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Convolutional neural networks for large-scale dynamical modeling of itinerant magnets
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Complex spin textures in itinerant electron magnets hold promises for next-generation memory and infor-
mation technology. The long-ranged and often frustrated electron-mediated spin interactions in these materials
give rise to intriguing localized spin structures such as skyrmions. Yet, simulations of magnetization dynamics
for such itinerant magnets are computationally difficult due to the need for repeated solutions to the electronic
structure problems. We present a convolutional neural network (CNN) model to accurately and efficiently predict
the electron-induced magnetic torques acting on local spins. Importantly, as the convolutional operations with a
fixed kernel (receptive field) size naturally take advantage of the locality principle for many-electron systems,
CNNs offer a scalable machine learning approach to spin dynamics. We apply our approach to enable large-scale
dynamical simulations of skyrmion phases in itinerant spin systems. By incorporating the CNN model into
Landau-Lifshitz-Gilbert dynamics, our simulations successfully reproduce the relaxation process of the skyrmion
phase and stabilize a skyrmion lattice in larger systems. The CNN model also allows us to compute the effective
receptive fields, thus providing a systematic and unbiased method for determining the locality of the original
electron models.
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I. INTRODUCTION

Itinerant frustrated magnets with electron-mediated spin-
spin interactions often exhibit complex noncollinear or
noncoplanar spin textures. Of particular interest are particle-
like objects such as magnetic vortices and skyrmions which
are not only of fundamental interest in magnetism but also
have important technological implications in the emerging
field of spintronics [1–7]. These nanometer-sized localized
spin textures are characterized by nontrivial topological in-
variants and are rather stable objects with long lifetimes. In
itinerant electron magnets, skyrmions can be moved, created,
and annihilated not only by magnetic fields but also by elec-
trical currents due to electron-spin interactions. The presence
of such complex textures could also give rise to intriguing
electronic and transport properties, such as the topological
Hall effects and topological Nernst effects [7–10], due to a
nontrivial Berry phase acquired by electrons when traversing
over closed loops of noncoplanar spins [11].

Dynamical modeling of complex textures in itinerant spin
systems, however, is a computationally challenging task.
While magnetic moments in most metallic skyrmion materials
can be well approximated as classical spin vectors, the local
effective magnetic fields, analogous to forces in molecular
dynamics, originate from exchange interactions with itiner-
ant electrons and must be computed quantum mechanically.
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Dynamics simulations of such itinerant magnets thus re-
quire solving an electronic structure problem associated with
the instantaneous spin configuration at every time step. Re-
peated quantum calculations would be prohibitively expensive
for large-scale simulations. Consequently, empirical classical
spin Hamiltonians, from which the local fields can be explic-
itly calculated, are often employed in large-scale dynamical
simulations of skyrmion magnets [12,13]. Yet, such classical
spin models often cannot capture the intricate long-range spin-
spin interactions mediated by electrons.

The computational complexity of the above quantum ap-
proaches to spin dynamics is similar to the so-called quantum
or ab initio molecular dynamics (MD) methods. Contrary
to classical MD methods that are based on empirical force
fields, the atomic forces in quantum MD are computed by
integrating out electrons on the fly as the atomic trajectories
are generated [14]. Various many-body methods, notably the
density functional theory, have been used for the force calcu-
lation of quantum MD. However, the computational cost of
repeated electronic structure solutions significantly restricts
the accessible scales of atomic simulations. To overcome
this computational difficulty, machine learning (ML) methods
have been exploited to develop force-field models by accu-
rately emulating the time-consuming many-body calculations,
thus enabling large-scale MD simulations with the desired
quantum accuracy.

Crucial to the remarkable scalability of ML-based force-
field models is the divide-and-conquer approach proposed in
the pioneering works of Behler and Parrinello [15] and Bartók
et al. [16]. In this approach, the total energy of the system
is partitioned into local contributions E = ∑

i εi, where εi
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is called the atomic energy and depends on only the local
environment of the ith atom [15,16]. The atomic forces are
then obtained from the derivatives of the predicted energy,
Fi = −∂E/∂ri, where ri is the atomic position vector. Cru-
cially, the complicated dependence of atomic energy εi on its
local neighborhood is approximated by the ML model, which
is trained on the condition that both the predicted individual
forces Fi as well as the total energy E agree with the quan-
tum calculations [15–26]. It is worth noting that physically
the principle of locality, or the so-called nearsightedness of
electronic matters, lies at the heart of this approach [27,28].

The tremendous success of ML methods in quantum MD
simulations has spurred similar approaches to multiscale dy-
namical modeling of other functional electronic systems in
condensed matter physics [29–35]. In particular, the Behler-
Parrinello (BP) ML scheme [15,16] was generalized to build
effective magnetic energy or torque-field models with the ac-
curacy of quantum calculations for itinerant electron magnets
[33,34,36,37]. Notably, large-scale dynamical simulations
enabled by such ML models uncovered intriguing phase sep-
aration dynamics that results from the nontrivial interplay
between electrons and local spins. While the conventional
BP scheme can only represent conservative forces, a general-
ized potential theory for the Landau-Lifshitz equation allows
one to extend the BP scheme to describe nonconserved spin
torques that are crucial to the dynamical modeling of out-of-
equilibrium itinerant spin systems [35].

In this paper we present an ML torque model for itiner-
ant magnets based on convolutional neural networks (CNNs).
CNNs are a class of neural networks that can be characterized
by its local connectivity, implemented via finite-sized convo-
lution kernels. Importantly, the convolution operation with a
finite-sized kernel naturally incorporates the locality principle
into the ML structure, thus offering an efficient implemen-
tation of the ML torque model that can be straightforwardly
scaled to larger systems. Our CNN model is designed to
directly predict the vector torque field at every site without
the need for the introduction of local energies as in the BP
scheme. Data augmentation techniques are employed to incor-
porate the spin-rotational symmetry and the lattice symmetry
into the CNN spin-torque model. We demonstrate our ap-
proach on an itinerant spin model which exhibits a skyrmion
crystal phase at an intermediate magnetic field. We show that
dynamical simulations with magnetic torques computed from
the trained CNN model faithfully reproduce the relaxation
process of the itinerant spin systems. Moreover, the CNN
model, while trained by datasets from small systems, is ca-
pable of stabilizing a skyrmion lattice on larger systems, thus
demonstrating the transferability and scalability of our ML
approach.

