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Abstract: Surrogate modeling based on Gaussian processes (GPs) is becoming increasingly
popular in analysis of complex problems in science and engineering. However, despite
the many studies on GP modeling, few focus on functional inputs. Motivated by an
inverse scattering problem in which functional inputs representing the support and material
properties of the scatterer are involved in the partial differential equations, we propose a new
class of kernel functions for functional inputs of GPs. Based on the proposed GP models,
we derive the asymptotic convergence properties of the resulting mean squared prediction
errors, and demonstrate the finite-sample performance using numerical examples. In the
application to inverse scattering, we construct a surrogate model with functional inputs,
which is crucial to recovering the reflective index of an inhomogeneous isotropic scattering

region of interest for a given far-field pattern.
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1. Introduction

Computer experiments that study real systems using mathematical models, such
as partial differential equations, are increasingly being used to analyze complex
problems in science and engineering. Such experiments typically require a great
deal of time and computing resources. Therefore, based on a finite sample of
computer experiments, it is crucial to build a surrogate for the actual mathematical
models, which we then use for prediction, inference, and optimization. The
Gaussian process (GP) model, also called kriging, is popular as a surrogate model
because of its flexibility, interpolating property, and ability to perform uncertainty
quantification using the predictive distribution. For additional discussions on
computer experiments and surrogate modeling using GP models, see Santner et al.
(2018) and Gramacy (2020).

This study is motivated by an inverse scattering problem in computer exper-
iments that involve functional inputs and, therefore, the analysis and inference
rely on a surrogate model that can take functional inputs into account. Figure
1 illustrates inverse scattering. Let the functional input ¢ represent the material
properties of an inhomogeneous isotropic scattering region of interest, shown in
the middle of Figure E For a given functional input, the far-field pattern, u°, is
obtained by solving partial differential equations (Cakoni et al., 2016), which

is computationally intensive. Given a new far-field pattern, the goal of inverse



scattering is to recover the functional input using a surrogate model. To achieve
this, we require a surrogate model applicable to functional inputs. In addition to
inverse scattering (Cakoni et al., [2016; Kaipio et al., 2019), problems with func-
tional inputs are frequently found in engineering applications of non-destructive
testing, where measurements on the surface or exterior of an object are used to
infer the interior structure. Similar problems also occur in electrical impedance
tomography, where we need to recover the functional input that represents the
electric conductivity from the measured current-to-voltage mapping; see, for
example, Mueller and Siltanen| (2020) for a discussion of the electrical impedance
tomography model. Another important application is the use of computerized
tomography in medical studies for interior reconstruction (Courdurier et al.,[2008;

Liet al.,2019).

Figure 1: [llustration of the inverse scattering problem.

However, despite there being extensive studies on surrogate modeling using



GPs (Gramacy, [2020), few of them focus on functional inputs. To the best of
our knowledge, most of the existing research on GPs with functional inputs
is restricted to specific applications. For example, Nguyen and Peraire (2015)
propose a functional-input GP with bilinear covariance operators, and apply it
to linear partial differential equations. Morris (2012) develops a kriging model
with a covariance function specifically for time-series data. Chen et al. (2021)
propose a spectral-distance correlation function, and apply it to three-dimensional
printing.

In functional data analysis, research that involves functional inputs is of-
ten referred to as scalar-on-function regression (Ramsay and Silverman, 2005;
Kokoszka and Reimbherr, [2017; [Reiss et al., 2017). Some approaches reduce
the dimension of functional inputs by using a basis-expansion approximation,
and then perform a linear or nonlinear model in the reduced Euclidean space
(see, e.g., Cardot et al. (1999); Ait-Saidi et al.| (2008); Yao and Miiller (2010);
Miiller et al. (2013); McLean et al. (2014)). Other methods handle the functional
inputs directly using spline approaches (see, e.g., Ferraty and Vieu (2006); |Preda
(2007); Baillo and Grang| (2009); Shang (2013). However, very few of these
approaches incorporate GP assumptions that allow for uncertainty quantification
when constructing surrogate models.

This study introduces a new class of GP surrogate models for functional



inputs. Recent studies on surrogate modeling apply GP to functional inputs based
on a truncated basis expansion (Shi and Wang, 2008; Tan, 2019; L1 and Tan,
2022). Ideas along this line are intuitive and easy to implement; however, there
are three drawbacks. First, a basis expansion requires an explicit specification
of the basis functions. Second, a basis expansion approximates the functional
input and achieves dimension reduction by using a finite truncation of the basis
functions, which can introduce additional bias into the model. Third, the curse of
dimensionality makes it difficult to scale the techniques developed using a basis
expansion to include high-dimensional functional inputs.

