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Abstract: Surrogate modeling based on Gaussian processes (GPs) is becoming increasingly

popular in analysis of complex problems in science and engineering. However, despite

the many studies on GP modeling, few focus on functional inputs. Motivated by an

inverse scattering problem in which functional inputs representing the support and material

properties of the scatterer are involved in the partial differential equations, we propose a new

class of kernel functions for functional inputs of GPs. Based on the proposed GP models,

we derive the asymptotic convergence properties of the resulting mean squared prediction

errors, and demonstrate the finite-sample performance using numerical examples. In the

application to inverse scattering, we construct a surrogate model with functional inputs,

which is crucial to recovering the reflective index of an inhomogeneous isotropic scattering

region of interest for a given far-field pattern.
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1. Introduction

Computer experiments that study real systems using mathematical models, such

as partial differential equations, are increasingly being used to analyze complex

problems in science and engineering. Such experiments typically require a great

deal of time and computing resources. Therefore, based on a finite sample of

computer experiments, it is crucial to build a surrogate for the actual mathematical

models, which we then use for prediction, inference, and optimization. The

Gaussian process (GP) model, also called kriging, is popular as a surrogate model

because of its flexibility, interpolating property, and ability to perform uncertainty

quantification using the predictive distribution. For additional discussions on

computer experiments and surrogate modeling using GP models, see Santner et al.

(2018) and Gramacy (2020).

This study is motivated by an inverse scattering problem in computer exper-

iments that involve functional inputs and, therefore, the analysis and inference

rely on a surrogate model that can take functional inputs into account. Figure

1 illustrates inverse scattering. Let the functional input g represent the material

properties of an inhomogeneous isotropic scattering region of interest, shown in

the middle of Figure 1. For a given functional input, the far-field pattern, us, is

obtained by solving partial differential equations (Cakoni et al., 2016), which

is computationally intensive. Given a new far-field pattern, the goal of inverse
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scattering is to recover the functional input using a surrogate model. To achieve

this, we require a surrogate model applicable to functional inputs. In addition to

inverse scattering (Cakoni et al., 2016; Kaipio et al., 2019), problems with func-

tional inputs are frequently found in engineering applications of non-destructive

testing, where measurements on the surface or exterior of an object are used to

infer the interior structure. Similar problems also occur in electrical impedance

tomography, where we need to recover the functional input that represents the

electric conductivity from the measured current-to-voltage mapping; see, for

example, Mueller and Siltanen (2020) for a discussion of the electrical impedance

tomography model. Another important application is the use of computerized

tomography in medical studies for interior reconstruction (Courdurier et al., 2008;

Li et al., 2019).

Figure 1: Illustration of the inverse scattering problem.

However, despite there being extensive studies on surrogate modeling using
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GPs (Gramacy, 2020), few of them focus on functional inputs. To the best of

our knowledge, most of the existing research on GPs with functional inputs

is restricted to specific applications. For example, Nguyen and Peraire (2015)

propose a functional-input GP with bilinear covariance operators, and apply it

to linear partial differential equations. Morris (2012) develops a kriging model

with a covariance function specifically for time-series data. Chen et al. (2021)

propose a spectral-distance correlation function, and apply it to three-dimensional

printing.

In functional data analysis, research that involves functional inputs is of-

ten referred to as scalar-on-function regression (Ramsay and Silverman, 2005;

Kokoszka and Reimherr, 2017; Reiss et al., 2017). Some approaches reduce

the dimension of functional inputs by using a basis-expansion approximation,

and then perform a linear or nonlinear model in the reduced Euclidean space

(see, e.g., Cardot et al. (1999); Ait-Saı̈di et al. (2008); Yao and Müller (2010);

Müller et al. (2013); McLean et al. (2014)). Other methods handle the functional

inputs directly using spline approaches (see, e.g., Ferraty and Vieu (2006); Preda

(2007); Baı́llo and Grané (2009); Shang (2013). However, very few of these

approaches incorporate GP assumptions that allow for uncertainty quantification

when constructing surrogate models.

This study introduces a new class of GP surrogate models for functional
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inputs. Recent studies on surrogate modeling apply GP to functional inputs based

on a truncated basis expansion (Shi and Wang, 2008; Tan, 2019; Li and Tan,

2022). Ideas along this line are intuitive and easy to implement; however, there

are three drawbacks. First, a basis expansion requires an explicit specification

of the basis functions. Second, a basis expansion approximates the functional

input and achieves dimension reduction by using a finite truncation of the basis

functions, which can introduce additional bias into the model. Third, the curse of

dimensionality makes it difficult to scale the techniques developed using a basis

expansion to include high-dimensional functional inputs.

To address these problems, we propose a new GP surrogate by introducing

a new class of kernel functions that are defined directly on a functional space.

