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Multi-fidelity (MF) methods are gaining popularity for enhancing surrogate modeling and design
optimization by incorporating data from both high- and various low-fidelity (LF) models. While
most existing MF methods assume a fixed training set, adaptive sampling methods that dynam-
ically allocate resources among models with different fidelities can achieve higher efficiency in
the exploration and exploitation of the design space. However, these methods either rely on the
hierarchical assumption of fidelity levels or fail to capture their intercorrelation which is critical
in quantifying the benefit of future samples for the adaptive sampling. To address this hurdle, we
propose an MF adaptive sampling framework hinged on a latent embedding for different fidelity
models and an associated pre-posterior analysis to explicitly utilize their correlations to quantify

the benefit of the candidate samples as the sampling criteria. In this framework, each infill
sampling iteration includes two steps: First, we identify the HF location of interest with the
greatest potential improvement of the high-fidelity (HF) model, and then search for the next
sample across all fidelity levels that maximizes the improvement per unit cost at the location
identified in the first step. This is made possible by a single Latent variable gaussian process
(LVGP) model that maps different fidelity models into an interpretable latent space to capture
their correlations without assuming any hierarchy between fidelity levels. The LVGP enables us to
assess how LF sampling candidates will affect HF response with a pre-posterior analysis and
determine the next sample with the best benefit-to-cost ratio. Furthermore, the proposed method
offers the flexibility to switch between global fitting (GF) and Bayesian optimization (BO) by
simply changing the acquisition function. Through test cases, we demonstrate that our method
outperforms state-of-the-art methods in both MF GF and BO problems in the rate of convergence
and robustness.

1. Introduction

Multi-fidelity (MF) methods have been gaining more attention in recent years, emphasizing the need for combining data from high-
fidelity (HF) and low-fidelity (LF) models [1-3]. An HF model can precisely approximate the real and detailed behavior of a system but
may be expensive for simulation or data acquisition. LF models, on the other hand, approximate a system in a simplified or less detailed
way, such as simplified analytical models [4,5], reduced order models (ROM) [6,7], finite element models with coarse meshes [8,9], or
data-driven machine learning models [1,10,11]. MF methods can also be associated with the use of different physical laws [12,13], e.g.
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linear and nonlinear constitutive assumptions [14]. In digital twin systems [15], MF methods can be applied for off-line data inte-
gration (e.g. fusing simulation and experimental data [16-18]) and online data fusion (e.g., fusing sensor data, surrogate model, HF
model, etc. [19,20]). By integrating LF approximations with the HF model as an MF model, reasonably accurate results can be obtained
with significantly reduced costs. Despite its promise, MF methods often rely on a high-quality training dataset, usually from HF data
sources, to provide enough information for the learning process. To enhance adaptivity and efficiency, it is advantageous to enable
active sampling for MF models, allowing them to actively select the most informative data points from low-cost data sources. The goal
of this study is thus to develop such an MF adaptive sampling framework that integrates/fuses data from multiple fidelities and utilizes
the learned correlations to realize cost-effective adaptive sampling, for either global fitting (GF) [21] or Bayesian optimization (BO)
[22,23].

In general, MF methods can be divided into hierarchical and non-hierarchical architecture based on how different data resources
correlate in the modeling. By hierarchical architecture, we mean the fidelity levels of the simulation models need to be ranked in
advance based on prior knowledge, and the MF surrogate models are trained sequentially by incorporating data from the lowest fi-
delity model to the highest one, as shown in Fig. 1(a). Inspired by the Kennedy and O’Hagan (KOH) framework that captures model
discrepancy with Gaussian Process (GP) models [24], a variety of GP-based MF methods have been widely developed for hierarchical
structures. Some works assume linear relationships between two consecutive fidelity models [24,25], while others assume nonlinear
relations to capture more complex correlations [26-29], and are extended to address problems where the HF and the LF models are
different in design/input space [30] or input dimensions [31]. Another branch of hierarchical MF methods utilizes deep neural net-
works (DNNs), with an emphasis on engineering problems with higher dimensions and larger datasets [32-37]. The unique advantage
of GP-based MF methods is the built-in uncertainty quantification, which allows adaptive sampling for GF [38,39], BO [2,40-43], and
robust design optimization [44,45]. In contrast, DNN-based methods typically do not have inherent uncertainty quantification, so their
integration with adaptive sampling typically uses entropy search-based methods [46-49] to quantify the benefit of infill samples and
navigate the sampling strategies [43].

In practical engineering applications, these hierarchical MF methods exhibit significant limitations [30]. On the one hand, it is
usually unclear how to rank the fidelity levels of the different models. For instance, multiple models developed for the same system
may be built on different physics or mechanisms, for which the fidelity levels of various models may seem similar or unknown [31]. On
the other hand, the hierarchical assumption not only oversimplifies and restricts the information passing among different fidelities but
also leads to undesirable uncertainty accumulation from LF models to the HF model [50,51]. These limitations may undermine the
accuracy of the HF predictions and lower the efficiency and flexibility of adaptive sampling strategies that rely on the predictive
uncertainty of the fidelity models. Therefore, there is a notable interest in developing more flexible MF techniques to integrate in-
formation from multiple models when there is no clear ranking of model fidelities.

To address the aforementioned limitations, MF methods with non-hierarchical architectures have been proposed to bypass the
hierarchical requirement of fidelity level. Instead of learning from the fidelity models sequentially, MF methods with non-hierarchical
architectures learn the correlation between fidelities simultaneously, so that HF prediction essentially conditions on all training
samples, see Fig. 1(b) and Fig. 1(c). One example is the multi-output GP using the linear model of coregionalization (LMC) where the
outputs are expressed as linear combinations of independent functions [26,52]. In applications of LMC tailored for MF, each fidelity
model is considered as one of the outputs, and the LMC is used to capture the correlation between them [43,53]. However, the
drawback of this method is that it assumes equal contributions from different models while training the GP. This can be an issue in
many MF applications, where certain sources or fidelity levels of data should be more informative than others [26].

To handle this issue, there is an emerging method that uses latent embedding to represent non-hierarchical correlation for MF
problems. Some works used an additional latent dimension to represent the closeness and the hierarchy between the LF and the HF
models, showing that all the samples collected from every fidelity model can be surrogated with a single model in which the
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(a) Hierarchical Architecture with implicit use of correlation with explicit use of correlation

Fig. 1. Different architectures of MF methods. (a) The hierarchical architecture where the HF model is recursively conditioned on the lower fidelity
model. (b) The non-hierarchical architecture with implicit use of correlation. The dash arrows indicate that the correlations are only used for HF
prediction and uncertainty quantification. The interaction between future LF infill samples and the HF response is neglected during the sampling
process. (c) The non-hierarchical architecture of with explicit use of correlation. The solid arrows represent the information of the future benefit
quantification of LF infill samples sharing between fidelity models to navigate the sampling strategy.
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information of the fidelity levels is represented on an additional latent dimension [54]. However, in these frameworks, knowledge of
the fidelity level is still required before fitting the surrogate, which makes them inapplicable when the correlations between fidelity
models need to be identified. Another approach is to use the Latent Map Gaussian Process (LMGP), a GP-based method that accom-
modates qualitative and quantitative variables [55]. It constructs the latent space that learns the correlation between various sources
directly from the data rather than predefining the fidelity ranking. Via LMGP, one can visualize the correlation between fidelity models
on the latent space, providing insight into the correlation directly from the training set. Due to the advantage of the learned correlation
without any hierarchical assumption or knowledge of the fidelity ranking, we considered it as a suitable MF representation for
developing adaptive sampling methods.

To determine which location and which fidelity source for infilling future samples, some methods implicitly utilize the correlation for
response prediction while others explicitly use the correlation to quantify the impact of the infill samples to the HF performance. By
implicit we mean that the correlation is only used to provide response and uncertainty predictions required by the acquisition function
(AF). By qualitatively assuming that the improvement of LF models can benefit the HF models without any quantitative measure, the
fidelity models are treated as separate sources and are assigned individual AFs. However, the interaction between LF samples and HF
performance is neglected, i.e., how LF infill samples will impact HF response is unknown [10,41], as illustrated in Fig. 1(b). Thus, these
methods may lower the efficiency of adaptive sampling because the objective and the corresponding AF are designed to improve the LF
models only but not explicitly consider the HF models. Moreover, it may result in the wrong convergence when the LF models are
biased, i.e. it has a different optimum from the HF model [41].