The rest of the paper is organized as follows. In Sec. II
we discuss the methods for simulating the spin dynamics
of itinerant electron magnets. A triangular-lattice s-d model,
a well-studied itinerant spin system, is used as a concrete
example to highlight the complexity of the dynamical simula-
tions. We also briefly review BP-type ML approaches, where
a neural network is trained to approximate a local energy
function. Section III presents the CNN structure used for the
prediction of spin torque. Details of the data augmentation
for incorporating symmetries and how the ML model can be

scaled to larger systems are also discussed. Using the s-d
model as an example, a benchmark of the CNN models and
simulation results based on the trained models are presented
in Sec. IV. We also ascertain the scalability and symmetry
of the proposed CNN method, as well as its compliance with
the locality principle. Finally, we summarize our work and
discuss future directions in Sec. V.

II. MAGNETIZATION DYNAMICS OF THE ITINERANT
MAGNETS

The magnetization dynamics in spin systems is governed
by the Landau-Lifshitz-Gilbert (LLG) equation [38]

dSi

dt
= Ti − α Si × Ti + τ i, (1)

where Ti is the magnetic torque defined as

Ti = γSi × Hi. (2)

Here γ is the gyromagnetic ratio, and Hi is an effective ex-
change field acting on spin-i, α is the damping coefficient,
and τ i(t ) = Si × ηi(t ) is a fluctuating torque generated by a
random local field ηi of zero mean. The stochastic field ηi is
assumed to be a Gaussian random variable with the variance
determined from α and temperature T through the fluctuation-
dissipation theorem. The LLG simulations are widely used
to study dynamical phenomena in a wide range of magnetic
systems, including spin waves in unusual magnetic phases and
dynamical behaviors of skyrmions and other spin textures.

For adiabatic spin dynamics, the local exchange field is
given by the derivative of the system energy E = E (Si ):

Hi = − ∂E

∂Si
. (3)

For magnetic insulators, interactions between spins are often
short-ranged. The resultant magnetic energy has the form of
bilinear interactions between a few nearest-neighbor spins
on the lattice, e.g., E = ∑

i j (Ji jSi · S j + Di j · Si × S j ), where
Ji j denotes the isotropic Heisenberg exchange interaction
and Di j represents the anisotropic exchange, also known as
the Dzyaloshinskii-Moriya interaction [12,13]. The exchange
field of such models is explicitly given byHi = −∑

j (Ji jS j +
Di j × S j ), where the summation is restricted to a few nearest
neighbors, and can be very efficiently computed for large-
scale LLG simulations.

On the other hand, the exchange fields in a metallic mag-
net come from interactions between local spins and itinerant
electrons. Here we consider spin dynamics in the adiabatic
approximation, which is analogous to the Born-Oppenheimer
approximation in quantum molecular dynamics [14]. In the
adiabatic limit, electron relaxation is assumed to be much
faster than the timescale of local magnetic moments. As a
result, the magnetic energy E in Eq. (3) can be obtained
by freezing the spin configuration and integrating out the
electrons. The resultant spin-dependent energy function, E =
E (Si ), can be viewed as a potential energy surface (PES)
in the high-dimensional spin space, similar to the PES in
Born-Oppenheimer MD simulations. In practice, the calcu-
lation of this magnetic PES requires solving the electron
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structure problem that depends on the instantaneous spin
structure {Si(t )}.

For concreteness, here we consider a generic single-band
s-d model for such itinerant magnets. The s-d model describes
the interaction between itinerant s-band electrons and mag-
netic moments Si of localized d-electrons. Its Hamiltonian
reads

H =
∑

i j

∑
α=↑,↓

ti jc
†
iαc jα − J

∑
i

∑
α,β=↑,↓

Si · c†iασαβciβ, (4)

where c†iα/ci,α are creation/annihilation operators of an elec-
tron with spin α =↑, ↓ at site i, ti j is the electron hopping
constant between a pair of sites (i, j), J denotes the strength
of local Hund’s rule coupling between electron spin and mag-
netic moment Si of localized d-electrons. For most skyrmion
magnets, these local magnetic moments can be well approxi-
mated as classical spins of fixed length |Si| = S.

For small Hund’s coupling J � ti j , the effective en-
ergy of spins can be obtained by integrating out electrons
via a second-order perturbation calculation, giving rise to
a long-ranged oscillatory interaction, similar to the so-
called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[39–41]. However, for intermediate and large Hund’s cou-
pling, the effective energy to be used for the force calculation
in Eq. (3) has to be obtained by integrating out electrons on
the fly:

E = 〈H〉 = Tr(ρH), (5)

where ρ = exp(−H/kBT ) is the density matrix of the equi-
librium electron liquid within the adiabatic approximation.
The calculation of the density matrix, in the absence of
electron-electron interaction, amounts to solving a disordered
tight-binding Hamiltonian for a given spin configuration. The
standard method for solving tight-binding models is based on
exact diagonalization, whose complexity scales cubically with
the system size. As a result, for large-scale LLG simulations
of the s-d model, repeated ED calculations of the electron
density matrix can be overwhelmingly time-consuming.

As discussed in Sec. I, the BP scheme has been generalized
to develop ML-based models for the effective spin energy
E ({Si}) of itinerant magnets [33–37]. In this approach, the
total energy is partitioned into local contributions

E =
∑

i

εi =
∑

i

ε(Ci ), (6)

where the energy εi = ε(Ci ) is associated with the ith lattice
site and is assumed to depend only on spin configuration
Ci = {S j | ‖r j − ri‖ < rc} in its neighborhood. This local en-
ergy function ε(Ci ) can be viewed as the building block of
the magnetic PES. Importantly, the complicated dependence
of the PES on the neighborhood spins is to be approximated
by fully connected neural networks [33–35]. To preserve the
SO(3) spin rotation symmetry, the inner product between spin
pairs b jk = S j · Sk and scalar product between spin triplets
χ jkl = S j · Sk × Sl within the neighborhood are used as build-
ing blocks to construct feature variables that are input to the
neural network. Finally, exchange fields Hi acting on spins
are obtained by applying automatic differentiation to the ML
energy model.