We show that the proposed kernels are closely connected to the idea of a basis

expansion, without needing to specify individual bases, and without the loss

of efficiency due to finite truncation. The procedure is general and provides a

parsimonious model, especially for high-dimensional problems, in which basis-

expansion approaches often require a significant number of basis functions to

achieve a high quality approximation. We use simulations to compare the pro-

posed method with those based on a basis expansion for functional inputs, and

apply the proposed method to the inverse scattering problem. Our empirical

results show that the proposed surrogate model outperforms those based on a
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basis expansion in terms of prediction accuracy and uncertainty quantification.

Although the proposed surrogate models extend conventional GPs to func-

tional inputs, the theoretical results are nontrivial extensions. These results

include the convergence rates of the mean squared prediction errors (MSPEs) and

the connections to the experimental design. Defining the kernels directly on a

functional space reduces the model bias compared with using a basis expansion,

but introduces technical challenges to the theoretical derivations. Additional scat-

tered data approximation techniques, such as the local polynomial reproduction

(Wendland, 2004), have to be applied rigorously to the study of convergence rates.

These rates are further explored using the notion of fill distances, which provides

a concrete connection between the performance of the proposed model and the

experimental design in a functional space.

The remainder of the paper is organized as follows. In Section 2, we introduce

a functional-input GP model. Then, in Section 3, we discuss a new class of

kernel functions, including a linear and a nonlinear kernel, and their theoretical

properties. In Section 4, we use a numerical analysis to examine the prediction

accuracy of the proposed models. In Section 5, we apply the proposed framework

to construct a surrogate model for an inverse scattering problem. Section 6

concludes the paper. Detailed theoretical proofs and the data and R code needed

to reproduce the numerical results are provided in the Supplementary Material.
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2. Functional-Input GP

Suppose that V is a functional space consisting of functions defined on a compact

and convex region ⌦ ✓ Rd, and all functions g 2 V are continuous on ⌦, that is,

V ⇢ C(⌦). A functional-input GP, f : V ! R, is denoted by

f(g) ⇠ FIGP(µ,K(g, g0)), (2.1)

where µ is an unknown mean, and K(g, g0) is a semi-positive kernel function for

g, g
0 2 V . A new class of kernel K(g, g0) for functional inputs is discussed in

Section 3.

Given a properly defined kernel function, the estimation and prediction proce-

dures are similar to those of the conventional GP. Assume there are n realizations

from the functional-input GP, where g1, . . . , gn are the inputs and f(g1), . . . , f(gn)

are the outputs. We have f(g1), . . . , f(gn) following a multivariate normal dis-

tribution, Nn(µn,Kn), with mean µn = µ1n and covariance Kn, where 1n is

a size-n all-ones vector and (Kn)j,k = K(gj, gk). The unknown parameters,

including µ and the hyperparameters associated with the kernel function, can

be estimated using likelihood-based or Bayesian approaches; for details of the

estimation methods, refer to Santner et al. (2018) and Gramacy (2020).

Suppose g 2 V is an untried new function. By the property of the conditional
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multivariate normal distribution, the corresponding output f(g) follows a normal

distribution with the mean and variance given by

E[f(g)|yn] =µ+ kn(g)
TK�1

n (yn � µn) and (2.2)

V[f(g)|yn] =K(g, g)� kn(g)
TK�1

n kn(g), (2.3)

respectively, where yn = (y1, ..., yn)T , yi = f(gi), and kn(g) = (K(g, g1), ..., K(g, gn))T .

The conditional mean of (2.2) is used to predict f(g), and the conditional variance

of (2.3) can be used to quantify the prediction uncertainty.

3. A New Class of Kernel Functions

In this section, we introduce a new class of kernel functions for functional-input

GPs. Based on the proposed models, we also derive the asymptotic convergence

properties of the resulting MSPEs. Section 3.1 focuses on a linear kernel, and

Section 3.2 extends the discussion to a nonlinear kernel. Practical guidance on

selecting an optimal kernel is provided in Section 3.3. For notational simplicity,

the mean in (2.1) is assumed to be zero in this section, but the results can be

extended easily to include nonzero cases.
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3.1 Linear kernel for functional inputs

We first introduce a linear kernel for functional inputs g1 and g2:

K(g1, g2) =

Z

⌦

Z

⌦

g1(x)g2(x
0) (x,x0)dxdx0

, (3.1)

where g1, g2 2 V , and  is a positive-definite function defined on ⌦ ⇥ ⌦. The

following proposition shows that this kernel function is semi-positive definite.

Proposition 1. The linear kernel K defined in (3.1) is semi-positive definite on

V ⇥ V .

By Mercer’s theorem (Rahman, 2007), we have

 (x,x0) =
1X

j=1

�j�j(x)�j(x
0), (3.2)

where x,x0 2 ⌦, and �1 � �2 � ... > 0 and {�k}k2N are the eigenvalues and the

orthonormal basis, respectively, in L2(⌦). Given the positive-definite function  ,

we can construct a GP using the Karhunen–Loève expansion:

f(g) =
1X

j=1

p
�jh�j, giL2(⌦)Zj, (3.3)

where Zj are independent standard normal random variables, and h�j, giL2(⌦) is
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the inner product of �j and g, which is h�j, giL2(⌦) =
R
⌦ �j(x)g(x)dx. It can be

shown that the covariance function of the constructed GP in (3.3) is K(g1, g2),

defined in (3.1), that is,

Cov(f(g1), f(g2)) =
1X

j=1

�jh�j, g1iL2(⌦)h�j, g2iL2(⌦)

=
1X

j=1

�j

Z

⌦

Z

⌦

g1(x)�j(x)g2(x
0)�j(x

0)dxdx0

=

Z

⌦

Z

⌦

g1(x)g2(x
0) (x,x0)dxdx0

, (3.4)

for any g1, g2 2 V .

