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Abstract

Underwater imaging enables nondestructive plankton sampling at frequencies, durations, and resolutions
unattainable by traditional methods. These systems necessitate automated processes to identify organisms effi-
ciently. Early underwater image processing used a standard approach: binarizing images to segment targets, then
integrating deep learning models for classification. While intuitive, this infrastructure has limitations in han-
dling high concentrations of biotic and abiotic particles, rapid changes in dominant taxa, and highly variable
target sizes. To address these challenges, we introduce a new framework that starts with a scene classifier to cap-
ture large within-image variation, such as disparities in the layout of particles and dominant taxa. After scene
classification, scene-specific Mask regional convolutional neural network (Mask R-CNN) models are trained to
separate target objects into different groups. The procedure allows information to be extracted from different
image types, while minimizing potential bias for commonly occurring features. Using in situ coastal plankton
images, we compared the scene-specific models to the Mask R-CNN model encompassing all scene categories as
a single full model. Results showed that the scene-specific approach outperformed the full model by achieving a
20% accuracy improvement in complex noisy images. The full model yielded counts that were up to 78% lower
than those enumerated by the scene-specific model for some small-sized plankton groups. We further tested the
framework on images from a benthic video camera and an imaging sonar system with good results. The integra-
tion of scene classification, which groups similar images together, can improve the accuracy of detection and

classification for complex marine biological images.

Imaging systems are increasingly being used to study aquatic
organisms and their interactions with the environment at dif-
ferent spatial and temporal scales (Solan et al. 2003; Wiebe and
Benfield 2003; Smith and Rumohr 2013; Durden et al. 2016;
Shortis et al. 2016; Irisson et al. 2022). In light of the rapid
developments and diverse applications of various imaging

*Correspondence: hongshengbi@gmail.com

Author Contribution Statement: HB., Y.C, M.B, and H.Z. were
responsible for the conceptualization of this study. Data acquisition was
conducted by H.B. and K.Y.. Y.C., H.B., X.C. and K.Y. developed the pro-
gram, conducted the experiment, and drafted the initial manuscript.
Reviewing and editing of the final manuscript were performed by H.B., D.
K., M.B., and S.G. All authors contributed to the development of the
methodology.

Additional Supporting Information may be found in the online version of
this article.

47

systems, automated image processing encounters several chal-
lenges. A major hurdle is the customization and system-specific
nature of most automated image processing procedures
(MacLeod et al. 2010; Durden et al. 2016; Luo et al. 2018;
Orenstein et al. 2020), which limits their broader applicability.
In addition, environment-driven separation protocols further
compound this issue as they often necessitate different levels of
disassociation of target and nontarget objects. For instance, sep-
arating objects in images from turbid coastal water is more chal-
lenging than those from clear offshore water. Further
challenges include segmentation method, unbalanced taxo-
nomic samples, size class differences, particle saturation, over-
crowding, and overlap.

The challenges of developing a general image processing
framework arise from differences in image properties associ-
ated with different imaging technologies and different envi-
ronments. For example, processing plankton images primarily
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means separating target and nontarget objects in the water
column, whereas processing benthic images requires separa-
tion of foreground objects from both the background and
nontarget objects. In previous cases, these tasks have been dis-
tinguished and processed by convolutional neural networks
(CNNs) (Cheng et al. 2019; Gonzalez et al. 2019; Piechaud
et al. 2019; Wang et al. 2020). A commonly applied architec-
ture in aquatic biological images starts with potential targets,
denoted by the region of interest (Rol), and the segmented
Rols are standardized before feature description and classifica-
tion by a pretrained machine learning model (Bi et al. 2015;
Cheng et al. 2019; Irisson et al. 2022; Mittal et al. 2022). How-
ever, accurate segmentation and class unbalance remain two
major issues, both of which undermine the performance and
accuracy of the common framework by producing excessive
false positives and biased results.

The goal of accurate segmentation of Rols from underwater
images is to separate individual organisms and ensure that each
Rol only has one potential target for the subsequent classifica-
tion. While accurate segmentation is relatively easy for images
collected in water with low particle density, it remains a chal-
lenge in water with higher particle density (Fig. 1). Using plank-
ton images collected from coastal waters as an example, images
are often crowded either with planktonic organisms or other
particles (Fig. 1la—c). When images are saturated with other par-
ticles, it is difficult to separate target organisms from nontarget
particles (Fig. 1a). When organisms have a complex structure,
over-segmentation often occurs (Bi et al. 2015). Furthermore,
overlap among different organisms makes the task of
segmenting individuals even more challenging (Fig. 1a—e). The
issue of crowded images and overlap among different organisms
arises from two different aspects. Patchy distribution is a com-
mon feature of marine organisms (Levinton 1995), and when
an imaging system is towed through a patch of marine organ-
isms, we would expect overcrowded images and overlap among
individual organisms. As technology advances, modern imaging
systems are often equipped with increased field of view and
depth of field, which further exacerbate the issue of over-
crowded and overlapping objects.

