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Abstract

This work reports the measurement of laser powder bed fusion (PBF) process input signals, output signals, and structural
data for a set of eight IN 718 samples. Data from multiple samples imparts statistical replicability to the measurements. The
input signals are the real-time PBF laser position commands, power commands, and the beam radius set point. The output
signals are thermographic videos from coaxial and off-axis infrared cameras, and temperature measurements from
thermocouples embedded in the samples. The structural data are optical micrographs of all built surfaces. Data are collected
for three testing regimes: First, the laser rasters over the samples under conditions that do not induce melting. Second, the
laser rasters over the samples with conditions that induce melting. Lastly, five layers of IN 718 are built atop the samples.
The main result is an open and comprehensive data set, comprising both raw and processed signal data, for validating PBF

process and structure models.

Keywords Powder bed fusion - Process validation - Process modeling - Quality control

Introduction

Powder bed fusion (PBF), and in particular, laser PBF of
metals, is a class of additive manufacturing processes in
which parts with complex geometry can be fabricated from
powdered feedstock in a layer-by-layer manner [1]. PBF is
poised to have significant industrial impacts over the coming
decade; however, the process is currently limited by defects
like high levels of residual stresses [2—4], porosity [5—7], and
anisotropy in material properties [7—12]. Each of these types
of defects are directly related to poor thermal management
and thus there is considerable interest in accurate predictive
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modeling to better understand the relationships between
process inputs, geometry, material properties, and
temperature history and structure. Despite the wealth of
thermal modeling efforts and literature [ 13—-22], which often

include validations against data, there are few research
efforts that release wvalidation data that is open,
comprehensive, complete, and replicated. The data set of this
manuscript makes the following contributions:

e Open All data are made freely available at [23]. We
anticipate that this will be an instrumental data set for the
validation and calibration of PBF process and structure
models.

»  Comprehensive Thermal modeling efforts are varied in
complexity and dimensional scope, ranging from
conductive heat transfer at the part scale [14-16] and
melt pool scale [17] to complex multiphysics modeling
at the melt pool [18-21] or atomistic scale [22]. Our data
set is applicable to validating models across this range for
the following reasons:

— Physics excited The experiment tested three different
laser power levels: two power levels below the
minimum that produces a melt pool, and one power
level above this value. In the two former tests, only
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conductive heat transfer occurred, and in the latter
test, the heat transfer encompassed conduction,
convection, and phase change. Thus, this data set is
important for understanding the tradeoff between
model complexity and prediction accuracy.
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— Boundary conditions Two different geometries—one
rectangular prism and one with an I-beam cross-
section—were tested to impose two different
boundary conditions. In contrast, many efforts test
single layers [24, 25], rectangular prism geometries
[26-28], or thin wall sections for the related directed
energy deposition process [29-31]. The complex
geometry here created subtle, but important,
differences in temperature observations.

— Measurement scope The data were collected on an
open-architecture PBF machine, providing an
unprecedented scope of measurements of process
inputs and thermal outputs (Fig. 1). The thermal
outputs include both part scale (“off axis”) and melt
pool scale (“coaxial”) infrared (IR) cameras, and
temperature measurements from thermocouples
(TCs) embedded at four spatial locations within each
sample in the part (Fig. 1). Four TCs per sample is
an uncommon quantity of measurements in the
reported literature. We also include structural data in
the form of micrographs of the as-built surfaces of
all Samples, which we include to process the output
measurements and provide data for PBF structural
models.

*  Complete All recorded data is provided in raw and in
time-synchronized and processed form, providing a
complete experimental data set for model validation.

* Replicated Each experiment had four independent
replicates, and two of the thermocouples in each sample
were placed symmetrically about the geometry,
providing a robust, replicated data set to help understand
process variability.