The proposed surrogate model is equivalent to a basis expansion as a result of

the Karhunen–Loève expansion in (3.3), but the proposed method requires only a

specification of the kernel function in (3.1), rather than an explicit specification of

each individual basis �j . Furthermore, we do not apply any dimension reduction

or approximation to the functional input, and thus no additional bias is introduced

to the surrogate. More specifically, the proposed model preserves the most

information without a finite truncation of a basis expansion, because the kernel

representation (3.1) is equivalent to representing each input g as an element in

L2(⌦) using a basis expansion with respect to {�j}1j=1. These advantages are

common in kernel-based methods, such as support-vector machines (SVMs), the
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kernel principal components analysis (KPCA), and the kernel ridge regression

(KRR) (Hastie et al., 2009).

Proposition 2. The GP, f(g), constructed as in (3.3), is linear; that is, for any

a, b 2 R and g1, g2 2 V , it follows that f(ag1 + bg2) = af(g1) + bf(g2).

The proposed kernel function has an intuitive interpretation that connects

it to Bayesian modeling. In a Bayesian linear regression, the conditional mean

function is assumed to be f(x) = xTw, where w is typically assumed to have a

multivariate normal prior, that is, w ⇠ N (0,⌃w). Hence, for any two points, x

and x0, the covariance of f(x) and f(x0) is Cov(f(x0), f(x0)) = xT⌃wx0, which

can be interpreted as a weighted inner product of x and x0. The proposed model

(3.3) can be viewed as an analogy to the Bayesian linear model with functional

inputs, and the covariance (3.4) can be viewed as a weighted inner product of the

two functions g1 and g2.

To understand the performance of the proposed predictor of (2.2) with the

kernel function defined in (3.1), we first characterize the MSPE in the following

theorem. Denote the reproducing kernel Hilbert space (RKHS) associated with a

kernel  as N (⌦).

Theorem 1. Let f̂(g) = E[f(g)|yn] as in (2.2). For any continuous function

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0180
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g 2 V ⇢ L2(⌦), define a linear operator on L2(⌦),

T g(x) =

Z

⌦

g(x0) (x,x0)dx0
.

The MSPE of f̂(g) can be written as

E
⇣
f(g)� f̂(g)

⌘2
= min

(u1,...,un)2Rn

�����T g �
nX

j=1

ujT gj

�����

2

N (⌦)

, (3.5)

where k·kN (⌦) is the RKHS norm of N (⌦).

By Proposition 10.28 in Wendland (2004), T g 2 N (⌦), and therefore the

right-hand side of (3.5) exists. Theorem 1 provides a new representation of the

MSPE for functional-input GPs that is an analogue to that of conventional GPs

in the L2 input space, and has not yet been explored in the literature. According

to Theorem 1, the MSPE can be represented as the distance between T g and its

projection on the linear space spanned by {T g1, ..., T gn}. This distance can be

reduced if gj is designed so that the spanned space well approximates the space V .

We highlight some designs of gj in the following two corollaries, which discuss

the MSPE convergence rates explicitly.

In the following corollaries, the kernel function  is assumed to be a Matérn

Statistica Sinica: Preprint 
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kernel (Stein, 1999):

 (x,x0) =  (k⇥(x� x0)k2) with (3.6)

 (r) =
�
2

�(⌫)2⌫�1
(2
p
⌫r)⌫B⌫(2

p
⌫r), (3.7)

where ⇥ is a lengthscale parameter that is a d ⇥ d positive diagonal matrix,

k · k2 denotes the Euclidean norm, �2 is a positive scalar, B⌫ is the modified

Bessel function of the second kind, and ⌫ represents a smoothness parameter.

We consider the Matérn kernel here because it is widely used in the computer

experiment and spatial statistics literature (Santner et al., 2003; Stein, 1999). The

corollaries can also be extended to a general positive kernel that has k continuous

derivatives, such as Wendland’s compactly supported kernel (Wendland, 2004);

see Wendland (2004) and Haaland and Qian (2011). Without loss of generality, we

assume that ⇥ is an identity matrix and �2 = 1 for the theoretical developments

in this section. These parameters, including ⇥, �2, and ⌫, are discussed in greater

detail in Section 4.