III. CNN SPIN TORQUE MODEL

The BP-type schemes described here essentially provide
an energy-based ML model for force field calculations. A
crucial step is the partitioning of the total energy into local
contributions εi, which cannot be directly computed from
electronic structure methods that are used to generate the
training dataset. As a result, the loss function L cannot be
directly determined from the predicted energies εi. Instead,
it is constructed from the, e.g., mean square error (MSE)
or “forces,” or in our case, the spin torque fields, and only
implicitly depends on the predicted energy through automatic
differentiation. However, the uncertainties due to the introduc-
tion of such intermediate local energies often complicate the
training of BP-type models. While one advantage of the BP-
type scheme is the explicit inclusion of the physical constraint
of conservative forces, such energy-based ML approaches,
however, are also restricted to the representation of only con-
servative forces. In this section we present an alternative ML
approach that directly predicts the vector forces without going
through intermediate energy.

A. Convolutional neural networks

The fact that spins in metallic magnets are defined on
well-known lattices suggests that spin configurations can be
treated as generalized “images,” which can then be processed
using powerful image-processing techniques developed in re-
cent years, such as CNNs. Below, we present a CNN model
for the direct prediction of torques Ti that drive the spin
dynamics. As illustrated in Fig. 1, the proposed network takes
the spin configuration {Si} on the lattice as input and returns
the torques {Ti} that drive the spin dynamics as output. The
model comprises multiple convolution layers fm with associ-
ated activation (nonlinearity) layers σm to model the complex
nonlinear relationship between {Si} and {Ti} as a composition
of such layers, fCNN = (σL ◦ fL ) ◦ · · · ◦ (σ1 ◦ f1), where L is
the number of layers or the depth of the CNN model.

Given an input vector field V ∈ C∞(R2,Rd ), each convo-
lution layer fm maps the vector field onto an output vector
field W ∈ C∞(R2,Rk ) by convolving a kernel tensor field
hm(X ) := h(X ; θm) with trainable parameters θm, via the con-
volution operation:

W (r) :=
∫
R2

V (q)hm(r − q) dq. (7)

Each vector element of the vector field W then undergoes the
activation function σm : R → R to produce the output vector
field A ∈ C∞(R2,Rk ), called activation maps. A variety of
activation functions can be used in CNNs. In the current work,
we use the rectified linear unit, or ReLU [42] as an activation
function,

σm(x) := max(0, x), (8)

for m = 1, . . . , L − 1. Note that the final layer fL has no acti-
vation function associated with it, or technically, σL(x) = x.

Typically in CNNs, the support of a kernel supp(hm), i.e.,
the region where hm has nonzero values (also known as the
receptive field of the kernel), is limited to a small region (e.g.,
5 × 5 lattice sites) such that the activation response W (r),
thereby A(r), at position r is limited to the patterns of V only
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FIG. 1. Schematic diagram of the CNN-based ML model for spin-torque prediction of itinerant electron magnets. The spin configuration
{Si} on a lattice is first flattened to give three arrays, corresponding to the three components of spins, which are input to a series of ResNet
blocks. Details of the ResNet are presented in Fig. 2. The output of the ResNet blocks is then processed through additional convolution layers.
The final output are three arrays which after deflattening correspond to the torques {Ti} that drive the spin dynamics.

within the close proximity of r. It is worth noting that the
physical justification of employing such finite-size kernels is
the principle of locality: viz., local physical quantities, such as
local spin torque Ti = T(ri ), are predominately determined
by the local environment of site i:

Ti = T (Ci ), (9)

where Ci is the magnetic environment in the vicinity of site i,
and the vector function T (·) is to be modeled by the CNN.
The range of the neighborhood Ci is determined by the sizes
of kernels and the number of convolution layers.

Note that Eqs. (7) and (8) imply that the output activation
A(r) at position r will be of a large, positive magnitude,
only if the input vector field V (r) is closely correlated to the
(shifted) kernel hm(q − r). Therefore, the goal of training the
CNN is to find the unknown kernel parameters θm=1,...,L that
determines the function shapes of {hm}, in order to produce
the adequate activation values such that the final output of
the model fCNN({Si}) can reasonably approximate the ground
truth spin torque {Ti} in the training data.

Meanwhile, the composition of convolution layers enables
hierarchical modeling of the spin-torque relationship. That
is, while an individual kernel limited to a small region may
represent only rather simplistic patterns (e.g., small blobs), the
composition of such kernels across layers alongside the non-
linear ReLU activation can produce fairly complex, nonlinear
patterns. Furthermore, the composition of convolution layers
(σn ◦ fn) ◦ (σm ◦ fm) in effect produces a larger receptive field
area, equal to the Minkowski sum1 of the receptive fields of
the individual layers supp(hn ⊗ hm) = supp(hn) ⊕ supp(hm).
Therefore, stacked convolution layers produce a natural hi-
erarchy, in which earlier layers represent local, primitive

1Note that the definition of receptive fields using the notion of
Minkowski sum may be applicable only to our particular setting, in
which we are considering both the input and output vector fields over
the same domain R2.

patterns in a small proximity while latter (deeper) layers rep-
resent more global, sophisticated patterns in a relatively larger
periphery.

Finally, a purely convolutional CNN, without any conven-
tional fully connected (dense) layers, can restrict the overall
receptive field size of the entire model supp(hL ⊗ · · · ⊗ h1) to
a predetermined lattice size, presenting a distinct advantage of
built-in locality. Further, with a purely convolutional design,
since the sizes of kernels in a CNN are fixed for a given
itinerant model, the successfully trained CNN model can then
be used in much larger lattice systems without the need to
rebuild or retrain a new neural network. The CNN structure
thus provides a natural approach to implementing scalable ML
models based on the locality principle.