Image segmentation, dividing an image into distinct regions
or segments based on certain characteristics, is a long-standing
problem in computer vision and most existing techniques are
not suitable for noisy environments (Pal and Pal 1993; Song
and Yan 2017). Recent efforts on developing segmentation
techniques, specifically for crowded underwater images, par-
tially alleviate this issue (Cheng et al. 2020; Song et al. 2022);
but given the complexity and uncertainty in underwater
images, unsupervised deep learning approaches like region-
based CNN (R-CNN) offer a more promising solution (Minaee
et al. 2021). The R-CNN models combine a region proposal net-
work (RPN) to locate Rols, a CNN model to describe features of
Rols generated from RPN proposals, and a classification layer to
predict final bounding boxes and classes. Mask R-CNN is a
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combination of Faster R-CNN and a fully convolution network
which outperforms existing models in instance-level segmenta-
tion and recognition by delineating individual objects within
an image (Ren et al. 2015; He et al. 2017). Faster R-CNN is an
extension of R-CNN, in which the RPN shares convolutional
features with the subsequent detection network, allowing for
end-to-end training and eliminating the need for the selective
search algorithm (Girshick 2015; Ren et al. 2017). In the pre-
sent study, we test the feasibility of using Mask R-CNN as the
first step in processing noisy marine biological and environ-
mental images.

In marine environments, skewed frequency distribution
across taxonomic groups is common and such imbalanced
class distributions have detrimental impacts on classification
performance because the model often oversamples the rare
groups and under samples the abundant groups (Buda
et al. 2018; Zhang et al. 2020; Sharma et al. 2022). While a
more balanced class distribution fits our preference for unbi-
ased results for both common and rare taxonomic groups,
deep learning models require tens of thousands of labeled
images to achieve high accuracy, which is almost impossible
for rare taxonomic groups. Meanwhile, the large size variation
that spans up to several orders of magnitude, also complicates
the imbalance issue. Large organisms occupy the greatest
numbers of pixels, and morphological features can persist
throughout the convolution process, whereas small organisms
occupy small amounts of pixels and morphological features
likely disappear after a few iterations of convolution. There-
fore, small organisms need more labeled images than large
organisms to reach the same level of accuracy. This training
imbalance can either exacerbate or alleviate the unbalance
class issue, depending on the steps that precede convolution.

There is no simple solution to the common issue of unbal-
anced classes in deep learning, but proper data-level opera-
tions could be helpful in addressing this issue (Sharma
et al. 2022). We propose to alleviate the issue of unbalanced
class at the data level by incorporating a scene classification
model. Scene classification uses the layout of organisms
within the scene, in addition to the ambient context, to group
similar images. Using underwater plankton images as an
example, images with high concentration of other particles
(Fig. 1a) are often collected around locations or times with
strong physical mixing. Single-species dominated images are
often collected within a bloom period or a patch of the organ-
isms (Fig. 1c—e). Scene classification reduces the diversity and
uncertainty within each category, allowing a more targeted
classification model to be trained. The inclusion of a scene
classification model improves the alignment between observed
data and the library compared to the full model. This integra-
tion offers certain advantages, such as a more balanced model
for images captured in clear water (Fig. 1f), in contrast to the
full model. However, during bloom periods, the scene classifi-
cation model may create a more skewed model compared to
the full model. In addition, it can aid in addressing rare
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Fig. 1. Example images for selected scene categories: (a) high-concentration scene with large amounts of particles, (b) Noctiluca scene with each black
dot indicating one Noctiluca, (€) Phaeocystis scene showing the semi-transparent round-shaped colonies, (d) Pteropoda scene showing clustered Creseis
acicula and line-shaped Lyngbya algae, (f) shrimp scene showing clustered individuals, and (g) low-density scene showing a clean image with one bud-

ding Thaliacea.

species by reducing the number of taxa within each scene,
thus facilitating their identification.

In the present study, we propose a general framework to
process underwater images (Fig. 2). The procedure starts with
scene classification to separate images based on their context
and layout of dominant organisms. This process is followed by
a separate Mask R-CNN model, trained for each scene, to facil-
itate foreground object detection and recognition. To assess
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the impact of integrating scene classification on accuracy, we
conducted a comparative analysis of the full model and the
scene-specific model using the same testing dataset. The full
model represents the common architecture and is accom-
plished through a Mask R-CNN model for automated recog-
nition of underwater organisms without scene classification.
The scene-specific model starts with a scene classification
model followed by a dedicated model for each scene for
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Fig. 2. Diagram of the proposed procedure. The procedure starts with a scene classification using a lightweight ShuffleNet. For example, six scenes and
an additional scene for empty images were selected based on image contents such as dominant taxa group or concentration of particulates. A separate
Mask R-CNN model was trained for each scene category and potential objects were first detected through a region proposal network and then classified
by a residual neural network (lower box). The final output included an image with predicted results and segmented objects for each taxa group.

recognition. We present metrics, including counts, precision,
and the number of missing individuals, for each approach
using underwater plankton images from coastal waters col-
lected by PlanktonScope (Song et al. 2020; Liu et al. 2021).
We then expand the comparison to test for general applica-
bility using images collected by different underwater imaging
systems.