In contrast, the explicit use of correlation is to quantify the benefit of the future samples by treating the MF system as a single
surrogate model, and quantitatively capturing the influence of LF samples on HF response, as illustrated in Fig. 1(c). By benefit, we
mean how much improvement a certain sample can provide for the performance of the HF prediction. This improvement could
manifest as the reduction of uncertainty in GF or the reduction in objective values (or acquisition) in BO. The effectiveness of an active
sampling strategy relies on having a proper measure of this benefit and employing suitable inference methods to accurately assess its
worth. At the core of this benefit quantification lies the challenge of quantifying how will the uncertainty/acquisition change in the
region of interest by taking a future sample in any fidelity levels. It can only be realized if the uncertainty/acquisition information can
be shared and approximated across fidelity models via the learned correlation. Therefore, by the explicit use of the correlation, the
objective of the infill sampling would focus on the improvement of the HF model, maximizing the sampling efficiency.

We further categorize the approach to future benefit quantification into point-to-model and point-to-point quantification. The former
approximates the aggregated change of uncertainty/acquisition of the whole HF surrogate model while evaluating the value of the
candidate infill sample. It can be realized via the Information Gain [46], and can be included in the infill sampling strategies [48,50,
56]. The latter, on the other hand, approximates the uncertainty/acquisition change at any arbitrary location on the HF input space
before the infill sample is queried. It can be achieved by the pre-posterior analysis [57] that approximates the posterior distribution of
the GP if a certain sample is added in the future. Note that the pre-posterior analysis can also perform point-to-model quantification by
integrating the uncertainty of the approximated posterior distribution throughout the whole HF input space. Compared to the
point-to-model quantification, the point-to-point quantification is expected to provide a better future benefit quantification, especially
in BO because it focuses on improving the potential optimum only instead of that of the whole model. Thus, to maximize the flexibility
of the proposed framework, we employ the pre-posterior analysis for future benefit quantification.

In this work, we propose a unified adaptive sampling framework, Multi-Fidelity Adaptive Sampling (MuFASa), that can perform
both GF and BO compatible with most existing single-fidelity acquisition functions and any number of LF models. This framework
comprises two pivotal elements: (a) we utilize the Latent Variable Gaussian Process (LVGP) to build a non-hierarchical MF surrogate,
which falls into the latent representation methods and can be considered a generalized model of LMGP, noted as MF-LVGP, and (b) we
apply the pre-posterior analysis on LVGP to assess the benefit of the infill samples on different fidelity models. By explicitly harnessing
correlation information encoded in the latent space for pre-posterior analysis, our proposed framework accurately quantifies the
benefit of future samples and guides the sampling process. Compared with existing methods, MuFASa exhibits the following
advantages:

e It can be trained without requiring any prior knowledge of the hierarchy among fidelity levels and can accommodate non-

hierarchical scenarios.

It inherits the advantages of fast training and uncertainty quantification of GP.

It embeds different fidelity levels into an interpretable latent space to capture their correlation and relationships.

e It can fully exploit the information from all the data in different fidelity levels, even from biased LF models, which is more data-
efficient than existing methods that require relatively good LF models or discarding data.

o It exhibits greater efficiency, robustness, and sampling optimality for both GF and BO.

The rest of the paper is structured as follows. We introduce the mathematical formulation of MF-LVGP and the pre-posterior
analysis in Section 2. The implementation details of MuFASa are revealed in Section 3. In Section 4. we use case studies to validate
the method and compare it with the state-of-the-art to demonstrate its advantages. Finally, we conclude the paper in Section 5

2. Multi-Fidelity Latent Variable Gaussian Process (MF-LVGP)

In this section, we introduce LVGP and its application to MF data fusion, noted as MF-LVGP. We further interpret and provide
insights on the latent representation of different fidelity levels learned by MF-LVGP. Based on the insights, we elaborate on the pre-
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posterior analysis of LVGP.

2.1. Latent Variable Gaussian Process: fitting and predicting

Consider a modeling space with w = [xT,¢7]7 where x = [x;,X2, oy Xgq " € RY are the quantitative design variables and ¢ =
t1,t2,..., tm]T are qualitative variables. Each qualitative design variable t; has [; design options (levels), i.e., t; € {1,2,...,];} forj =1,2,
...m. For real physical models, there are quantitative variables v(tj) = [V1(t;),v2(tj)..., va(tj)]e R" underlying each qualitative variable
that explains their influence on the response of interest, though these quantitative variables are usually unknown, not observable, or
extremely high-dimensional. The key idea of LVGP is to learn a low-dimensional latent space to approximate the space of underlying
quantitative variables v(t;) via statistical inference. Although the dimensions of the latent variable vector z ¢ R¥ can be freely chosen, a
two-dimensional (2D) latent vector, k = 2, is usually sufficient in most engineering designs [58,59], which is also adopted in this
study. Thus, each level of a qualitative variable ¢; is represented by a 2D latent vector z(t;) = [2j1(tj),2j2 (tj)]T. The transformed design
space becomes & = [x7,z(t)T] € R@™2) where z(¢) = [z1.1(t1), Z1.2(t1), 221 (£2), Z2.2(t2), - ., Zm1 (Em) s Zm2 (tm)] -

Now, consider a single response GP model with a prior constant mean y to describe the mean response at any given point in the
design space h. A zero-mean Gaussian Process is used to capture the variance of the response, described by a covariance function K(,
h/). The covariance function K(h, h/) =02 -r(h, h') describes the relationship or the correlation of responses at any pairs of input points h

and h, where 62 represents the prior variance of the GP model and r(h, h/) is the correlation function. LVGP extends the commonly used
Gaussian correlation function to include latent variables,

. d N & . Co2
r(h,h) = eXP(Z‘ﬁi(xi -x) = Z llz7. _Zj,lHé g2 =z, )7 (€Y
i=1 j=1

where ¢, is a scaling parameter that will be estimated for each quantitative variable x;. The mapping from qualitative variables to 2D
latent variables is scaled so that the scaling parameters of latent variables z(¢) is a unity vector, which is set to be 1 as they will be
estimated as hyperparameters. The rationale behind this correlation function is that points closed in the design space & should also
exhibit similar output patterns. For a given design space with n number of points, the parameters, u, o, and ¢, along with the 2D
mapped latent variables, z(t), are estimated through Maximum Likelihood Estimation (MLE), i.e., finding parameters to maximize the
log-likelihood function,

l,0,02) = 3 n(220%) = JIR@ )|~ 55 O~ D) Re,)™ =), @

where R is the n x n correlation matrix with R; = r(hi,W) forij =1,2,3,...,n, 1 is a vector of ones with dimensions of n x 1, and y
= [y1,¥2, -, ¥a]" is the observed response vector. The MLE of the hyperparameters x and 62 can be obtained analytically as:

i=(1"R"1)"1I'R Yy 3)

o 1 ~ - ~

¢ =-(y— i) 'R(y—71). ©)
By substituting 7 and 6° into Eq. (2) and neglecting constants, the log-likelihood function becomes:

l(¢,z) ~ —nIn(c°) — In[R(z, ¢)], )

that depends on the scaling factor ¢ and the latent variable z. Once ¢ and z are obtained by the MLE, the predictive mean of the LVGP at
the arbitrary new point x* and the variance of the error of this prediction is:

FO) =R +rx)R (y - A1) ©
F) =3 (rx") —r(x)R'r(x")). @)
Where r(x") = [r(x",xV), -, r(x",x™)] is a vector of pairwise correlation between x" and every training sample x', i = 1,..., n.

2.2. Formulation of MF-LVGP

MF-LVGP can be realized by embedding the fidelity levels as an additional qualitative variable for each input sample. As a result,
the MF-LVGP learns the correlations between fidelity models, encodes them into a latent space, and builds a single smooth response
surface that includes samples from all the fidelities.