B. Model architecture

Figure 1 shows a schematic diagram of our CNN archi-
tecture. The input to the CNN is the spin vector field {Si}
transformed from triangular lattice to square (“flattening”) as
most convolution operation expects a square input. We em-
ployed four ResNet blocks, inspired by He et al. [43], as our
backbone, which processes the input into an activation map
of 512 features. These features then undergo two additional
convolution layers, which in the end produce the torques as
the output of the network. In our model these torque vector
outputs are obtained in a normalized range of values with a
mean magnitude of 1. Such normalized outputs are then scaled
by the mean magnitude of the torque vectors in the training
data set. Finally, the predicted torques on the square grid are
“unflattened” onto the original triangular lattice.

Compared to fully connected (dense) layers, in which each
neuron aggregates values across the entire domain into a
single scalar value via the weighted sum, convolution layers
preserve the spatial structure of the input domain. Therefore,
with the proper boundary condition (e.g., “padding” in the ma-
chine learning jargon), the output lattice is guaranteed to have
the same size and resolution as the input lattice. Therefore,
a CNN comprising purely convolution layers, without any
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FIG. 2. Diagram of a ResNet block. The input to a Resnet block
goes through two different pathways: the skip connection, where no
operation is performed if input and output have the same number
of channels or a 1 × 1 convolution layer otherwise, and normal
connection, where two 5 × 5 convolution-ReLU activation blocks
are stacked on top of each other. The results of the two pathways
are then added together as the output.

fully connected layers, can be scaled to an arbitrary lattice of
practically any size, as long as the lattice element has locally
the same geometric and topological structures.

Meanwhile, the architecture of the ResNet block in the
backbone is described in Fig. 2. Similar to the original ResNet,
the input goes through two separate pathways. One pathway
(right path in Fig. 2) comprises two convolution layers with
the ReLU activation [42], stacked on top of each other, in
order to develop a feature vector characterizing patterns of
the input vector field at each local neighborhood on the pixel
grid. The other pathway (left path in Fig. 2) can be either the
skip connection, in which the input values are directly copied
without any transformation, or a 1 × 1 convolution, in which
the input feature vector at each grid location undergoes a
dimensionality reduction. The outputs from the two pathways
are then added together to produce the overall output of the
ResNet block. Note that we do not employ the batch normal-
ization technique, which is a technique used in the original
ResNet model to avoid the vanishing gradient problem. Em-
pirically, we found that batch normalization overly regularized
the network causing severe underfitting of the spin torque and
overall deteriorating the prediction performance. Moreover,
since the input spin vectors are already well normalized to
have a length of 1, it is not necessary to employ batch normal-
ization.

C. Training

Our training and testing sets consist of 60 independent spin
dynamics simulations, respectively, performed on a 48 × 48
triangular lattice. The following parameters are used for the
s-d Hamiltonian (4): The nearest-neighbor hopping was set
to t1 = 1, which also provides the reference unit for energy.

A third-neighbor hopping t3 = −0.85 is included in order to
stabilize a triple-Q magnetic order that underlies the skyrmion
lattice (SkL) phase [44]. The electron-spin coupling constant
is set at J = 1. An electron chemical potential μ = −3.5
was used, and an external magnetic field Hext = 0.005 was
included to explicitly break the time-reversal symmetry and
induce the SkL [44]. As discussed in Sec. II, the exchange
fields Hi acting on spins are obtained by solving the electron
Hamiltonian. Specifically, using Eq. (3) and the s-d Hamilto-
nian (4), the exchange fields are given by

Hi = J
∑

α,β=↑,↓
σαβ ρiβ,iα, (10)

where ρiα, jβ := 〈c†jβciα〉 is the electron correlation function,
or single-electron density matrix. The kernel polynomial
method (KPM) [45,46] was used to compute the electron
density matrix for generating the training dataset. The KPM
is more efficient compared with exact diagonalization, yet is
considered numerically exact when a large number of Cheby-
shev polynomials and random vectors are used.

The timescale of the precession dynamics of the LLG
equation (1) is given by t0 = (γ JS)−1, where γ is the gyro-
magnetic ratio, J is the electron-spin coupling, and S is the
length of the localized magnetic moments. The damping term
introduces another timescale tdamping = t0/α which character-
izes the rate of energy dissipation, where α is a dimensionless
coefficient. In the following, the simulation time is measured
in terms of t0, and a damping coefficient α = 0.05 is used.

The initial conditions of the simulations are divided into
two types. The first one is perturbed SkL, where a periodic
array of skyrmions is baked into the initial condition but
spins had random noise added. The other type is random
initialization where the spins are totally randomly generated.
For each type of initial condition, a total of 30 simulations
were generated, each of them comprised of 5000 time steps.
For a given initial condition, a semi-implicit second-order
scheme [47] which preserves the spin length was employed
to integrate the LLG equation (1) with a time step �t = 0.1.

The spins and their corresponding exchange fields at all lat-
tice sites were collected every 10 other steps in the simulation.
We focused on the training of the electron-induced exchange
field, so the external constant field of Hext = 0.005 in the z
direction was removed. The field Hi was then decomposed
into components that are parallel and perpendicular to spin
components, and only the perpendicular component, which is
equivalent to the torque Ti, was kept as the parallel component
has no effect in the evolution of spin configuration and is
around two orders of magnitude larger than the perpendicular
component. The perpendicular fields were then normalized to
have a mean magnitude of 1 over the entire dataset. Then 70%
of the entire dataset was used for the training, while the rest
was set aside for validation. The split of the dataset is stratified
so the training and testing set has the same proportion of the
two types of simulations.

