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ARTICLE INFO ABSTRACT

Keywords: Stalk lodging in the monocot Zea mays is an important agricultural issue that requires the development of a

Maize genome-to-phenome framework, mechanistically linking intermediate and high-level phenotypes. As part of that

Corn effort, tools are needed to enable better mechanistic understanding of the microstructure in herbaceous plants. A
:::]; gth method was therefore developed to create finite element models using CT scan data for Zea mays. This method
Lodging represents a pipeline for processing the image stacks and developing the finite element models. 2-dimensional
Herbaceous stem finite element models, 3-dimensional watertight models, and 3-dimensional voxel-based finite element models
Biomechanics were developed. The finite element models contain both the cell and cell wall structures that can be tested in

silico for phenotypes such as structural stiffness and predicted tissue strength. This approach was shown to be
successful, and a number of example analyses were presented to demonstrate its usefulness and versatility. This
pipeline is important for two reasons: (1) it helps inform which microstructure phenotypes should be investigated
to breed for more lodging-resistant stalks, and (2) represents an essential step in the development of a mecha-

nistic hierarchical framework for the genome-to-phenome modeling of herbaceous plant stalk lodging.

1. Introduction

Stalk lodging, defined as the permanent displacement of plants from
their vertical orientation, severely reduces agronomic yields of several
vital crop species including maize (Berry et al., 2007; Flint-Garcia et al.,
2003). Stalk lodging, as opposed to root lodging, occurs when the me-
chanical stability of the plant is lost due to structural failure of the plant
stem (Berry et al., 2004; Robertson et al., 2015). The complex multiscale
nature of the stalk lodging phenotype confounds selective breeding
studies aimed at reducing stalk lodging (Peiffer et al., 2013; Wang et al.,
2024, 2023, 2020; Zhang et al., 2018). For example, high level pheno-
types that are strongly correlated with stalk lodging resistance (e.g.,
strength, and flexural rigidity) are mechanistically linked with lower
level intermediate phenotypes like tissue stiffness (Oduntan et al., 2022;
Stubbs et al., 2022, 2018; Ookawa et al., 2010). Tissue stiffness is in turn
determined by the microstructure and material properties of the cell and
cell wall. Complicating this further, cell walls in higher plants are rigid
yet extensible structures that vary in their composition between plants,
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cell types and temporal stages of development (Hofte and Voxeur,
2017). Linking the genome to these lower level intermediate pheno-
types, such as microstructure and cell wall stiffness, could enable
breeders to alter the high level phenotypes of stalk lodging resistance,
strength, and stiffness with more specificity (Prasad and Gupta, 1975;
Robertson et al., 2017, 2016; Stubbs et al., 2022; Xue et al., 2020).
Specimen-specific computational models can enable researchers to
mechanistically link higher order phenotypes like tissue stiffness to the
lower level phenotypes of microstructure and cell wall properties. In
particular, sensitivity analysis studies of such computational models can
better elucidate the complex nonlinear relationships that exist between
microstructure, cell mechanical properties, and tissue stiffness. In this
application, finite element models present three distinct advantages:
First, the overall biomechanical responses do not solely depend on
the microstructure, but also the material properties of the cell and other
factors. Thus, physical experiments that attempt to elucidate the influ-
ence of microstructure on tissue stiffness are strongly confounded, and
direct comparisons are not practical. However, in silico experiments,
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through the use of finite element modeling, do not have such limitations.
In these models, researchers are able to de-couple material properties,
morphology, and other factors such as turgor pressure. For instance, by
manually assigning the same material properties to all models — as is
done in this study - researchers can isolate the cellular morphology and
directly compare its influence on the biomechanical response. Similarly,
material properties or turgor pressure can be manually changed within a
model, and the influence of these factors on tissue stiffness can be
directly measured on a per-model basis.

Second, as the models are derived from first principles, the influence
measured is mechanistic, not correlational. That is to say, that the results
will inform researchers of not just what the impact of individual factors
are on tissue stiffness, but will also give insight into how and why.