For MF modeling, besides the qualitative and quantitative variables introduced in the previous section, we use an extra variable s to
represent the fidelity level, i.e., w = [xT,£7,s]". The key idea of MF-LVGP is to consider s as a special qualitative variable and use the
same inference technique to learn the latent representation of the fidelity level. Note that this MF formulation is first proposed by
Eweis-Labolle et al. in [55] by using the LMGP, while in this work, we are using the LVGP, a more generalized representation of LMGP,
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to demonstrate the framework. However, by definition, we can still treat s as a qualitative variable for the system and estimate its
corresponding latent variable by replacing ¢ by 7= [f",s]” in the previous section. To compare our methods with the existing
multi-fidelity methods that mostly can only handle quantitative parameters, in this work we only demonstrate examples where all the
design/input parameters are quantitative. Therefore, for the rest of the paper, we focus on the scenarios with only quantitative var-
iables and simplify the notation, i.e., w = [xT,s]”. However, we still note that our proposed method can be easily generalized to
accommodate mixed variable problems by substituting x in the following equation as w = [x”,#7]". Note that while assigning the fi-
delity level as a qualitative variable to the input samples, the modeler only needs to specify the highest fidelity model and the hierarchy
of the LF model is not required. This is because the MF-LVGP will learn the correlation with the latent variables when fitting the
surrogate model, and the fidelity level of LF models with respect to HF can be quantified and captured in the latent space.

In a MF system (number of fidelity models greater than three), we use a two-dimensional latent space to visualize the correlation
between fidelity models. If two fidelity models are highly correlated, the distance between two fidelity models on the latent dimensions
will be relatively small, and vice versa. An illustrative example of MF-LVGP is demonstrated in Fig. 2. In this example, there are four
one-dimensional LF models and one HF model, as visualized in Fig. 2(a). When the MF-LVGP is trained, it learns the correlations
between fidelity models on the additional latent space, as shown in Fig. 2(f). Note that in this illustration we use a one-dimensional
latent space for ease of visualizing the concept, while in practice we still suggest that users should use a two-dimensional latent spAace
that fully captures the correlation between qualitative variables. Fig. 2(b) shows how the relative correlation between fidelity models is
quantified along the latent dimension. Models with highly correlated responses (e.g., HF and LF4, LF2 and LF3) are close to each other
in the latent space, while weakly correlated models (e.g., HF and LF1, LF1 and LF3) are away from each other. While we do not assume
any hierarchy among the LF models, the latent space can automatically infer and capture the possible hierarchy. For example, LF4
should be considered as an LF model with higher fidelity than LF1, since it is closer to and thus more correlated with HF. Finally, in
Fig. 2(c), we show that the MF-LVGP is treating the MF responses in a single, continuous surface based on the learned latent infor-
mation. Fig. 2(d) and Fig. 2(e) will be introduced in the next section. This unique characteristic allows the MF-LVGP to identify the
underlying fidelity level directly from the latent variables, and to address non-hierarchical MF problems if the latent space has more
than one dimension. Built on the learned correlation, the novelty of this work lies in performing a new adaptive sampling strategy by
explicitly utilizing the correlation represented by the latent embedding with the pre-posterior analysis illustrated in the following
Section 2.3.

2.3. Pre-posterior analysis

In this work, we implement the pre-posterior analysis of the LVGP model (also known as Kriging believers [57]) that uses a
zeroth-order interpolation as the key component to bridging the LF and HF models in adaptive sampling. The zeroth-order interpo-
lation assumes that the function value at the candidate point is known exactly and uses the posterior mean of the model as a surrogate
for the function. This is a simple and fast way to estimate the utility of the point [60]. Specifically, for an arbitrary candidate sampling
point, noted as Xpex:, We assume the predictive mean of its response ¥ (xnex:) is an accurate approximation of its response and neglect the
predictive uncertainty. We also assume the latent variables in Eq. (1) remain constant while updating the pre-posterior model since
they are estimated by the MLE and there is no closed-form representation to approximate the pre-posterior update.

The pre-posterior correlation matrix Ry, is given in Eq. (8) where R is the n x n correlation matrix and r(-,-) is the correlation
function in Eq. (1). x and y are the initial training input and output vectors, respectively.

B R 7%, Xoewr) "
Rnew next) — ynext . 8
(x ') r(x-, xnexl) r(xnexh xnexl) ( )

By assuming the y,,, = Lvy(xm)f, the parameters in the LVGP can be updated as follows in Eq. (9) and (10).

~ 35 - -1 35 PN

Fnew (est) = (17 (Ruew () ™' 1) 1 (R (Vexr)) ™' Frew ©)
~ 1. - = N ~

Giew (-xm’,\‘t) = ;(ynew - ”new (xncxt) 1 ) T ( Rnew (xm*xt)) : (Ynew - ,uncw (xm'xl) 1) . (1 0)

Thus, the pre-posterior predictive variance for an arbitrary location X can be obtained as:
22 ~2 ~ ~ 5 . T
s (xsxncxf) = D-,mw (xuexr) (r(x, xuexr) 7r(x7xnal)Rnew (xncxt) r(x)xnpx!) ) (11)

~2
We can also observe that once x” is selected, S (X|Xnex:) becomes the function of X, i.e. we can represent how different Xpey:
influences the prediction uncertainty of x. In this work, we utilize them to perform a point-to-point quantification on how the infill
sample of LF models will reduce the uncertainty/acquisition of the HF model. The details of this method are elaborated in the next
section.

3. Multi-Fidelity Adaptive Sampling framework (MuFASa)

In this section, we introduce a unified MF cost and benefit-aware adaptive sampling framework for both GF and BO. It takes
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advantage of the LVGP embedding to capture the correlation between fidelities and further uses the pre-posterior analysis to determine
“which fidelity” and “which location” to sample the next data point.

3.1. Unified framework for global fitting and Bayesian optimization

The proposed framework follows the flowchart depicted in Fig. 3. The method initiates with the design of experiment using low
discrepancy sampling methods, such as the Sobol sequence [61] or Optimal Latin Hypercube Sampling [62]. After the initial sampling,
the MF-LVGP is then trained by using the training dataset where the fidelity levels are assigned as the qualitative variable.

Next, our approach employs a two-stage optimization process to identify the optimal future sample (s). In the first-stage optimi-
zation, we identify the location of interest by using the HF surrogate model that yields the highest acquisition value. In the second-stage
optimization, we explore all fidelity models to optimize the benefit-to-cost ratio that can be achieved by the future sample(s) to
improve the location of interest obtained from the previous step. Once the locations of the future sample(s) are determined, we run the
corresponding simulations or experiments based on the suggested sample location(s) with the corresponding fidelity model to add the
next (or batch of) infill sample(s) into the training set. The MF-LVGP model is then refitted using the augmented training dataset until
the terminating conditions are met, such as reaching the specified number of iterations or exhausting the computation budget.

The pseudo-code of the adaptive sampling with MF-LVGP is elaborated in Algorithm 1.

Start
Step 1 | Step 2 | Step 3 |
. Determine the location of
Collect MF training data Fit MF-LVGP interest using HF model
| . with maximum acquisition
e} [ level”
[xl’sl]’ [yl] fHF(x)
[x%s%], [yl ~
(x%s™, "
j AF (%)
Training Training
input output Xyr X

3

/
Step 5 ]

Simulate infill sample Find next sampling location among
and update training set all fidelity model
Which location(x;,¢): LF infill sampling candidates
Initial training set i !
[XI'S,l]' [y'] N fup @) ] o fin® M
57 [y N 1
xS, x __,,--’ x
T .. =" Which model(Snext):
s, D b F.n(y] Compare benefit-to-
+ \/\ cost ratio among
[xnexusnext]l [ynext] CandldateS|
Infill sample Xy X

End

] y

Step 4

Fig. 3. Flowchart of the MuFASa.
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Algorithm 1
MuFASa.

Algorithm 1: MuFASa

Given: Initial training set {Wirqin = [Xtrains Strainl Verain}» HF model/source and LF model/sources

fi(x),i = HF,LF1,...LF,, and the corresponding sampling cost cost(i),i = HF,LF1,..LE,

Goal: Find the optimal solution of the HF model (BO); Improve the HF prediction (GF).

Define: AF, stopping criteria

Step 0: Train MF-LVGP with {W¢,qin, YVeraint

While stopping criteria is not True do

1. First-stage optimization: Identify the location of interest xjr using HF model (Equation (12)):

xpr = argmax AF (xyp)

2. Second-stage optimization: Select an infill sample w;,,,; Which includes the information of
“which location” (x,.,¢) and “which fidelity source” (s,q,¢) With the best benefit-to-cost ratio
(Equation (19)):

AAF (xfip, Wnext)

0 (Wnext)

Simulate f;(x) at Wyeye toobtain Y, ..., where i indicates the selected source Spey¢.

Whyext = arg max

4. Update training set {Weyain) Verain} < Werains Yerain} YU {Wnext» Ynext }
Re-train MF-LVGP with {W¢,qin) Virain}

End
Output: Updated training set, the optimal solution of HF model (BO), or improved HF surrogate model (GF).