Methods

Full model

Mask R-CNN combines a Faster CNN for object identifica-
tion and a fully convolutional network for recognition
(He et al. 2017). Faster CNN includes two networks, a CNN
and RPN. First, the network detects region proposals that are
defined as regions in the feature map which contain the
object. In the second stage, the network predicts bounding
boxes and object class for each of the proposed regions
obtained in the first stage. Each proposed region can be of dif-
ferent size and the size of these proposed regions is then fixed
by the Rol pooling method, which helps to preserve spatial
information. Mask R-CNN extends Faster R-CNN by adding a
branch for predicting an object mask in parallel with the exis-
ting branch for bounding box recognition. It also replaces the
Rol pooling with RolAlign which makes object detection more
efficient and accurate while simultaneously generating a high-
quality segmentation mask for each instance. The output from
the RolAlign layer is analyzed by a residual neural network
(ResNet) for object classification. Finally, the procedure seg-
ments recognized objects based on the corresponding mask
generated during object detection (He et al. 2017).

The Mask R-CNN model was implemented in Python using
the Detectron 2 package (Wu et al. 2019). In the present
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study, 979 underwater plankton images were labeled using the
open-source annotation tool LabelMe (Wada 2016). LabelMe
creates and manages annotations in a JavaScript Object Nota-
tion (JSON) file format, which allows for easy data exchange
between different programming languages and platforms. The
JSON generated by the LabelMe software contains information
about the annotated images, including the objects present in
the image, their bounding boxes, and any associated attributes
or labels. It is a widely used standard for storing image annota-
tions, facilitating the development of deep learning models in
object detection, image segmentation, and recognition.
Within these images, we identified 17 taxonomic groups and
labeled 32,227 individual organisms ranging from small algae,
<100 ym in diameter, to small pelagic fish, ~ 4 cm. The first
three most abundant taxonomic groups are the line-shaped
algae Lyngbya, near-transparent ellipsoid Noctiluca, and cope-
pods (Table 1). We trained a full model, using the labeled
images, and assessed the accuracy of foreground object identi-
fication and classification to evaluate the model performance.

For all training datasets, including the full model, scene
classification model, and each scene-specific recognition
model, the data were divided into training and validation sets
in a 70 : 30 ratio. All models were trained using a batch size of
4 and underwent 20,000 iterations during the training pro-
cess. The training was performed on NVIDIA RTX graphics
cards, specifically the RTX 2000, 3000, and 4000 series.

Scene-specific model

The scene-specific model begins by classifying underwater
images into different scenes and is followed by a scene-specific
Mask R-CNN model for objection detection and classification
(Fig. 2). Scene classification depends on the ambient context,
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Table 1. Number of images, identified taxonomic groups, and labeled individuals for each taxonomic group in the full model and

scene-specific models.

Different scenes

Full model High concentration Noctiluca Phaeocystis Pteropod Shrimp Low density

Full frame images ~ Number of images 979 151 99 81 324 124 281
Number of labeled Appendicularia 489 29 13 147 207 4 239
individuals Chaetognatha 209 22 42 45 12 9 81
Copepoda 3466 144 353 531 1039 119 1952

Creseis 1225 0 0 0 1225 9 188

Echinodermata 451 5 388 34 16 0 12

Fish 10 0 0 0 0 10 0

Larval fish 1 0 0 0 0 0 3

Lyngbya 20,212 1635 1593 815 18,370 205 10,107

Medusae 246 73 28 38 50 6 109

Noctiluca 4950 189 3661 4 6 782 595

Phaeocystis 521 143 86 259 40 0 0

Polychaete 21 0 0 0 0 0 21

Scylla larvae 14 0 0 0 0 14

Shrimp 262 76 7 0 2 154 7

Skeletonema 3 2 0 0 0 0

Spiral diatom 111 13 16 0 24 0 15

Thaliacea 108 9 54 5 13 5 57

shape, and layout of biological targets within the image. This
step is accomplished through an efficient lightweight CNN
model, namely ShuffleNet, which utilizes pointwise group
convolution and channel shuffle to reduce computation cost
while maintaining accuracy (Ma et al. 2018; Zhang
et al. 2018). We use underwater plankton images to illustrate
how we set up and train the scene classification model.

In the present study, underwater plankton images were
manually sorted into six scene categories (Fig. 1):

1. images with evenly distributed, abundant particles (Fig. 1a),
which are common in estuaries and nearshore waters due
to riverine and resuspended bottom particles;

2. randomly distributed, Noctiluca-dominated images (Fig. 1b);

3. randomly distributed Phaeocystis colonies, which exhibit
round clustering (Fig. 1¢);

4. Creseis acicula Pteropoda clusters (Fig. 1d) and the co-
occurring, evenly distributed, line-shaped Lyngbya algae;

5. clustered, small shrimp (Fig. 1le) with co-occurring, ran-
domly distributed Noctiluca; and

6. clear water, low concentration plankton (Fig. 1f).