Third, because individual factors can be isolated, material properties
are not required to be known a priori. This is because within the linear
elastic domain, the stiffness of the finite elements — in this case the cell
wall — and the stiffness of the tissue is linear. Thus, to compare micro-
structures, the material properties of specimens can be manually set to
identical, arbitrary values. Furthermore, if researchers wish to deter-
mine the material properties of the cell walls, they can use inverse-FEM
to solve for them using the microstructure and the overall tissue stiff-
ness. This method is provided in further detail through our previous
studies, both as a homogenous structure (Stubbs et al., 2019) or on a
per-voxel basis (Stubbs et al., 2020). Such results can be validated
against previously developed material tests and plant individual-scale
FEM analyses that have already been conducted and are known to
simulate lodging with high accuracy (Dupuy et al., 2007; Tomobe et al.,
2019; Nakashima et al., 2023).

Unfortunately, the development of specimen-specific finite element
models of plant cell microstructure has been to-date impractical and
low-throughput. One of the primary challenges to creating these models
is transforming imaging data into accurate 3-dimensional models of the
plant. For example, the greyscale data produced in micro computed
tomography (uCT) scans is often imperfect, and requires researchers to
make subjective thresholding decisions or to create specialized processes
that may likewise be subjective to create 3-dimensional plant geometries
(Bradley and Roth, 2007; Hangartner, 2007; Rulaningtyas and Ain,
2021; Stubbs et al., 2019; Tseng and Huang, 2009; Zhang et al., 2010).

To overcome some of these challenges this paper presents a high-
throughput, repeatable, and reliable methodology of building finite
element models for Zea mays specimens and other commercially
important herbaceous crops. Specifically, this method uses a custom
pipeline to efficiently convert pCT scans into semi-parameterized spec-
imen-specific finite element models.

Thus, this study presents the pipeline, provides the results of the
process, and validates and compares the pipeline based on the current
state-of-the-science methods. Additionally, example use cases of 2-
dimensional and 3-dimensional finite element models are presented in
the Discussion solely to demonstrate the potential utility of the process.
As such, this study represents an incremental step in the direction of
mechanistically linking microstructure to tissue stiffness and, ulti-
mately, stalk lodging resistance.

2. Methods
2.1. Plant materials

Experimental stalks were collected from border rows within a larger
experiment located on the University of Kentucky Spindletop Research
Farm. Seed was sourced from a single bag of Pioneer P1464AML (mid-
season, 114 days to mature), hand planted on 05/14/2021 and fully
mature stalks were harvested around 09/09/2021, approximately 118
days after planting. Immediately before planting, the field was rototilled
and a precision planter was used to pre-cut 2-inch deep furrows with 30-
inch row-to-row spacing. Planting density was set to 0.1 m/seed within
border rows. Weeds were controlled with a single 583 L/km? treatment
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of Acuron supplemented with 16,812 kg/km? of nitrogen applied on 06/
01/2021. After herbicidal activity wore off, weeds were controlled
manually with hoeing as needed; neither supplemental irrigation nor
pesticide treatments were required during the growing season. During
stalk collection, individuals were cut from the ground at their base using
garden shears and at the internode above the primary ear bearing node.
All leaves, and leaf sheaths were removed from individual stalks. Stalks
were spread in a single layer on wire rack benchtops in a greenhouse set
to 36°C w/ adequate air circulation to deter mold growth and allowed to
dry for one month. After drying, stalks were cut into subsections of
approximately 3 internodes before shipment to University of Idaho,
where they were stored at standard office temperature and humidity.

2.2. Specimen preparation & computed tomography scanning

The samples were sectioned using a 110 V, 15.25 cm trim saw with a
thin-notched diamond saw blade using the methodology outlined by
Oduntan (Oduntan et al., 2022). Samples were then shipped to Micro
Photonics (Allentown, PA, USA) for microCT imaging. The samples were
soaked in a 1 % aq solution of osmium tetroxide for one week, and then
scanned using the SkyScan 1272 with a 70 kV source voltage, 142pA
source current, 1238 ms exposure time, and a 0.5 mm Aluminum filter.
Scans took approximately three hours per sample, and resulted in a
voxel resolution of 4.3pm.