Measurement 7: Off-axis

Measurement 13: Coaxial
camera trigger, u,(f)

Integrating Materials and Manufacturing Innovation (2023) 12:493-501

The material scope is limited to IN 718. However, we
believe that the data provided herein will have impacts on IN
718 researchers and the PBF modeling community in
general, and inspire researchers to pursue similar efforts with
other materials. The paper proceeds as follows: section
“Experiment description” reviews the experiment set up,
procedures, and data storage location and section
“Representative results” shows representative data. Section
“Conclusions and future work” concludes the paper. Please
refer to electronic supplementary material (ESM) for our
data processing procedures, MOESM2.pdf, and for example
IR camera data. This information includes defining the
coordinates of each sample (Section S.1, MOESM2.pdf),

Measurement 8: Coaxial
IR camera, Veoadr)
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Measurement 1: Sample

stamps, ¢

Measurements 2-6: Embedded thermocouples within test samples (TCA(t), TCB(t), time
TCC(f), TCD(?)) and the base plate (7CO(¥))

Fig. 1 Overview of the real-time experimental measurements. Representative images of Measurements 7 and 8 are taken from experimental data
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calibrating and processing the IR camera data (Sections S.2
and S.3, MOESM2.pdf), and synchronizing and merging
data streams (Sections S.4 and S.5, MOESM2.pdf).

Experiment Description

In this section we describe the configuration of our
experimental apparatus, the procedures followed during the
experiment, and the organization of all stored data.

Experimental Setup
Machine and Measurements

This experiment was conducted using the open architecture
PBF machine owned by Open Additive, LLC, shown here in
Fig. 2, a production quality PBF machine with open software
tools and modular hardware configuration that is designed
for research and development. These features enabled the
definition of custom process parameters during the
experiment and data collection from all sensors. Control of
the machine was accomplished through Open Additive’s
open machine control software. Low-level communication
between modular sensors and synchronized recording of all
data streams was controlled by Open Additive’s AMSENSE
software suite. The schematic of signal collection, including
the models of all instruments, is shown in Fig. 4. Our
experiment collected the measurements listed below.

* Real-time process outputs

1. ¢ Time stamps for all Samples (Measurement 1, Fig.
1).

2. TCA(t) , TCB(t) , TCC(t) , TCD(t) , and TCO(t) :
Temperature measurements from the 4 TCs

embedded within each Sample, denoted TCA, TCB,
TCC, and

Fig. 2 Open additive PBF machine
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TCD (Measurements 2-5, Fig. 1), and a TC
embedded within the base plate, denoted TCO
(Measurement 6, Fig. 1).

3. Vor(t) : Thermographic videos of the overall test part
taken with an off-axis IR camera (Measurement 7,
Fig. 1).

4. Veoax(t) : High-resolution thermographic videos of
the melt pool taken with a coaxial IR camera
(Measurement 8, Fig. 1).

» Real-time process inputs

1. xAt) and yc(t) : (x, y) laser position commands sent
to the galvonometers (Measurements 9—-10, Fig. 1).

2. P(#): Laser power command (Measurement 11,

Fig. 1).

3. ui(t) and uat) : Binary trigger signals sent to the
machine laser source and to the coaxial camera
(Measurements 12 and 13, Fig. 1).

4. Set point for the laser beam diameter used for all
Tests (Table 1).

» Post-process part metrology
1. Measurement 14: Optical micrographs of the
Sample top surfaces after Test 3 of (section
“Experimental procedures”).

2. Measurement 15: Optical micrographs of single
weld tracks to calibrate Measurement 8 of Fig. 1.

Test Samples
Figure 3a—-d show the geometry of the test part. The
numbering convention for the Samples is shown in Fig. S-2.