3.2. First-Stage optimization: determine the location of interest on HF model

As shown in Fig. 2(d), the objective of the first-stage optimization is to identify the location of interest xj;; using HF surrogate
model:

x;F = argmaxAF (xyr ), 12)

where the acquisition function AF(x) is a general representation that can be tailored according to the specific objective. For instance,
for GF problems, the feasible AFs [22] include Maximum Mean Square Error (MMSE), Expected Improvement for GF (EIGF), Maximum
Expected Predicted Error (MEPE), etc., and for BO, popular AFs [21] include Expected Improvement (EI), Probability of Improvement
(PI), and so on.

3.2.1. Acquisition function for global fitting
For GF problems in this work, we choose the MMSE as the default AF, as it indicates where on the HF model has the greatest
uncertainty and requires the infill samples to provide information with top priority. The formulation of MMSE is shown as follows,

where $%(x) is the predictive uncertainty on xyr obtained by the MF-LVGP:
Xyp = argmaxs” (xgr ). 13)

When implementing the MMSE as the acquisition function, we may encounter two issues: First, during the iterations, we may
repeatedly select the same xj;; when its uncertainty remains the greatest. In such cases, repeatedly exploiting at that x};; may not be the
most efficient strategy. In fact, by fixing on the same xj;;, we will lose the chance to explore other locations of the HF model with high
prediction uncertainty, and to allocate LF samples across the entire design space that help the MF-LVGP improve the learned corre-
lation between the fidelity models. Second, the x;,, might locates near the boundary of the design space, which is less preferred in most
engineering applications.

To address these issues, we employ a weighted random sampling method when identifying x};;, named as “shuffle” in this study.

Specifically, instead of greedily selecting xj;; by maximizing $%in Eq. (13), we extract the modes of the MSE across the entire input
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space and take a weighted random sampling among the peaks 52 of different modes, with the respective peak values as the weights, to
get the final x;;;. This shuffling mechanism forces the xj;; to be selected from the modes, lower the chance of repeatedly selecting the
same location as xj;;, and allocate the LF infill samples more evenly. To lower the computational cost and numerical tractability in
high-dimensional problems, we use a multi-start gradient descent optimization to collect the unique local minimums as the modes
instead of using Markov Chain Monte Carlo (MCMC) sampling method. We will demonstrate the ablation of the shuffling mechanism in
the next section. Finally, we note that the weighted random selection of xj;; among acquisition function modes is only used when the
MMSE is chosen, as other functions like MEPE and EIGF already incorporate the balancing between exploration/exploitation.

3.2.2. Acquisition function for Bayesian optimization

For the BO problems in this work, we select the EI as our acquisition function. Like the MMSE we designed, the EI balances the
exploration and exploitation while searching on the HF model, providing the location that has the highest potential to identify the
optimum. EI of the HF model is formulated as [21]:

i) = Glan) = 0 (LY 4 5y (ML), a4

TY\(XHF) E(XHF)

where y" is the current best solution within the training set yqin, ® is the cumulative distribution function (CDF) of the quantity z =

Y (f(”*')’)y " and @ is the probability density function (PDF), and y and § are the predicted mean response and predicted uncertainty from
S(XHF

the LVGP, respectively. The xp;; can be obtained via:

x;F = argmaxEl (xyr). 5)

While applying EI, one may encounter the similar issue as in the global fitting (GF) problem that the xyr remains the same during
iterations. In this situation, we do not activate the shuffle mechanism because 1) the shuffle is to force exploration while the EI itself has
the built-in exploration term and 2) in BO, if xj;; is very close to the true optimum, we prefer to keep exploiting at xj.

3.3. Second-Stage optimization: determine the most cost-efficient infill sample

The purpose of the second-stage optimization is to determine the infill sample Xy, that can improve the acquisition of xj;; to the
most with the best benefit-to-cost ratio. Here we provided two approaches to realize this.

3.3.1. Approach 1: most efficient reduction in AF

We denote the acquisition of x;;; as AF(x;;;), and denote the pre-posterior acquisition, i.e. the approximate acquisition of x;; by
assuming the infill sample wy,,, is added to the training set and refit the MF-LVGP, as AF (x;,F,w,,ext). For example, in GF when the AF is
MMSE, AF (Xpps Wnext) can be represented as:

AA/F (x:-”«w Wnext) = AA?S\E (X:”,-, szxl) = 32 (x;”-') - §2 (x;;pa Wnext)7 (16)

Where ?(x;F, Wrext) is the standard deviation of the pre-posterior distribution in Eq. (11). In BO where the AF is EI, AF (X;,F, Whext) Will
become:

AA/F (x;”:s anxl) = AE} (-x;”:y Wnext) =EI (x:[p) - Ej(x;[.*y WN(‘XI)v (17)
B ) = (31050) )0 (2220 4 G, (20220, as)
s (xHF7 Wnext) B (x HF>» Wne);r)

Once the improvement of AF is determined, the second-stage optimization can be formulated as:

AAF (X}ys Waext)

19
CDS[(Wnext) ( )

Wiew = argmax

where Wy, is determined by searching through all the fidelity models, as shown in Fig. 2(e). This formulation straightforwardly shows
that the wpe, will provide the most improvement per unit cost.

However, in BO when the AF is EI, the Eq. (18) becomes very complicated, leads to the vanishing gradient of the objective function,
and as a result EI loses the accuracy because the pre-posterior analysis only provides the approximation of the posterior MSE.
Moreover, the complex objective function will dramatically decrease the applicability of optimizers in higher dimensional problems.
Thus, an alternative method is proposed.
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3.3.2. Approach 2: most efficient reduction in s(x)
Since the pre-posterior analysis only approximates the uncertainty of the pre-posterior model, in this approach, we directly replace

the AAF with AMSE in Eq. (19) as the unified objective function for this stage as:

Am (XZ,F, Wnext)

20
€St (Wnext) (20)

Wiew = argmax

The mathematical meaning behind this approach is to say that once the xj; is selected by arbitrary AFs, the LF infill samples are
providing information to lower the uncertainty at x},, before its HF infill sample is taken. This not only allows the optimizer to function
well but can also prevent the BO from exploiting on the wrong optimum as the uncertainty around x;; is decreased.

Once Wpey is identified, we realize wy,,; on the corresponding models, and include the Wy, and its output ypey into the training set.
We then refit the MF-LVGP and iterate through the same process until the stopping criteria is met. Note that the Wy, is not limited to
represent one infill location, but it can also represent a batch of infill samples. It can be realized by 1) selecting several local optimums
while optimizing Eq. (19) or Eq. (20) or 2) iteratively updating the posterior MF-LVGP and with predicted response of Ynexr and Wpey:
(see [60] for details about batch sampling with pre-posterior analysis). In this work, we only demonstrate one infill sample in each
iteration.

3.4. Theoretical analysis of MuFASa

Before diving into case studies, we provide a theoretical comparison between MuFASa and existing methods to unveil the effect of
the key contribution of the proposed framwork, i.e., the pre-posterior analysis. The reason for including the pre-posterior analysis in
the AF is to quantify how each LF sample candidate potentially benefits the HF surrogate. Specifically, most existing methods, such as
MFCA[41], estimate the model uncertainty at a query point with Eq. (7), which is only a function of the query input itself only, because
each term in Eq. (7) only involves the correlation between the query point and the existing dataset. As a result, when integrating it into
an acquisition function, the acquisition function can only quantify how much a future sample can improve its own performance, but
not the gain in other points or sources. In the context of the multi-fidelity problem, it indicates that the benefit/interplay between the
candidate LF sample and the HF surrogate can not be captured in the acquisition function, which may mislead the adaptive sampling
process. For example, if the LF sources are biased, i.e., have a different optimum from the HF sources, it may end up 1) taking samples
on the biased LF sources because of the greater acquisition value, or 2) being misled by the biased LF sources and exploiting the
incorrect region on the HF source, and converges to the incorrect optimum.

In contrast, using pre-posterior analysis in MuFASa, we essentially extend the model uncertainty estimation in Eq. (7) to include
both the query point and the future sample as the input in Eq. (11). This is made possible by augmenting an extra term related to the
future sample in both the column vector r and correlation matrix ﬁnew. As a result, when using it in the acquisition function, it can
capture the influence of a future sample on the gain at any point of interest. In the context of multi-fidelity problem, it means that we
can quantitatively estimate the benefit of the LF sources on the HF points. Considering the aforemention scenario with biased LF
sources, MuFASa will avoid selecting samples from the biased LF sources, because their contribution is penalized by their weak
correlation with HF captured in the augmented terms in Eq. (11). We will demonstrate the above theoretical analysis in the upcoming
case studies, verifying that the utilization of correlation as the key information to navigate the sampling strategy can provide better
sampling efficiency and correctness.