For the plankton scene classification model, we included
546, 1060, 768, 508, 336, and 766 full frame images in the
high-concentration, Noctiluca, Phaeocystis, Creseis, shrimp, and
clear water scenes, respectively. The number of images, taxo-
nomic groups, and labeled targets for each scene are summa-
rized in Table 1. For the training dataset, the data were split
into a training set and a validation set in a 70 : 30 ratio.
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In the second phase, we first classified the 979 labeled
images into 6 different scene groups, and then a separate
Mask R-CNN model was trained using the labeled images
for each scene category (Fig. 2). Note that we manually
selected a small subset of labeled images to be included in
different scenes. Out of the 979 total images utilized in the
current study (corresponding to the sum of the diagonal ele-
ments in Table 2), 84 images were cross-referenced (repre-
sented by the sum of the nondiagonal elements in Table 2).
The goal was to represent the occurrence of various species
more accurately across different scenes, while the total
amount of information for both the full model and the
scene-specific model remains unchanged. The inclusion of
some duplicate images also ensured the scene-specific
model receives sufficient data for effective training. For
instance, in the case of line-shaped algae, Lyngbya, which
often co-occurs with Creseis, it was essential to provide
ample examples for the model to learn from. Labeling
Lyngbya is an extremely time-consuming process, often tak-
ing several weeks to label a single image due to its small size
and frequent occurrences in large numbers. Similarly,
Noctiluca often co-occurred with shrimp, thus we included
some labeled images from the Noctiluca scene to improve
the representation of Noctiluca in the shrimp scene. Like-
wise, we observed that Noctiluca frequently co-occurred
with shrimp. To enhance the representation of Noctiluca in
the shrimp scene, we intentionally included some labeled
images from the Noctiluca scene.
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Table 2. The number of images in each scene is denoted by the diagonal elements, while the nondiagonal elements represent images

that are cross-referenced across different scenes.

High conc. Noctiluca Phaeocystis Pteropoda Shrimp Low den.
High conc. 102 1 4 2 21 21
Noctiluca 1 85 3 3 2 5
Phaeocystis 0 1 76 0 0
Pteropoda 0 0 0 322 0 2
Shrimp 0 8 0 3 113 0
Low den. 0 0 0 0 3 281

Comparison between full model and scene-specific model
for plankton images

The performance of full model and scene-specific models
was evaluated using accuracy metrics and a confusion matrix.
During the process of model training, two accuracy metrics
were calculated for the Mask R-CNN model: the accuracy for
foreground object detection and the accuracy for object classi-
fication. For the scene classification model, a single accuracy
metric was calculated. The general form of accuracy is
(TP+TN)/(TP +FP+ TN+ EN), where TP is the number of true
positives, TN is the number of true negatives, FP is the number
of false positives, and FN is the number of false negatives. A
confusion matrix was also constructed for the scene classifica-
tion model. The confusion matrix includes the actual and
predicted classes obtained by a classification system. Each row
represents an actual class example; each column represents
the state of a predicted class.

The performance of both the full model and the scene
classification model was evaluated and compared using a
testing dataset comprised of 100 underwater plankton
images. These images were collected in coastal waters, specifi-
cally in Guangdong, People’s Republic of China, and the
Columbia River Plume, USA, utilizing the PlanktonScope, an
in situ shadowgraph imaging system (Song et al. 2020; Liu
et al. 2021). Twenty nonempty full-frame images were ran-
domly selected for each scene, and then images were
processed using both the full- and scene-specific models.
Both models output the predicted results, segmented objects
for each class, and the counts for each class. We then manu-
ally examined the segmented objects, moved the mis-
classified objects to the correct class, and performed a
recount. Given that Mask R-CNN does not produce informa-
tion for the nontarget classes, and it is almost impossible to
perform objective visual counts for small semi-transparent
organisms like Noctiluca and Lyngbya, we used precision as a
metric to evaluate model performance instead of accuracy.
Precision measures the accuracy of positive predictions made
by the model which reflect the model’s ability to correctly
identify true-positive instances among all the positive predic-
tions it makes. Precision is calculated as: Precision = TP/(TP
+ FP), where TP is true positives and FP is false positives. A

52

high precision value indicates that the model has a low false-
positive rate, meaning that when it predicts a positive class,
it is highly likely to be correct. On the other hand, a low pre-
cision value suggests that the model is making a significant
number of false-positive predictions, which is often a prob-
lem in plankton image recognition.

Examples of processing benthic images and sonar images

Benthic videos were collected in the Arctic using a camera
system manufactured by A.G.O. Environmental Electronics
Ltd, Victoria, B.C., Canada (Cooper et al. 2019). The system
includes two positioning lasers, an undersea video camera,
with onboard monitoring and recording on a ship-based video
camcorder, and hand deployment using a 200-m electronic
cable. A key challenge in processing benthic images is separat-
ing organisms from a complex background because benthic
organisms often blend into their habitats and suboptimal
image quality only exacerbates this problem. To illustrate the
difficulties encountered when processing benthic images using
traditional methods and highlight the benefits of the current
framework, we conducted a comparison between the results of
Rol extraction using thresholding binarization and our
approach. We separated benthic images into four scenes:
images with aggregated organisms, complex background
including dead shells and debris, isolated organisms, empty
images without organisms. A scene classifier was trained with
120 images in each scene category. For demonstration pur-
poses, we only included relatively few labeled images, 4-30,
for each scene to train the scene-specific model. A set of
20 randomly selected benthic images were used to test the per-
formance of the model.