To address these problems, we propose a new GP surrogate by introducing
a new class of kernel functions that are defined directly on a functional space.
We show that the proposed kernels are closely connected to the idea of a basis
expansion, without needing to specify individual bases, and without the loss
of efficiency due to finite truncation. The procedure is general and provides a
parsimonious model, especially for high-dimensional problems, in which basis-
expansion approaches often require a significant number of basis functions to
achieve a high quality approximation. We use simulations to compare the pro-
posed method with those based on a basis expansion for functional inputs, and
apply the proposed method to the inverse scattering problem. Our empirical

results show that the proposed surrogate model outperforms those based on a



basis expansion in terms of prediction accuracy and uncertainty quantification.

Although the proposed surrogate models extend conventional GPs to func-
tional inputs, the theoretical results are nontrivial extensions. These results
include the convergence rates of the mean squared prediction errors (MSPEs) and
the connections to the experimental design. Defining the kernels directly on a
functional space reduces the model bias compared with using a basis expansion,
but introduces technical challenges to the theoretical derivations. Additional scat-
tered data approximation techniques, such as the local polynomial reproduction
(Wendland, [2004)), have to be applied rigorously to the study of convergence rates.
These rates are further explored using the notion of fill distances, which provides
a concrete connection between the performance of the proposed model and the
experimental design in a functional space.

The remainder of the paper is organized as follows. In Section 2, we introduce
a functional-input GP model. Then, in Section 3, we discuss a new class of
kernel functions, including a linear and a nonlinear kernel, and their theoretical
properties. In Section 4, we use a numerical analysis to examine the prediction
accuracy of the proposed models. In Section 5, we apply the proposed framework
to construct a surrogate model for an inverse scattering problem. Section 6
concludes the paper. Detailed theoretical proofs and the data and R code needed

to reproduce the numerical results are provided in the Supplementary Material.



2. Functional-Input GP

Suppose that V' is a functional space consisting of functions defined on a compact
and convex region () C R?, and all functions g € V are continuous on €2, that is,

V C C(Q2). A functional-input GP, f : V' — R, is denoted by

flg) ~ FIGP(u, K(g.9")), (2.1)

where (£ is an unknown mean, and K (g, ¢') is a semi-positive kernel function for
g,9" € V. A new class of kernel K (g, ¢’) for functional inputs is discussed in
Section 3.

Given a properly defined kernel function, the estimation and prediction proce-
dures are similar to those of the conventional GP. Assume there are n realizations
from the functional-input GP, where ¢, . . ., g,, are the inputs and f(g1), ..., f(gn)
are the outputs. We have f(g1), ..., f(g,) following a multivariate normal dis-
tribution, N\, (., K,,), with mean p,, = p1,, and covariance K,,, where 1,, is
a size-n all-ones vector and (K, );r = K(g;, gx). The unknown parameters,
including ;v and the hyperparameters associated with the kernel function, can
be estimated using likelihood-based or Bayesian approaches; for details of the
estimation methods, refer to|Santner et al. (2018)) and |Gramacy (2020).

Suppose g € V' is an untried new function. By the property of the conditional



multivariate normal distribution, the corresponding output f(g) follows a normal

distribution with the mean and variance given by

E[f(9)ya] =1 +kn(9) K, (yn — pn) and (2.2)

VIf(9)lyal =K(g,9) — ka(9)"K,, kn(9), (2.3)

respectively, where y, = (y1,..,yn)". y; = f(g:), and kn(g) = (K (g, 91), ... (9, 9n))"-

The conditional mean of (2.2)) is used to predict f(g), and the conditional variance

of (2.3)) can be used to quantify the prediction uncertainty.

3. A New Class of Kernel Functions

In this section, we introduce a new class of kernel functions for functional-input
GPs. Based on the proposed models, we also derive the asymptotic convergence
properties of the resulting MSPEs. Section [3.1 focuses on a linear kernel, and
Section 3.2 extends the discussion to a nonlinear kernel. Practical guidance on
selecting an optimal kernel is provided in Section For notational simplicity,
the mean in (2.1) is assumed to be zero in this section, but the results can be

extended easily to include nonzero cases.
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3.1 Linear kernel for functional inputs

We first introduce a linear kernel for functional inputs g; and g-:

K(gl,gg):/Q/Qgl(x)gg(x')\lf(x,x’)dxdx’, (3.1)

where g1, 9, € V, and V is a positive-definite function defined on €2 x €. The

following proposition shows that this kernel function is semi-positive definite.

Proposition 1. The linear kernel K defined in (3.1) is semi-positive definite on

V xV.