The Sample design has the following characteristics:

1. Four spatial locations per part for temperature meas-

urement: Each Sample had TCs embedded into the four
holes shown in Fig. 3¢, d, denoted TCA-TCD (Fig. 3e,

13



Table 1 Process parameters during testing

Parameter Test
1A 1B 2 3 (all layers)

Nominal scan speed, v (mm/s) 1000 1000 1000 1000
Laser spot size, o ( zm) 100 100 100 100
Hatch spacing, 4 ( pm) 100 100 100 100
Overall scan dimensions, (mm x  4x9 4x9  4x9 4x9

mm)
Layer thickness, d ( pm) - - 40

Nominal laser power, Pmm (W) 4256375 150150

Number of sweeps, sw =) 3 3 3 1

The test part was machined from IN 718, with the holes for
TCA-TCD being manufactured via plunge electrical
discharge machining. Engineering drawings of the as-
machined dimensions of each Sample, as measured by the
machinists, are provided in the electronic supplementary
material.

All TCA-TCD holes were fitted with Type K TCs having
exposed junctions and IN 600 sheaths (Fig. 4), which were
chosen: (1) to match the minimum achievable hole diameter
for the depth required and (2) have a time constant (75 ms)
that is faster than the heat transfer dynamics at these spatial
locations. Figure 3b shows the test part with embedded TCs.
TC locations A and B were the minimal feasible distance
from the Sample top faces for 0.5 mm diameter, 2.5 mm deep
holes, as determined from consultation with machinists.

The base plate and Samples were manufactured
separately and bonded with an interference fit. All Sample-
base plate and Sample-TC interfaces were coated with
Omega OB-600 thermally-conductive cement to ensure
good thermal contact.

Data Acquisition (DAQ)

Two DAQs were used by the PBF machine to collect the
measurements (Fig. 4). The LabJack DAQ sampled at 1 kHz,
which was the intended sample rate of our data set. The
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f). These TCs measured temperature near the top surface
(A and B), geometric center (C), and near the base plate
(D), thus measuring temperature at different scales of
magnitude.

2. Two Sample architectures Four of the test Samples
(Samples 1-4, Fig. 3c) were simple rectangular prisms.
Four of the test Samples (Samples 5-8, Fig. 3d) had an
I-beam cross-section to study the influence of a
complex geometry in PBF heat transfer.

3. Replicate measurements Each design was replicated
four times to provide four independent measurements.
These replicates help assess process variability under
identical nominal testing conditions.

FPGA DAQ sampled at its slowest rate of 20 kHz. Our

procedures for unifying these data streams are discussed in

Section S.4 (MOESM2.pdf).

The laser power delivered to the part surface, Pprod(t) , was
modulated by P(¢) and a high bandwidth shutter controlled
by ui(t) , which blocked the laser during skywriting. Thus,
the power delivered was Pprod(t) = P(t)ui(t) . We report the
power produced by the source, Pprod(t) = P(t)ua(t) , with our
processed data, not P(¢). Calculation of Pprod(t) is in Section
S.4 (MOESM2.pdf).

Two IR cameras were used during this experiment: an off-
axis camera that imaged the entire test part and a
highresolution coaxial melt pool camera. The makes and
models of these cameras are given in Fig. 4. The off-axis
camera

13
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Fig. 3 Test part. a Test part layout. Only the foremost eight Samples
were instrumented during testing. The remainder of the Samples were
for calibration. b Test part with Samples instrumented with TCs. The
red marks visible on the part denote the machinist’s numbering
convention, which differs from that used in Fig. S-2. ¢ Close-up view
of Samples 1-4. d Close-up view of Samples 5-8. e Engineering
drawing of the cross-section of each of Samples 1—4. Units are mm.
The out-of-plane depth of the Samples is 5 mm. f Engineering drawing
of the cross-section of each of Samples 5-8. Units are mm. The out-
ofplane depth of the Samples is 5 mm. g Configuration of the test part
in the PBF machine. Argon cross-flow is along the Sample y-axes. h
Image of the test part in the PBF machine after the addition of powder,
Test 3

sampled at 32 Hz and the coaxial camera sampled at 1 kHz.
The ESM (MOESM2.pdf) explains how the data from these
cameras, Vorf(t) and Veoax(t) (Measurements 7 and 8),
respectively, were processed and synthesized together.
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Experimental Procedures

