
Scalable Algorithm for Finding Balanced Subgraphs with
Tolerance in Signed Networks

Jingbang Chen∗

j293chen@uwaterloo.ca
David R. Cheriton School of

Computer Science, University of
Waterloo

Waterloo, Canada

Qiuyang Mang∗

qiuyangmang@link.cuhk.edu.cn
School of Data Science, The Chinese
University of Hong Kong, Shenzhen

Shenzhen, China

Hangrui Zhou∗

zhouhr23@mails.tsinghua.edu.cn
Institute for Interdisciplinary

Information Sciences (IIIS), Tsinghua
University

Beijing, China

Richard Peng
yangp@cs.cmu.edu

Computer Science Department,
Carnegie Mellon University

Pittsburgh, USA

Yu Gao
ygao2606@gmail.com

Independent
Beijing, China

Chenhao Ma†

machenhao@cuhk.edu.cn
School of Data Science, The Chinese
University of Hong Kong, Shenzhen

Shenzhen, China

ABSTRACT

Signed networks, characterized by edges labeled as either posi-

tive or negative, o�er nuanced insights into interaction dynamics

beyond the capabilities of unsigned graphs. Central to this is the

task of identifying the maximum balanced subgraph, crucial for

applications like polarized community detection in social networks

and portfolio analysis in �nance. Traditional models, however, are

limited by an assumption of perfect partitioning, which fails to

mirror the complexities of real-world data. Addressing this gap, we

introduce an innovative generalized balanced subgraph model that

incorporates tolerance for imbalance. Our proposed region-based

heuristic algorithm, tailored for this NP-hard problem, strikes a

balance between low time complexity and high-quality outcomes.

Comparative experiments validate its superior performance against

leading solutions, delivering enhanced e�ectiveness (notably larger

subgraph sizes) and e�ciency (achieving up to 100× speedup) in
both traditional and generalized contexts.

KEYWORDS

graph mining, signed graph, dense subgraph, community detection

ACM Reference Format:

Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao,

and Chenhao Ma. 2024. Scalable Algorithm for Finding Balanced Sub-

graphs with Tolerance in Signed Networks. In Proceedings of the 30th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24),

August 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3637528.3671674

1 INTRODUCTION

Social media platforms, integral to our digital connectivity, trans-

form interactions into analyzable social networks. By deploying

graph algorithms, we discern network properties like community

detection [20, 36] and partitioning [11], informing user experience

improvements and recommendation systems [35]. Yet, these plat-

forms can also engender echo chambers that reinforce divisive

ideologies, challenging democratic health. Consequently, detecting

∗The �rst three authors contributed equally to this research.
†Chenhao Ma is the corresponding author.

and countering polarization in social networks is a critical area of

research [9, 31], pivotal for developing defenses against misinfor-

mation [8, 14].

A classical model that applies to social networks to deal with po-

larization is the signed graphs. The signed graph model overcomes

the limitation that normal graphs cannot capture users’ dispositions.

Generally speaking, while the vertex set represents users, there are

two kinds of edges between vertices indicating agreement or dis-

agreement. We often refer to them as the positive and the negative

edges. The signed graph model was �rst introduced by Harary in

1953 [22] to study the concept of balance. The concept of balance is

important in signed graphs. Generally speaking, a signed graph is

balanced if it can be decomposed into two disjoint sets such that

positive edges are between vertices in the same set while negative

edges are between vertices from di�erent sets. Such a concept has

many practical applications, especially in the polarization study. In

a social network, a balanced graph suggests two communities exist

with contrasting relationships while maintaining inner cohesion.

There are two lines of work when studying social network po-

larization with signed graphs. Since most graphs coming from real

scenarios are not balanced, if we can �nd the maximum balanced

subgraph (MBS) instead, it usually reveals the largest polarized

communities along with several important properties.

On the other line of work, instead of extracting the maximal

subgraph, it focuses on removing edges to guarantee the balance of

the original graph. The minimum number of edges whose deletion

makes all connected components balanced is called the Frustration

Index of the given signed graph.

However, such a notion of balance is strict in that no edge can

disobey the condition. In reality, such strictness does not usually

appear. For example, though being dominated, there usually exists

some voices of disagreement on the majority idea, even in the

most extreme community. Besides, two individuals in di�erent

political parties might reach a consensus on certain issues. In other

words, there usually exist some imbalanced edges in signed graphs

extracted from the community, which are against the strict notion

of balance. Failing to handle these imbalanced edges might prevent

us from identifying, extracting, and characterizing the community

a
rX

iv
:2

4
0
2
.0

5
0
0
6
v
2

[c

s.
S

I]

1
6
 J

u
n
 2

0
2
4

KDD 2024, August 2024, Barcelona, Spain Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao, and Chenhao Ma

0% imbalanced edges 10% imbalanced edges

20% imbalanced edges 30% imbalanced edges

Figure 1: Balanced subgraphs are found in Cloister with

di�erent tolerance, where solid edges are positive, dashed

edges are negative, black edges are balanced, and red edges

are imbalanced.

properly in real scenarios. We provide an example in Figure 11: As

we increase the limitation for imbalanced edges, the community

is getting signi�cantly larger and denser. Therefore, we may be

unable to capture the actual community if we prohibit imbalanced

edges when computing.

Many questions arise here due to the many limitations:

• Can these two lines of work be uni�ed?

• Can we develop algorithms �nding communities that are non-

strictly balanced?

In this paper, we answer these questions a�rmatively. We de-

sign a tailored function to measure the tolerance of the imbalance.

To properly describe such tolerance, we adapt the frustration in-

dex as part of the tolerance function. In this way, we can either

allow no tolerance to extract the MBS in the network or a loose

tolerance to extract communities that might contain voices of dis-

agreement. We further raise new problems based on this tolerance

model and present a new region-based heuristic algorithm that com-

putes maximal balanced subgraphs under the tolerance setting. Our

new algorithm is versatile, delivering high-quality solutions across

a range of problems based on the tolerance model, and it’s also

e�cient, with an expected output time proportional to the size of

the result. By setting di�erent tolerances, we utilize our algorithm

to handle di�erent tasks and compare it with the performance of

state-of-the-art algorithms2 on 8 real-world datasets.

Our contributions are summarized as follows:

• We introduce a novel, generalized, and practical model for iden-

tifying balanced subgraphs with tolerance in signed graphs.

• We have developed an e�cient region-based heuristic random-

ized algorithm, characterized by an expected time complexity

1konect.cc/networks/moreno_sampson
2Here, the SOTA algorithms are adapted to �t our new tasks under various tolerances.

proportional to the size of the output, and coupled with a guar-

antee of result quality.

• Extensive experiments show that our algorithm consistently out-

performs the baselines in terms of the quality of the returned

subgraphs and achieves up to 100× speedup in terms of running

time.

• The e�ectiveness of our algorithm is also evident in its application

to polarized community detection, as detailed in Section 5.5.

Outline. The rest of the paper is organized as follows. We re-

view the related work in Section 2, and introduce our generalized

maximum balanced subgraph model with tolerance in Section 3.

Section 4 presents our region-based heuristic algorithm. Experi-

mental results are given in Section 5, and we conclude in Section 6.

2 RELATED WORK

Signed Graphs. Signed graphs were �rst introduced by Harary in

1956 to study the notion of balance [22]. Cartwright and Harary gen-

eralized Heider’s theory of balance onto signed graphs [12]. Harary

also developed an algorithm to detect balance in signed graphs [24].

There are other works on studying the minimum number of sign

changes to make the graph balance [3]. Spectral properties have

also been studied recently. Hou et al. have studied the smallest

eigenvalue in signed graphs’ Laplacian [26, 27].

Many works focus on community detection or partition in signed

graphs. Anchuri et al. give a spectral method that partitions the

signed graph into non-overlapping balanced communities [4]. Dor-

eian and Mrvar propose an algorithm for partitioning a directed

signed graph and minimizing a measure of imbalance [18]. Yang et

al. give a random-walk-based method to partition into cohesively

polarized communities [37]. The more recent work is by Niu et

al [32]. They leverage the balanced triangles, which model cohe-

sion and polarization simultaneously, to design a good heuristic.

Maximum Balanced Subgraphs. The Maximum Balanced Sub-

graphs (MBS) problem has two variants: maximizing the number of

vertices (MBS-V) and edges (MBS-E). Poljak et al. give a tight lower

bound in 1986 [34] on the number of edges and vertices of the bal-

anced subgraph. The MBS-E problem is in fact NP-hard since it can

be formulated as a generalization of the standardMaxCut problem.

To �nd the exact solution, there are some algorithms in the context

of �xed-parameter tractability (FPT) are developed [16, 28]. More

studies are on extracting large balanced subgraphs. DasGupta et al.

have developed an algorithm based on semide�nite programming

relaxation (SDP) [17]. For the MBS-V problem, Figueiredo and Frota

propose several heuristic methods in 2014 [19].

In 2020, Ordozgoiti et al. proposed a new algorithm named Tim-

bal [33] that extracts large balanced subgraphs regarding both

vertices and edges. Timbal relies on signed spectral theory and the

bound for perturbations of the graph Laplacian. However, Timbal

is not stable and the balanced subgraph it found is sometimes small

and unsatisfying as shown in our experiments.