By Mercer’s theorem (Rahman, 2007), we have

U(x,X) = X (x)g;(x), (3.2)
j=1

where x,x’ € Q,and A\; > Ay > ... > 0 and { ¢y }ren are the eigenvalues and the
orthonormal basis, respectively, in Ly(€2). Given the positive-definite function U,

we can construct a GP using the Karhunen—Logve expansion:

F@) =D VA5, 9) 1o Zi, (3.3)
j=1

where Z; are independent standard normal random variables, and (¢;, g) ,(q) iS
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the inner product of ¢; and g, which is (¢;, g) 1.() = [, ¢;(x)g(x)dx. It can be
shown that the covariance function of the constructed GP in @) is K(g1,92),

defined in (3.1)), that is,

Cov(f(g1), f(g2)) = Z N {D5, 91) Lo @) (D) G2) 120
- Z Aj /Q /Q 91(%) (%) g2 (x"); (x")dxdx’

:/ / 91(x) g2 (x) ¥ (x, X) dxdx’, (3.4)
QJQ

for any g1, 9, € V.

The proposed surrogate model is equivalent to a basis expansion as a result of
the Karhunen—Loéve expansion in (3.3]), but the proposed method requires only a
specification of the kernel function in (3.1)), rather than an explicit specification of
each individual basis ¢;. Furthermore, we do not apply any dimension reduction
or approximation to the functional input, and thus no additional bias is introduced
to the surrogate. More specifically, the proposed model preserves the most
information without a finite truncation of a basis expansion, because the kernel
representation (3.1)) is equivalent to representing each input ¢ as an element in
L,(£2) using a basis expansion with respect to {¢;}32,. These advantages are

common in kernel-based methods, such as support-vector machines (SVMs), the
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kernel principal components analysis (KPCA), and the kernel ridge regression

(KRR) (Hastie et al., 2009).

Proposition 2. The GP, f(g), constructed as in (3.3), is linear; that is, for any

a,b € Rand g1,9> € V, it follows that f(ag, + bgs) = af(g1) + bf(g2).

The proposed kernel function has an intuitive interpretation that connects
it to Bayesian modeling. In a Bayesian linear regression, the conditional mean
function is assumed to be f(x) = x”w, where w is typically assumed to have a
multivariate normal prior, that is, w ~ N (0, X, ). Hence, for any two points, x
and x’, the covariance of f(x) and f(x) is Cov(f(x'), f(x')) = xT ¥x/, which
can be interpreted as a weighted inner product of x and x’. The proposed model
(3.3)) can be viewed as an analogy to the Bayesian linear model with functional
inputs, and the covariance can be viewed as a weighted inner product of the
two functions ¢; and gs.

To understand the performance of the proposed predictor of with the
kernel function defined in (3.1]), we first characterize the MSPE in the following
theorem. Denote the reproducing kernel Hilbert space (RKHS) associated with a

kernel ¥ as Ny (92).

Theorem 1. Let f (9) = E[f(9)|yn] as in 2.2). For any continuous function
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g €V C Ly(Q), define a linear operator on L (£2),
Tg(x) = / g(x") ¥ (x,x")dx’.
Q
The MSPE of f(g) can be written as

; 3.5)

where |||, () is the RKHS norm of Ny ().

By Proposition 10.28 in[Wendland| (2004), Tg € Ny (), and therefore the
right-hand side of (3.5) exists. Theorem|[I provides a new representation of the
MSPE for functional-input GPs that is an analogue to that of conventional GPs
in the L, input space, and has not yet been explored in the literature. According
to Theorem [I} the MSPE can be represented as the distance between 7 ¢ and its
projection on the linear space spanned by {7 g1, ..., T g, }. This distance can be
reduced if g; is designed so that the spanned space well approximates the space V.
We highlight some designs of g; in the following two corollaries, which discuss
the MSPE convergence rates explicitly.

In the following corollaries, the kernel function V¥ is assumed to be a Matérn
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kernel (Stein, |1999):

U(x,x") =(|O(x —x)|]2) with (3.6)

2

W(r) = W@ﬁﬂ”&@ﬁr), (3.7)

where O is a lengthscale parameter that is a d x d positive diagonal matrix,
|| - ||l2 denotes the Euclidean norm, o2 is a positive scalar, B, is the modified
Bessel function of the second kind, and v represents a smoothness parameter.
We consider the Matérn kernel here because it is widely used in the computer
experiment and spatial statistics literature (Santner et al.,|2003; Stein, [1999). The
corollaries can also be extended to a general positive kernel that has k& continuous
derivatives, such as Wendland’s compactly supported kernel (Wendland, 2004 );
see Wendland (2004) and Haaland and Qian (2011). Without loss of generality, we
assume that © is an identity matrix and o® = 1 for the theoretical developments
in this section. These parameters, including ©, o2, and v, are discussed in greater

detail in Section 4l

Corollary 1. Suppose g;, for j = 1,...,n, are the first n eigenfunctions of U,

that is, g; = ¢;. For g € V. C Ly(2), there exists a constant Cy > 0 such that

2v

E(1(0) ~ 1(9)) < Cillalym™ ¥ (3.38)
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Furthermore, if g € N. v (Q2), then there exists a constant Cy > 0 such that