4. Case study
In this section, we first present two 1D examples to illustrate how our methods work for GF and BO problems, respectively. We then

apply our methods to two high-dimensional scenarios, showcasing the applicability of MuFASa in practical engineering problems.
We conduct ablation tests to demonstrate the effectiveness and contribution of each component in our framework. The details of the

Table 1
Descriptions of the test methods for GF.
Method MF Data Pre-posterior Shuffle  Description
Fusion Analysis
SFGP x X X A single fidelity GP that only emulates the HF response and infill HF sample, navigated by
single fidelity AFs (i.e., the first stage optimization)
MF-LVGP-HF 20 X X An MF-LVGP is trained with data from all the fidelity sources, but only infills HF samples,
navigated by the single fidelity AFs.
MuFASa-a (0] o X An MF-LVGP is trained with data from all the fidelity sources and infills on MF samples.
The shuffle in the first-stage optimization is deactivated.
MuFASa-$ 0] (0] (0] An MF-LVGP is trained with data from all the fidelity sources and infills on MF samples,
The shuffle in the first-stage optimization is activated.
CoKriging Benchmark Method A CoKriging is trained to emulate MF training samples, and the infill samples are

determined by the SEVR proposed by [40]. See details in Algorithm A.

Notes: 'The feature is not demonstrated within the method, and 2The feature is demonstrated within the method.
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Table 2
Descriptions of the test methods for BO.
Method MF Data Pre-posterior AFs Description
Fusion Analysis
SFGP x X 1st: EI 2nd: A single fidelity GP that only emulates the HF response and infill HF sample, navigated
— by single fidelity AFs (i.e., the first stage optimization)
MF-LVGP-HF 20 X 1st: EI 2nd: An MF-LVGP is trained with data from all the fidelity sources, but only infills HF
— samples, navigated by the single fidelity AFs.
MuFASa-A [0} o 1st: EI 2nd: An MF-LVGP is trained with data from all the fidelity sources and infills on MF samples.
AAF The AF in the second-stage optimization is the maximum decrease of the AF (Approach
1)
MuFASa-M (¢] (¢] 1st: EI 2nd: An MF-LVGP is trained with data from all the fidelity sources and infills on MF samples,
AMSE The AF in the second-stage optimization is the maximum decrease of the MSE
(Approach 2)
MFCA Benchmark Method An MF-LVGP is trained to emulate MF training samples, and the infill samples are

determined by the multi-fidelity cost-aware AF proposed by [41]. See details in
Algorithm B.

Notes: 'The feature is not demonstrated within the method, and 2The feature is demonstrated within the method.

test cases for GF and BO are elaborated in Table 1 and Table 2 respectively. Note that the implementation of Approach 1 in Section 3.3
only appears in the 1D illustrative example but not in the high-dimensional test cases due to the complexity of the objective function.
The terminating conditions for all the test cases are listed in Table 7.

4.1. Illustrative example for global fitting

We implement the MuFASa to adaptively improve the global fitting performance on the Simple-1D example modified from [55].
The Simple-1D has one HF model and three LF models, where the sampling costs on the LF models are identical (See other details in
Table 3). Fig. 4 shows the convergence history of MuFASa-f in a single replicate, where we can see that the HF prediction in the first
row gradually improves as the number of iterations increases. In this study, we employ the phrase 'rate of convergence’ to describe
qualitatively the speed at which the algorithm reaches a specific point, such as the potentially minimal RRMSE in GF or the optimal
solution (y*) in BO.

To begin with, at ny,, = 0, 2 HF samples and 15 LF samples (5 for each LF model) are generated to fit the initial surrogate. At ny,, =
3, the LF infill samples are taken on LF1 and LF2, leading to a significant increase in HF prediction. Note that the next x;; is not the
exact maximum of the predictive uncertainty since the “shuffle” is activated to avoid being trapped in the same region of interest. At
nyer = 6, the MuFASa-f keeps taking LF samples on LF1 and LF2, and one can observe that the uncertainty within the input space
continues to decrease, and the predictive accuracy is improved significantly even without any infill on the HF. This is because the infill
sample not only improves the individual LF surrogate model but also helps to better capture the correlation between fidelities in the
latent space, thus improving the model performance on other fidelities, especially HF. This idea can also be verified at n;,, = 9, where
the biased HF prediction at the region x = [-2, —1] from ny,r = 6 is ameliorated by just infilling LF samples within that region instead
of querying HF samples.

We can also see that within these iterations, no infill sample has been taken on LF3, whereas more samples have been collected on
LF2 than those on LF1. This showcases MuFASa’s capability in correctly quantifying the benefit of future infill samples. Specifically,
the latent representation and pre-posterior analysis automatically diminish the benefit when the infill candidate originates from an LF
model less correlated with HF, indicating a smaller contribution in improving the HF prediction. This can be directly observed in the
latent space of Fig. 5(b), in which LF3 and HF are less correlated than that of LF1 and LF2 because the latent distance is larger. This
hierarchy can be verified by the greater RRMSE of LF3 in Table 3.

Furthermore, we conducted 50 replicates of simulations on Simple-1D to assess the robustness of MuFASa. The resulting outcomes
are then compared with those of other testing methods, as illustrated in Fig. 5. In this case, MuFASa-a and MuFASa-# yield similar
performance in the rate of convergence and sample allocation, and both outperform other methods with more efficient convergence
and much higher accuracy. Fig. 5(a) and Fig. 5(b) shows the individual/the median and the standard deviation of convergence history
among the replicates. In Fig. 5(a), before any samples are infilled, the RRMSE of MF-LVGP is already dramatically lower than SFGP,
demonstrating the benefit of the latent representation of the MF system. In Fig. 5(a) and Fig. 5(d), CoKriging performs worse than all
other methods in the first half of the infill sampling, including SFGP, primarily due to its hierarchical structure that leads to undesirable
uncertainty accumulation along the fidelity levels while making HF prediction. Specifically, the sample size is not sufficient for
CoKriging to sequentially fit the individual GPs for each fidelity model within its hierarchical framework (In this case, four GPs are
trained in CoKriging). As the infill process is terminated and the HF information becomes abundant, the RRMSE of MF-LVGP-HF is
worse than that of SFGP while MuFASa-a and MuFASa-f still maintain their superior performance. This outcome is attributed to the
fact that when we solely infill HF samples in MF-LVGP-HF, the initial samples on LF models are inadequate for the MF-LVGP to
accurately learn correlations between fidelities. In Fig. 5(c), the latent distances not only represent the correlation between LF and HF
models, but also determine the sampling frequency on each LF source. Here, given the uniform cost across LF models, the choice of
infill sampling is solely driven by uncertainty reduction. Notably, the sampling frequency depicted in Fig. 5(e) adheres to the sequence:
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Fig. 5. Results of 50 replicates of Simple-1D with the same computational budget for GF. (a) The convergence history of RRMSE vs. infill sampling
cost (initial sample cost excluded). The thin lines represent different replicates, while the thick line is the median of the RRMSE at a given cost. (b)
The standard deviation of the RRMSE vs infill sampling cost. (c) The latent space of the fidelity level from a randomly selected replicate. (d) The
boxplot of RRMSE. (e) The infill sample allocation on fidelity sources of the MF test methods.

nprx > Nppp > Npps, which is the same as the sequence of distance to HF in the latent space.

We note that the convergence histories of individual replicates do not decrease monotonically. This behavior arises from the
variation of the estimated scaling factor through MLE, i.e., ¢ in Eq. (5). The inherent local variability within the training set signif-
icantly influences this scaling factor. Consequently, during the infill sampling stage, it is common to observe fluctuations in both SFGP
and MF methods.

Concluding this example, the benefit of the MF latent representation is proved by comparing MF-LVGP and SFGP, and the
advantage of adaptively selecting LF samples enabled by the pre-posterior analysis is highlighted while comparing MuFASa and the
MEF-LVGP-HF. We also show how our non-hierarchical framework outperforms the CoKriging with more efficient convergence.