The triangular-lattice s-d Hamiltonian in Eq. (4) is
invariant under two independent symmetry groups: the
SO(3)/SU(2) rotation of spins and the D6 point group of
the triangular lattice. Here the rotation symmetry refers to
the global rotation of local magnetic moments Si → R · Si
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(treated as classical vectors), and a simultaneous unitary trans-
formation of the electron spinor ĉiα → Ûαβ ĉiβ , whereR is an
orthogonal 3 × 3 matrix and Û = Û (R) is the corresponding
2 × 2 unitary rotation operator. TheMLmodel, corresponding
to an effective force-field model by integrating out electrons,
needs to preserve the SO(3) rotation symmetry of spin, which
means under uniform rotation R of all spins in the neigh-
borhood, the ML predicted spin torques should undergo the
same rotation transformation Ti → R · Ti. On the other hand,
under a symmetry operation g of the D6 point group centered
at some lattice point, both spins and torques transform under
the D6 point group as Si → S j and Ti → T j , where the lat-
tice points r j = R(g) · ri, and R(g) denotes the 3 × 3 matrix
corresponding to g.

To incorporate both symmetries into the CNN model,
we introduced data augmentation during our training phase.
Specifically, for each input spin configuration and the cor-
responding torque field, a random SO(3) rotation field was
applied to the spins {Si} and a random D6 symmetry operation
was applied to the lattice points. The same symmetry oper-
ations, both for spin-space and real-space lattice, were also
applied to the torque fields {Ti}. These additional symmetry-
generated input/output configurations were included along
with the original ones to the dataset for supervised train-
ing. We note that, contrary to previous ML models where
the symmetry is explicitly included through descriptors, the
symmetry of the itinerant electron Hamiltonian is enforced
on the ML vector model statistically in this data-driven
approach.

Since the torques in the dataset could differ at most by
one order of magnitude, we find that the usual mean absolute
error or mean square error loss functions do not perform
very well. Instead, we adopted a mean percentage absolute
loss:

L = 1

N

N∑
i=1

∣∣T x
i − T̂ x

i

∣∣ + ∣∣T y
i − T̂ y

i

∣∣ + ∣∣T z
i − T̂ z

i

∣∣∣∣T̂i

∣∣ , (11)

where N is the total number of lattice sites within each batch
summed across all lattices, T̂i is the ground truth field vector
at ith lattice site and Ti = (T x

i , T y
i , T z

i ) is the predicted field
vector and its three components.

An Adam [48] optimizer with an initial learning rate of
10−3 was used for the training. The learning rate was later re-
duced to 10−6 upon the plateau of loss value in the testing set.
We did not use any regularization methods, such as dropout
or weight decay, and there is no evidence of overfitting when
comparing training and testing set loss values. The model and
its training process are implemented in PyTorch [49], and
training was performed on one Nvidia A100 for roughly 72
hours.

IV. RESULTS

Here we present benchmarks of the CNN models by com-
paring spin torque predictions and small-scale dynamical
simulations against exact methods. We further demonstrate
the restoration and stability of a skyrmion lattice in large-scale
LLG simulations, highlighting the scalability and transferabil-
ity of our ML approach.

A. Benchmark of spin torque prediction

The spin torques Ti predicted from the trained CNN model
are compared against the ground truth in Fig. 3 using configu-
rations from the test dataset. Two types of testing data are used
for this benchmark: LLG simulations of an initially perturbed
SkL state, and LLG simulations starting from random spins.
In both cases, the predicted torque components closely follow
the ground truth with roughly equal variance across the entire
range. Note the values of torque components in the random
spin case span a range nearly twice larger than that of the SkL
case. As can be expected, the ML model performs better in
the case of the SkL simulations since spin configurations here
correspond to a rather small and special set of the whole state
space. Yet a fairly good agreement was obtained even for the
testing dataset with completely random initial spins.

We further examine the magnitude of predicted torques
versus the ground truth, as well as the angle between the
predicted field vector and ground truth vector in Fig. 4. Again,
an overall satisfactory agreement was obtained, with the ma-
jority of the predictions close to or symmetrically distributed
around the ground truth value. Note that due to the distortion
of the logarithmic function, the same deviation from ground
truth at large and small magnitudes will look asymmetric and
“biased” towards smaller values. Therefore, two red dotted
lines with constant deviation of 10−2 (outer) and 10−3 (inner)
have been added in Fig. 4(a). Even at a large magnitude where
the error of the ML model is also the largest, the difference
in field vector magnitude is almost guaranteed to be smaller
than 10−2. At a small magnitude, the difference in field vector
magnitude is most likely to be smaller than 4 × 10−3 and
would typically be around 10−3. We did not notice any bias in
our ML prediction results. The ML-predicted vectors are also
very closely aligned with ground truth field vectors. As shown
in Fig. 4(b), most vectors would have an angle smaller than
10◦, and it is almost impossible to find a predicted vector with
a more than 30 degree angle from its ground truth counterpart.

B. Dynamical benchmark

In addition to accurate predictions of spin torques, another
important benchmark is whether the trained ML model can
also faithfully capture the dynamical evolution of the itiner-
ant spin model. To this end, we integrated the trained CNN
model into the LLG dynamics simulations and compared the
results with LLG simulations based on KPM [45,46]. We
consider simulations of a thermal quench process where an
initially random magnet is suddenly quenched to nearly zero
temperature at time t = 0. While our trained CNN model
produces fairly accurate spin torques, small prediction errors
still persist, as discussed in the previous section. Statistically,
these prediction errors are similar to the stochastic noise τ i(t )
in the LLG equation (1). These site-dependent fluctuating
random torques are similar to the thermal forces in Langevin
dynamics. Both random forces are physically due to thermal
fluctuations through coupling to a thermal bath at a fixed tem-
perature. As a result, while the temperature of the ML-LLG
simulations was set to exactly zero, a very low yet nonzero
temperature T = 0.001 was introduced in the exact LLG dy-
namics to mimic the prediction error.
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FIG. 3. Predicted spin torque components (Tx, Ty, Tz ) vs ground truth components from the testing set. The red-dotted diagonal lines
indicate perfect prediction. The top row shows the prediction results based on spin configurations obtained from LLG simulations of a perturbed
SkL. Results from LLG simulations with random initial states are shown in the bottom row.