4v

E(1(0) ~ 1(0)) < CallalByom™ ¥ (3.9)

Corollary [T represents the convergence rate analogue to that of conventional
GPs (Tuo and Wang, 2020), and shows that if we design the input functions to
be eigenfunctions of W, the convergence rate of the MSPE is polynomial. If the
functional space is further assumed to be the RKHS associated with the kernel ¥
(i.e., g € Ny(Q)), which is smaller than Ly((2), the convergence rate becomes
faster, as shown by (3.9). This result indicates a significant difference between
the proposed GP defined on a functional space and the conventional one defined
on a Euclidean space. That is, the convergence results of and depend
on the norm of the functional space in which the input g lies, which is different to
that of conventional GPs, which involves only the Euclidean norm.

Instead of selecting the input functions to be eigenfunctions, an alternative is
to design the input functions using a set of knots in 2, that is, X,, = {x1,...,X,},
where x; € (2, for j = 1,...,n, and the convergence rate is derived in the

following corollary. We first denote hix,, o as the fill distance of X,,, that is,

h = i — Xillo.
X0 iggxgggrgnllx X;l2
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Furthermore, denote ¢x,, = minj<;x<n || X; — Xx||/2, and a design X, satisfying

hx, a/qx, < C', for some constant C’, is called a quasi-uniform design.

Corollary 2. (1) Suppose g;(x) = V(x,x;), where x,x; € Q, for j =

1,...,n. For g € Ny(Q), there exists a constant C3 > 0 such that
£ 2 2 2v
E(1(9) = f(9) < Collglnmh¥, o

(2) For a quasi-uniform design X,,, there exists a positive constant C' such that
hx, o < Cn~Y? (Wendland, 2004; Miiller, |2009). Therefore, there exists

a constant Cy > 0 such that

~ 2 2
E(f(9) = 1(9) < Cillglld@n™*. (3.10)

Compared with the results in Corollary |1} the convergence rate of the quasi-
uniform designs in (3.10) is slower than the choice of eigenfunctions in (3.9).
Nevertheless, despite the slower rate of convergence, designing functional inputs
as U(x;, -) with space-filling x; can be relatively easier in practice than finding
eigenfunctions of W. However, if the eigenfunctions of U are available, then
we recommend the design based on Corollary (1| (i.e., the first n eigenfunctions),

because the convergence rate is faster. Some kernel functions have closed-
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form expressions, such as Gaussian kernels (Zhu et al., 1997). More generally,
the eigenfunctions can be approximated numerically using Nystrom’s method
(Williams and Seeger, [2000).

The proposed linear kernel can be naturally modified to accommodate the
potential nonlinearity in f by enlarging the feature space using a prespecified
nonlinear transformation M on g, thatis, M : V — Vj, where V] is a function

class. The resulting kernel function can be written as

K(g1,92) = / / Mo g1 (x)M o go(x) ¥ (x,x")dxdx’,
aJa

and the corresponding GP can be constructed as

o0

F9) = VAi{bj, Mo g1, Z;. 3.11)
j=1

The MSPE convergence results can be extended to (3.11). There are many
possible ways to define M so that the feature space can be enlarged; however,
this flexibility comes with a higher estimation complexity. In the next section, we
propose an alternative to address the nonlinearity using a kernel function, which

is computationally more efficient.
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3.2 Nonlinear kernel for functional inputs

In this section, we introduce a new type of kernel function for functional inputs
that takes the nonlinearity into account by using a radial basis function. Let
(r) : R™ — R be a radial basis function, the corresponding kernel of which in
R? is strictly positive definite for any d > 1. Note that the radial basis function of
(3.7), which has a Matérn kernel, satisfies this condition. Define K : V xV — R

as

K(g1,92) = v(7ll91 — g2l 2.@)) (3.12)

where ||-|| 1, () is the Lo-norm of a function, defined by ||g]|z,) = ({g. g>L2(Q))1/2,

and v > 01s a parameter that controls the decay of the kernel function with respect
to the Lo-norm.