Table 1 lists the process parameters used during all Tests.
Parameters labeled “nominal” describe aspects of the scan
which changed over time like the real-time laser speed,
which accelerated and decelerated while scanning. The
“sweeps” mentioned in Table 1 refer to the scan strategy
shown in Fig. 5. Tests 1 and 2 featured 3 sweeps to capture
artifacts of turnarounds in the scan strategy, and Test 3
Open Architecture PBF machine
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Tests 1-3 were performed on each Sample in sequence
before brushing off excess powder from untested samples
and moving to the next. The locations of the 4 mm x 9 mm
bounds of each scan, hereafter called the “scan footprints,”
were determined manually by the machine technician and
were located in the machine coordinates using Measurement
14 of section “Machine and measurements” (Section S.1.2,
MOESM2.pdf). Figure S-2 displays these locations.

Machine trigger
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Fig. 4 Schematic of the instruments and signal pathways used in the experiment

featured only 1 sweep because that single sweep fused the
powder. All tests were conducted with a Gaussian-
distributed laser beam and in an Argon environment with
crossflow in the y-direction (Fig. 3g, h). As discussed in
section “Introduction”, this experiment comprised three
Tests:

Test 1: Raster the laser over the Sample top faces at 42.5 and
63.75 W, sequentially, which we denote as Tests 1A and
1B, respectively. These were 50 and 75% of the smallest
power that produces a stable melt pool, which we
determined experimentally was 85 W. As mentioned in
section “Introduction”, conduction was the only mode of
heat transfer we intended to provoke during this Test.

Test 2: Raster the laser over the Sample top faces at 150 W
without fusion of powder. As mentioned in section
“Introduction”, this Test added phase change and
convection to the heat transfer.

Test 3: Build five new layers of material on the Sample top
faces using the 150 W laser from Test 2. This Test added
material addition to the heat transfer and mimics all the
physics of the commercial process.
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Data Storage

The data [23] are hosted on the Materials Data Facility [32].
Both raw and processed data are available (MOESM2.pdf).
For the post-process part metrology (Measurements 14 and
15, Sections S.1.1-S.1.2 of MOESM2.pdf), the data
comprises individual images and images of the calibration
rules. For the real-time process input and output data
(Measurements 1-12, section “Experimental procedures”),
the data is supplied as both a collection of.csv files and a
MATLAB. mat file. In the processed data, Measurement 11,
P(%), is replaced by Pprod(t) of section “Data acquisition
(DAQ)”. The processed data also includes the locations of
all pixels of both cameras at all time steps.

Representative Results

Here, we provide representative results of the experimental
data after being processed according to MOESM2.pdf.

We focus on the TC data (Measurements 2—5) and Veoax(t)
(Measurement 8) in order to showcase the most
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informationrich output signals. The electronic supplemental
material includes videos of both raw and processed data for
both IR cameras.

Table 2 Matrix of camera and TC data status

Sample number

Test 1 2 3 4 5 6 7 8

» - I
1B

2 -

(a) , Layerl

I
3
3, Layer2
3, Layer3 -
3, Layer4
3

, Layer5

TC letter

(b)

o O w o>

(a) Camera data status, per Test. Filled-in entries denote
instances of corrupt data. (b) TC integrity status, per Sample.
Red entries denote instances of TCs becoming dislodged or
unusable during testing. Otherwise, the numbers in each entry
denote the experimentallymeasured depth to which each TC
was inserted, in units mm. The cell colors correspond to
different measuring techniques, which are discussed in
Section S.1.3 of MOESM2.pdf and are as follows: Blue
entries denote measurement by method 1. Green entries
denote measurement by method 2. Orange entries denote
measurement by method 3

TCs 3C, 3D, and 4A were dislodged during
assembly and their data lost. Table 2b quantifies
other instances of lost TC data via the procedures of
Section S.1.3 (MOESM2. pdf). Figure 6 shows the
TC data for all Samples in Test 1B, which we chose
because none of the 8 Samples lost IR data. Four
trends are observable in this figure, which also hold
for all other data records.

