the constant parameter assumption. Instead, the
calibration parameters can be assumed to be functions of some factors, such as time or tempera-
ture, which not only increases the model flexibility but also can provide further insights to the
time-course dynamics of the COVID-19 infection.
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Appendix A. Algorithm to Estimate ¢ in (3) and Estimate Overdispersion
Parameter ¢

Since the optimal solution has the form of &,(x) =b + Y~ a;®(x;, x), one can show that the pe-
nalised likelihood in (5) can be rewritten as

%i{exp(b +aly(x) —yi(b+a"w(x))} + x,a’ @a
P

where a = (a1, ..., an), y(x) = (®(x, x1), ..., P(x, x,)), and ® = (P(x;, x;));<; j<,- The optimal so-
lution of a and b can then be obtained by taking the first-order partial derivatives of the objective
function with respect to a and b and setting them equal to zero, which can be solved by the iterative
re-weighted least-squares algorithm as follows. Denote

0 of
cp0=<0n qf;), @ =(1, ®)

where 1, =[1, ..., 11T and 0, = [0, ..., 0]7, and denote W as an # x # diagonal matrix with di-
agonal elements W;; = exp (b + aTw(x;)). Then, in each step, one first solves for g:= (b, a”)" in

(D] WD, + 21K, D0 ) = @] Wy
with an initial guess of #, which is a vector of size 7, and then update each element of 5 by

yi —exp (b + aly(x;))

_ T .
n;=(b+a'y(x) + exp (b +aTy(x;))

The estimate f# can then be obtained by continuing solving for # and # iteratively until some con-
vergence criterion is met.

To examine the goodness-of-fit of the Poisson regression, the following deviance goodness-of-fit
test is considered. Since it can be shown that the deviance of the model follows a chi-square dis-
tribution asymptotically, that is

D=2 Z()’z‘ 1og (yi/An(x:)) = (yi = An(x:))) —d>)(edf
pa

when 7 is sufficiently large, where the effective degree freedom, edf = trace(S), where

S =@ (®TW®D, +27,®)) ®TW
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If the test indicates that overdispersion is present in the Poisson model, the overdispersion param-
eter ¢ can be estimated by ¢ = D /edf.

Appendix B. Numerical Comparison of Emulators

The numerical comparisons of the two emulators, MRFA and hetGP, for the numerical studies in
Sections 4.1 and 4.2 are given in this section.
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