4.2. Illustrative example for Bayesian optimization

In this section, we demonstrated the MuFASa in BO problem with the Sasena problem with three fidelities modified from [63]. This
is also a non-hierarchical scenario where the two LF models have similar correlations to the HF model. Moreover, it challenges the
robustness of the MF BO method because the optimum of the HF and LF models are different: The optimum of the LF models is located
at x = 2 while that of the HF model is at x = 8. The details of the problem setting are listed in Table 4. Fig. 6 shows the convergence
process of MuFASa-M, elaborating how our method converges to the ground-truth optimum.

To begin with, in ny, = 0, two HF samples and 10 LF samples (five for each LF model) are generated as the initial training set, and
Xy is very close to the wrong optimum, i.e., the optimum on the LF instead of the HF. From ny,r = 0 to nyr = 4, instead of exploiting
around the wrong optimum using HF samples, the MuFASa-M takes 3 LF samples to reduce the uncertainty on xj. As a result, the x
at nyr = 4 moves toward the ground-truth optimum. From ny,, = 4 to ny,, = 9, the MuFASa-M continuously takes infill samples on LF
models. Finally, at ny,, = 10 and ny,, = 11, two HF samples are infilled consecutively: The first HF sample lands around the ground-
truth optimum, and the second HF sample successfully identifies the optimum to terminate the BO. Note that when the BO is
terminated, the global model of the HF response is only accurate around the location of interest because the LF infill samples are
selected specifically to reduce the uncertainty at the location of interest instead of the whole HF surrogate model. This highlights the
role of the pre-posterior analysis in maximizing the sampling efficiency by enabling point-to-point uncertainty quantification to
provide the most critical information for the location of interest.

Similarly, we performed 50 replicates to compare the robustness and efficiency of MuFASa with other methods. From Fig. 7(a), to
Fig. 7(e), we can see that MuFASa-M outperforms all the other methods, converging to the correct optimum with the least sampling
cost and on average. Also, we can see that the MF-LVGP-HF converges faster than SFGP, showing that the HF surrogate benefits from
the latent representation of MF. The average rate of convergence of MuFASa-A is similar to that of MFCA, while it outperforms MFCA in

13



14

Niter = 0 Niter = 4 Niter = 9 Niter = 11
[ 5% CI === True == =Pred. Mean _ ® HF DoE| [ 5% CI_mmmmmTrug == =Pred.Mean @ HF DoE | [ 5% I === True = =Pred Mean @ HFDoE] | 5% Cl_mmmm= True == =Pred Moan @ HF DoE|
[ | |
HF 10 | 10 10 10
o > - > - > - > -
Prediction = = = - - = - - ‘\—/\/
| 5
5 5 5
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
‘ ° nextx*HF ) visitedx*HF‘ ‘ . nextx’HF o visitedx"HF‘
0.1 ‘ ‘ ) %10°
El(x) g :
X 005 =
o S2
® ° 0 ® @ 0
0 2 4 6 8 1

0 0 2 4 6 8 0 0 2 4 6 8 10

o lInitial @ Infiled A New o Inital @ Infiled A New o Initial @ Infiled A New

10 10 2=~ e i
. o -
Fidelity = = P
Models
0 2 4 6 8 10 10
o int. O HF + LF1 @O LF2] o int. O HF + LF1 DO LF2] o int_ O HF + LF1 O LF2] [o nt O HF + LF1_O L2
HF --0----- - O HF F--0-----—mmm o O oo HF F--0 - O e HF f==-0===mmmmmmmmem o o
Sample L o a4 e koo o
LF1 o o o o LF1 +0- o o LF1 - %o <ok > LF10--4-40—-———— ok -———-— -
Allocation LF2F--0------ o------ o o= oo -1 LF2@--o0----- Bo-----—- o ------ oo~ LF2@-o-@ -Bo----—- 4@ -@-oo-{ LF2@-o-@A-Bo-—-———- a-f3--0o-
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Fig. 6. Iterations of MuFASa-M within a single replicate in case Sasena.

0 32 Uy ‘d-'A

£44911 ($Z0OT) 1TH SurpauIBuy pup SOUDYIJ panddy ul SpoyIop Jomduio)



ST

(a) (b)

==  SFGP MuFASa-M 08l ' "]
85l == = MF-LVGP-HF ===MFCA | ' (n]
= === MUuFASa-A 06" LF2 E
* 8 F i
04+ .
Y N
7.5% 1 0.2¢ .
S~ LHF LF1
~\ = (S 0 A\ 4 -
7r ®an — -~y 4
6.7802}rererererensmsrsrenisitiiie e R RN RN, I !
' ' ' ‘ ‘ ' 0 0.5 1
0 1000 2000 3000 4000 5000 6000 7000 e
Cost 1
(c) (d) (e)
7.8 ® 7000 == w 10
[CIMuFASa-A
6000 I MuFASa-M
76 & 8[|ImmFcA
5000 ) o
7.4 - 5
Y 8 4000 o 5 6
72 E 3000 o 7; 4
7 2000 g
z 2
ol L@@ | o
0 o 0
KF o€ oP N P ® oF N ok HF LF1 LF2
e R RN\ e P RN\ ali
N\?,\NG N\OVPN\o?P‘ W o ,\Sc’ N\\&P“ N\\,?P‘ W Fidelity Model

Fig. 7. Results of 50 replicates of Sasena for BO. (a) The convergence history of HF optimal solution vs. infill sampling cost. The thin line represents the HF optimal solutions vs. cost for each iteration,
and the thick line is the mean of the optimal solution vs. cost among all the replicates. The cost of initial samples is not included. (b) The standard deviation of optimal solution vs. cost among all the
replicates. (c) The latent space of the fidelity level from a randomly selected replicate. (d) The boxplot of the infill cost. (e) The box plot of the optimal solution. (f) The infill sample allocation on
fidelity sources.

% wayD ‘d-A

£44911 ($202) 1T Sumoauidug pup sowpyday panddy w1 spoygopy Lomduio)



Y.-P. Chen et al. Computer Methods in Applied Mechanics and Engineering 421 (2024) 116773

terms of robustness, i.e., the latter has a chance to converge to the wrong optimum. This is because the AF of the MFCA on HF surrogate
is the improvement (See Algorithm B) that does not consider the uncertainty at the location of interest and allows the BO to exploit the
wrong optimum. On the other hand, our method constantly utilizes the information from the LF infill samples to reduce the uncertainty
of the selected location of interest, maximizing the probability of exploiting the correct optimum. This can also be observed from Fig. 7
(f) that the MFCA takes fewer LF samples before exploitation while the MuFASa prefers to take more LF samples and requires fewer HF
samples for exploration.

In this non-hierarchical scenario where LF1 and LF2 have similar correlations to the HF model, we can see in Fig. 7(c), that the
latent distance of LF1 and LF2 are nearly the same. Because the LF1 and LF2 are considered to have equal contributions to the HF, the
sampling frequency from the LF source shown in Fig. 7(f) is nearly identical between LF1 and LF2 for both MuFASa-A and MuFASa-M.

Concludingly, this illustrative example demonstrates how the MuFASa benefits from the pre-posterior analysis in achieving effi-
cient and robust sampling strategies to navigate the BO. We also suggest using MuFASa-M rather than MuFASa-A for future cases in
terms of the feasibility of the optimizer and the performance.

4.3. High-dimensional cases

In this section, we applied MuFASa in GF and BO on two high-dimensional cases: an 8D Borehole function and a 10D Wing Weight
model, both modified from [41], with the detailed problem settings outlined in Table 5 and Table 6. We performed 20 replicates for
both cases and compared with the test methods listed in Table 1 and Table 2. Note that in BO, we only applied MuFASa-M since
MuFASa-A is not feasible in high-dimensional problems.