Frustration Index. The frustration index was �rst introduced in

1950s [1, 23]. Computing the frustration index is related to the

EdgeBipartization problem, which requires minimization of the

number of edges whose deletion makes the graph bipartite. Since

EdgeBipartization is NP-hard, computing the frustration index is

Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks KDD 2024, August 2024, Barcelona, Spain

1

2 3

4 5

6

1

2 3

4 5

6

1

2 3

4 5

6

1

2 3

4 5

6

(a) (b) (c) (d)

Figure 2: A signed graph (a), its MBS-V and MBS-E (b), its

TMBS-V and TMBS-E (c), and its V-TMBS (d) with V =
1
3 .

also NP-hard. The MaxCut is also a special case of the frustration

index problem. Assuming Khot’s unique games conjecture [30], it

is still NP-hard to approximate within any constant factor. For the

non-constant factor case, there are works that produce a solution

approximated to a factor of $ (
√

log=) [2] or $ (log:) [7] where =
is the number of vertices and : is the frustration index. Coleman et

al. have given a review on di�erent approximation algorithms [15].

Hü�ner et al. show that the frustration index is �xed parameter

tractable and can be computed in$ (2ġ<2), where< is the number

of edges and : is the �xed parameter (the frustration index) [29].

There are also algorithms using binary programming models to

compute the exact frustration index [5, 6].

3 PROBLEM SPECIFICATION

A signed graph is an undirected simple graph � = (+ , �+, �−)
where + is the vertex set and �+, �− represent the positive and

negative signed edge sets. We �rst give the formal de�nition of

balanced graphs as follows, which is the same as the previous

works [32, 33]. Note that we and these works require the graph to

be connected for the community detection proposal.

Definition 3.1 (Balanced Graph). Given a signed graph � =

(+ , �+, �−),� is balanced if� is connected and there exists a partition

+ = +1 ∪+2,+1 ∩+2 = ∅ such that for each edge (8, 9) ∈ �+, vertices
8 and 9 belong to the same set within +1 and +2, while for each edge

(8, 9) ∈ �− , they belong to the di�erent sets.

Graphs are usually not balanced, especially when they are from

practical scenarios. Therefore, people turn to study to �nd the

maximum balanced subgraph (MBS) from the given graph. There

are usually two variants of problems: maximizing the number of

vertices [33] and edges [17].

Problem 1 (MBS-V). Given a signed graph � = (+ , �+, �−),
�nd the graph � ′ = (+ ′, �′+, �′−) induced by + ′ ¦ + such that � ′

is balanced and |+ ′ | is maximized.

Problem 2 (MBS-E). Given a signed graph� = (+ , �+, �−), �nd
the graph � ′ = (+ ′, �′+, �′−) induced by + ′ ¦ + such that � ′ is
balanced and |�′+ ∪ �′− | is maximized.

We illustrate the concepts of MBS-V and MBS-E with an example

in Figure 2, along with other problems to be discussed below. Here,

we give a graph with 6 vertices numbered from 1 to 6 where solid

edges are positive and dashed edges are negative, presented in (a).

When solving Problem 1 or 2 on this graph, the optimal subgraph

is constructed by vertex 1, 2, 3, 5, where +1 = {1, 3, 5} and +2 = {2}.
They are painted in two di�erent colors in (b).

Another well-known problem in this topic is computing the

minimum number of edges whose deletion makes all connected

components balanced. This minimum amount of the edge removal

is called the Frustration Index of the given signed graph� , denoted

as !(�).
Now, we are ready to introduce the concept of Balance with

V-tolerance in signed networks, which is central to our paper.

Definition 3.2 (Balanced Graph under V-Tolerance). Given

a signed graph� = (+ , �+, �−) and a tolerance parameter V ∈ (0, 1],
� is balanced under V-Tolerance if � is connected and

Ĉ (ă)
|ā+∪ā− | f V .

In other words, when a graph is balanced under V-tolerance, it

implies that by removing at most V |�+ ∪ �− | edges from it, we

can ensure that all connected components of the remaining graph

become strictly balanced. Expanding upon the original de�nition

of balance, this concept allows for the tolerance of a maximum of

V |�+ ∪ �− | edges that disobey the partitioning of polarized com-

munities.

Under such V-tolerance restriction, �nding the maximum bal-

anced subgraph is generalized into the following two problems.

Problem 3 (TMBS-V). Given a signed graph � = (+ , �+, �−)
and a tolerance parameter V ∈ (0, 1], �nd the graph� ′ = (+ ′, �′+, �′−)
induced by + ′ ¦ + such that � ′ is balanced under V-Tolerance and
|+ ′ | is maximized.

Problem 4 (TMBS-E). Given a signed graph � = (+ , �+, �−)
and a tolerance parameter V ∈ (0, 1], �nd the graph� ′ = (+ ′, �′+, �′−)
induced by + ′ ¦ + such that � ′ is balanced under V-Tolerance and
|�′+ ∪ �′− | is maximized.

When V becomes any value between (0, 1
|ā+∪ā− |), Problem 3 and

Problem 4 are equivalent to the Problem 1 and Problem 2 respec-

tively. However, unlike the strictly balanced graph, even deciding

whether a signed graph satis�es V-tolerance is hard. Formally, we

have the following lemma. The proof is deferred to Appendix A.1.

Lemma 3.1. Given a signed graph � = (+ , �+, �−), deciding
whether � is balanced under V-tolerance cannot be done within poly-

nomial time for tolerance parameter V >
1

|ā+∪ā− | , unless P = NP.

Therefore, it is di�cult to �nd large balanced graphs with tol-

erance and we cannot adapt any previous algorithms on MBS or

other related problems. Meanwhile, there is another limitation that

is worth mentioning. If V g Ĉ (ă)
|ā+∪ā− | , Problem 3 and Problem 4 has

a trivial optimal solution: the largest connected component. That

is to say, in such loose tolerance restriction, the optimal solution

to these two problems might not re�ect the polarized community.

The previous showcase given in Figure 2 (c) is a typical example:

When we solve Problem 3 and 4 with V =
1
3 in such graph, we get

the whole graph. However, vertex 6 is in fact a noise that only has

negative edges connected to both +1 and +2. Therefore, it should

not be included in any meaningful subgraph solution.

To encounter the challenges and limitations, we �rst propose

Tolerant Balance Index, a novel metric to evaluate signed graphs

under the given tolerance for the balance.

Definition 3.3 (TolerantBalance Index (TBI)). Given a signed

graph � = (+ , �+, �−) and a tolerance parameter V ∈ (0, 1], de�ne
its Tolerant Balance Index ¨(�, V) as the value of |�+ ∪ �− | − Ĉ (ă)

ÿ
.

KDD 2024, August 2024, Barcelona, Spain Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao, and Chenhao Ma

Correspondingly, we propose the following problem as the main

task to solve throughout the paper.

Problem 5 (V-TMBS). Given a signed graph� and a tolerance

parameter V ∈ (0, 1], �nd the graph� ′ induced by + ′ ¦ + such that

� ′ is connected and ¨(� ′, V) is maximized.

It is easy to show, for any balanced graph � under V-tolerance,

¨(�, V) g 0. To discuss the usage of solving Problem 5, we also

want to address that maximizing the number of edges (Problem 2

and 4) approximates the solution for maximizing the number of

vertices (Problem 1 and 3). That is to say, these two variants of

MBS problems are related.

Lemma 3.2. Given a signed graph� , the solutions to Problem 2 and

Problem 4 are 1
�
-approximations for the Problem 1 and Problem 3

respectively, where � is the maximum degree of vertices in � .

We defer the proof of Lemma 3.2 to Appendix A.1. Considering

the aforementioned interrelationship between two variants, we

propose that �nding the large connected subgraph with maximal

¨(�, V) (Problem 5) can be considered as a good approximation

of the solutions to Problem 3 and Problem 4 simultaneously. In

addition, since Problem 5 takes both the size and the polarity

into account, it mitigates the limitation of large V . When we solve

Problem 5 with V =
1
3 on Figure 2 (a), the optimal subgraph will

be vertices excluded vertex 6, where +1 = {1, 3, 5} and +2 = {2, 4},
presented in (d). As it is shown, the noise vertex 6 is not mistakenly

selected into the optimal subgraph we try to �nd. Therefore, the

polarity is being preserved.

In Section 4, we will present an e�cient and e�ective algorithm

for Problem 5. Then in Section 5, we will demonstrate the experi-

mental results to support our proposal.

4 ALGORITHM

We propose Region-based Heuristic (RH), a new algorithm that

searches for large balanced subgraphs with the V-tolerance restric-

tion (Problem 5). Our algorithm runs in a given signed graph

� = (+ , �+, �−), where �+, �− represent the positive and negative

signed edge sets. The tolerance parameter V is also given as input.

4.1 Relaxation

It is not easy to compute ¨(�, V) directly. Instead, we propose an
alternative method to approximate it from the lower end while

guaranteeing the tolerance condition (¨(�, V) g 0) is not violated.

For each vertex in� , we assign a color in {0, 1}. Only vertices of

the same color can be grouped in the same community. We denote

any color assignment of� as X. Such de�nition is aligned with the

previous work [6]. Now, we are ready to give the formal de�nition

of our newly proposed Tolerant Balanced Count.