Corollary 1. Suppose gj , for j = 1, . . . , n, are the first n eigenfunctions of  ,

that is, gj = �j . For g 2 V ⇢ L2(⌦), there exists a constant C1 > 0 such that

E
⇣
f(g)� f̂(g)

⌘2
 C1kgk2L2(⌦)n

� 2⌫
d . (3.8)
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Furthermore, if g 2 N (⌦), then there exists a constant C2 > 0 such that

E
⇣
f(g)� f̂(g)

⌘2
 C2kgk2N (⌦)n

� 4⌫
d . (3.9)

Corollary 1 represents the convergence rate analogue to that of conventional

GPs (Tuo and Wang, 2020), and shows that if we design the input functions to

be eigenfunctions of  , the convergence rate of the MSPE is polynomial. If the

functional space is further assumed to be the RKHS associated with the kernel  

(i.e., g 2 N (⌦)), which is smaller than L2(⌦), the convergence rate becomes

faster, as shown by (3.9). This result indicates a significant difference between

the proposed GP defined on a functional space and the conventional one defined

on a Euclidean space. That is, the convergence results of (3.8) and (3.9) depend

on the norm of the functional space in which the input g lies, which is different to

that of conventional GPs, which involves only the Euclidean norm.

Instead of selecting the input functions to be eigenfunctions, an alternative is

to design the input functions using a set of knots in ⌦, that is, Xn ⌘ {x1, . . . ,xn},

where xj 2 ⌦, for j = 1, . . . , n, and the convergence rate is derived in the

following corollary. We first denote hXn,⌦ as the fill distance of Xn, that is,

hXn,⌦ := sup
x2⌦

min
xj2Xn

kx� xjk2.
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Furthermore, denote qXn = min1j 6=kn kxj�xkk/2, and a design Xn satisfying

hXn,⌦/qXn  C
0, for some constant C 0, is called a quasi-uniform design.

Corollary 2. (1) Suppose gj(x) =  (x,xj), where x,xj 2 ⌦, for j =

1, . . . , n. For g 2 N (⌦), there exists a constant C3 > 0 such that

E
⇣
f(g)� f̂(g)

⌘2
 C3kgk2N (⌦)h

2⌫
Xn,⌦.

(2) For a quasi-uniform design Xn, there exists a positive constant C such that

hXn,⌦  Cn
�1/d (Wendland, 2004; Müller, 2009). Therefore, there exists

a constant C4 > 0 such that

E
⇣
f(g)� f̂(g)

⌘2
 C4kgk2N (⌦)n

� 2⌫
d . (3.10)

Compared with the results in Corollary 1, the convergence rate of the quasi-

uniform designs in (3.10) is slower than the choice of eigenfunctions in (3.9).

Nevertheless, despite the slower rate of convergence, designing functional inputs

as  (xj, ·) with space-filling xj can be relatively easier in practice than finding

eigenfunctions of  . However, if the eigenfunctions of  are available, then

we recommend the design based on Corollary 1 (i.e., the first n eigenfunctions),

because the convergence rate is faster. Some kernel functions have closed-
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form expressions, such as Gaussian kernels (Zhu et al., 1997). More generally,

the eigenfunctions can be approximated numerically using Nyström’s method

(Williams and Seeger, 2000).

The proposed linear kernel can be naturally modified to accommodate the

potential nonlinearity in f by enlarging the feature space using a prespecified

nonlinear transformation M on g, that is, M : V ! V1, where V1 is a function

class. The resulting kernel function can be written as

K(g1, g2) =

Z

⌦

Z

⌦

M � g1(x)M � g2(x0) (x,x0)dxdx0
,

and the corresponding GP can be constructed as

f(g) =
1X

j=1

p
�jh�j,M � giL2(⌦)Zj. (3.11)

The MSPE convergence results can be extended to (3.11). There are many

possible ways to define M so that the feature space can be enlarged; however,

this flexibility comes with a higher estimation complexity. In the next section, we

propose an alternative to address the nonlinearity using a kernel function, which

is computationally more efficient.
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3.2 Nonlinear kernel for functional inputs

In this section, we introduce a new type of kernel function for functional inputs

that takes the nonlinearity into account by using a radial basis function. Let

 (r) : R+ ! R be a radial basis function, the corresponding kernel of which in

Rd is strictly positive definite for any d � 1. Note that the radial basis function of

(3.7), which has a Matérn kernel, satisfies this condition. Define K : V ⇥V ! R

as

K(g1, g2) =  (�kg1 � g2kL2(⌦)), (3.12)

where k·kL2(⌦) is the L2-norm of a function, defined by kgkL2(⌦) = (hg, giL2(⌦))
1/2,

and � > 0 is a parameter that controls the decay of the kernel function with respect

to the L2-norm.

Although other distance metrics can be used to define the distance between

two functions, such as the Fréchet distance or L1-norm, the resulting kernel

functions are not necessarily semi-positive definite, which is a required property

when defining a kernel function. For example, consider an L1-norm distance for

the kernel function, that is, K(g1, g2) =  (�kg1 � g2kL1(⌦)), for any g1, g2 2

L1(⌦), where  has the form of (3.7), with ⌫ = 2.5 and �2 = 1. Given the

four training functional inputs, g1(x1, x2) = x
2
1, g2(x1, x2) = x

2
2, g3(x1, x2) =

Statistica Sinica: Preprint 
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3.2 Nonlinear kernel for functional inputs18

1 + x1, g4(x1, x2) = 1 + x2, and � = 0.5, the kernel matrix is

Kn =

2

6666666664

1 0.8286 0.7536 0.5240

0.8286 1 0.5240 0.7536

0.7536 0.5240 1 0.8286

0.5240 0.7536 0.8286 1

3

7777777775

.