4.3.1. Global fitting in high-dimensional cases

20 replicates of Borehole and Wing Weight are simulated for GF, and the results are shown in Fig. 8 and Fig. 9. From Fig. 8(a) to
Fig. 8(d), both MuFASa-a and MuFASa-f converge faster than other methods. In Fig. 8, for both scenarios, it’s evident that the RRMSE
reduces rapidly during the initial phase (cost < 2000), taking many LF samples in the early stages when the HF uncertainty is still large.
The RRMSE quickly converges to a low level and remains stable even when more HF samples are infilled in the later stage (cost >
2000). We believe this phenomenon occurs because the surrogate model exhibits a certain level of accuracy to the extent that the newly
introduced HF samples have minimal impact on the original distribution. Another explanation is rooted in the highly nonlinear nature
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Fig. 8. (a) Convergence history of 20 replicates of Borehole in GF. The thin line is the RRMSE vs. cost for each iteration, and the thick lines are the
median of the RRMSE at given cost. (b) The standard deviation of RRMSE vs. cost in Borehole (c) Convergence history of 20 replicates of Wing
Weight in GF. The thin line is the RRMSE vs. cost for each iteration, and the thick lines are the median of the RRMSE at given cost. (d) The standard
deviation of RRMSE vs. cost in Wing Weight.
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Fig. 10. Convergence history of 20 replicates of Borehole and Wing Weight in BO. The black dash line indicates the ground truth optimal value of
the HF model. The inset highlights the convergence history at the early stage of the BO. (a) Convergence history of 20 replicates of Borehole in BO.
The thin line is the y* vs. cost for each iteration, and the thick lines are the mean of the y” at given cost. (b) The standard deviation of y” vs. cost of
Borehole (c) Convergence history of 20 replicates of Wing Weight in GF. The thin line is the y” vs. cost for each iteration, and the thick lines are the
mean of y* at given cost. (d) The standard deviation of y* vs. cost in Wing Weight.
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of the response surface. As the additional HF samples primarily affect the local response, the RRMSE, which reflects the aggregate
accuracy of the global model, might not effectively capture the localized enhancement in surrogate performance. What’s more, the HF
prediction might be inherently biased since it is conditioned on biased LF sources that undermine the accuracy of the prediction.
Nevertheless, we still demonstrate the superiority of MuFASa in more efficient and accurate convergence compared to the benchmark
methods.

We observe that CoKriging fails to allocate sampling resources based on the correlation of the model but the hierarchy of the fidelity
models. Since it must follow the nested data structure (See Algorithm A), the number of infill samples on the lower fidelity model will
always be greater than the higher ones. On the other hand, in MuFASa-a and MuFASa-#, the sampling frequency on LF sources closely
relates to the learned correlation between the LF and HF models. In the Borehole problem where each LF source has an equal sampling
cost, LF3 and LF4 are the most visited sources since they have the shortest latent distances in Fig. 9(a), i.e., have a higher correlation
with the HF model. Moreover, in the Wing Weight problem where the sampling cost corresponds to the hierarchy, i.e., the sampling
cost from the higher fidelity source is more expensive, the sampling frequency on LF sources reflects the compromised result between
the correlation and the cost.

4.3.2. Bayesian optimization in high-dimensional cases

We performed 20 replicates of BO for the Borehole and Wing Weight problems, with the results shown in Fig. 10 and Fig. 11.
Overall, we can see that the MuFASa-M outperforms other competing methods in Borehole, which can find a better solution closest to
the true optimum under a limited budget and iterations with less sampling cost. It exhibits comparable performance with MFCA in the
Wing Weight scenario.

Upon closer examination of Fig. 10, we can see that instead of exploiting the HF source immediately, the mean curve of MuFASa-M
is flat at the beginning of the BO where y* remains constant. This is the stage where LF samples are infilled for MuFASa-M to identify
the x;; around the ground-truth optimum. As a result, the MuFASa-M can approach the ground-truth optimal with its first few HF infill
samples. In contrast, the MFCA failed to identify the correct optimum because its AF ignores the uncertainty of HF in Borehole.
Although MFCA can exploits the HF model slightly faster and more accurate than MuFASa in some scenarios, e.g. in Wing Weight, see
Fig. 10(b) and Fig. 11(e), it puts the BO at the risk of wrong convergence once the LF model is highly biased.

Comparing the latent space of BO (Fig. 11(a) and Fig. 11(b)) and those of GF (Fig. 9(a) and Fig. 9(b)), it is apparent that the relative
distances between the fidelity model markers are different, while the hierarchy learned by the MF-LVGP remains consistent. This
observation indicates that the latent variables exhibit variations in response to changes in the training set (the union of the initial
samples and the infill samples). Given that GF and BO employ distinct resource allocation strategies, it is plausible that the captured
correlations also differ. By investigating the resource allocation behavior from Fig. 11(c) and Fig. 11(f), we can conclude that MuFASa-
M tends to take more samples from cheaper LF sources. In contrast, more samples are taken on the more expensive but highly
correlated LF sources for the MFCA. One can even observe that no samples have been taken from LF3 for BO with the MFCA. This may
be because the rationale behind the AF of the two methods is different: The MFCA prefers to exploit the HF model and explore the
individual LF models with higher expected improvement, while the MuFASa-M is driven by uncertainty reduction on HF prediction to
guarantee successful exploitation. Thus, we can conclude that our method exhibits a comparable or better rate of convergence than the
state-of-the-art MF methods but outperforms them in terms of robustness.

5. Conclusions

The major contribution of our work is to extend pre-posterior analysis and LVGP to develop a more efficient, flexible, and robust
adaptive sampling framework for both GF and BO with non-hierarchical MF. To accommodate non-hierarchical scenarios where the
rank of fidelity levels is unknown in prior, we introduce MF-LVGP, a method that statistically infers an interpretable latent repre-
sentation to capture correlations among an arbitrary number of LF models. We further integrate pre-posterior analysis using zeroth-
order interpolation with MF-LVGP to create the Multi-Fidelity Adaptive Sampling (MuFASa) framework that enables a sampling
strategy considering both benefit and cost, explicitly leveraging the acquired correlations to quantify the future benefits of the
candidate infill samples. Without the need to construct a new AF, our framework can accommodate any existing single-fidelity AF
based on the intended use and offers the flexibility of switching the objective between GF and BO. The combination of LVGP and the
pre-posterior analysis provides a new perspective on how interpretable correlations between fidelities can navigate the adaptive
sampling strategies. Further, by comparing the convergence process on replicate tests, we demonstrate the superior convergence ef-
ficiency and robustness of MuFASa, while providing insights into the contributions of each pivotal component. Specifically, for GF, this
method outperforms the CoKriging in the rate of convergence, exhibiting better predictive accuracy with less infill sampling cost; for
BO, it outperforms the MFCA in terms of more efficient and correct convergence to the ground truth optimal. In both scenarios, we
demonstrate how our method quantifies the benefit of the candidate infill samples, allocates appropriate sampling resources to each
source, and makes decisions that factor in the sampling cost. On the application end, we expect that this method can contribute to a
wide variety of practical engineering design problems, such as metamaterial system design where several fidelity models coexist [64],
manufacturing systems where expensive experimental data are incorporated with simulation models [65], and polymer design where
the simulations are obtained via different computational methods [66].

Nevertheless, some limitations still exist for the proposed method. As a common challenge for GP-based methods, its computational
complexity hinders its scalability to big data. Also, as we only use stationary latent variables as an aggregate representation of the
correlation, i.e., assuming that the correlation between fidelity models remains the same among the whole design space, it may not be
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able to capture nonstationary correlations. We assume the latent variables remain fixed in approximating the posterior distribution,
which may lead to inaccurate pre-posterior analysis when there are many qualitative variables beyond the one that represents model
fidelity. Further, in this work, we only demonstrate the case where the HF and LF models share the same input variables and input
spaces, i.e., the upper and lower bound of the input variables are the same. This method is not applicable when the input space of LF
models is just a subregion of that of the HF model.