Definition 4.1 (Tolerant Balance Count (TBC)). Given a

signed graph � = (+ , �+, �−) under coloring X and a tolerance

parameter V ∈ (0, 1], de�ne its Tolerant Balance Count as
ˆ̈ (ă, ÿ, X) = |ā+ ∪ ā− | − 1

ÿ

∑

(8,9) ∈�+
1{Į8 ≠ Į 9 } −

1

ÿ

∑

(8,9) ∈�−
1{Į8 = Į 9 }

The following lemma states that ¨(�, V) is, in fact, the upper

bound of ˆ̈ (�, V,X) with respect to di�erent coloring X. The proof

is deferred to Appendix A.2. We also have the following corollary

that ensures the V-tolerance requirement is not violated.

Lemma 4.1. Given a signed graph� = (+ , �+, �−) and a tolerance
parameter V ∈ (0, 1], we have ¨(�, V) = maxX ˆ̈ (�, V,X).

Corollary 4.2. Given a signed graph� and a tolerance parameter

V , � is balanced under V-tolerance if there exists a coloring X such

that ˆ̈ (�, V,X) g 0.

In this way, although we cannot compute ¨(�, V) directly, we
can approximate the actual value by accumulating the non-negative
ˆ̈ (�, V,X) values of various coloring. Additionally, by Corollary 4.2,
we can guarantee the V-tolerance during the whole computation.

Such relaxation plays an important role in our algorithm, and the

experimental results in Section 5 also validate its e�ectiveness.

4.2 Local Search

Our search process in Algorithm 1 starts from an initial vertex B

instead of the whole vertices set. We will discuss how to choose B

wisely in the later Section 4.3.

Search Operations. As discussed in Section 4.1, we will search for

a connected subgraph � ′ and a coloring X such that ˆ̈ (� ′, V,X) is
as large as possible. In the following, if not speci�ed, we use ˆ̈ to

denote the tolerant balanced count of the subgraph. Throughout

the search process, we use a set (to store the selected vertices and

the coloring simultaneously. Speci�cally, (stores selected tuples

(G, 2), where (G, 2) represents a vertex G colored as 2 . There are

three basic operations with (that will insert, delete, or change the

color of a vertex G respectively. Note that these three operations

well de�ne the neighborhood of any solution we �nd.

• VertexInsert(G, 2): Execute (← (∪ (G, 2).
• VertexDelete(G): Let 2 be the color of G . Execute (← (\ (G, 2).
• ColorFlip(G): Let 2 be the color of G and 2 be 2’s opposite color.

Execute VertexDelete(G) and VertexInsert(G, 2) in order.

Since our search begins from B , we initialize (to be {(B, 0)}
(line 1). We use ˆ̈ĥĦĪ and ˆ̈ ęīĨ to store the maximum ˆ̈ that we

have found and the current ˆ̈ respectively. Initially, they are initial-

ized to be 0 (line 1). During our process, if we choose to execute

VertexInsert(G, 2) or ColorFlip(G) for some vertex G , we will

greedily execute one with the maximal increment of ˆ̈ that it can

contribute. Therefore, we use two max-heaps"�ą , "�Ă to assist.

After being initialized (line 2), since B is selected, for each neigh-

bor E of B , we calculate the corresponding contribution to ˆ̈ when

VertexInsert(E, 0) or VertexInsert(E, 1) are executed and insert

them to "�ą (line 4 to 5). For "�Ă , since only B is selected, we

calculate the contribution for ColorFlip(G) and insert it into"�Ă

(line 3).

Here, we do not use any structure to store the contribution

when deleting any vertex from (. Instead, whenever we want to

�nd the optimal deletion, we can compute for every vertex in (

altogether with a total cost of $ (=), for which we may need to

use the well-known Tarjan algorithm [25] to guarantee the sub-

graph stays connected after the deletion. We denote such process

as DelEval(().

Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks KDD 2024, August 2024, Barcelona, Spain

Our search method is to execute one of the three operations

repeatedly. If we only consider inserting vertices from (’s neigh-

bors, the total number of VertexInsert is bounded by the size of

the graph. However, since we also have the other two operations,

which are non-incremental, if we do not design a proper termination

strategy, the time complexity might become exponential. Speci�-

cally, we have two parameters that help to de�ne the termination

strategy of the algorithm: A �oat number ? ∈ (0, 1) denotes the
non-incremental probability and an integer) to limit the number

of potentially wasted operations.

Operation Selection. We �rst discuss how to select an operation

each time. Here, we will use the non-incremental probability ? to

help determine. We use >? to denote the operation we select and

� ˆ̈ to denote the corresponding contribution value to ˆ̈ . These

two variables are initialized by acquiring the best VertexInsert

operation from"�ą (line 7), indicating choosing an insertion. Then,

we generate a random �oat number I from uniform distribution

* (0, 1). If I < ? , we also consider using a ColorFlip operation: We

acquire the best ColorFlip operation from "�Ă and update the

two variables if the corresponding � ˆ̈ is larger than the current

one (line 8 to 9). Similarly, we regenerate I and if I <
Ħ log |ď |
|ď | , we

try choosing a VertexDelete operation: After calling DelEval(()
to recalculate for every possible vertex deletion, we choose the best

among them and try updating (line 10 to 12). In this way, we choose

an VertexInsert operation by default, and with some probability,

we check if the current optimal ColorFlip and VertexDelete can

contribute more. The two probabilities are by design and help to

balance between accuracy and e�ciency.

We execute the current >? operation after the selection phase and

also update the current ˆ̈ ęīĨ . Since (is updated after the execution,

we must also update"�ą and"�Ă correspondingly. This is done

in a similar way as the initialization (line 13 to 17).

Search Termination. When the current selected operation en-

larges the current ˆ̈ ęīĨ , we denote such operation as a progressive

one. Otherwise, it is non-progressive. We use a parameter) to pre-

vent too many non-progressive operations. Speci�cally, our search

will terminate when the number of non-progressive operations ex-

ceeds) times the number of progressive operations. We implement

such a strategy with a counter C . After we select and execute an

operation (line 7 to 17), we compare the current ˆ̈ ęīĨ with ˆ̈ĥĦĪ . If
ˆ̈ ęīĨ is smaller, we decrease C by 1. Otherwise, we update ˆ̈ĥĦĪ and

increase C by) (line 18 to 19). In this way, if C < 0, the search should

terminate (line 6). In addition, we also terminate the search when (

contains all vertices in� since no further insertion can be executed

(line 6). After the search, we undo the last few non-progressive

operations to retract the optimal subgraph we have found (line 20).

We return with this subgraph as� and its corresponding ˆ̈ (line 21).

4.3 Region-based Sampling

In the previous section, we propose a search process that starts

from an arbitrary vertex B . It is reasonable to foresee that the choice

of B might a�ect the result signi�cantly. If we start only from too

few vertices, our result in the end might be some local maximal

solutions, which would be much worse than the global maximal one.

One of the solutions is to enumerate all possible B , i.e., all vertices in

Algorithm 1: RH: Search

Input: Signed graph � ; Tolerance parameter V ;

Non-incremental probability ? ; Initial vertex B ; Early

stop turn limit) .

Output: � ¦ � : the found balanced subgraph with

V-tolerance; ˆ̈ : the lower bound of � ’s balance

value we achieved.

1 (← {(B, 0)}, ˆ̈ĥĦĪ ← 0, ˆ̈ ęīĨ ← 0, C ←) ;

2 Initialize max-heaps"�ą , "�Ă ;

3 Insert B into"�Ă ;

4 for E ∈ # (B) do
5 Insert (E, 0) and (E, 1) into"�ą ;

6 while C g 0 and |(| < |+ (�) | do
7 {>?,� ˆ̈ } = GetTopNode("�ą); // ordered by � ˆ̈

8 if I ∼ * (0, 1) < ? then

9 {>?,� ˆ̈ } ← max({>?,� ˆ̈ }, GetTopNode("�Ă));

10 if I ∼ * (0, 1) < Ħ log |ď |
|ď | then

11 {>̂?,� ˆ̈ } ← DelEval(();
12 {>?,� ˆ̈ } ← max({>?,� ˆ̈ }, {>̂?,� ˆ̈ });
13 (← Execute operation >? on (;

14 G ← the vertex of the >?;

15 for E ∈ # (G) ∪ G do

16 Insert, update or delete E ’s operations in"�ą and

"�Ă ;

17 ˆ̈ ęīĨ ← ˆ̈ ęīĨ + � ˆ̈ ;

18 if ˆ̈ ęīĨ f ˆ̈ĥĦĪ then C ← C − 1;
19 else ˆ̈ĥĦĪ ← ˆ̈ ęīĨ , C ← C +) ;

20 Undo the last non-progressive operations on (;

21 return � = � [(], ˆ̈ = ˆ̈ĥĦĪ ;

� . However, such pure enumeration may result in excessively high

time complexity. To balance between performance and e�ciency,

we propose a Region-based Sampling strategy.

Our sampling method is mainly based on two hypotheses. The

�rst hypothesis indicates that the probability of �nding a nearly

optimal subgraph is high if we are able to select some vertices in the

optimal subgraph as the starting vertex. Here, the ‘optimal’ denotes

the solution we found by enumerating all vertices as the starting

vertex. We formally state such a hypothesis as follows.