Then, for a vector a = (1,�1,�1, 1)T , it follows that aTKna = �0.2331 < 0,

which implies that the kernel function is not semi-positive. Conditions on the

metric k · k that make the resulting kernel function positive definite are left to

future work. In the following proposition, we show that the kernel function with

k · kL2(⌦), defined as in (3.12), is positive definite.

Proposition 3. The function K defined in (3.12) is positive definite on V ⇥ V .

Assume that there exists a probability measure P on V such that
R
V g(t)2dP (g) <

1, for t 2 ⌦ (Ritter, 2007). Based on the positive-definite function K in (3.12),

we can construct a GP using the Karhunen–Loève expansion, as follows:

f(g) =
1X

j=1

p
�j'j(g)Zj, (3.13)

where 'j is the orthonormal basis obtained using a generalized version of Mer-

cer’s theorem, K(g1, g2) =
P1

j=1 �j'j(g1)'j(g2) (Steinwart and Scovel, 2012),
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3.2 Nonlinear kernel for functional inputs19

with respect to the probability measure P .

The nonlinear kernel in (3.12) can be viewed as a basis expansion of the

functional input based on the fact that kg1 � g2k2L2(⌦)
=
P1

j=1h�j, g1 � g2i2L2(⌦)
,

where {�j}1j=1 are orthonormal basis functions in L2(⌦). By a finite truncation

of the basis expansion, the input g can be approximated by {�j}Mj=1 in RM , for

a positive integer M , and, therefore, f(g) can be approximated by a GP with

the correlation function  (�k · k2), where k · k2 is the Euclidean norm on RM .

However, as in Section 3.1, the finite truncation introduces additional bias and

requires an explicit specification of the orthonormal functions {�j}Mj=1 and M

in advance. Instead, the proposed method directly evaluates the correlation on a

functional space using the nonlinear kernel without an approximation, requiring

only that we select a proper kernel function.

Note that the L2-norm in (3.12) can be replaced by any Hilbert space norm,

such as the RKHS norm. Therefore, the nonlinear kernel (3.12) is flexible, and

can be generalized to any target space of interest, in practice. Nevertheless, the

L2-norm can be approximated using numerical integration methods, such as

Monte Carlo integration (Caflisch, 1998), which is computationally more efficient

than, for example, the RKHS norm, which requires inverting an N ⇥N matrix,

where N is the number of grid points.

Based on the proposed nonlinear kernel, the next theorem gives the conver-
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gence rate of the MSPE.

Theorem 2. Suppose that � is a Matérn kernel function with smoothness ⌫1,

and  is the radial basis function of (3.7), the corresponding kernel of which is

Matérn with smoothness ⌫. Let ⌧ = min(⌫, 1). For any n > N0, with a constant

N0, there exist n input functions such that for any g 2 N�(⌦) with kgkN�(⌦)  1,

the MSPE is bounded by

E
⇣
f(g)� f̂(g)

⌘2
 C5(log n)

� (⌫1+d/2)⌧
d log log n. (3.14)

Based on (3.14), it appears that the convergence rate is slower than that of the

conventional GP, where the inputs are defined in the Euclidean space. Although

this rate can be improved, a slower rate of convergence for functional inputs is not

surprising, because the input space is much larger than the Euclidean space. Note

that because the RKHS generated by a Matérn kernel function with smoothness

⌫1 is equivalent to the (fractional) Sobolev space H
⌫1+d/2(⌦) (Wendland, 2004),

the assumption of g 2 N�(⌦) in Theorem 2 is equivalent to g 2 H
⌫1+d/2(⌦).

If � is a squared exponential kernel, then the corresponding RKHS is within

the RKHS generated by a Matérn kernel function with any smoothness ⌫2. Thus,

one can choose a large ⌫2 > ⌫1, and apply Theorem 2 to obtain the same

convergence rate as in (3.14) by replacing ⌫1 with ⌫2. Therefore, we conclude
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that the convergence rate of the RKHS generated by a squared exponential kernel

is faster than that of the RKHS generated by a Matérn kernel function with a fixed

⌫1.

3.3 Selection of kernels

We have shown that the linear kernel of (3.1) results in a less flexible model,

leading to a lower prediction variance, but higher bias, whereas the nonlinear

kernel of (3.12) results in a more flexible model, leading to a higher variance

and lower bias (Hastie et al., 2009). To find an optimal kernel function that

balances the bias–variance trade-off, we use cross-validation to select the kernel

by minimizing the estimated prediction error.