Adaptive resolution imaging sonar (ARIS) systems are ideal
tools to study pelagic organisms ranging from jellyfish to small
fish (Lankowicz et al. 2020; Shahrestani et al. 2020). Sonar
images were collected in Chesapeake Bay using the ARIS 1800,
a shipboard-mounted imaging system with a downward-
looking angle of 30°-45° (Sound Metrics Corp). These cameras
have improved resolution and produce near-video quality
images of the water column up to a 35 m range from the cam-
era lens, and can resolve objects down to 3 mm. However,
sonar images have much lower resolution than optical cameras
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and individual objects including small pelagic fish have few dis-
tinct morphological features. In most cases, visual identification
relies on auxiliary information, such as schooling shape, size,
and other spatial characteristics. For demonstration purposes,
we separated sonar images into eight scenes: (1) empty images
with only beam patterns; (2) sea floor; (3) fish schools without
sea floor; (4) fish school with sea floor; (5) jellyfish without sea
floor; (6) jellyfish with sea floor; (7) mysid shrimp swarms with
sea floor; and (8) mysid shrimp swarms without sea floor. Note
that the sea floor often has a strong signal and is an important
feature to separate scenes because it both determines the layout
of an image, and also affects image contrast. We also used a set
of 20 randomly selected sonar images to test the performance
of the proposed framework.

Results

Comparison between full model and scene-specific model
for plankton images

The full model achieved 73% accuracy in foreground object
detection and 87% accuracy in object classification using the
labeled underwater plankton dataset (Fig. 3a). In the proposed
framework, the accuracy of the initial step, scene classification,
reached 98% using the selected full-frame plankton images
(Fig. 3b) and the six scene-specific models generally reached
higher accuracy than the full model (Fig. 3c-h). The confusion
matrix (Fig. 4) suggests that the scene classification model can
separate full frames into the corresponding scene with 94-99%
accuracy for most scene categories. The frequent co-occurrence
of shrimp and Noctiluca likely caused the relatively low accuracy
in the shrimp scene. Among the scene-specific models, the high-
concentration and shrimp-specific models had the highest accu-
racies, with 98% and 96% foreground classification accuracy and
97% and 96% classification accuracy respectively (Fig. 3c,g).
Pteropoda and low-density specific models had the lowest accu-
racies with 80% and 81% foreground classification accuracy and
89% and 92% classification accuracy. The increased scene-
specific model performance suggests that scene classification
reduces the variation, or uncertainty, among images.

Both the full model and scene-specific model performed
well on large organisms (Figs. 5, 6; Table 3). Full frame images
for Figs. 5 and 6 were provided as Supporting Information
Appendices 1-12. In the high-concentration scene, both pro-
cedures effectively identified and segmented targets from very
noisy and low contrast backgrounds) with the scene-specific
approach performing slightly better than the full model. In
the shrimp scene, both procedures identified and segmented
shrimp correctly with the full model yielding more false posi-
tives for Chaetognatha, Copepoda, Medusae, and Shrimp
groups, while the full model found more Noctiluca than the
shrimp scene-specific model (Fig. 5c,d; Table 3). This disparity
was caused by the larger sample of labeled Noctiluca in the full
model library (4950 individuals) than in the shrimp scene-spe-
cific library (782 individuals; Table 1). In the low-density
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Confusion matrix

Empty Images 4 0.00  0.00 0.00 0.00  0.00 0.00  0.00
High Conc 0.8
Low Density
0.6
=
2 Noctiluca 4
<
0.4
Phaeocystis -
Pteropod - F0.2
Shrimp -
—- 0.0
&
S
SR o« F
Predicted

Fig. 4. Normalized confusion matrix for the scene classification model
with each row representing an actual class example and each column rep-
resenting the state of a predicted class.

scene, both procedures performed well (Fig. Se,f) except that
the low-density scene-specific model tended to miss targets
due to misclassification (Table 3).

When image complexity increased, the scene-specific models
generally outperformed the full model with improved precision
and reduced missing targets (Fig. 6; Table 3). As an example, in
the 20 testing images depicting the Noctiluca scene (Fig. 6a,b),
the full model and scene-specific model identified 5348 and
1488 Noctiluca individuals, respectively. However, visual counts
resulted in 1595 individuals being observed. This discrepancy in
the number of detected Noctiluca individuals contradicts the fact
that the full model library contains approximately 26% more
labeled Noctiluca individuals compared to the library specific to
the Noctiluca scene (Fig. 6a,b). In the 20 testing images rep-
resenting the Phaeocystis scene, the full model and scene-specific
model detected 363 and 666 Phaeocystis colonies, respectively.
However, visual counts revealed a total of 672 Phaeocystis colo-
nies (Fig. 6¢,d). Within the 20 testing images of the Pteropoda
scene, the 2 dominant groups were Creseis and Lyngbya. The full
model identified 68 Creseis and 691 Lyngbya. Conversely, the
scene-specific model also identified 68 Creseis, matching the
count from the full model, but detected 948 Lyngbya, which is
37% more than the count from the full model (Fig. 6e,f).