Hypothesis 4.1. Given a signed graph� and a tolerance parame-

ter V , suppose the optimal subgraph found by Algorithm 1 starting

with vertex G is�Į , and the optimal graph among all�Į is�ĥĦĪ . For

the given n , there exists a subset + ′ ¦ + (�ĥĦĪ) with |Ē ′ |
|Ē (ă>?C) | g

1
2

such that ¨(�Į , V) g (1 − n)¨(�ĥĦĪ , V),∀G ∈ + ′.

Another hypothesis describes the relation between ˆ̈ values

returned by two di�erent calls of Algorithm 1, if we select di�erent

starting vertex. We argue that if the return ˆ̈ value is larger, the

found subgraph will likely be bigger. We formally state such a

hypothesis as follows.

Hypothesis 4.2. Given a signed graph� and a tolerance parame-

ter V , suppose the optimal subgraph and coloring found by Algorithm 1

KDD 2024, August 2024, Barcelona, Spain Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao, and Chenhao Ma

Algorithm 2: RH: Sampling

Input: Signed graph � ; Tolerance parameter V ; Iteration

constant C; Non-incremental probability ?; Early

stop turn limit) .

Output: � ¦ � : the found balanced subgraph with

V-tolerance.

1 � ← ∅;
2 ˆ̈ĥĦĪ ← 0;

3)>C0;(8I4 ← 0;

4 while)>C0;(8I4 < C|+ (�) | do
5 B ← Sample a vertex from + (�);
6 �, ˆ̈ ← Search(�, V, B, ?,));

7 if ˆ̈ > ¨ĥĦĪ then

8 ˆ̈ ← ˆ̈ĥĦĪ ;

9 � ← � ;

10)>C0;(8I4 ←)>C0;(8I4 + |+ (�) |;
11 return � ;

starting with vertex 0 are �ė and Xė , starting with 1 are �Ę and XĘ .
If ˆ̈ (�ė, V,Xė) g ˆ̈ (�Ę , V,XĘ), we have |+ (�Ę) | f 2|+ (�ė) |.

With these two hypotheses, we have the following lemma that

describes a sampling strategy that is able to �nd a (1 − n)-optimal

subgraph within an acceptable number of calls of the search process.

The proof is deferred to Appendix A.2.

Lemma 4.3. Given a signed graph� , a tolerance parameter V , and a

positive n < 1, suppose we run Algorithm 1 in : iterations, where the 8-

th iteration starts with a uniformly sampled vertex Gğ ∈ + (�), and the
optimal subgraph found is �ğ . If Hypothesis 4.1 and Hypothesis 4.2

hold, the expected number of iterations that �nd a (1 − n)-optimal

subgraph E [-] is ¬(∑ġ
ğ=1 |+ (�ğ) |/|+ (�) |).

We provide an implementation of such sampling strategy in

Algorithm 2, which is, in fact, an application of Lemma 4.3. We

use � , ˆ̈ĥĦĪ to keep track of the current optimal subgraph and its

corresponding ˆ̈ value. They are initialized to be ∅ and 0 in the

beginning (line 1 to 2). We also use a variable)>C0;(8I4 to keep

track of the total size of all return subgraphs from Algorithm 1,

which is also initialized to be 0 (line 3).

For each iteration, we randomly select a vertex B (line 5) as the

starting vertex and pass it into Algorithm 1 (line 6). After receiving

the result from Algorithm 1, we update � , ˆ̈ĥĦĪ (line 8 to 9) if the

newly found subgraph is better (line 7). Before the new iteration,

we accumulate the size of the newly found subgraph into)>C0;(8I4

(line 10. The whole process will stop when)>C0;(8I4 g C|+ (�) |
(line 4). By Lemma 4.3, we can set a proper termination condition

by accumulating the subgraph size from each search process. More

speci�cally, When)>C0;(8I4 reaches C|+ (�) |, it is expected to �nd
a nearly optimal solution C times. In the end, we return � as the

main result (line 11).

Time Complexity Analysis. We show that the time complexity

of Algorithm 2 is $ (�(C + 1)= log2 =), where = is the number of

vertices in � . We start with the time complexity of Algorithm 1.

Lemma 4.4. Suppose that the loop starting on Line 6 repeats for

a total of C times. Let ℎ be the size of (on Line 21. Then we have,

with high probability, ℎ = ¬(C/log=) and that the running time of

Algorithm 1 is $ (�C log=) in expectation.

Proof. By Lemma A.1, with high probability, ℎ = ¬(C/log=).
Let � be the maximum degree of � . The running time of each

iteration is dominated by the cost of updating the heaps and the

time for DelEval((). Updating the heaps cost$ (� log=) time. The

function DelEval(() costs $ (�|(|) time. It is called with probabil-

ity
Ħ log |ď |
|ď | in each iteration. Thus, its expected runtime in each

iteration is$ (� log=). We have the running time of Algorithm 1 is

C ·$ (� log=) = $ (�C log=). □

Lemma 4.5. With high probability, the expected time complexity

of Algorithm 2 is $ (�(C + 1)= log2 =).

Proof. Suppose we call Line 6 for : times. For the 8-th call,

let Cğ be the number of iterations of the loop on Line 6 and let ℎğ
(1 f 8 f :) be the size of (on Line 21. By Lemma 4.4, the total

time complexity in expectation is$ (∑ġ
ğ=1 �Cğ log=), and the sum of

ℎğ satis�es
∑ġ
ğ=1 ℎğ = ¬(∑ġ

ğ=1 Cğ/log=) . Since
∑ġ
ğ=1 ℎğ f (C + 1)=,

we have that the total runtime of Algorithm 2 in expectation is

$ (∑ġ
ğ=1 �Cğ log=) = $ (�(C + 1)= log2 =). □

5 EVALUATION

In this section, we address the following research questions to

evaluate various important aspects of our algorithm:

• RQ1 (E�ectiveness - TMBS): Given various V , what are the

optimal subgraphs in terms of size, and Tolerant Index Count,

found by our method and baselines?

• RQ2 (E�ectiveness - MBS): What are our method’s and base-

lines’ performances in �nding the maximum balanced subgraph?

• RQ3 (E�ciency): What are the runtimes for our method and

the baselines, and how do they scale with very large networks?

• RQ4 (Generalizability): Can our model and method be adapted

to other related tasks in the signed networks?

We also conduct three experiments shown in appendix B, which

are designed to validate our hypotheses, determine optimal hyper-

parameters, and assess stability.

5.1 Experimental Setting

Baselines. We compare our method with the baselines from

highly related works (e.g.,MBS and polarized community detection),

including spectral and other heuristic methods.

Note that since �nding tolerant balanced subgraphs is typically

more challenging than previous community detection tasks in

signed networks, we also adapt our TBC-relaxation in Section 4.1

for all baseline methods to ensure that they can return the sub-

graphs satisfying the tolerance constraint. We summarize the core

ideas of each baseline method as follows.

• Eigen: Based on a spectral method from [10], we �rst compute v,

the eigenvector of the signed adjacency matrix � corresponding

to the largest eigen value _. For each vertex 8 , if a Bernoulli

experiment with success probability ? = |vğ | is successful, we
assign vertex 8 a color determined by sgn(vğ). The maximum

Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks KDD 2024, August 2024, Barcelona, Spain

Table 1: Signed network datasets used in experiments, includ-

ing the number of vertices (|+ |) and edges (|� |), the ratio of

negative edges (d−), and the ratio of non-zero elements (X).

Dataset |Ē | |ā+ ∪ ā− | d− =
|�− |
|�+∪�− | X =

2|�+∪�− |
|+ | (|+ |−1)

Bitcoin 5k 21k 0.15 1.2e-03

Epinions 131k 711k 0.17 8.2e-05

Slashdot 82k 500k 0.23 1.4e-04

Twitter 10k 251k 0.05 4.2e-03

Conflict 116k 2M 0.62 2.9e-04

Elections 7k 100k 0.22 3.9e-03

Politics 138k 715k 0.12 7.4e-05

Growth 1.87M 40M 0.50 2.3e-05

connected components with non-negative ˆ̈ serve as solutions

to Problem 3 and Problem 4, while the connected component

with the maximum ˆ̈ provides the solution to Problem 5.

• Timbal: Based on a state-of-the-art method for MBS from [33],

we start from the entire graph and repeatedly remove vertices

from it, guided by an eigenvalue approximation outlined in their

paper. Speci�cally, we compute ˆ̈ by the optimal coloring among

two non-trivial methods [10, 21] for TMBS problems.

• GreSt: This method combines a classical and e�ective algorithm

in dense subgraph [13] and a heuristic coloring method for signed

networks by spanning tree [21]. Firstly, we determine the coloring

of the entire graph by a random spanning tree.We then repeatedly

remove vertices maximizing ˆ̈ of the remaining graph. A min-

heap is used to speed up the process of �nding vertices. To acquire

the solution to di�erent tasks, we need to store the deletion

operations. Then we can restore the graph by undoing deletions

one by one. Such reversal allows us to keep track of the optimal

connected component e�ciently, instead of scanning the whole

graph after each deletion.

• RH (LS): Instead of using region-based sampling, we execute our

local search in Section 4.2 for all starting vertices and select the

optimal solutions, to investigate the e�ectiveness of the regional-

based sampling. This method may provide a better solution than

RH but is not e�cient.