Although other distance metrics can be used to define the distance between
two functions, such as the Fréchet distance or L.,-norm, the resulting kernel
functions are not necessarily semi-positive definite, which is a required property
when defining a kernel function. For example, consider an L.,-norm distance for
the kernel function, that is, K (g1, 92) = ¥(7||g1 — 92l|z.()), for any g1, 92 €
Lo (£2), where 1 has the form of (3.7), with v = 2.5 and 0® = 1. Given the

four training functional inputs, g, (1, 72) = 22, go(21, T2) = 23, g3(x1,2) =
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1+ x1, ga(x1,22) = 1 + xo, and v = 0.5, the kernel matrix is

1 0.8286 0.7536 0.5240
0.8286 1 0.5240 0.7536

0.7536 0.5240 1 0.8286

0.5240 0.7536 0.8286 1

Then, for a vector a = (1, —1, —1, 1), it follows that a’ K,,a = —0.2331 < 0,
which implies that the kernel function is not semi-positive. Conditions on the
metric || - || that make the resulting kernel function positive definite are left to
future work. In the following proposition, we show that the kernel function with

| - || (), defined as in (3.12), is positive definite.
Proposition 3. The function K defined in is positive definite on V- x V.

Assume that there exists a probability measure P on V such that [, g(t)*dP(g) <
00, for t € ) (Ritter,[2007)). Based on the positive-definite function K in (3.12)),

we can construct a GP using the Karhunen—Loeve expansion, as follows:

F9) =DV Nieil9)Z;, (3.13)

where ; is the orthonormal basis obtained using a generalized version of Mer-

cer’s theorem, K (g1, ¢92) = Zj; A;0;(g1)9;(g2) (Steinwart and Scovel, [2012),
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with respect to the probability measure P.

The nonlinear kernel in (3.12)) can be viewed as a basis expansion of the
functional input based on the fact that ||g; — 92H%2(Q) = Z;i1<¢j> 91— g2>%2(9)’
where {¢;}52, are orthonormal basis functions in L,(€2). By a finite truncation
of the basis expansion, the input g can be approximated by {¢, j]\il in RM, for
a positive integer M, and, therefore, f(g) can be approximated by a GP with
the correlation function (7| - ||2), where || - ||» is the Euclidean norm on R,
However, as in Section [3.1, the finite truncation introduces additional bias and
requires an explicit specification of the orthonormal functions {¢; }]]Vil and M
in advance. Instead, the proposed method directly evaluates the correlation on a
functional space using the nonlinear kernel without an approximation, requiring
only that we select a proper kernel function.

Note that the Ly-norm in (3.12)) can be replaced by any Hilbert space norm,
such as the RKHS norm. Therefore, the nonlinear kernel is flexible, and
can be generalized to any target space of interest, in practice. Nevertheless, the
Ly-norm can be approximated using numerical integration methods, such as
Monte Carlo integration (Caflisch, 1998), which is computationally more efficient
than, for example, the RKHS norm, which requires inverting an N x N matrix,
where N is the number of grid points.

Based on the proposed nonlinear kernel, the next theorem gives the conver-
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gence rate of the MSPE.

Theorem 2. Suppose that ® is a Matérn kernel function with smoothness v,
and ) is the radial basis function of (3.7), the corresponding kernel of which is
Matérn with smoothness v. Let T = min(v, 1). For any n > Ny, with a constant
N, there exist n input functions such that for any g € No(Q) with ||g||xp@) < 1,

the MSPE is bounded by

_ (n+d/2)7

E(1(0) - /(9)) < Cullogm)™ ¥ loglogn. (3.14)

Based on (3.14)), it appears that the convergence rate is slower than that of the
conventional GP, where the inputs are defined in the Euclidean space. Although
this rate can be improved, a slower rate of convergence for functional inputs is not
surprising, because the input space is much larger than the Euclidean space. Note
that because the RKHS generated by a Matérn kernel function with smoothness
v is equivalent to the (fractional) Sobolev space H vi+d/ 2(Q) (Wendland, 2004),
the assumption of g € Ng(Q) in Theoremis equivalent to g € H"'F4/2(Q).

If @ is a squared exponential kernel, then the corresponding RKHS is within
the RKHS generated by a Matérn kernel function with any smoothness v,. Thus,
one can choose a large v» > 14, and apply Theorem [2 to obtain the same

convergence rate as in (3.14) by replacing 1, with 5. Therefore, we conclude
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that the convergence rate of the RKHS generated by a squared exponential kernel
is faster than that of the RKHS generated by a Matérn kernel function with a fixed

V.

3.3 Selection of kernels

We have shown that the linear kernel of results in a less flexible model,
leading to a lower prediction variance, but higher bias, whereas the nonlinear
kernel of results in a more flexible model, leading to a higher variance
and lower bias (Hastie et al., 2009). To find an optimal kernel function that
balances the bias—variance trade-off, we use cross-validation to select the kernel
by minimizing the estimated prediction error.