Although cross-validation methods are typically expensive to implement, the

leave-one-out cross-validation (LOOCV) of GP models can be expressed in a

closed form, which makes the computation less demanding (Zhang and Wang,

2010; Rasmussen and Williams, 2006; Currin et al., 1988). Specifically, denote

ỹi as the prediction mean based on all data except the ith observation, and yi as

the real output of the ith observation. For a kernel candidate K, which can be

either the linear kernel (3.1) or the nonlinear kernel (3.12), the LOOCV error is

1

n

nX

i=1

(yi � ỹi)
2 =

1

n
k⇤�1

n K�1
n (yn � µn)k22, (3.15)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0180



3.4 Generalization to multiple functional-input variables22

where ⇤n is a diagonal matrix with the element (⇤n)j,j = (K�1
n )j,j . Thus, we can

select the optimal of the linear and nonlinear kernels by minimizing the LOOCV

error.

3.4 Generalization to multiple functional-input variables

The linear and nonlinear kernel functions developed in Sections 3.1 and 3.2,

respectively, can be extended naturally to multiple functional-input variables. For

example, we have two functional-input variables, g 2 V and h 2 V , and we

collect n inputs, {(g1, h1), . . . , (gn, hn)}. In such cases, the linear kernel (3.1)

can be rewritten as

K((g1, h1), (g2, h2)) =

Z

⌦

Z

⌦

(g1(x)g2(x
0) + h1(x)h2(x

0)) (x,x0)dxdx0
,

and the nonlinear kernel (3.12) can be rewritten as

K((g1, h1), (g2, h2)) =  

⇣�
�1kg1 � g2k2L2(⌦) + �2kh1 � h2k2L2(⌦)

�1/2⌘
,

where �1, �2 > 0 are the parameters.

The nonlinear kernel can also be generalized naturally to a mixture of func-

tional inputs and scalar inputs. That is, suppose that in addition to the two

functional-input variables, g, h 2 V , there exists a scalar input variable in the
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experiment, denoted by z 2 ⌦0 ✓ R. Then, we can define a kernel function as

K((g1, h1, z1), (g2, h2, z2)) =

 

⇣�
�1kg1 � g2k2L2(⌦) + �2kh1 � h2k2L2(⌦) + �3(z1 � z2)

2
�1/2⌘

,

where �3 > 0.

4. Numerical Study

In this section, we use numerical experiments to examine the performance of

the proposed method. In the Supplementary Material S8, we explore the sample

paths of the functional-input GP with different parameter settings.

In these numerical studies, we use the quasi-Monte Carlo integration (Mo-

rokoff and Caflisch, 1995) to numerically evaluate the integrals in the kernels.

Specifically, suppose that ⌦ is a unit cube. Then, the linear kernel (3.1) can be

approximated by

K(g1, g2) ⇡
1

N2

NX

i=1

NX

j=1

g1(xi)g2(x
0
j) (xi,x

0
j), (4.1)

where {xi}Ni=1 and {x0
j}Nj=1 are low-discrepancy sequences from a unit cube, for

which the Sobol sequence (Sobol’, 1967; Bratley and Fox, 1988) is considered
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here. The number of points in the sequence, N = 5, 000, is set. Similarly, the

L2-norm in the nonlinear kernel (3.12) can be approximated by

kg1 � g2kL2(⌦) ⇡
 

1

N

NX

i=1

(g1(xi)� g2(xi))
2

!1/2

. (4.2)

We examine the prediction performance of the proposed method using three

synthetic examples, namely, a linear operator, f1(g) =
R
⌦

R
⌦ g(x)dx1dx2, and

two nonlinear operators, f2(g) =
R
⌦

R
⌦ g(x)

3dx1dx2 and f3(g) =
R
⌦

R
⌦ sin(g(x)

2)dx1dx2,

where x = (x1, x2) 2 ⌦ ⌘ [0, 1]2 and g(x) : [0, 1]2 ! R. We consider eight

functional inputs, shown in the first row of Table S1, for each of the synthetic

examples; their outputs are given in Table S1.

Three types of functional inputs are tested for the predictions: g9(x) =

sin(↵1x1 + ↵2x2), g10(x) = � + x
2
1 + x

3
2, and g11(x) = exp{�x1x2}, where

↵1,↵2, �, 2 [0, 1]. Based on 100 random samples of ↵1,↵2, �, and  from

[0, 1], we evaluate the prediction performance by averaging the mean squared

errors (MSEs), where MSE = 1
3

P11
j=9(f(gj)� f̂(gj))2.

For the proposed method, we use a Matérn kernel function with smoothness

parameter ⌫ = 5/2, which leads to a simplified form of (3.7):

 (r) =

✓
1 +

p
5r +

5

3
r
2

◆
exp

⇣
�
p
5r
⌘
. (4.3)
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Measurements Kernel f1(g) f2(g) f3(g)

LOOCV linear 7.9⇥ 10�7 1.813 0.454
nonlinear 2.2⇥ 10�6 0.227 0.017

MSE linear 6.4⇥ 10�10 1.087 0.140
nonlinear 3.1⇥ 10�7 0.012 0.016

Table 1: The leave-one-out cross-validation (LOOCV) errors and the mean squared
errors (MSEs) for three testing functions, where f1(g) =

R
⌦

R
⌦ g, f2(g) =

R
⌦

R
⌦ g

3, and
f3(g) =

R
⌦

R
⌦ sin(g

2). The errors corresponding to the optimal kernel are boldfaced.