Datasets. We select 7 publicly-available real-world signed net-

works3, Bitcoin, Epinions, Slashdot, Twitter, Conflict, Elec-

tions, and Politics, which were widely used in previous related

works [10, 32, 33]. In addition, to investigate our methods’ scala-

bility, we generate Growth, a very large signed network induced

from the real temporal network Wikipedia-growth4. Speci�cally,

we select a threshold g , and give positive signs for the edges with

time stamp C (4) g g and negative signs for the edges with C (4) < g .

By using a proper g , the ratio of negative edges of the induced graph

can be 0.5. In this network, a balanced graph contains two commu-

nities, where the edges within each community are recently formed,

while the crossing edges are relatively old. Detailed information

for each dataset can be found in Table 1.

All experiments are conducted on a Ubuntu 22.04 LTS worksta-

tion, equipped with a 12th Gen Intel(R) Core(TM) i9-12900HX. We

set hyperparameters) = 20, ? = 0.8, C = 1.5 for all experiments.

3From konect.cc and snap.stanford.edu
4http://konect.cc/networks/wikipedia-growth

5.2 Finding Balanced Subgraphs with Tolerance

We aim to identify sizable and polarized subgraphs while taking

the tolerance into account (RQ1). Firstly, by running algorithms

in Section 5.1, we keep track of the optimal subgraph that we

have found to Problem 3, Problem 4, and Problem 5 respectively.

Noticeably, we do not modify either RH or RH (LS) for Problem 3

and Problem 4. That is to say, we directly use our result on solving

Problem 5 to compare with other algorithms which are tailored for

either Problem 3 or Problem 4, which demonstrates our proposed

Problem 5 is a good approximation for the other two problems.

The comparison results for these three problems are shown in

Figure 3, Figure 4, and Figure 5, respectively. In our experiments,

we consider 15 di�erent tolerance parameters (Vğ = 2−ğ/2 for all
2 f 8 f 16), where 8 = 2 implies allowance for all connected

subgraphs, while 8 = 16means that the found subgraphs are almost

strictly balanced. Since Problem 3 and Problem 4 become trivial

when V g Ĉ (ă)
|ā+∪ā− | , we shade the corresponding ranges

5 in Figure 3

and Figure 4. We omit the results for methods that cannot �nish in

100,000 seconds.

Observing the experiment results, our proposed method RH

outperforms all other baselines signi�cantly in all three problems.

This also demonstrates that our proposed tolerance model is a more

realistic model for the general case of balanced signed graphmodels.

In addition, we can see that RH produces results that are close to RH

(LS). Therefore, we manage to empirically support our hypothesis

in Section 4.3 in real-world data.

5.3 Finding Strictly Balanced Subgraphs

Finding the Maximum Balanced Subgraph (Problem 1 and 2) is

an important and well-studied problem in signed networks [33]

(RQ2). As previously discussed, MBS problems are special forms of

proposed TMBS problems (Problem 3 and 4) by setting V <
1

|ā+∪ā− | .
Table 2 shows the results of our case study on the MBS prob-

lems, where we omit the results for Eigen since it cannot return

subgraphs other than a single vertex. RH produces signi�cantly

better results than the previous state-of-the-art method Timbal,

which is speci�cally designed for the MBS problems while ours is

not.

5.4 Running Time Analysis

This experiment is designed to study the e�ciency and scalability of

our method (RQ3). As shown in Table 3, when the graph size is up

to (|+ | = 1.87M, |�+ ∪ �− | = 40M), RH can still produce reasonable

results within 1,000 seconds. On the other hand, the other four

compared methods either produce much worse results while taking

longer time or even fail to �nish execution in 100,000 seconds. In all,

the empirical results demonstrate the e�ciency of our method in

real-world data in addition to its asymptotic theoretical complexity.

5.5 Solving the 2PC Problem

This experiment aims to evaluate the generalizability when adapt-

ing RH and our tolerant model to di�erent variants of polarity

5As computing the exact value of Ĉ (ă) is NP-hard, we cannot calculate the exact
range of ÿ corresponding to the trivial cases. Instead, we calculate an upper bound Ĉ

of Ĉ (ă) by a promising valid solution and shade only the subrange ÿ g !
|�+∪�− | .

KDD 2024, August 2024, Barcelona, Spain Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao, and Chenhao Ma

Figure 3: Problem 3: Comparing maximum tolerantly balanced subgraphs in vertex cardinality (|+ |) across various tolerances
(V = 2−Į/2), where the part corresponding to trivial V values for this problem has been shaded.

Figure 4: Probelm 4: Comparing maximum tolerantly balanced subgraphs in edge cardinality (|�+ ∪ �− |) across various

tolerances (V = 2−Į/2), where the part corresponding to trivial V values for this problem has been shaded.

Figure 5: Probelm 5: Comparing maximum tolerantly balanced subgraphs in TBC (ˆ̈) across various tolerances (V = 2−Į/2).

Table 2: Case study: Largest strictly balanced subgraph (in terms of |+ | or |� |) found by eachmethod for each dataset (V <
1

|ā+∪ā− |),
where NA denotes the corresponding method cannot �nish in 100,000 seconds on the respective dataset.

Method
Bitcoin Epinions Slashdot Twitter Conflict Elections Politics Growth

|+ | |� | |+ | |� | |+ | |� | |+ | |� | |+ | |� | |+ | |� | |+ | |� | |+ | |� |
Timbal 4,050 9,757 65,879 190,751 43,742 101,590 8,636 129,927 51,463 361,663 3,579 17,633 65,188 230,529 NA NA

GreSt 571 713 7,078 9,229 7,923 8,465 1,895 2,277 759 4,885 935 1,232 2,371 3,155 272,621 375,603

RH (LS) 5,002 13,746 NA NA NA NA 9,628 209,633 NA NA 3,970 28,453 NA NA NA NA

RH 4,935 13,050 84,165 302,152 55,968 181,069 9,628 209,633 65,468 746,640 3,926 26,478 72,431 317,384 999,504 3,415,441

Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks KDD 2024, August 2024, Barcelona, Spain

community detection (RQ4). In addition to balance-related prob-

lems, 2-Polarized-Communities (2PC), proposed by Bonchi and

Galimberti [10], serves as another model for polarized community

detection. In their model, the measurement of polarity is penalized

by the size of the solution:

Problem 6 (2PC). Given a signed graph� with signed adjacency

matrix �, �nd a vector G ∈ {−1, 0, 1} that maximizes Į)ýĮ
Į) Į

.

To solve the 2PC problem by our tolerance balance model, we

add an additional penalty term to the solution size in the tolerant

balance count: We de�ne ˆ̈ ′ (�, V,X, d) = ˆ̈ (�, V,X) − d |+ | to
serve as a new object function in our RH algorithm. Throughout

the algorithm, we set V =
1
2 . This is because when V =

1
2 , if

ˆ̈ ′ g 0,

the polarity is no less than d . Therefore, Problem 6 can be solved

by the new RH algorithm, where we apply an iterative mechanism

on d . The algorithm details can be found in Appendix A.3.

We compare RH’s results with the optimal result computed by

the two methods in Bonchi and Galimberti’s paper [10] (i.e., Eigen

and Greedy). The results are shown in Table 4. RH’s slight modi�-

cations e�ciently yield promising communities, demonstrating the

adaptability and e�ectiveness of our tolerant balance model and

algorithm in varied polarity community detection scenarios.

Table 3: Mean running time (s) for each method on the vari-

ous V in Section 5.2.

Dataset Eigen Timbal GreSt RH (LS) RH

Bitcoin 0.979 2.670 0.018 135.040 0.057

Epinions 9.213 220.919 0.319 g 100, 000 4.162

Slashdot 7.287 226.805 0.218 g 100, 000 3.175

Twitter 1.704 7.306 0.085 2,516.671 0.493

Conflict 12.899 310.736 0.781 g 100, 000 9.031

Elections 1.022 4.542 0.039 675.484 0.288

Politics 10.003 143.605 0.304 g 100, 000 4.782

Growth 297.299 g 100, 000 48.915 g 100, 000 813.099

Table 4: Optimal subgraphs in the term of 2PC-polarity

(Į
)ýĮ
Į) Į

) found by each method, associated with running time.

Dataset
RH Eigen Greedy

polarity time (s) polarity time (s) polarity time (s)

Bitcoin 14.82 0.035 14.76 0.706 14.50 0.999

Epinions 85.27 0.873 64.36 10.271 85.15 428.625

Slashdot 41.21 0.584 39.85 7.325 41.36 154.383

Twitter 87.21 0.818 87.04 1.717 86.97 7.853

Conflict 94.27 15.134 87.83 13.144 63.99 552.629

Elections 36.27 0.395 35.87 0.950 36.34 2.223

Politics 44.95 0.862 44.22 9.931 45.01 475.353

6 CONCLUSIONS

This paper presents a new and versatile model to identify polar-

ized communities in signed graphs. The model accommodates in-

herent imbalances in polarized communities through a tolerance

feature. Additionally, we propose a region-based heuristic algo-

rithm. Through a wide variety of experiments on graphs of up to

40 M edges, it demonstrates e�ectiveness and e�ciency beyond the

state-of-the-art methods in addressing both traditional and gener-

alized MBS problems. We also adapt our model and algorithm to

2PC, a related but essentially di�erent task, further verifying their

generalizability.

7 REPRODUCIBILITY

Codes for our methods and for reproducing all the experimental

results are available at GitHub6.