The accuracy of the scene-specific model for other small
organisms, like copepods, is also much higher than the full
model (Table 3). The full inclusion model approach also tends
to merge multiple Rols for small organisms, such as Lyngbya
clusters, which were often falsely recognized as a single
Lyngbya individuals (Fig. 6e,f). The occurrence of merged Rols
increased as we increased the number of large organisms, such
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(a) Full model: High concentration (b) Scene-specific: High Concentration

(¢) Full model: Shrimp (d) Scene-specific: Shrimp

(

(f) Scenelspeciﬁc: Low derj§i'gy7 7

[Copepoda ool . .
A a B | K & |
Fig. 5. Examples of processed underwater plankton images from three different scene categories using the full model and scene-specific models.

as mysid shrimp, in the library. However, the scene-specific =~ example, it was difficult to extract intact Rols from the back-

models effectively avoided the merging Rols issue. ground using traditional binarization methods, like adaptive
thresholding, because the resulting Rols were disconnected and
Examples of processing benthic and sonar images fragmented into small pieces (Fig. 7a,b). For images with aggre-

Effectively extracting Rols is a necessary, but challenging, gated benthic organisms (Fig. 7c), the traditional binarization
first step in image recognition. Using benthic images as an approach was even less effective and failed to yield any
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(a) Full model: Noctiluca

X

(e) Full model: Pteropoda

Deep learning system for marine biome

(b) Scene-sp

ik 4

ecific: Noctiluca
= o

% o

(d) VScehe-speciﬁc: Phaebéysti&

(f) Scene-sp

ecific: Pteropoda

|

Fig. 6. Example of processed underwater plankton images with high complexity.

meaningful results. By comparison, the proposed approach per-
formed well on low-contrast benthic images (Fig. 7c,d). The num-
ber of images, scene categories, identified taxonomic groups, and
labeled individuals for the full model and scene specific models
are provided in Table 4. For the full model, the foreground classi-
fication accuracy and classification accuracy reached 99% and
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95%, respectively. For the scene-specific models, the accuracy of
scene classification model reached 98%, the foreground classifica-
tion accuracies ranged 97-99%, and classification accuracies
ranged 96-97% (Table 4). When we applied the trained models
to the testing benthic images, the full model missed some indi-
viduals of the dominant taxonomic groups, ~ 13% of sand
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Table 3. Results from the processed underwater plankton images using the full model, scene-specific models, and visual counts.*}
The following abbreviations are used: Prec for precision, Chaeto for Chaetognatha, Append for Appendicularia, and Echino for
Echinodermata. The shaded and white portions indicate different scene categories alternately. The “/” symbol denotes an unavailable
value when the denominator is either zero or unavailable. Note that achieving 100% precision with a limited number of samples may
not be statistically representative of the model’s overall performance.

Full model Scene specific model
Scene Label Count Prec. (%) Miss. Count Prec. (%) Miss. Visual count
High conc. Chaeto. 1 100 0 1 100 0 1
Copepoda 4 25 0 1 100 0 1
Medusae 45 89 11 29 100 0 29
Noctiluca 1 100 0 1 100 0 1
Phaeocystis 19 100 -13 16 100 -16 32
Shrimp 3 100 0 3 100 0 3
Noctiluca Append. 2 0 0 0 / 0 0
Chaeto. 11 100 -2 13 100 0 13
Copepoda 37 48 -1 37 76 -1 29
Echino. 19 100 -18 45 82 0 37
Medusae 8 13 0 0 / =1 1
Noctiluca 348 100 —1247 1488 100 -107 1595
Lyngbya 15 100 / 0 / -15 15
Phaeocystis 10 0 0 0 / 0 0
Shrimp 5 20 0 0 / 0 1
Phaeocy. Copepoda 7 86 -14 34 62 0 21
Cresis 2 0 0 0 / 0 0
Echino. 1 100 0 2 50 0 1
Lyngbya 52 83 0 0 0 0 41
Medusae 12 0 0 0 / 0 0
Noctiluca 16 69 0 0 / -11 11
Phaeocystis 363 100 —309 666 100 -6 672
Shrimp 2 50 0 3 33 0 1
Thaliacea 7 0 0 0 - 0 0
Pteropoda Append. 7 43 -4 9 56 -2 8
Copepoda 105 53 —45 128 74 -4 99
Creseis 68 100 0 68 100 0 68
Echino. 1 0 0 0 0 0
Lyngbya 691 100 257 948 100 0 948
Medusae 1 0 0 0 / 0 0
Noctiluca 6 17 0 0 / -1 1
Phaeocystis 6 0 0 0 / 0 0
Shrimp 1 0 0 0 / 0 0
Shrimp Chaeto. 1 0 0 0 / 0 0
Copepoda 3 0 0 0 / 0 0
Echino. 1 50 0 0 / -1 1
Fish 2 100 0 2 100 0 2
Medusae 1 0 0 0 / 0 0
Noctiluca 160 100 0 80 100 —-80 160
Shrimp 51 100 4 47 100 0 47
Low den. Append. 2 0 -3 3 33 -2 2
Chaeto. 1 100 0 2 50 0 1
Copepoda 32 81 0 28 86 -1 25
(Continues)
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Table 3. Continued

Full model Scene specific model
Scene Label Count Prec. (%) Miss. Count Prec. (%) Miss. Visual count
Creseis 0 / 0 2 0 0 0
Lyngbya 0 / 0 8 75 0 6
Medusae 0 / -2 0 / -2 2
Noctiluca 8 0 0 0 / 0 0
Thaliacea 4 75 0 1 100 -2 3

*Negative missing values indicate individuals that were not detected and misclassified; positive missing values indicate possible over-segmentation and
dual labeled objects in which an object was recognized as more than one taxonomic group based on a 40% probability threshold.

For small semi-transparent organisms like Noctiluca and Lyngbya, visual counts were performed based on the model output in which identified organisms
were labeled.