Other parameters, including ⇥, �2, and �, are estimated using a maximum like-

lihood estimation. We use both the linear kernel (3.1) and the nonlinear kernel

(3.12) for the proposed functional input GP, and report their LOOCV errors in

Table 1. Following Section 3.3, the LOOCV is then used to identify the optimal

kernel. By minimizing the LOOCV errors, the linear kernel is identified as the

optimal choice for the linear synthetic example, f1(g), and the nonlinear kernel is

identified as the optimal choice for the nonlinear synthetic examples, f2(g) and

f3(g). The MSEs for the three synthetic examples are summarized in Table 1. It

appears that the optimal kernels selected using the LOOCV are consistent with

the selections based on minimizing the MSEs, showing that the LOOCV is a

reasonable indicator of the optimal kernel when the ground truth is unknown.

The computational cost is also assessed for the two kernel choices. The

numerical experiments were performed on a MacBook Pro laptop with an Apple

M1 Max Chip and 32 GB of RAM. The computation for the linear kernels in each
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of the examples takes about 9 seconds, and that for the nonlinear kernels takes

less than 1 second, indicating that the linear kernel requires a greater computation

than the nonlinear kernel does. This is not surprising, because the computation for

linear kernels involves double integrals (see (3.1)), which require N
2 evaluations

for the quasi-Monte Carlo integration in (4.1), whereas the nonlinear kernel (see

(3.12) and (4.2)) requires only N evaluations. Furthermore, the linear kernel has

d lengthscale parameters that need to be estimated, whereas the nonlinear kernel

has only one lengthscale parameter. Nonetheless, fitting the functional-input GP

model is reasonably efficient with either a linear or a nonlinear kernel, both of

which take less than 10 seconds.

As a comparison, we consider the basis-expansion approach discussed in

Section 3.2. That is, consider a functional principal component analysis (FPCA)

with truncated components (Rice and Silverman, 1991; Wang et al., 2016):

gi(x) ⇡ u(x) +
MX

j=1

zij j(x),

with the leading M eigenfunctions { j(x)}Mj=1 and the corresponding coefficients
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{zij} given by

 j(x) = argmax
k�k2=1,

h�, li=0,8l<j

nX

i=1

⇢Z
(gi(x)� u(x))�(x)dx

�2

,

zij =

Z
(gi(x)� u(x)) j(x) dx, (4.4)

respectively, where n = 8 in this example. The number of components, M =

3, is chosen to explain 99.46% of the variance; see Wang et al. (2016) and

Mak et al. (2018). Given the training input-output pairs, {zi, yi}ni=1, where

zi = (zi,1, . . . , zi,M), we use a conventional GP (with a Matérn kernel) to fit the

training data. The test input {zi}11i=9 can be obtained similarly using (4.4), and

their outputs are predicted using the fitted GP.

In addition to the FPCA, we consider a Maclaurin series expansion of degree

3, which is a Taylor series expansion of a function evaluated at zero truncated to

degree 3 (labeled T3). That is,

gj(x) ⇡
X

a=0,b=0
a+b3

@
a+b

gj(0, 0)

@x
a
1@x

b
2

x
a
1x

b
2.

The series expansion approximates the functional inputs of the examples rea-

sonably well, with only a few nonzero coefficients. For example, the training

functional input g1(x) = x1 + x2 has the coefficient one for x1 and x2, and zero
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for other terms.

To evaluate the prediction performance and quantify the uncertainty, in

addition to the MSEs, we consider two numerical measurements: the average

coverage rate of the 95% prediction intervals, and the average proper scores. The

coverage rate is the proportion of times that the interval contains the true value,

and the proper score is the scoring rule of Gneiting and Raftery (2007), which is

an overall measure of the accuracy of the combined prediction mean and variance

predictions. Specifically, the proper score has the following form:

proper score = �
✓
y � µP

�P

◆2

� log �2
P ,

where y is the true output, µP is the predictive mean, and �2
P is the predictive

variance. A larger proper score indicates a better prediction. The results are sum-

marized in Table S2, which shows that the proposed method, FIGP, outperforms

the two basis-expansion approaches in terms of both predictions and uncertainty

quantification. The average coverage rates of FIGP are close to the nominal

coverage 95%, and the scores of FIGP are much higher than those of the two

basis-expansion approaches.
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5. Applications to Inverse Scattering Problem

In this section, we revisit the inverse scattering problem shown in Figure 2. Let

D ⇢ R2 denote an inhomogeneous isotropic scattering region of interest, and the

functional input g, the support of which is D, is related to the refractive index for

the region D of the unknown scatterer. Given a set of finite-element simulations

as the training data, the goal of inverse scattering is to recover the functional

input from a given far-field pattern. To achieve this goal, an important task is to

construct a surrogate model for the functional inputs.