The model parameters of the s-d Hamiltonian are cho-
sen to stabilize a spontaneous SkL ground state. Importantly,
the emergence of skyrmion crystal not only breaks the spin-
rotation symmetry but also breaks the lattice translational
symmetry. The periods of this spatial modulation, i.e., the
lattice constant of the skyrmion lattice, are determined by
the underlying electron Fermi surface. Indeed, while an SkL
state can be intuitively thought of as a periodic array of
particle-like spin textures, physically SkL phases often result

FIG. 4. (a) Comparison of predicted field vector magnitude
against ground truth. The red line indicates prediction equaling to
ground truth, the outer red dotted line represents a 10−2 devia-
tion from ground truth magnitude while the inner one represents a
deviation of 10−3. The color denotes the log density. (b) Angular dif-
ference between ground truth field vector and predicted field vector.

from an instability caused by quasinesting of the electron
Fermi surface that gives rise to a multiple-Q magnetic order
[44,50,51].

In our case, the geometry of the Fermi surface at the chem-
ical potential μ = −3.5 allows significant segments to be
connected by three wave vectors Q1 = (π/3a, 0) and Q2,3 =
R±2π/3 · Q1, related to each other by symmetry operations
of the D6 group. Here a is the lattice constant of the un-
derlying triangular lattice. This means that maximum energy
gain through electron-spin coupling is realized by spin helical
orders with one of the above three wave vectors. Further
analysis shows that the electron energy is further lowered by
the simultaneous ordering of all three wave vectors, giving
rise to an emergent triangular lattice of skyrmions.

The relaxation of the magnet after the thermal quench is
dominated by the formation of the triangular SkL. A per-
fect SkL is distinguished by six Bragg peaks at q = ±Q1,
±Q2, and ±Q3 in momentum space. Yet, since the spin in-
teractions are local in nature, the crystallization of skyrmions
is inherently an incoherent process. Small crystallites of
skyrmions are nucleated randomly separated by large domains
of disjointed structures. To quantitatively characterize this
crystallization process, we compute the time-dependent spin
structure factor, which is defined as the square of the Fourier
transform of the spin field

S (q, t ) =
〈∣∣∣∣ 1N

N∑
i=1

Si(t ) exp(iq · ri )

∣∣∣∣
2〉

, (12)

where the bracket 〈· · · 〉 indicates averaging over thermal en-
semble as well as initial conditions. The structure factor is
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t=100

t=1000

t=104

t=100

t=1000

t=104

FIG. 5. A comparison of spin structural factors obtained by aver-
aging 30 independent LLG simulations based on KPM (left) and ML
model (right). The same set of random initial conditions on a 48 × 48
triangular lattice were used in both simulations. The red dashed lines
indicate the first Brillouin zone of the momentum space.

itself the Fourier transform of the spin-spin correlation func-
tion in real space and can be directly measured in neutron
scattering experiments. The spin structure factors at various
times after the quench, obtained from LLG simulations based
on both KPM and ML models, are shown in Fig. 5. Due to the
stochastic nature of such simulations, the results are obtained
by averaging 30 independent runs. Overall, the results from
LLG simulations with the trained CNN model agree very well
with those based on the numerically exact KPM.

Both simulations show that a ringlike structure quickly
emerges in the structure factor after the quench. The radius
of the ring is close to the length of the three nesting wave
vectors Qη, indicating the initial formation of skyrmions. As
the system relaxed towards equilibrium, the ringlike struc-
ture becomes sharper. Moreover, the spectral weight starts to
accumulate at the six spots corresponding to the ±Qη wave
vectors. Physically, the emergence of the six broad segments
corresponds to the growth of domains of the skyrmion lattice.
The size of these intermediate skyrmion crystallites can be
inferred from the width of the six spots. However, both simu-
lations found that even at a late stage of the equilibration, the
structure factor exhibits only six diffusive peaks at the nesting
wave vectors, instead of sharp Bragg peaks as expected for
a perfect SkL. The broad peaks at a late stage of the phase
ordering thus indicate an arrested growth of SkL domains in

FIG. 6. Snapshot of the spin configuration at the end of the LLG
simulation with random initial conditions on a 48 × 48 triangular
lattice.

real space. An example of the real-space spin configuration
at t = 104 after the quench is shown in Fig. 6. The snapshot
shows rather small triangular clusters of skyrmions coex-
ist with stripelike structures of different orientations, These
stripes or helical spins corresponds to the single-Q magnetic
order which are metastable states of the s-d model.

This intriguing freezing phenomenon can be partly at-
tributed to the frustrated electron-mediated spin interactions.
Another important source is related to the degeneracy be-
tween skyrmions of opposite vorticity, or circulation of the
in-plane spins. The two opposite circulations correspond to
the topological winding number w = ±1 for the skyrmions.
As discussed above, the spin-rotation symmetry is decoupled
from the lattice in the s-d Hamiltonian (4), which provides a
minimum model for centrosymmetric itinerant magnets with-
out spin-orbit coupling. As a result, skyrmions with clockwise
circulation is energetically degenerate with counterclockwise
ones. This also means that SkL domains of the two opposite
circulations are nucleated with roughly the same probabil-
ity after the thermal quench. The subsequent annihilation of
skyrmions with opposite vorticity thus prohibits the growth of
a large coherent SkL.