2.3. Processing

2.3.1. Image thresholding

Thresholding (also referred to as binarization) is a common digital
image processing technique which converts a grayscale image into one
that only contains black and white pixels (Gonzalez, 2009). After
thresholding white pixels can be turned into 3D geometries, whereas
black pixels represent empty space or gaps between the 3D geometry.
Several image processing techniques were utilized in this study to
transform grayscale pCT scans into binary images which were in turn
made into watertight 3D structures. These techniques included grayscale
erosion, otsu thresholding, resizing, and island-aware erosion. Each of these
are explained in more detail in the following paragraphs.

Grayscale erosion is a grayscale morphology algorithm commonly
used in image processing (Serra, 1982). Its aim is to reconstruct an
image by iterating over each pixel and calculating the local minimum
based on a defined neighborhood. The neighborhood can be defined
using any defined structuring element, k. In this study a diamond
structuring element was used. This results in an image that is shrunk or
contracted, as seen in Fig. 1b. Since the original image is grayscale,
many thresholding methods will over-estimate the thickness of the cell
wall. Grayscale erosion helps to ensure the thickness of each cell wall is
minimal without introducing gaps or holes in the cell walls.

Two-class Otsu Thresholding (Otsu, 1979) with an adaptive window
size of 15 pixels was utilized in this study. The results of Otsu Thresh-
olding are shown in Fig. 1 on the top-right. This thresholding algorithm
and window size were chosen through experimentation and showed to
provide the accurate and representative results. Similar to the previous
step, the goal of Otsu Thresholding was to ensure a thin cell wall without
introducing gaps or holes in the cell wall.

Next, the image size was doubled in all three axes. This allows for
thinner cell walls relative to the entire image size. Island-aware erosion
was conducted on the scaled image with the results shown in Fig. 1 on
the bottom-right.

Lastly, a custom erosion algorithm was used that is aware of any
breaches in the cell wall. During a typical step in an erosion algorithm, a
minimum value is calculated within a certain structuring element, k, and
will be used as the resulting pixel’s value. However, in this custom
implementation there is an additional check using a larger and separate
structuring element, K, which is used to identify if a cell wall is being
breached or not (i.e., if the cell wall is continuous or if it has a hole in it).
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Fig. 1. Image Processing Steps, showing the image at various steps including: the original image (a), the image after the initial erosion step (b), the image after the
binary thresholding step (c), the resized image (d), and the image after island-aware erosion (e); voxel size = 4.3pm.
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Fig. 2. Island-aware erosion. Top: breach case (a-c). Bottom: no breach (d-f).

=

3



S.S.B. Clarke et al.

If the erosion operation would create a breach of a cell wall, the erosion
operation was reversed. To check if a wall is breached, the number of
pixel islands are calculated within K before and after a potential erosion
operation. If the number of islands is greater after the operation, that
implies a breach of a cell wall. This is illustrated in Fig. 2. In the top
example, if the center (red) pixel shown in Fig. 2b is removed, then there
would be a result of two pixel islands, so we ignore the removal. In the
bottom example, an erosion operation would not result in additional
islands, so it is performed as normal.

We can see the final resulting image in Fig. 2 on the bottom-right. All
code used for image processing and model generation, along with the
validation sets discussed in the Results section, is uploaded in the GitHub
repository: https://github.com/ssbclarke/stalk_cell segmentation.

3. Results

To evaluate the ability of the uCT scan image processing methodol-
ogy, validation sets were created and visually compared for perfor-
mance. To determine good performance, we ensure the final thresholded
image reflects the general structure of the original cell wall. This in-
cludes representing the relative thickness of the cell wall compared to
the entire structure, not introducing holes or breaches in the cell wall,
preserving the shape and size of cells, ignoring unwanted noise, and its
ability to be reconstructed as a 3D model.

Fig. 3 shows a horizontal cross section of Validation Set #1. Overall,
the thresholded image represents the original very well. Two areas of
interest are highlighted. First in green on the top-left, notice the breach
in the cell wall between two large cells. Although this is representative
of the original image which shows the region as dark, in reality these two
cells should be separate due to their defined shape, and are shown as
disconnected due to localized contrasting. Similarly, in the red area of
interest in the bottom-left of the image, there is a breach in the cell wall
where there shouldn’t be, again due to localized contrasting.