ACKNOWLEDGMENTS

ChenhaoMawas partially supported byNSFC under Grant 62302421,

Basic and Applied Basic Research Fund in Guangdong Province

under Grant 2023A1515011280, and the Guangdong Provincial Key

Laboratory of Big Data Computing, the Chinese University of Hong

Kong, Shenzhen. We thank Yixiang Fang (The Chinese University

of Hong Kong, Shenzhen), Qingyu Shi (Hailiang Foreign Language

School), and Xinwen Zhang (The Chinese University of Hong Kong,

Shenzhen) for valuable advice on this project.

6https://github.com/joyemang33/RH-TMBS

KDD 2024, August 2024, Barcelona, Spain Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao, and Chenhao Ma

REFERENCES
[1] Robert P Abelson and Milton J Rosenberg. 1958. Symbolic psycho-logic: A model

of attitudinal cognition. Behavioral Science (1958).
[2] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.

2005. O(
√

logĤ) Approximation Algorithms for Min UnCut, Min 2CNF Deletion,
and Directed Cut Problems. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing. 573–581.

[3] Jin Akiyama, David Avis, Vasek Chvátal, and Hiroshi Era. 1981. Balancing signed
graphs. Discrete Applied Mathematics 3, 4 (1981), 227–233.

[4] Pranay Anchuri and Malik Magdon-Ismail. 2012. Communities and balance in
signed networks: A spectral approach. In 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining. IEEE, 235–242.

[5] Samin Aref, Andrew J Mason, and Mark C Wilson. 2018. Computing the line
index of balance using integer programming optimisation. Optimization Problems
in Graph Theory: In Honor of Gregory Z. Gutin’s 60th Birthday (2018), 65–84.

[6] Samin Aref, Andrew J Mason, and Mark C Wilson. 2020. A modeling and compu-
tational study of the frustration index in signed networks. Networks 75, 1 (2020),
95–110.

[7] Adi Avidor and Michael Langberg. 2007. The multi-multiway cut problem. Theo-
retical Computer Science 377, 1-3 (2007), 35–42.

[8] Prithu Banerjee, Wei Chen, and Laks VS Lakshmanan. 2023. Mitigating Fil-
ter Bubbles Under a Competitive Di�usion Model. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–26.

[9] Fabian Baumann, Philipp Lorenz-Spreen, Igor M Sokolov, and Michele Starnini.
2020. Modeling echo chambers and polarization dynamics in social networks.
Physical Review Letters 124, 4 (2020), 048301.

[10] Francesco Bonchi, Edoardo Galimberti, Aristides Gionis, Bruno Ordozgoiti, and
Giancarlo Ru�o. 2019. Discovering Polarized Communities in Signed Networks.
CoRR abs/1910.02438 (2019). arXiv:1910.02438 http://arxiv.org/abs/1910.02438

[11] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. 2016. Recent advances in graph partitioning. Springer.

[12] Dorwin Cartwright and Frank Harary. 1956. Structural balance: a generalization
of Heider’s theory. Psychological review 63, 5 (1956), 277.

[13] Moses Charikar. 2000. Greedy Approximation Algorithms for Finding Dense
Components in a Graph. In Approximation Algorithms for Combinatorial Op-
timization, Klaus Jansen and Samir Khuller (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 84–95.

[14] Uthsav Chitra and Christopher Musco. 2020. Analyzing the impact of �lter
bubbles on social network polarization. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 115–123.

[15] Tom Coleman, James Saunderson, and Anthony Wirth. 2008. A local-search
2-approximation for 2-correlation-clustering. In European Symposium on Algo-
rithms. Springer, 308–319.

[16] Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia. 2013. Max-
imum balanced subgraph problem parameterized above lower bound. Theoretical
Computer Science 513 (2013), 53–64.

[17] Bhaskar DasGupta, German Andres Enciso, Eduardo Sontag, and Yi Zhang. 2007.
Algorithmic and complexity results for decompositions of biological networks
into monotone subsystems. Biosystems 90, 1 (2007), 161–178.

[18] Patrick Doreian and Andrej Mrvar. 1996. A partitioning approach to structural
balance. Social networks 18, 2 (1996), 149–168.

[19] Rosa Figueiredo and Yuri Frota. 2014. The maximum balanced subgraph of
a signed graph: Applications and solution approaches. European Journal of
Operational Research 236, 2 (2014), 473–487.

[20] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[21] N Gülpinar, G Gutin, G Mitra, and A Zverovitch. 2004. Extracting pure network
submatrices in linear programs using signed graphs. Discrete Applied Mathematics
137, 3 (2004), 359–372. https://doi.org/10.1016/S0166-218X(03)00361-5

[22] Frank Harary. 1953. On the notion of balance of a signed graph. Michigan
Mathematical Journal 2, 2 (1953), 143–146.

[23] Frank Harary. 1959. On the measurement of structural balance. Behavioral Science
4, 4 (1959), 316–323.

[24] Frank Harary and Jerald A Kabell. 1980. A simple algorithm to detect balance in
signed graphs. Mathematical Social Sciences 1, 1 (1980), 131–136.

[25] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: E�cient Algorithms
for Graph Manipulation. Commun. ACM 16, 6 (jun 1973), 372–378. https:
//doi.org/10.1145/362248.362272

[26] Yaoping Hou, Jiongsheng Li, and Yongliang Pan. 2003. On the Laplacian eigen-
values of signed graphs. Linear and Multilinear Algebra 51, 1 (2003), 21–30.

[27] Yao Ping Hou. 2005. Bounds for the least Laplacian eigenvalue of a signed graph.
Acta Mathematica Sinica 21, 4 (2005), 955–960.

[28] Falk Hü�ner, Nadja Betzler, and Rolf Niedermeier. 2007. Optimal edge dele-
tions for signed graph balancing. In International Workshop on Experimental and
E�cient Algorithms. Springer, 297–310.

[29] Falk Hü�ner, Nadja Betzler, and Rolf Niedermeier. 2010. Separator-based data
reduction for signed graph balancing. Journal of combinatorial optimization 20

(2010), 335–360.
[30] Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In Pro-

ceedings of the thiry-fourth annual ACM symposium on Theory of computing.
767–775.

[31] Tien T Nguyen, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and Joseph A
Konstan. 2014. Exploring the �lter bubble: the e�ect of using recommender
systems on content diversity. In Proceedings of the 23rd international conference
on World wide web. 677–686.

[32] Jason Niu and A. Erdem Sarıyüce. 2023. On Cohesively Polarized Communities
in Signed Networks. In Companion Proceedings of the ACM Web Conference 2023
(Austin, TX, USA) (WWW ’23 Companion). Association for ComputingMachinery,
New York, NY, USA, 1339–1347. https://doi.org/10.1145/3543873.3587698

[33] Bruno Ordozgoiti, Antonis Matakos, and Aristides Gionis. 2020. Finding large
balanced subgraphs in signed networks. In Proceedings of The Web Conference
2020. 1378–1388.

[34] Svatopluk Poljak and Daniel Turzík. 1986. A polynomial time heuristic for certain
subgraph optimization problems with guaranteed worst case bound. Discrete
Mathematics 58, 1 (1986), 99–104.

[35] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[36] Yichen Xu, Chenhao Ma, Yixiang Fang, and Zhifeng Bao. 2023. E�cient and
E�ective Algorithms for Generalized Densest Subgraph Discovery. Proc. ACM
Manag. Data 1, 2, Article 169 (jun 2023), 27 pages. https://doi.org/10.1145/3589314

[37] Bo Yang, William Cheung, and Jiming Liu. 2007. Community mining from signed
social networks. IEEE transactions on knowledge and data engineering 19, 10
(2007), 1333–1348.

Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks KDD 2024, August 2024, Barcelona, Spain

A OMITTED PROOF AND ALGORITHM

A.1 Omitted Proof in Section 3

Proof of lemma 3.1. We prove the lemma by a reduction from

the calculation of the Frustration Index. If we can decide whether�

is balanced under V-tolerance within the polynomial runtime, we

will be able to decide whether !(�) is greater than any guessing

value : by setting V =
ġ

|ā+∪ā− | . Combined with a binary search,

we can compute the Frustration Index of � within the polynomial

runtime, which has been proven as a NP-hard problem [2]. □

Proof of lemma 3.2. We �rst show that the solutions to Prob-

lem 2 is a 1
�
-approximations for the Problem 1, and the relations

between Problem 3 and Problem 4 can be proven similarly.

Given a signed graph � , let the optimal subgraph to Problem 1

be �1 with =1 vertices and <1 edges, and the optimal subgraph

to Problem 2 be �2 with =2 vertices and <2 edges. Since �1 is

connected, we have

<1 g =1 (1)

Since � is the maximum degree of vertices in � , we have

=2 g
<2

�
(2)

Combined with (1) and (2), we have =2 g ģ2
�
g ģ1

�
g Ĥ1

�
, which

implies �2 is a
1
�
-approximations for the Problem 1. □

A.2 Omitted Lemma and Proof in Section 4

Proof of lemma 4.1. The lemma is equivalent to that:
∑

(ğ, Ġ) ∈ā+ 1{Gğ ≠ G Ġ } +
∑

(ğ, Ġ) ∈ā− 1{Gğ = G Ġ } is a tight upper

bound on !(�).
First, given a coloring X, if we remove all edges that let the

indicator functions be true from � , the remaining graph will be

balanced for each connected component due to Definition 3.1.