Although cross-validation methods are typically expensive to implement, the
leave-one-out cross-validation (LOOCV) of GP models can be expressed in a
closed form, which makes the computation less demanding (Zhang and Wang,
2010; Rasmussen and Williams, 2006; Currin et al., [1988). Specifically, denote
y; as the prediction mean based on all data except the ith observation, and y; as
the real output of the ith observation. For a kernel candidate K, which can be

either the linear kernel (3.1]) or the nonlinear kernel (3.12), the LOOCYV error is

1 < _ Loy e
=3 = ) = AR 5 — )l (3.15)
=1
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-1

where A, is a diagonal matrix with the element (A,,);; = (K

)j.;- Thus, we can
select the optimal of the linear and nonlinear kernels by minimizing the LOOCV

€ITofr.

3.4 Generalization to multiple functional-input variables

The linear and nonlinear kernel functions developed in Sections [3.1 and [3.2,
respectively, can be extended naturally to multiple functional-input variables. For
example, we have two functional-input variables, g € V and h € V, and we
collect n inputs, {(g1,h1), .-, (gn, hn)}. In such cases, the linear kernel

can be rewritten as

K (g1 ), (g2 ha)) = / / (61 (3)92(x) + ha () ha(x)) T (3, x')dxdlx,

and the nonlinear kernel (3.12) can be rewritten as

1/2
K((g1, ), (g2, ha)) = ¢ ((71”91 - 92||%2(Q) + Yallh1 — h2||%2(9)) / ) )

where 7,72 > 0 are the parameters.
The nonlinear kernel can also be generalized naturally to a mixture of func-
tional inputs and scalar inputs. That is, suppose that in addition to the two

functional-input variables, g, h € V, there exists a scalar input variable in the
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experiment, denoted by z € €' C R. Then, we can define a kernel function as

K((gl7 hlJ Zl)7 (92, hQ, 22)) =

1/2
6 ((nllgr = g2l3uc@) +r2llln = halifyq@) + (21 — 22)8))
where 73 > 0.

4. Numerical Study

In this section, we use numerical experiments to examine the performance of
the proposed method. In the Supplementary Material S8, we explore the sample
paths of the functional-input GP with different parameter settings.

In these numerical studies, we use the quasi-Monte Carlo integration (Mo-
rokoff and Caflisch, [1995) to numerically evaluate the integrals in the kernels.
Specifically, suppose that {2 is a unit cube. Then, the linear kernel can be

approximated by

N N
1
K (g1, 92) mzzgl x;) g2 (X)W (x4, %), 4.1)

i=1 j=1

where {x;}}¥| and {x/}]_, are low-discrepancy sequences from a unit cube, for

which the Sobol sequence (Sobol’,|1967; |Bratley and Fox| |1988) is considered
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here. The number of points in the sequence, N = 5, 000, is set. Similarly, the

Ly-norm in the nonlinear kernel (3.12) can be approximated by

| N 1/2
lg1 = g2l o) & (ﬁ 2(91()(@‘) - gQ(Xi))2> : (4.2)

1=1

We examine the prediction performance of the proposed method using three
synthetic examples, namely, a linear operator, f;(g fQ fQ g(x)dzidxs, and
two nonlinear operators, fa(g) = [, [, 9(x)*da1dzs and f3(g) = [, [, sin(g
where x = (z1,72) € Q = [0,1]? and g(x) : [0,1]> — R. We consider eight
functional inputs, shown in the first row of Table S1, for each of the synthetic
examples; their outputs are given in Table S1.

Three types of functional inputs are tested for the predictions: go(x) =
sin(az1 + aa@2), g10(x) = B + ¥ + 3, and g1 (x) = exp{—rz12,}, where
ag,as, B,k € [0,1]. Based on 100 random samples of a1, as, 3, and k from
0, 1], we evaluate the prediction performance by averaging the mean squared
errors (MSEs), where MSE = 15721 (f(g;) — f(g;))*.

For the proposed method, we use a Matérn kernel function with smoothness

parameter v = 5/2, which leads to a simplified form of (3.7):

W(r) = (1 +V5r + %ﬁ) exp (—V5r) . “.3)

dl’ld.’EQ,



25

Measurements ‘ Kernel ‘ fi(g) ‘ f2(9) ‘ f3(9)
linear 7.9 x 1077 1.813 0.454

LOOCV nonlinear 2.2 x107° 0.227 0.017
MSE linear 6.4 x 10710 1.087 0.140
nonlinear 3.1x 1077 0.012 0.016

Table 1: The leave-one-out cross-validation (LOOCV) errors and the mean squared

errors (MSEs) for three testing functions, where f1(g) = [o, [o 9, f2(9) = Jo Jo g3, and
fa(g) = fQ fQ sin(g?). The errors corresponding to the optimal kernel are boldfaced.