Fig. 4 shows a vertical cross section of Validation Set #2. Here, the
thresholded image represents the original well. Looking at the first area
of interest in green on the right, we see that there is a gap in the cell wall
where the original image contains material. In the red area of interest in
the bottom of the image, we see the effect of noise in the original image.
Although the inner portion of the highlighted cell is dark in the original,
it still contains grayscale information that is determined by the algo-
rithm to be thresholded white. This image also demonstrates good
performance in reducing cell wall breaches, as seen in the pink area of
interest in the top-left. Although the original image shows a darker gap
within the cell wall, the thresholding algorithm correctly fills in the gap.

Original

0 20 40 60
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3.1. Validation & data triangulation

To validate the proposed image thresholding methodology, we
compare the results achieved with Otsu thresholding, a technique
commonly used for cell segmentation (Mandyartha, 2020; Salem, 2016,
Win, 2017). Seen in Fig. 5 panel (c), Otsu thresholding method creates a
representative binary image from the original. However, the primary
and essential setback occurs within the number of cell wall breaches. In
Fig. 5, panel (d), multiple cell wall breaches can be seen in red where the
proposed thresholding predicts cell wall, but Otsu thresholding fails to.
Limiting these breaches is vital to ensure that the resulting 3D recon-
struction is watertight and as representative of the original as possible.

4. Discussion
4.1. Image processing

Through analysis of several segments of our original pCT scanned
image we can see that the thresholding process results in an image that is
representative of the original structure while being able to be manipu-
lated and converted into a 3D structure. However, it is not without
challenges and errors. As seen throughout the validation steps there are
areas of improvement such as reducing breaches in cell walls that
shouldn’t occur, preserving the general shape of each cell and reducing
the effect of noise in the thresholded images. Additionally, the thresh-
olding algorithm performs most reliably with higher resolution and less
noisy scans. In our results it was found that in regions of small and
tightly packed cells, i.e., less resolution per cell, higher error was found
in the resulting thresholded image.

4.2. 2-Dimensional finite element model

Two-dimensional finite element analyses of a single slice of a pro-
cessed image stack can be used in preliminary investigations of micro-
structure. Although such analyses ignore the variation in the third
dimension, they are computational efficient and there results can still be
quite informative. To create a 2-dimensional finite element model from
a processed *.tiff image stack, the stack is first imported into ImageJ,
and the slice of interest is selected and saved as a single image file. Next a
custom Matlab code is implemented to trace the cell to cell wall
boundaries and write a Python script that sketches the corresponding
splines in Abaqus/CAE (Hibbitt et al., 2016; Simulia, 2016). The
resulting Python script can then be run in Abaqus/CAE to generate the
splines as a sketch. These sketches can then be used to create 2-dimen-
sional finite element parts of the cells and cell walls as separate parts

After Processing

0

Fig. 3. Image processing validation #1 - horizontal slice. Scale in pixels (voxel size = 4.3um).
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After Processing

Fig. 4. Image processing validation #2 - vertical slice. Scale in pixels (voxel size = 4.3pm.).
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Fig. 5. This image shows our proposed thresholding method using Island-Aware Erosion compared to Otsu thresholding. Shown are four images: (a) the original
image, (b) our proposed thresholding using island-aware erosion, (c) Otsu thresholding, and (d) highlights the difference between (b) and (c).

which can be meshed independently and assigned different materials
properties. See Fig. 6.

4.3. 3-Dimensional solid model

Although 2-dimensional models can be helpful for initial in-
vestigations, it is often necessary to analyze the microstructure as a full
3-dimensional structure. To create such a model, the data needs to be
converted into a “watertight” structure; that is to say, we must create a
model in which all surfaces combine to define a solid volume. In order to
achieve this, we must extract a 3D surface model of the data, and then
perform a wrapping function to enclose any open gaps in the volume. To
do this, the *.tiff stack is first analyzed in ImageJ using the 3D Viewer
plugin, and a surface mesh is extracted. Next, the surface is imported
into Meshlab, where a screened Poisson surface reconstruction is

performed to ensure the surface is watertight. At this stage, the model is
watertight, but contains far more individual faces than are needed; see
Fig. 7. Such a large number of faces is a computationally inefficient way
to define the volume. Thus, the geometry is simplified using a quadratic
edge collapse decimation. An example of this process for one of the
samples is shown in Fig. 7. As can be seen, a reduction of the number of
faces by over an order of magnitude results in only a relatively minor
reduction in the level of detail of the model.