(1) Temperatures measured by TCA and TCB are
the hot- test because these TCs were embedded
closest to the top surface, and thus the lasing
surface. Similarly, TCD and TCO measured
temperatures that were mostly constant and
coolest because they were the farthest from the
lasing surface.

(2) Two peaks are visible in the TCA data, and one
peak is visible in TCB data. This is because of
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the scan path shown in Fig. 5, wherein the
overall scan direction passed over TCA twice.
Likewise, the laser passed over TCB once,
effectively, as the temporal difference between
laser sweeps in the x-direction was only 24 ms.
(3) The TCC and TCD data for Samples 5-8 are

hotter, and colder, respectively, than those for

Samples 1-4. This result is expected because

the flanges in Samples 5-8 (Fig. 3f) are heat

islands. In Samples 5-8, heat predominantly

flowed through the TCC position instead of

directly from the TCA to TCD positions, which

produced elevated TCC data in Samples 58

relative to Samples 1-4. Moreover, this

restricted heat flow to TCD produced lowered

TCD data in Samples 5-8 relative to Samples

1-4.
There is no trend in the TCA and TCB data with respect to
Sample number. This result runs contrary to intuition since
the TCA and TCB locations are in the flanges of Samples 5—
8, therefore one expects the temperatures to be greater for
the TCs embedded those Samples. Since TCA and TCB
measured temperatures near the melt pool, we corroborate
the incongruous TCA and TCB results by investigating the
role of part geometry on the melt pool characteristics visible
in Veoax(t) . Figure 7 plots the average peak melt pool
temperature

(Fig. 7a), 7_-max , and average melt pool area (Fig. 7b), A_ , with

respect to both Test number and Sample number. Since Tests
1 and 2 featured sw = 3 (Table 1) and Test 3 featured sw = 1
, only data from the first sweep for Tests 1 and 2 was
considered. We discuss the following two trends:

(4a) For all Samples, both Tmax and A dramatically increase

in the progression from Test 1 to Test 2, and then
decrease throughout Test 3. The increase from Test 1
to Test 2 is expected, since this corresponds to
increasing Pnom from 42.5 to 63.75 W to 150 W over
the same surfaces of bare metal. Tests 2 and 3 use the
same 150 W power, however, in Test 3, the laser fused
powder atop the surfaces and not the bare metal itself.
Figure 7a, b indicate that the powder requires more

energy to fuse than the bare metal, since Tmax and A

decrease between Tests 2 and 3. This is because
powder generally has a lower effective thermal
conductivity than bare metal [33].

(4b) With the exception of Sample 6, there is no trend in the

responses of Tmax and A with respect to Sample

number. This result indicates that the change in
geometry from Samples 1-4 to Samples 5-8 had a
negligible effect on the melt pool characteristics,
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which corroborates the trend in the TCA and TCB
measurements (Fig. 6). We further investigate this
trend in Fig. 7c, d. As stated previously, for Samples

5-8, the cross sectional geometry features two distinct

@, ']
mean” laser reverse mean

. travel direction
Sel 5.\'w2)
.

direction of

regions (Fig. 3f): the Sample neck in the range |y| <

0.66 mm, and the Sample flanges in the range |y| €
[1.32,5] mm, which act as heat islands. We quantify
the influence of the flanges on the melt pool
characteristics by deﬁning ATmax =Tmax,flange — Tmaxneck
and