(a) Original low-contrast benthic image (b) Adaptive thresholding binarization

220719 0046230 I 220719 0046230 I

Fig. 7. Benthic video images: (a) an original benthic video image with a crab, (b) binarized image using an adaptive thresholding approach to segment
potential regions of interest, (c) predicted results for an aggregated scene image using the full model, and (d) predicted results for the same aggregated
scene image using scene-specific model. Note in image (c), there are a few sand dollars that were missed and a merge of sand dollars.

dollar, ~ 60% of brittle star, and ~ 67% of sea anemone Sonar images are often in relatively low resolution and lack
(Table 4). For testing images, the scene-specific model occasion- details at individual level (Fig. 8a,d). In many cases, soft-
ally misclassified sea anemones as shells, and vice versa. Given bodied jellyfish were obscured, with only the bell portion of
the small number of labeled organisms in the library, we expect their bodies visible. The number of images, scene categories,
that the performance of both models to improve rapidly as the identified taxonomic groups, and labeled individuals are pro-
number of labeled organisms increases. vided in Table 5. For the full model, the foreground
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Table 4. Number of benthic images, identified taxonomic groups, number of labeled individuals and accuracies for the full model and scene-specific models.

The white portion in the table displays information on model training, while the shaded portion shows the testing results.

Testing results

Model

Visual

Scene

Full

Full Aggregated Complex Isolated Count Precision (%) Missing Count Precision (%) Missing Count

20

20

20 100
100
100
100

15

10

31

Number of images

Full frame images

83

Number of labeled individuals Anemone

20

95
100

21

12

11

11

Brittle Star

Crab

Coral
Fish

430

430 100

54

100
100
100

376

212

212
241

Sand dollar

Shell

12

91
100

12

241

Starfish

Worm

99
96

98 97
97

98
95

Foreground accuracy (%)

Accuracy

96

Classification accuracy (%)
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classification accuracy and classification accuracy reached 94%
and 97%, respectively. For the scene-specific models, scene
classification accuracy was 96%, the foreground classification
accuracies ranged from 92% to 100%, and classification accu-
racies ranged from 90% to 99% (Table 5). When both models
were applied to the testing images, the full model often had
trouble distinguishing mysid swarms from small pelagic fish
schools (Fig. 8b,e); it tended to confuse small forage fish
schools and mysid schools (Fig. 8e). The scene-specific model
successfully identified mysid swarms (Fig. 8c) and enumerated
small forage fish within the small pelagic fish school (Fig. 8f).
In summary, the full model overestimated the number of
small fish, jellyfish and mysid swarms, while results from the
scene-specific model were consistent with visual counts
(Table 5).

Discussion

The new approach takes advantage of recent progress in
artificial intelligence and is designed to address several chal-
lenges related to the distribution patterns of marine organisms
in different environments. The inclusion of RPN significantly
increased our ability to separate each Rol from its background.
The RPN first generates a set of region proposals for each
object, classifies each proposed region as foreground or back-
ground, and finally it produces the best fit region proposal for
each object. The RPN model also identified nontarget objects,
and therefore could effectively reduce the number of objects
that needed to be classified by the following CNN model. This
initial step leads to subsequent increases in accuracy, reduced
false positives, and reduced computational demands. Results
suggest that the RPN approach is an ideal candidate as a com-
mon approach for object detection in different types of
images, from marine biome.

When compared to a single, unbiased Mask R-CNN model
for all images, the advantages of the proposed framework are
threefold. First, a single unbiased classifier often oversamples
rare groups resulting in more false positives and under-
samples abundant groups leading to more false negatives. A
scene-specific classification model for each scene takes into
account the inherently patchy distribution of marine organ-
isms meaning that dominant taxon could be different in dif-
ferent images. A scene-specific model for each scene also
allows a better match in data distribution between samples
and libraries, and therefore increases accuracy in both object
extraction and recognition. Second, the scene specific
approach provides a better method for dealing with large size
differences among objects, for example, an algal cell vs. an
adult krill. A single unbiased classifier underestimates or
completely misses small organisms. Third, the scene specific
model reduces the variation and uncertainty among images by
separating images with similar layout into the same scene
which subsequently improves the model performance.
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Fig. 8. Sonar images: (a) a sonar image showing seafloor and a swarm of mysids in the middle water column, and (b) predicted results from the full
model, (c) predicted results from the scene-specific result; (d) seafloor and a near bottom school of small forage fish, (e) predicted results from the full
model, and (f) predicted results from the scene-specific model.

The choice of Mask R-CNN as the backbone approach detectors like You Only Look Once (YOLO), where object
because it stands out as an accurate and versatile approach, detection is performed by convolving the full frame image
making it ideal for tasks requiring precise instance segmenta- (Redmon et al. 2016), Mask R-CNN employs a common con-
tion (He et al. 2017). In comparison to popular one-shot volution framework for both full frame images and region
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Table 5. Number of sonar images, identified taxonomic groups, labeled individuals and accuracies for the full model and scene-specific
models. The white portion in the table displays information on model training, while the shaded portion shows the testing results.