4.4. 3-Dimensional voxel finite element model

At this stage in the process, we have a watertight but hollow surface
mesh. Such a mesh can be made solid by importing the model into
SolidWorks (SOLIDWORKS 2021) and converting it to a solid using the
Surface Thicken tool with “create solid from enclosed volume” enabled.
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Fig. 6. A single slice of the *.tiff stack resulting from the geometry extraction process (a & e), the tracing of the cell boundaries in MATLAB (b & f), the resulting
meshed 2-dimensional finite element model in Abaqus/CAE of the cell walls (¢ & g), and the final meshed model in Abaqus/CAE with the cells added (d & h); process

shown for cross-sectional (top row) and longitudinal (bottom row) slices.
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Fig. 7. The mesh processing of the surface geometry in MeshLab, making a single watertight surface that was then simplified to a reduced face count.

However, although this model can be imported into a finite element
modeling software like Abaqus/CAE, the resulting geometry is often
overly complex and difficult to mesh, even using a free mesh algorithm
with quadratic tetrahedral (C3D10) elements, and is quite computa-
tional inefficient. In addition, this model only contains cell walls, so we
cannot analyze the structure as a cell - wall system. As such, this solid
model is often more useful as a tool for volumetric analysis and average
bulk tissue density estimates.

Instead, a voxel approach is used to analyze the structure, similar to
what has been performed previously in bamboo structures (Palombini
etal., 2020). This method uses a standard meshed cube using hexahedral
elements, where there is a one-to-one correlation between each element
and a corresponding voxel in the processed image stack. Then, each
element is assigned material properties corresponding to its position;
elements in the position of a cell wall voxel are assigned cell wall ma-
terial properties, while elements in the position of a cell voxel are
assigned cell material properties. In Abaqus/CAE, such mapping of
voxels to elements can be done through analytical fields, as we

previously presented in (Stubbs et al., 2020).

To demonstrate the feasibility of the voxel mesh approach for eval-
uating microstructure, a 3-dimensional finite element model was
created and analyzed. The model was created as a voxel cube of 64 x64
x 64 C3D8RT reduced integration temperature-dependent elements,
totaling 262,144 elements. The cell and cell wall were mapped using
analytical fields, and then analyzed for uniaxial compression in the
vertical (y-axis) direction. See Fig. 8.

4.5. Limitations

A number of limitations exist in this process. First, this process has
only been tested with CT scans of Zea mays. Analyzing different tissue,
different species, or different image types would most likely require
minor changes to the process. Second, both the image processing and
finite element models become exponentially more computationally
intensive as the voxel size of the image increases. Key steps like the
image erosion or analytical field mapping are key bottlenecks in the
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Fig. 8. The resulting voxel model of the cell and cell wall structure, showing the cell wall in black and the cell volumes as white (left) and semi-transparent (right).

process as image sizes become larger. Therefore, computational
modeling of entire cross-sections may not be practical.

5. Conclusions

A method was developed to create 2-dimensional and 3-dimensional
finite element models using CT scan data for Zea mays. This method
contains a streamlined pipeline for processing the image stacks and
developing the finite element models. 2-dimensional finite element
models, 3-dimensional watertight models, and 3-dimensional voxel-
based finite element models were developed. The finite element
models contain both the cell and cell wall structures. These models can
be analyzed for microstructural properties such as force-displacement
stiffnesses, as well as be analyzed for stress under different loading
conditions.

This approach provides researchers with the tools required to
develop a better mechanistic understanding of the microstructure. This
is important for two reasons: (1) it helps inform which microstructure
phenotypes should be investigated to breed for more lodging-resistant
stalks, and (2) represents an essential step in the development of a
mechanistic hierarchical framework for the genome-to-phenome
modeling of herbaceous plant stalk lodging.
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