M =[\ﬂange —Aneck , where Tmax,ﬂange and Aﬂange are Tmax

andA_ for all y((t) (Measurement 10) in

Fig. 5 Laser scan path used during testing
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the flanges, and Tmaxneck and Aneck are Tmax and A

for all yc(t) in the neck. Figure 7c, d plot ATmax
and AA , which show that no trends exist with

respect to Sample number, except AA of Sample

6. This results refutes the expectation that the
heat islands of Samples 5-8 would distort the

melt pool and produce greater ATmax and AA than
Samples 1-4. Rather, Fig. 7c, d show that there

is consistent nonzero ATmax and AA for Samples

1-4. We conjecture that this effect is from the
insulating powder contacting the surfaces at the
Sample y-limits, which lay in the flanges. In
contrast, the temperatures in the Sample necks
were only perturbed by insulating powder at the
x-limits, therefore the powder at the y-limits
constructed a heat island effect for both
geometries.
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Fig. 6 TC data for all samples in Test 1B, processed according to
Section S.4, MOESM2.pdf. Here, “s1”—“s8” abbreviate sample 1
through sample 8§
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shutter open,
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SWs 9

shutter open

4 mm

This effect persisted independently of sw , Prom ,
or layers of fused material, which explains why

ATmax> 0 and AA > 0 for all tests (Fig. 7c, d) and



Integrating Materials and Manufacturing Innovation (2023) 12:493-501
why no trend with respect to sample number is
present in the TCA and TCB data. Only as the
temperature field homogenized with decreasing z
could this effect diminish enough for
geometryinduced perturbances to dominate.

Conclusions and Future Work

This work describes an experiment for gathering an open,
comprehensive, complete, and replicated PBF data set of
process input, output, and structure measurements for use in
validating PBF thermal models of widely varying
complexity. The material used in this study was IN718. Eight
Samples—machined to mimic partially-completed PBF
builds and each instrumented with four embedded
thermocouples (TCs)—were subjected to three regimes of
tests that induced (1) solely heat conduction in the Samples,
(2) conduction, convection, and phase change in the
Samples, and (3) all previous heat transfer modes and fusion
of powder atop the Samples. During testing, we collected
PBF process input signals like the real-time laser power and
beam location, output signals like IR camera videos and the
TC measurements, and structure data in the form of optical
micrographs of the as-built sample surfaces. All raw and
processed data (MOESM2.pdf) are made freely available
[23].

The scope of the measurements and testing conditions in
this data set allows PBF process models to be validated
against multiple sources of perturbation. For example, our
preliminary analysis of the TC data and IR camera (Figs. 6
and 7) data quantifies how the output measurements
correlate with the localized insulation effect of the powder
as a function of changing process physics (testing regime)
and boundary conditions (sample geometry), while
considering process uncertainty like deviations in outputs

(Measurement 8) here, “s1"—
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and TC depth through experimental replicates. We envision
this data set being used to validate model predictions of these
same outputs under a similarly multivariate analysis.
Furthermore, we envision the micrographs of our data set
assisting coupled validations of PBF thermal and
solidification models. Our data is available in both raw and
processed form to facilitate development of new feature
extraction techniques from the measurements. To our
knowledge, no existing publicly-available data set of the
PBF process offers a similar level of comprehensiveness.

Future work includes the characterization of
microstructural features of the built material on each Sample
via electron backscatter diffraction (EBSD) analysis. We
will perform EBSD analysis in 2D on cross-sections of three
Samples of each geometry, and reconstruct 3D
microstructural fields from a sequence of 2D EBSD images
of one sample from each geometry [34]. This data will be
made freely available in a subsequent publication, which
will help researchers validate models that correlate thermal
history with microstructural evolution in 2D and 3D. This is
crucial to the mature development of process—structure—
properties PBF models and complete digital twins of the
process. We also intend to leverage this data set in future
works that validate our own PBF process models, which
have been tested in simulation [35, 36].

Supplementary Information The online version contains
supplementary material available at https://d oi.org/1 0 .1007 /s 40192-
023-0 0323- 5.
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