Full frame images Scenes Accuracy
Foreground Classification
Number Sea floor Small fish Mysid swarm Jellyfish accuracy (%) accuracy (%)
Full model 249 154 6346 159 130 94 97
EmptyFloor 30 30 0 0 1 100 99
FishFloor 29 29 1757 0 0 94 90
FishNoFloor 16 0 2949 0 8 92 91
JellyfishFloor 30 30 683 9 40 98 96
JellyfishNoFloor 29 0 613 2 55 100 98
MysidFloor 61 61 154 74 0 100 99
MysidNoFloor 51 0 0 74 26 100 99
Full model 20 17 634 5 6
Scene model 20 4 487 4 4
Visual counts 20 17 503 4 4

[Creseis_3

Creseis_9

Fig. 9. A plankton image dominated by Creseis acicula to illustrate the overlapping issue. In total, there were 30 individuals by visual examination and
5 were either partially presented or out of focus. The scene-specific model recognized 26 individuals with one over-segmented individual.

proposals. One-shot detectors are often faster, making them et al. 2020). However, they may sacrifice fine-grained details
suitable for real-time applications and objects with well- in object localization and segmentation (Huang et al. 2022;
defined edges and features (Prasetyo et al. 2020; Sumit Murfioz-Benavent et al. 2022; Xu et al. 2022). For underwater
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plankton images, which frequently feature complex noisy
backgrounds and overlapping individuals, a robust two-stage
approach like Mask R-CNN proves to be an ideal choice. None-
theless, it is worth noting that our preliminary experiments
using YOLO showed similar results: over 100 times faster
processing speed than Mask R-CNN, excellent results for small
fish, shrimp, and even small copepods, but relatively weaker
results for Noctiluca, which has faint edges. We envision that
both approaches have great value for processing marine envi-
ronment images with different purposes, such as real-time
applications vs. post-processing. Depending on the specific
requirements of the task, one can choose the most suitable
algorithm to achieve their objectives effectively.

The Mask R-CNN approach also addresses the long-standing
issue of broken and overlapping objects. Traditional binarization
approaches often generate broken objects resulting in over seg-
mentation which leads to more errors during classification as
illustrated in the benthic images. The RPN used in the new
approach has a clear advantage over other segmentation
approaches, such as thresholding binarization. With advances in
optics leading to significant increases of camera depth of field in
order to increase the imaging volume, the likelihood of over-
lapping objects becomes a more pronounced issue. The new
approach preserves the advantages of depth of field by computa-
tionally reducing the degree of overlap between objects (Fig. 9).
In a test image featuring numerous overlapping Creseis acicula, a
total of 31 individuals were present, among which 5 individuals
were either out of focus or only partially visible. The program
exhibited high accuracy in recognizing most individuals, and the
only instance of over-segmentation occurred with a single indi-
vidual, resulting in a final count of 27 individuals. Furthermore,
the new approach leads to a notable reduction in false positives
by integrating a simple binary classifier within the Rol segmenta-
tion step. This refinement results in fewer proposed regions being
fed to the CNN model, contributing to improved accuracy and
efficiency.

The integration of scene classification can significantly
reduce the number of labeled images required for training a
model for image recognition. The level of variation refers to
the diversity and complexity of the images in the dataset, such
as differences in lighting conditions, backgrounds, orienta-
tions, object sizes, and poses. When images in the dataset
exhibit low variation, meaning they share similar characteris-
tics and patterns, a smaller number of labeled images may be
sufficient for training the model. The model can generalize
well to unseen data and achieve good results as shown by the
present study, as it can learn from a relatively small represen-
tative set of images. Conversely, high variation among images
demands a larger number of labeled examples for successful
model training. More labeled images are required to ensure
that the model can learn a wide range of features and patterns,
making it more robust and capable of handling different sce-
narios. The number of labeled images is intertwined with the
complexity of the intended task. For example, training a
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model to recognize large organisms will require fewer labeled
individuals than training a model for recognition and segmen-
tation tasks involving organisms like Noctiluca and small jelly-
fish with weak features and edges. On the computational side,
scene classification was performed using a lightweight net-
work, ShuffleNet, which requires less than 1% of the time
needed by the Mask-RCNN to process a single image. The
model training time for the ShuffleNet model is significantly
shorter compared to that of the Mask-RCNN model.

The proposed framework can process different types of
images as illustrated in the present study: microscopic, complex
plankton images, benthic video images, and sonar images. Fur-
thermore, this unified framework fundamentally addresses the
issue of customized system-specific algorithms and provides an
opportunity to compare different systems within the same
image processing framework. The future development of our
imaging processing framework will unlock the potential for
real-time observation of plankton using PlanktonScope. A nota-
ble example of our success in this area is the deployment of a
PlanktonScope system along the Yangjiang coast since 2021,
positioned in front of a nuclear power plant cooling water
intake. This system has been instrumental in providing real-
time data on plankton density, with a specific focus on mysid
shrimp, which is crucial as mysid swarms could potentially clog
cooling water intake (Bi et al. 2022). Furthermore, we have also
deployed another PlanktonScope system in Chesapeake Bay
since February 2023. This deployment aims to monitor plank-
ton dynamics in the mid-stem of the Bay, contributing valuable
insights to the ecosystem dynamics. The availability of real-
time plankton monitoring data serves as invaluable ecosystem
indicators, supplying essential information for decision-makers
and managers to make informed choices. In conclusion, our
proposed framework stands to significantly streamline the
deployment of imaging systems in ecological studies by facili-
tating swift bulk image processing and extraction of pertinent
ecological information.
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