Other parameters, including ©, o2, and , are estimated using a maximum like-
lihood estimation. We use both the linear kernel (3.1]) and the nonlinear kernel
for the proposed functional input GP, and report their LOOCYV errors in
Table |1l Following Section 3.3, the LOOCYV is then used to identify the optimal
kernel. By minimizing the LOOCYV errors, the linear kernel is identified as the
optimal choice for the linear synthetic example, f;(g), and the nonlinear kernel is
identified as the optimal choice for the nonlinear synthetic examples, f>(g) and
f3(g). The MSEs for the three synthetic examples are summarized in Table |1} It
appears that the optimal kernels selected using the LOOCYV are consistent with
the selections based on minimizing the MSEs, showing that the LOOCV is a
reasonable indicator of the optimal kernel when the ground truth is unknown.
The computational cost is also assessed for the two kernel choices. The
numerical experiments were performed on a MacBook Pro laptop with an Apple

M1 Max Chip and 32 GB of RAM. The computation for the linear kernels in each
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of the examples takes about 9 seconds, and that for the nonlinear kernels takes
less than 1 second, indicating that the linear kernel requires a greater computation
than the nonlinear kernel does. This is not surprising, because the computation for
linear kernels involves double integrals (see (3.1))), which require N? evaluations
for the quasi-Monte Carlo integration in (4.1), whereas the nonlinear kernel (see
(3.12) and (4.2))) requires only NNV evaluations. Furthermore, the linear kernel has
d lengthscale parameters that need to be estimated, whereas the nonlinear kernel
has only one lengthscale parameter. Nonetheless, fitting the functional-input GP
model is reasonably efficient with either a linear or a nonlinear kernel, both of
which take less than 10 seconds.

As a comparison, we consider the basis-expansion approach discussed in
Section That is, consider a functional principal component analysis (FPCA)

with truncated components (Rice and Silverman, 1991; Wang et al.,|2016)):

9i(x) = u(x) + Z zijj (%),

with the leading M eigenfunctions {¢;(x)}7Z, and the corresponding coefficients
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{zi;} given by

lele=1, =
(@,1)=0,VI<j
= [ (0160 — ulx)) 05 (x) dx. (44

respectively, where n = 8 in this example. The number of components, M =
3, is chosen to explain 99.46% of the variance; see |[Wang et al. (2016) and
Mak et al. (2018). Given the training input-output pairs, {z;,y;}! ,, where
z; = (21, ..., % m), we use a conventional GP (with a Matérn kernel) to fit the
training data. The test input {z;}!1, can be obtained similarly using (4.4)), and
their outputs are predicted using the fitted GP.

In addition to the FPCA, we consider a Maclaurin series expansion of degree
3, which is a Taylor series expansion of a function evaluated at zero truncated to

degree 3 (labeled T 3). That is,

aa+bgj (0, 0) .

a,.b
x40z} 1

The series expansion approximates the functional inputs of the examples rea-
sonably well, with only a few nonzero coefficients. For example, the training

functional input g; (x) = 1 + x5 has the coefficient one for z; and x5, and zero
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for other terms.

To evaluate the prediction performance and quantify the uncertainty, in
addition to the MSEs, we consider two numerical measurements: the average
coverage rate of the 95% prediction intervals, and the average proper scores. The
coverage rate is the proportion of times that the interval contains the true value,
and the proper score is the scoring rule of |Gneiting and Raftery (2007), which is
an overall measure of the accuracy of the combined prediction mean and variance

predictions. Specifically, the proper score has the following form:

2
proper score = — (y MP) —log o,
op

where y is the true output, yp is the predictive mean, and 0% is the predictive
variance. A larger proper score indicates a better prediction. The results are sum-
marized in Table S2, which shows that the proposed method, ¥ IGP, outperforms
the two basis-expansion approaches in terms of both predictions and uncertainty
quantification. The average coverage rates of FIGP are close to the nominal
coverage 95%, and the scores of FIGP are much higher than those of the two

basis-expansion approaches.
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5. Applications to Inverse Scattering Problem

In this section, we revisit the inverse scattering problem shown in Figure[2. Let
D C R? denote an inhomogeneous isotropic scattering region of interest, and the
functional input g, the support of which is D, is related to the refractive index for
the region D of the unknown scatterer. Given a set of finite-element simulations
as the training data, the goal of inverse scattering is to recover the functional
input from a given far-field pattern. To achieve this goal, an important task is to
construct a surrogate model for the functional inputs.