C. Scalability and large-scale simulation

As discussed in Sec. III B, due to the locality property and
the fixed-size kernels, the CNN model can be directly scaled
to larger lattice systems without retraining, thus enabling
large-scale dynamical simulations that are beyond conven-
tional approaches. Here we demonstrate the scalability of the
CNN spin-torque model by applying it to LLG simulations of
large-scale SkL phases. Specifically, we perform LLG simu-
lations of a perturbed SkL state on a 96 × 96 lattice using a
CNN model trained from simulations of a 48 × 48 lattice. As
discussed above, the triangular skyrmion lattice, characterized
by the three nesting wave vectors, can be viewed as a super-
position of three helical spin orders. Explicitly, a perfect SkL
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FIG. 7. CNN-based LLG simulation on a 96 × 96 lattice showing the restoration of a perturbed SkL. The CNN model was originally
trained on a 48 × 48 lattice. The initial spin configuration is given by the SkL ansatz (13) with additional site-dependent random phases and
amplitudes of Sz.

can be approximated by the following ansatz [44,51]:

Si ∼
(
cosQ1i − 1

2
cosQ2i − 1

2
Q3i

)
ê1

+
(√

3

2
cosQ2i −

√
3

2
cosQ3i

)
ê2 (13)

+ [
A
(
sinQ′

1i + sinQ′
2i + sinQ′

3i

) + M
]
ê3,

where ê1,2,3 are three orthogonal unit vectors, Qηi = Qη · ri,
Q′

η,i = Qη,i + φ are phase factors of the three helical orders,
and φ, A, and M are fitting parameters. To demonstrate that
the ML model can indeed stabilize the SkL, which is the
ground state of our chosen s-d Hamiltonian, we initialize
the system with a perturbed array of skyrmions as shown in
Fig. 7(a). The randomness in the initial state was introduced
by allowing site-dependent parameters φi, Ai and mi, which
are randomly generated, in the above SkL ansatz (13). Con-
trary to completely random spins for the initial states in the
previous dynamical benchmark, this initial state preserves a
coherent structure of skyrmion winding numbers. As these
topological numbers have to be conserved, the relaxation of
the system is free of random annihilation of skyrmions. As
shown in Fig. 7, our ML-based LLG simulations indeed find

that a nearly perfect SkL is restored and stabilized over a long
period of simulation time.

We further investigate the scalability in the time domain by
running our ML-based LLG simulation long past the duration
of the training simulations. Figure 8 shows a roughly con-
stant structural factor long beyond the duration of simulation
snapshots used in training. While we noticed a huge decrease
in structural factor between the time of 15 000 and 23 000,
the structural factor quickly rebounds to its original stable
value [S (q, t ) ≈ 305]. These temporal fluctuations can be
ascribed to the prediction errors of the ML model. Yet, as
also discussed above, such errors play a role similar to the
stochastic noise in Langevin-type dynamics simulations. Our
results thus demonstrate the robustness of SkL under small
random perturbations. Importantly, this further benchmark
highlight the scalability of our ML models not only in spatial
domains (larger lattices), but also in temporal scales (much
longer simulation times) as well.

D. Symmetry requirements

In order to incorporate the underlying symmetries of a
physical system into an ML model, one needs to introduce
appropriate biases (prior knowledge) through the statistical
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FIG. 8. The evolution of structural factor of a much longer than
training simulation with time, using perturbed Skyrmion initial con-
dition. The dashed black line indicates the duration of the training
simulation, and our ML-based LLG simulation is capable of keeping
the structural factor constant for more than five times the duration of
the training simulation.

learning process. Two of the major approaches to this end are
(i) data augmentation based on the symmetry group of the
system, (ii-a) constructing symmetry-invariant descriptors, or
(ii-b) constructing equivariant neural network architectures
w.r.t. the symmetry group. These two types of approaches
correspond to introducing the observational and the induc-
tive biases, respectively, in the context of physics-informed
machine learning literature (see, e.g., [52–57]). As discussed
in Sec. III C, the local symmetries of our system, i.e., the
spin-space and the real-space lattice symmetries, a.k.a. the
internal (gauge) and the spacetime symmetries [58], consist
of G-valued fields over the underlying lattice, where G =
SO(3) × D6 . In the present work, we adopted the data aug-
mentation approach as the mean to enforce the symmetry
constraint for the reasons justified as follows.

First, we briefly summarize the theoretical justification of
how data augmentation during our training phase is injecting
the above-mentioned symmetries into the underlying super-
vised learning process (see [54,59,60] for details). To avoid
cumbersome notation, we denote a pair of spin configurations
and its corresponding torque field (S,T) = ({Si}, {Ti}) by F.
Our training data F1, . . . ,Fn consist of independent identi-
cally distributed (i.i.d.) samples from a probability distribution
P over the space of all spin-torque fields. It is of fundamental
importance that the probability distribution P remains invari-
ant under the action of each local symmetry g ∈ G , where
G denotes the space of all local symmetries of the system.2

Hence, the data augmentation process can be considered as
enriching our set of samples from the probability distribution
P , where our goal is to learn it, by adding transformed spin-
torque fields g · F, g ∈ G.

During the training procedure, at each step t , a minibatch
Bt of spin-torque (S,T) samples of size |Bt | is chosen, and
a random local symmetry gt,b ∈ G is applied to each spin Sb

and torque Tb field, b ∈ Bt . Then, according to the stochastic

2The action of a local symmetry g ∈ G over a spin S and a torque
T field is the induced transformation by g . We denote it by g · F :=
(g · S, g · T).

FIG. 9. Distribution of the equivariance error erreq :=
fCNN({RSi}) − R fCNN({Si}) where R is an arbitrary rotation. The
overall prediction error (“predicted torque” minus “ground truth
torque”) on the test dataset is superimposed for comparison. The
equivariance error is sufficiently smaller than the overall prediction
error, implying that the model can preserve the underlying symmetry
of the physics system reasonably well.

gradient descent (SGD) algorithm, the parameters θ of the
CNN model fθ get updated as

θt+1 = θt − η

|Bt |
∑
b∈Bt

∇θL( fθ (gt,b · Sb), (gt,b · T̂b)), (14)

where L denotes the loss function given by Eq. (11), and η

is the learning rate. In other words, the augmented SGD can
be considered as minimization of the empirical risk associated
with the following augmented loss function:

∫
G

L( fθ (g · S), (g · T̂)) dQ(g) (15)

in which one takes an average along the whole orbit of the
group action w.r.t. a probability distribution Q over G. It can
be proved that data augmentation based on the underlying
symmetry group reduces the variance of general estimators
and improves their generalizability [54].