In this study, 10 functional inputs, namely, 1, 1 + x1, 1� x1, 1 + x1x2, 1�

x1x2, 1 + x2, 1 + x
2
1, 1� x

2
1, 1 + x

2
2, and 1� x

2
2, are used in the training set, and

the corresponding far-field patterns are shown in Figure 2. Note that the inputs

are given with explicit functional forms. In applications in which discrete real-

izations of the functions are available, the kernel functions can be approximated

numerically using the discrete realizations in (4.1) and (4.2). As a preprocessing

step, we reduce the dimension of the output images using a principal component

analysis (PCA). The first three principal components, denoted by ul 2 R1024,

for l = 1, 2, 3, are shown in Figure S3, and explain more than 99.99% of the

variability of the data. Therefore, given the functional input gi, for i = 1, . . . , 10,

the output of the far-field images can be approximated by
P3

l=1 fl(gi)ul, where

f1(gi), f2(gi), f3(gi) are the first three principal component scores.
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Figure 2: Training data in the application of the inverse scattering problem.

After the dimension reduction, we assume the three-dimensional outputs

f1(g), f2(g), and f3(g) are mutually independent and follow the functional-input

GP as the surrogate model. For any untried functional input g 2 V , based on

the results of (2.2) and (2.3), we predict the far-field pattern using the following

normal distribution:

N
 

3X

l=1

kl(g)
TK�1

n,l(fl � µl1n)ul,

3X

l=1

(Kl(g, g)� kl(g)
TK�1

n,lkl(g))ulu
T
l

!
,

where fl = (fl(g1), . . . , fl(gn)), kl(g) = (Kl(g, g1), . . . , Kl(g, gn))T , (Kn,l)i,j =

Kl(gi, gj), and Kl is the kernel function with hyperparameters estimated based

on fl.

We use both the linear kernel of (3.1) and the nonlinear kernel of (3.12). The

optimal kernel is selected by comparing the LOOCV errors when predicting the
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far-field pattern. The LOOCV error based on the linear kernel is 3.6 ⇥ 10�6,

which is smaller than that of the nonlinear kernel, 1.2⇥10�5. Therefore, we apply

the linear kernel and examine its prediction performance for the test function,

g(x) = 1 � sin(x2). Similarly to Section 4, we compare two basis-expansion

approaches, FPCA and T3. The images of the true far-field patterns and their

predictions, along with their variances (in logarithm), are illustrated in Figure S4.

Compared with the ground truth, the predictions of FIGP capture the underlying

structures reasonably well, with some discrepancies appearing on the lower right

corner. On the other hand, the predictions of FPCA and T3 both appear to deviate

more from the ground truth. The MSEs and average scores are reported in Table

2, and show that the proposed method outperforms the two basis-expansion

approaches in terms of prediction accuracy and uncertainty quantification.

Measurements FIGP FPCA T3

MSE 1.10⇥ 10�6 1.07⇥ 10�4 9.06⇥ 10�5

Score 12.13 6.89 6.39

Table 2: Prediction performance of the FIGP and basis-expansion approaches in the
inverse scattering problem application (FPCA indicates an FPCA expansion approach
and T3 indicates the Taylor series expansion of degree 3), including MSEs and average
proper scores, in which the values with better performance are boldfaced.
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6. Conclusion

Although GP surrogates are widely used in analysis of complex systems as an

alternative to direct analysis using computer experiments, the results of most

existing studies do not apply to problems with functional inputs. To address

this issue, we introduce two new types of kernel functions for functional-input

GPs, namely, a linear and a nonlinear kernel. We also discuss the theoretical

properties of the proposed surrogates, such as the convergence rate of the MSPE.

The results of numerical studies and an application to surrogate modeling in an

inverse scattering problem show that the proposed method exhibits high prediction

accuracy.

There are extensive studies on experimental design for conventional GP

surrogate models, but few on optimal designs for GPs with functional inputs.

Here, we show that space-fillingness is a desirable property in terms of controlling

the convergence rate of the MSPE. An interesting topic for future research is

to explore the construction procedure for efficient space-filling designs with

functional inputs. In addition to experimental designs, another important avenue

for future work is to explore systematic approaches to efficiently identify the

functional input, given an observed far-field pattern, which is the ultimate goal

of inverse scattering problems. Based on the proposed GP surrogate, we aim to

explore a Bayesian inverse framework that integrates computer experiments and
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real observations. Lastly, even though the numerical studies in the Supplementary

Material S8 indicate that the smoothness parameter ⌫ in the linear kernel function

does not have a significant effect on the sample paths, it is worth exploring the

theoretical properties related to the choice of the parameter. This topic is left to

future work.

Supplementary Material

The online Supplementary Material includes the theoretical proofs for Proposi-

tions 1 and 3, Theorems 1 and 2, and Corollaries 1 and 2, the sample paths of the

functional-input GP, the supporting tables and figures for Sections 4 and 5, and

the data, and R code needed to reproduce the results in Sections 4 and 5.
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