This implies that
∑

(ğ, Ġ) ∈ā+ 1{Gğ ≠ G Ġ } +
∑

(ğ, Ġ) ∈ā− 1{Gğ = G Ġ } is
no less than the !(�), which is the minimum number of edges to

be removed.

We then show the bound is tight. Consider the remaining graph

� ′ from removing all edges contributing to !(�). Since all con-

nected components of � ′ are balanced, we can �nd a partition

+ = +1 ∪ +2 and +1 ≠ +2 such that if we assign Gğ = 0 for all

8 ∈ +1 and G Ġ = 1 for all 9 ∈ +2, the value of
∑

(ğ, Ġ) ∈ā+ 1{Gğ ≠

G Ġ } +
∑

(ğ, Ġ) ∈ā− 1{Gğ = G Ġ } will become to zero for� ′. This implies

the same value for � under the coloring is equal to !(�) and thus

the bound is tight. □

Proof of lemma 4.3. Suppose the optimal subgraph found by

Algorithm 1 among all starting vertex is �ĥĦĪ and the probability

of Algorithm 2 �nding a (1 − n)-optimal subgraph in one itera-

tion is Pr[Sucess]. By Hypothesis 4.1, we have (i) Pr[Sucess] g
|Ē (ă>?C) |
2 |Ē (ă) | . Let C =

∑:
8=1 |Ē (ă8) |
|Ē (ă) | , and then we have

∑ġ
ğ=1 |+ (�ğ) | =

C|+ (�) |. By Hypothesis 4.2,
∑ġ
ğ=1 2|+ (�ĥĦĪ) | g C|+ (�) |, and

thus (ii) : g C2
|Ē (ă) |
|Ē (ă>?C) | . Combining (i) and (ii), we have E [-] =

: Pr[Sucess] g C2
|Ē (ă) |
|Ē (ă>?C) | ·

|Ē (ă>?C) |
2 |Ē (ă) | =

C
4 = ¬(C). □

Lemma A.1. With high probability, for all valid 8 , after the 8-th

iteration of the on Line 6 of Algorithm 1, |(| = ¬(ğ
logĤ
).

Proof. Let G denote the value of |(|. The initial value of G is 1.

G changes according to the following rules in each iteration:

• With probability (1 − ?) (1 − ? logĮ
Į), G increases by 1;

• With probability ?
logĮ
Į , x increases by 1, 0, or −1;

• With probability ? (1 − ? logĮ
Į), x increases by 1, or 0;

• The process ends when G reaches =.

Suppose the process lasts for C steps. We shall prove that with high

probability, it holds simultaneously for all 8 from 1 to C that the

value of G after the �rst 8 steps is ¬(ğ
logĤ
).

We denote (1 − ?) (1 − ? logĮ
Į) by ?+ (G), ? (1 − ?

logĮ
Į) by ?0 (G),

and ?
logĮ
Į by ?− (G).

Let =4GC (G) be the value of G in the next step.

Intuitively, G increases over steps because ?+ (G) is much larger

than ?− (G) for large enough G . Thus, we will partition steps into

two parts by the value of G . Let G0 be the smallest G such that

?− (G) < ?+ (G)/2. When G is at least G0, G increases in expectation.

When G is smaller than G0, G will reach G0 soon.

We can solve for suchG0 by the de�nition of ?
+ (G) and ?− (G).We

have that G0 is a constant depending on ? satisfying
logĮ0
Į0

=
1−Ħ
3Ħ−Ħ2 .

Thus, for any G g G0, E [=4GC (G)] g G + 1−Ħ
3−Ħ .

We �rst sketch the proof. Consider the �rst 8 iterations. We parti-

tion the 8 iterations into Θ(log(=)) intervals with 8/log= length

each. At the beginning of each interval, with high probability,

within $ (log=) iterations, G reaches a value that is at least G0 .

After reaching G0, G will never go below G0 during the current in-

terval with a constant probability. Conditioning on G never going

below G0, the expected increment of G in the current interval is

at least 2; for some constant 2 where ; is the number of remain-

ing iterations in the interval. ; is at least :/log= − $ (log=) . Be-
cause G may increase by at most ; , we have, by Markov bound,

Pr [G increases by no more than 2;/10] f 10−10ę
10−ę . In other words,

with probability at least 1 − 10−10ę
10−ę , the value of G at the end of the

current interval is at least 2;/10.
In summary, for each interval, the event that the value of G

at the end of the interval is at least 2;/10 happens with constant

probability where ; is at least ¬(8/log=). If the event does not

happen, we move on to the beginning of the next interval. Since we

have ¬(log=) intervals, with high probability, the event happens at

least once. Once the event happens, we use Hoe�ding’s inequality

to guarantee that the value of G is ¬(;) after iteration 8 .

Now we prove each part of the sketch in detail.

• At the beginning of each interval, with high probability, within

$ (log=) iterations, G reaches a value that is at least G0 : Let 2

be the maximum expected number of iterations for the variable

G to reach G0 from any initial value GğĤğĪ < G0. 2 is a constant

depending on ? . By Markov bound, we have that in every 22

iterations, with probability at least 1/2, there exists at least one
iteration before which G is at least G0. Thus, in$ (log=) iterations,
with high probability, G reaches some value at least G0 at least

once.

• After reaching G0, G will never go below G0 in the current in-

terval with a constant probability: We will prove a stronger

proposition that with constant probability, G never goes below

G0 after arbitrary number of iterations. For this, we consider

KDD 2024, August 2024, Barcelona, Spain Jingbang Chen, Qiuyang Mang, Hangrui Zhou, Richard Peng, Yu Gao, and Chenhao Ma

another random process where a random variable ~ increases

with probability @
def
=

1
2 +

1−Ħ
2(3−Ħ) and decreases with probability

1−@ =
1
2 −

1−Ħ
2(3−Ħ) . If G and~ starts with the same value, the prob-

ability that G never goes below G0 is lower bounded by the prob-

ability that ~ never goes below G0, because for each value E g G0,

if both G and ~ start at E , Pr [G reaches E + 1 before E − 1] g
Pr [~ reaches E + 1 before E − 1] . (Equality holds when ?+ (E) =
@ and ?− (E) = 1 − @.) Now we may consider the random process

of ~. Let ?ğ, Ġ (8 ∈ {−1, 0}, 9 ∈ {0, 1}) denote the probability that ~

eventually reaches G0 + 8 starting with ~ = G0 + 9 . Then we have

?−1,0 = @ + (1 − @)?−1,1 . We also have ?−1,1 = ?−1,0?0,1 = ?2−1,0 .

These solve to ?−1,0 =
1−
√
1−4ħ (1−ħ)
2−2ħ or ?−1,0 = 1. The later case

is impossible for the following reason: Let ?ğ, Ġ (3) be the probabil-
ity that ~ eventually reaches G0 + 8 starting with ~ = G0 + 9 with
in 3 iterations. Denote

1−
√
1−4ħ (1−ħ)
2−2ħ by A . ?−1,0 (1) = @ f A .

If ?−1,0 (3) f A, ?−1,0 (3 + 1) = @ + (1 − @)?−1,1 (3) f @ + (1 −
@)?−1,0 (3)?0,1 (3) = @ + (1 − @) (?−1,0 (3))2 f A where the last

inequality is by the fact that A is a root of @ + (1 − @)A2 = A .

1 − A lower bounds the probability that G never goes below G0
after arbitrary number of iterations.

• Conditioning on G never going below G0, the expected increment

of G in the current interval is at least 2; for some constant 2 where

; is the number of iterations remaining in the current interval:

We know that for any G g G0, E [=4GC (G)] g G + 1−Ħ
3−Ħ . Setting

2 =
1−Ħ
3−Ħ completes the proof.

• Once the value of G is at least 2;/10 at the end of some interval,

G will be ¬(8/log=) after iteration 8: Consider the following ℎ =

2;/20 steps after the interval at the end of which G is at least 2;/10.
At each of the ℎ steps, G increases by at least 2 in expectation

because G g 2;/20 during these steps. Let Gbefore (Gafter) be

the value of G before (after) the ℎ steps. We have E [Gafter] =
Gbefore + 22;/20. We use Hoe�ding’s inequality to lower bound

Gafter .

Pr [Gafter < 2;/10]
fPr [|Gafter − E [Gafter] | > E [Gafter] − 2;/10]
fPr

[

|Gafter − E [Gafter] | > 22;/20
]

f exp(−¬(;)) .

In other words, with high probability, after the ℎ steps, the value

of G is still at least 2;/10. We can repeat the argument for 8/ℎ =

$ (log=) times to conclude that after the �rst 8 iterations, the

value of G is at least 2;/10.
□

A.3 Omitted Algorithm in Section 5.5

To compute solutions for the 2PC problem (Problem 6), we design

an iterative mechanism (Algorithm 3) for calling the search problem

(Algorithm 1) properly, replacing Algorithm 2.

� is for storing the current optimal subgraph, initialized as ∅
(line 1). Our iterative strategy is related with the current optimal

polarity value d . We initialize it as 0 (line 1) in the beginning.