The above theoretical justification can further be validated
through empirical data. Figure 9 shows the typical prediction
error (blue), the difference between predicted and ground truth
torque, and the equivariance error (orange), defined as fθ (g ·
S) − g · fθ (S). As can be seen in the figure, the equivariance
error is smaller than the typical prediction error, indicating
that in practice data augmentation employed is capable of
preserving the underlying symmetry of the physics system to
a satisfactory degree.

E. Locality principle and receptive fields

To attest to the locality principle, we analyze the recep-
tive field of our CNN model in this section. As discussed
in Sec. III A, the receptive field of a convolution layer fm

is defined to be the support supp(hm) of the corresponding
convolution kernel hm, i.e., the region where the function
values of hm are nonzero tensors. The receptive field of the
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FIG. 10. The effective receptive fields (ERFs) of the ML model.
Since for each lattice site both the input and output tensors have three
components, there are in total nine ERFs corresponding to the nine
partial derivatives of the three output torque components with respect
to the three input spin components. The sum of these absolute values
of these derivatives are then presented in this figure, with blacker
pixels indicating smaller derivative value. The red line roughly traces
the nonzero value regions of the ERF.

entire CNN model is computed as the Minkowski sum of
the receptive fields of individual convolution layers, or RF =
supp(h1) ⊕ · · · ⊕ supp(hL ). For our model, in which there are
10 layers in depth with each layer comprising 5 × 5 convo-
lution kernels of stride 1, the size of the receptive field is
calculated to be 41. This implies that, in principle, the spin
directions of the 41-neighborhood can influence the prediction
of the torque at the lattice position i.

However, the naïve computation of the receptive field size
may be misleading because the kernel size of a convolution
layer simply just indicates the theoretical maximum of the
receptive field. On the other hand, the actual region of nonzero
values can be much smaller than the theoretical receptive
field size. To this end, we used the approach of Luo et al.
[61] to compute the effective receptive field size, in which
function values are practically nonzero. Figure 10 shows the
result of such a calculation performed on the trained CNN
model. The red hexagonal line delineates the region inside
the hexagon where function values are practically nonzero
and the region outside the hexagon where function values
are practically zero. The grayscale values inside the hexagon
indicate different levels of influence of neighboring spins in
computing the torque vector. As can be seen from the figure,
at the lattice location i, which is the center of the red hexagon,
the weighting factor is the largest, implying that Ti is predom-
inantly determined by Si. The 1-neighborhood N1(i), i.e., the
immediate neighbors to the lattice location i, also has bright
intensity values, implying that the relative configuration of the
spin direction Si to its neighboring spins S j at j ∈ N1(i) also
have a significant influence to the output torque Ti. Similarly,
it appears that the spin directions of the 3-neighborhood have
strong influences on torque prediction, while small influence
can be detected all the way to 6-neighborhood.

This result is consistent with previous ML spin-torque
models based on symmetry-invariant descriptors [33,34],
which shows that the spin dynamics of similar s-d models
can be nicely captured by BP-type models based on fully
connected NN with input from a neighborhood up to rc ∼ 5
lattice constants. Physically, as discussed above, the finite
sizes of effective receptive field are due to the locality nature
of the spin torques. However, the range of locality can only
be indirectly determined from exact calculations. In practice,
the cutoff radius is treated as an ad hoc parameter in BP-type
ML models, or is determined through trial and error. It is
thus worth noting that the CNN model offers a systematic and
rigorous method to determine this important physical attribute
of electronic models.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a CNN model to predict spin
torques directly from input spin configuration for large-scale
LLG dynamics simulations of itinerant magnets. Our CNN
model is purely convolutional without any fully connected
(dense) layers, and thus presents a distinct advantage of built-
in locality. Central to each CNN layer is the convolution with
a kernel or filter, which can be viewed as a Green’s function
representing finite responses to a local source. As each ker-
nel is characterized by a finite set of trainable parameters,
the CNN model can be used for dynamical simulations on
larger system sizes without rebuilding or retraining the neural
network. We demonstrated our ML approach on a triangular-
lattice s-d model which exhibits a skyrmion crystal in its
ground state. Using the ML-predicted torques in the LLG
dynamics simulations, we showed that the trained CNNmodel
can successfully reproduce the relaxation of the skyrmion
phase of the itinerant spin models. We further demonstrated
the scalability and transferability of our approach by showing
that large-scale LLG simulations based on our CNN model
are able to stabilize a perturbed skyrmion lattice and maintain
it for a long period of time.

Contrary to the ML force-field models based on the Behler-
Parrinello scheme, our CNN model directly predicts torques,
which are the spin analog of atomic forces. In BP-type ap-
proaches, ML models, either Gaussian process regression or
fully connected neural nets, are built to predict local energy,
which cannot be directly compared with exact calculations.
The forces are obtained from derivatives of the total energy,
which is the sum of all local energies. The introduction of
local energy takes advantage of the locality property and also
facilitates the incorporation of symmetry into the ML mod-
els. Yet, the fact that forces are computed indirectly from
derivatives of energy also restricts BP-type models to the
representation of conservative forces and quasi-equilibrium
electron systems. On the other hand, our CNN approach can
be used to describe both conservative as well as nonconser-
vative spin torques. This capability is particularly important
for ML modeling of out-of-equilibrium driven systems where
the electron-mediated torques are nonconservative. A repre-
sentative example is the spin transfer torque which plays an
important role in spintronics applications.

For future work, we are currently looking into ways to
enforce constraints due to either symmetry or conservation
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laws more strictly and rigorously. To this end, previous com-
puter vision literature on equivariant CNNs (see, e.g., Geiger
and Smidt [62]) may shed light on how to constrain CNN
layers to preserve SO(3) and D6 symmetries. Moreover, the
present work is limited to approximating torques using spin
directions at each time step and does not provide a direct
solution to the LLG equation in Eq. (1). In a recent body
of literature, however, there have been attempts to solve gov-
erning partial differential equations (PDE) of physics directly
using so-called physics-aware deep neural networks (see, e.g.,
Nguyen et al. [55]). Using these physics-aware CNNmethods,
we expect to attain faster and more accurate approximations

of the spin dynamics, which is going to be another meaningful
direction of research.
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