In this study, 10 functional inputs, namely, 1,1 + x1,1 — x1,1 + 129, 1 —
1T, 1+ 29, 1 + 221 — 22,1 + 22, and 1 — 23, are used in the training set, and
the corresponding far-field patterns are shown in Figure 2. Note that the inputs
are given with explicit functional forms. In applications in which discrete real-
izations of the functions are available, the kernel functions can be approximated
numerically using the discrete realizations in and (4.2)). As a preprocessing
step, we reduce the dimension of the output images using a principal component
analysis (PCA). The first three principal components, denoted by u; € R!9%4,
for [ = 1,2, 3, are shown in Figure S3, and explain more than 99.99% of the
variability of the data. Therefore, given the functional input g;, forz = 1,..., 10,
the output of the far-field images can be approximated by Zf’zl fi1(g:)w;, where

f1(gi), f2(g:), f3(g:) are the first three principal component scores.
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Figure 2: Training data in the application of the inverse scattering problem.

After the dimension reduction, we assume the three-dimensional outputs
f1(9), f2(g), and f3(g) are mutually independent and follow the functional-input
GP as the surrogate model. For any untried functional input g € V, based on
the results of and (2.3)), we predict the far-field pattern using the following

normal distribution:

=1

N (Z ki(9) K, (f — iy, Z(Kl(g79> - kz(g)TKn,}kl(@)uluzT) ;

where f; = (fi(g1), .-, filgn)), ki(g) = (Ki(g, 91), - - -, Ki(9, 90)) ", (K p)ij =
K(9i,9;), and K] is the kernel function with hyperparameters estimated based
on fj.

We use both the linear kernel of and the nonlinear kernel of (3.12). The

optimal kernel is selected by comparing the LOOCYV errors when predicting the
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far-field pattern. The LOOCYV error based on the linear kernel is 3.6 X 1079,
which is smaller than that of the nonlinear kernel, 1.2 x 10~°. Therefore, we apply
the linear kernel and examine its prediction performance for the test function,
g(x) = 1 —sin(x2). Similarly to Section [, we compare two basis-expansion
approaches, FPCA and T3. The images of the true far-field patterns and their
predictions, along with their variances (in logarithm), are illustrated in Figure S4.
Compared with the ground truth, the predictions of F IGP capture the underlying
structures reasonably well, with some discrepancies appearing on the lower right
corner. On the other hand, the predictions of FPCA and T3 both appear to deviate
more from the ground truth. The MSEs and average scores are reported in Table
2, and show that the proposed method outperforms the two basis-expansion

approaches in terms of prediction accuracy and uncertainty quantification.

Measurements \ FIGP \ FPCA \ T3
MSE 1.10 x 10~¢ 1.07 x 10~% 9.06 x 107
Score 12.13 6.89 6.39

Table 2: Prediction performance of the FIGP and basis-expansion approaches in the
inverse scattering problem application (FPCA indicates an FPCA expansion approach
and T3 indicates the Taylor series expansion of degree 3), including MSEs and average
proper scores, in which the values with better performance are boldfaced.
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6. Conclusion

Although GP surrogates are widely used in analysis of complex systems as an
alternative to direct analysis using computer experiments, the results of most
existing studies do not apply to problems with functional inputs. To address
this issue, we introduce two new types of kernel functions for functional-input
GPs, namely, a linear and a nonlinear kernel. We also discuss the theoretical
properties of the proposed surrogates, such as the convergence rate of the MSPE.
The results of numerical studies and an application to surrogate modeling in an
inverse scattering problem show that the proposed method exhibits high prediction
accuracy.

There are extensive studies on experimental design for conventional GP
surrogate models, but few on optimal designs for GPs with functional inputs.
Here, we show that space-fillingness is a desirable property in terms of controlling
the convergence rate of the MSPE. An interesting topic for future research is
to explore the construction procedure for efficient space-filling designs with
functional inputs. In addition to experimental designs, another important avenue
for future work is to explore systematic approaches to efficiently identify the
functional input, given an observed far-field pattern, which is the ultimate goal
of inverse scattering problems. Based on the proposed GP surrogate, we aim to

explore a Bayesian inverse framework that integrates computer experiments and
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real observations. Lastly, even though the numerical studies in the Supplementary
Material S8 indicate that the smoothness parameter v in the linear kernel function
does not have a significant effect on the sample paths, it is worth exploring the
theoretical properties related to the choice of the parameter. This topic is left to

future work.

Supplementary Material

The online Supplementary Material includes the theoretical proofs for Proposi-
tions [I]and [3] Theorems [[]and 2} and Corollaries [[]and 2} the sample paths of the
functional-input GP, the supporting tables and figures for Sections[4 and 3, and

the data, and R code needed to reproduce the results in Sections 4| and |3
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