We pick a starting vertex B at �rst, sampling from all vertices in

+ (�) (line 2). Each turn, we execute a search process with speci�c

Algorithm 3: RH: Iterative mechanism for 2PC

Input: Signed graph � ;

Output: � ¦ � : the found subgraph with high 2PC

polarity; d : the 2PC polarity of � ;

1 � ← ∅; d ← 0;

2 B ← Sample a vertex from + (�);
3 while true do

4 �, d̂ ← Search(�, V =
1
2 , f = 0.9d, B); // guided by

the new object function ˆ̈ ′ = ˆ̈ − f |(|.
hyperparameters) and ? are omitted.

5 if d̂ > d then

6 d ← d̂ ;

7 � ← � ;

8 else B ← Sample a vertex from + (�) ;

9 if meets stop-conditions then break;

10 remove all vertice with degree less than d from � ;

11 return �, d ;

hyperparameters to try to �nd a new candidate answer (line 4). We

chose the tolerance parameter V to be 1
2 . Since our new modi�ed

object function is ˆ̈ ′ = ˆ̈ − f |(|, we also need to pass in f as 0.9d .

The search process will have to return the corresponding polarity

d̂ along with the found subgraph. We compare d̂ with the previous

found d . If it is better, we update d and � correspondingly (line 5

to 7). Note that we do not sample a new starting vertex each time.

Instead, we also do so when the search process does not return a

better result (line 8). We regard this as a sign showing that we have

reached the limit of the current chosen starting vertex.

The whole process will stop when a certain condition is met

(line 9). The detail is omitted and can be referred to in our provided

implementation. There are a few optimizations of such iteration

mechanisms that can help improve the performance. Note that if

the current polarity is d , for any vertex with a degree less than d ,

removing them will not worsen the answer. Therefore, we remove

all such vertices from � after the d gets updated (line 10).

B ADDITIONAL EXPERIMENTS

B.1 Stability Study

In our search process (Algorithm 1), we will execute either vertex

deletion or color �ipping in a certain probability ? . We conduct

some experiments to study how such non-incremental operations

help improve the stability of our algorithm, shown in Table B.1.

We modify the algorithm RH to a version with only insertion

operations, denoted as RH (insertion only). On all datasets, we

execute both algorithms for 100 rounds. As common, we compute

the variance f2 to measure the stability. Here, for each dataset,

we also compute the maximum (max ˆ̈), minimum (min ˆ̈), and

average (`) values for tolerant balance count (TBC).

As shown in Table B.1, we can see with these two operations,

the results are more stable and consistent, which can be observed

in the rightmost column.

Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks KDD 2024, August 2024, Barcelona, Spain

0.4 0.5 0.6 0.7 0.8 0.9
X-axis : p

1484900

1485000

1485100

1485200

Y-
ax

is
: a

ve
ra

ge
 T
BC

average TBC and time (s) under different p
TBC

0.5 1.0 1.5 2.0 2.5 3.0
X-axis : C

1485100

1485125

1485150

1485175

1485200

1485225

Y-
ax

is
: a

ve
ra

ge
 T
BC

average TBC and time (s) under different C
TBC

5 10 15 20 25 30 35 40
X-axis : T

1485165

1485170

1485175

1485180

1485185

1485190

Y-
ax

is
: a

ve
ra

ge
 T
BC

average TBC and time (s) under different T
TBC

5.5

6.0

6.5

7.0

7.5

8.0

Y-
ax

is
: a

ve
ra

ge
 ti

m
e

time
4

6

8

10

12

Y-
ax

is
: a

ve
ra

ge
 ti

m
e

time 6.32

6.34

6.36

6.38

6.40

6.42

6.44

6.46

Y-
ax

is
: a

ve
ra

ge
 ti

m
e

time

Figure B.1: We study the in�uence of hyperparameters (i.e., Non-incremental probability ?, Iteration constant C and Early

stop turn limit)) on Confilict dataset with V = 1/4: For each hyperparameter, we execute the algorithm when setting the

hyperparameter as various values while keeping other hyperparameters �xed. The results include the average Tolerant Balance

Count (TBC) and running time in 25 rounds.

Table B.1: Stability study of Tolerant Balance Count (TBC) under V = 1/8 as example: We conduct 100 rounds of RH and RH

(insertion only) on each dataset. The results include maximum TBC (max ˆ̈), minimum TBC (min ˆ̈), mean TBC (`), and the

variance (f2) across the 100 rounds. Additionally, we present the variance reduction achieved by considering non-incremental

operations.

Dataset
RH (insertion only) RH Variance

reductionmin ˆ̈ max ˆ̈ ` f2 min ˆ̈ max ˆ̈ ` f2

Bitcoin 14,864 15,523 15,499 4,977 15,578 15,619 15,604 25 198×
Epinions 462,237 471,120 470,536 1,301,027 472,158 472,240 472,195 315 4,129×
Slashdot 223,054 232,757 232,110 1,564,480 231,988 233,149 232,957 17,521 88×
Twitter 187,549 209,701 208,051 30,265,009 197,072 209,701 209,097 4,455,495 5.7×
Conflict 1,284,391 1,289,332 1,288,405 430,597 1,292,253 1,293,741 1,293,318 84,706 4×
Elections 40,819 42,187 41,981 33,946 42,206 42,358 42,276 1,031 29×
Politics 470,347 470,764 470,576 4,289 470,534 470,905 470,642 4,042 0.06×

B.2 Statistical Hypothesis Testing

In our sampling strategy and performance analysis, we propose

two hypotheses: 4.1 and 4.2. Here, we conduct some experiments

on 3 datasets and 4 di�erent V to verify if these hypotheses are

reasonable.

For Hypothesis 4.1, we compute the maximum 1 − n such that

there exists a subset + ′ ¦ + (�ĥĦĪ) with |Ē ′ |
|Ē (ă>?C) | g

1
2 such that

¨(�Į , V) g (1 − n)¨(�ĥĦĪ , V),∀G ∈ + ′. The result is shown in

Table B.2. The hypothesis is supported by the fact that all values are

very close to 1 and not sensitive to the value of V , which indicates

n’s lower bound approaches to 0.

To verify Hypothesis 4.2, we run Algorithm 1 from every pos-

sible starting vertex B (similar to RH (LS) in Section 5). For each

setting, we compute max
|Ē (ă1) |
|Ē (ă0) | for any two starting vertices 0, 1

satisfying ˆ̈ (�ė, V,Xė) g ˆ̈ (�Ę , V,XĘ). The result is shown in Ta-

ble B.3, where all values are very close to 1 and far from the bound

of 2 in the hypothesis. Therefore, Hypothesis 4.2 is also empirically

supported.

B.3 Hyperparameter Analysis

For the three hyperparameters ?,�,) in Algorithm 2, we conduct

a series of experiments to demonstrate that our choice is natural,

shown in Figure B.1.

For each hyperparameter, we �x the other two unchanged as our

option in Section 4 and enumerate its value in a range. For each

value, we compute the average runtime and TBC over 25 times

the executions of solving on the Confilict with setting V =
1
4 . A

Table B.2: Veri�ng Hypothesis 4.1: For each dataset, we

compute the maximum 1 − n such that there exists a sub-

set + ′ ¦ + (�ĥĦĪ) with
|Ē ′ |

|Ē (ă>?C) | g
1
2 such that ¨(�Į , V) g

(1 − n)¨(�ĥĦĪ , V),∀G ∈ + ′ under various V .

Dataset V =
1
4 V =

1
8 V =

1
16 V =

1
32

Bitcoin 1.000 0.999 0.982 0.948

Twitter 0.987 1.000 1.000 1.000

Elections 0.999 0.997 0.987 0.946

Table B.3: Veri�ngHypothesis 4.2: For each dataset, we com-

pute max
|Ē (ă1) |
|Ē (ă0) | for any two starting vertices 0, 1 satisfying

ˆ̈ (�ė, V,Xė) g ˆ̈ (�Ę , V,XĘ) under various V .

Dataset V =
1
4 V =

1
8 V =

1
16 V =

1
32

Bitcoin 1.018 1.014 1.020 1.037

Twitter 1.053 1.111 1.094 1.084

Elections 1.009 1.032 1.040 1.061

larger ? may lead tomore non-incremental operations, thus a longer

runtime is expected. Similarly, a larger � leads to more executions

of the search process. Therefore, as ?,� gets larger, the runtime

and the average TBC might be getting larger as well. This can be

observed from the experiment, shown in Figure B.1.

On the other hand, although such patterns can be observed, the

di�erence between average runtime and TBC is not signi�cant

for all three hyperparameters. This indicates that our algorithm is

robust and does not tune towards the dataset.

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 Problem Specification
	4 ALGORITHM
	4.1 Relaxation
	4.2 Local Search
	4.3 Region-based Sampling

	5 EVALUATION
	5.1 Experimental Setting
	5.2 Finding Balanced Subgraphs with Tolerance
	5.3 Finding Strictly Balanced Subgraphs
	5.4 Running Time Analysis
	5.5 Solving the 2PC Problem

	6 CONCLUSIONS
	7 REPRODUCIBILITY
	Acknowledgments
	References
	A OMITTED PROOF AND ALGORITHM
	A.1 Omitted Proof in Section 3
	A.2 Omitted Lemma and Proof in Section 4
	A.3 Omitted Algorithm in Section 5.5

	B ADDITIONAL EXPERIMENTS
	B.1 Stability Study
	B.2 Statistical Hypothesis Testing
	B.3 Hyperparameter Analysis