These limitations also lead to our future endeavors to push the limit of this method. To tackle the large sample size and high-
dimensionality issues, we can employ scalable techniques for GP such as neural processes and variational inference [67], manifold
learning techniques like Uniform Manifold Approximation and Projection (UMAP) [68] and t-distribution Stochastic Neighbor
Embedding (t-SNE) [69], and reduced order model (ROM) techniques [70] including input mapping [71] and Variational Autoen-
coders (VAE) [72], within the proposed framework. By inferring or constructing a unified representation space/latent space for all the
sources, we expect that these approaches can alleviate the computational burden associated with the large dataset. It should also allow
us to effectively reduce the dimensionality of inputs to the LVGP model, and enhance its feasibility for addressing higher-dimensional
engineering problems and scenarios where the input variables across different fidelity models are different. Further, instead of learning
a set of constant latent variables, we may construct the latent variables as a function of input variables in the future, which can capture
more complex nonstationary correlations between different models or sources of data to improve the generality of this method.
However, note that building this mapping function, e.g., by integrating with neural networks, will be at the cost of more samples and its
cost-benefit will need to be investigated and compared with the current approach with the stationary assumption. Moreover, rather
than solely opting for a single infill sample per iteration, the incorporation of more efficient strategies such as greedy sampling
techniques [43], and dynamic programming-based approaches [73] can be implemented. By doing so, we can maximize the utilization
of our budget by planning several steps ahead. These methodologies can be seamlessly integrated with the pre-posterior analysis,
allowing us to approximate the benefits of future steps.
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Appendix

A.1. Benchmark Problems

Table 3 to Table 6 are the test cases demonstrated in this paper. The RRMSE (Relative Root Mean Squared Error) in each table is a
matrix to quantify the difference between each LF source and the corresponding HF model, formulated as follows:

T
RRMSE — 0 =yu) On *J’h)7
10,000 x var(y,)

Table 3
Formulation, sampling cost, and initial sample size of Simple-1D, modified from [55].
Fidelity model Formulation Upper/lower bound RRMSE Cost Init. Sample
HF ®) = 1 —2<x<3 100 2
YHE T 013 +x2+x+1
LF1 1 0.6054 10 5
() = oe it 02
LF2 o) = 1 _o1 0.3218 10 5
IR = ey
LF3 () = 1 0.7256 10 5
Y\ =
Table 4

Formulation, sampling cost, and initial sample size of Sasena, modified from [74] and [63]. The ground truth optimal value of HF is 6.7802.

Fidelity model Formulation Upper/lower bound RRMSE Cost Init. Sample
HF yer) = — sinx— exp(35) + 10 0<x<10 — 1000 2
LF1 yur(x) = — sin(0.95x) — exp(%) +0.03(x—2)*+10.3 2.0544 1 5
LF2 Yirz(x) = — sin(0.8x) — exp (%) £0.03(x—2)%+8 1.8060 1 5
Table 5

Formulation, sampling cost, and initial sample size of Borehole [41]. The ground truth optimal value of HF is 3.98. Note that the setting in sampling
cost and initial sample size are different in GF and BO. To obtain comparable results, we use the initial samples of {50,50,50,50,20} for {HF, LF1, LF2,
LF3, LF4} for CoKriging.

Fidelity model Formulation Upper/lower bound RRMSE Cost Init. DoE
GF BO GF BO
HF B 21T, (H, — H)) 100 < T, < 1000 — 1000 1000 4 5
Yur = 990 < H, < 1110
m(L) 1+%+£ 700 < H; < 820
™ ln(a)r‘%kw Ti 100 < r < 10,000
LF1 21T, (H, — 0.8H)) 0.05<r, <015 3.6649 10 100 10 5
Y1 = 10 < T; < 500
n (L) 1LT, T, 1000 < L < 2000
w n (i)r%kw T 6000 < K,, < 12,000
LF2 y 21T, (H, — Hy) 1.3679 10 10 10 25
LF2 =
ln(r) 14 S o75Te
w. In (&) 2k, Ti
LF3 y 21T, (1.09H, — H;) 0.4135 10 100 10 5
'LF3 —
4r 3LT, T,
1 14w L u
() Tn(D)ak, T
w/ v
LF4 y 21T, (1.05H, — Hy) 0.4828 10 10 10 25
LF4 =

2 3LT, T,
In (l) Tt ot
W, In (W>rﬁ,kw L
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Table 6

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116773

Formulation, sampling cost, and initial sample size of Wing Weight model [55]. The ground truth optimal value of HF is 123.25. The settings are

identical in GF and BO.

Fidelity model Formulation Upper/lower bound RRMSE Cost Init. Sample
HF A 06 100t \ %3 150 <, < 200 — 1000 5
0.758,,,0.0035 0.006 70.04 0.49 - -
0.036s,," wp, <cosz(/\)) q>o% (cos(/\)) X (NzWgg)™ ™ + swwp 220 < wp, < 300
LF1 A 0.6 100t \ 3 6<A<10 0.1990 100 5
0.758,,,0.0035 0.006 70.04 < 0.49
0,035 W <cos2</\)> o <Cos(/\)> X (N:Wap)*® + w, Z10=Az10
LF2 06 03 <q= 1.1424 10 10
0.03650,8w2.0035 A 00061004 100t x (N;Wg)™* + w, 05<1<1
fw cos?(A) cos(A)
LF3 A \°® 100t \ %3 008 <t <018 5.7469 1 50
0.9.,,0.0035 " 0,006 ;0.04 te N, 0.49 25<N, <6 :
0.0365 W (c052 (A)) q°0%; (COS ) x (N:Wag) <N, <

1700 < W < 2500
0.025 < w, < 0.08

The terminating criterion for each case is listed in the following table:

Table 7

Terminating conditions for case study.

Case Problem Type Terminating Condition
Simple-1D GF ® Nyer > 20 or cost > 600
Sasena BO e Error between optimal and the ground truth < 2% , or
e cost > 7000
Borehole GF ® Ny > 150 or cost > 8000
BO e njer > 200 or cost > 20,000
Wing Weight GF ® Ny > 150 or cost > 20,000
BO e Njr > 200 or cost > 20,000

A.2. GF Benchmark Method: Adaptive sampling for CoKriging

In this work, we adapted the infill sampling framework for CoKriging as the benchmark method. The details of the MF data fusion of
CoKriging the adaptive sampling methods can be found in [40] and [25].
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Algorithm A
Adaptive sampling for GF with CoKriging and SERV.

Algorithm A: Adaptive sampling for GF with CoKriging and SERV

Given: Initial training set {Xtrqin, Viraint = {(Lr1 Yir1)r (CLrz, Vir2)s - (Xur, Yur)}, where it follows a
nested data structure: {(xyp, Yur)} S {(tur, Yir,)} S - € {(X1r1,Yir1)}, HF model and LF model
fi(x),i = HF,LF1, ...LF,, and the corresponding sampling cost cost(i),i = HF,LF1,..LE,

Goal: To improve the prediction accuracy of the HF surrogate model

Define: AF, stopping criteria

Step 0: Train CoKriging sequentially with {X;rqin, Veraint

While not meeting stopping criteria do

1. First-stage optimization: Identify the location of interest X qx;:

Xnext = arg max AF (xyr)

2. Second-stage optimization: Select infill sample with the maximum scaled expected variance
reduction (SERV):
Fori =LF1,LF2,...,LE,,HF do
pl—1§%l_1(xnext)+§§l(xnext)

cost(i)

predict SERV of x,.,+ as SERV; =

End

3. | « argmax(SERV;)

4. Get infill sample {Xpext) Ynexts <Query fi(x) at Xpex: to obtain Vyers
Forj= LF,_4,..,LF1 do

a. Query fj(x) at Xxpeye to obtain V) ot

b. Update infill set {xnext' ynext} < {xnext' ynext} u {xnextt y‘r{,ext}
End

Update training set {xtrain: Ytrain} < {xtrainr :Vtrain} u {xnexti ynext}
Check if the stopping criteria is met.

7. Refit CoKriging with {X¢rqin, Yerain}

,for i > 2

oW

End
Output: Updated training set, improved MF surrogate model
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A.3. BO Benchmark Method: Multi-fidelity Cost-aware Bayesian Optimization (MFCA)
We used the MFCA as our benchmark problem, which can be found in [41]. Note that we replaced the LMGP in the original

framework with LVGP since they are mathematically identical in all the test cases.

Algorithm B
MEFCA.

Algorithm B: MFCA

k

i1 black-box functions f(x;j) and their corresponding

Given: Initial multi-fidelity D¥ = {(xi, yi)}
sampling costs O(j)where j =[1,..., ds]
Goal: Optimizing high-fidelity function (source [ € [1, ..., ds])

Define: Utility functions and stop conditions

Step 0: Train an LVGP and exclude highly biased low-fidelity sources based on its fidelity manifold.

While stop conditions not met do

1. Train an LVGP using D¥
2. Define the multi-fidelity cost-aware acquisition function:

ap(x;j) = oj(x)¢(%(i(;)), the exploration part of EL
J

agr(x; 1) = w(x) — v/, the improvement.
arp(x;j
%, j €{1,..,ds}

a xX;j) =

MFCA( ]) aHF(x; l) 1

IOBE J

3. Solve the auxiliary optimization problem:
[x+1, j**1] = arg max aypca (%))
X,)

4. Query f(;j) atpoint x*¥*1 from source j**! to obtain yk*?

Update data: D¥*1 « DKy (ak*1, k1
6. Update counter: k « k + 1

9,1

End
Output: Updated data D¥, optimal solution of HF model, LVGP
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