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ABSTRACT

This work presents Agile Queue, a queue specifically designed to

support high concurrency on modern GPUs. At its core is to replace

conflicting accesses to shared objects with independent accesses

to private data. The proposed Agile queue operates on two differ-

ent granularity - thread block and warp. While the thread block

granularity exploits better parallelism among threads, it requires a

synchronization primitive to designate a master thread. The warp

granularity, on the other hand, leverages work sharing strategy

among threads in a warp without any synchronization, which re-

duces the inherent branch divergence. Both variants support the

wrap-around of the head and tail across the ring buffer. Each request

to the ring buffer generates a ticket for strict ordering without fully

blocking at queue boundary conditions. While the thread block

variant utilizes shared memory to reduce global memory accesses,

the warp variant broadcasts the offset to all other lanes in the warp

by the leader (first active) thread within the warp. Our experiments

demonstrate the superior performance and scalability of the Ag-

ile queue over existing solutions. Specifically it outperforms the

BWD (Broker Queue Work Distributor), the fastest GPU queue

to our knowledge, by more than 2× without compromising FIFO

semantics.
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1 INTRODUCTION

The queue serves as an important data structure for building nu-

merous applications yet designing and implementing scalable con-

current queues for GPUs is a challenging task due to elevated con-

currency. Traditionally concurrent queue design strategies often

prioritize lock-free approaches for performance but the frequent

failure of Compare and Swap (CAS) operations outweighs the ben-

efits of lock-free designs [2, 3]. Blocking approaches [4ś6] mitigate

such bottlenecks but suffer from poor scalability.
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We presents a novel scalable and linearizable concurrent queue

named Agile Queue that is specifically designed for modern GPU

architectures. The key features of the Agile queue and our technical

contributions are summarized as follows.

• It utilizes fetch-and-add (FAA) operations along with a per-

element ticketing system to achieve linearizability.

• It efficiently manages boundary conditions within the queue

without the need for additional atomic counters.

• It efficiently consolidates overlapping requests using a single

global update.

• We evaluate and compare the proposed design using real-

world benchmarks to assess its performance under practical

conditions.

2 AGILE QUEUE

The Agile queue is based on a circular array and implements tech-

niques that allocate elements at specific positions within the queue

array without failing CAS operations. As such, we coalesce memory

requests with array indices and update them with a non-failing

atomic exchange operation. The data structure of the Agile queue

consists of 1) head and tail pointers representing the positions

within the circular buffer after a modulo operation and establish-

ing the priority of operations that are atomically incremented in

response to dequeue and enqueue requests, 2) items that store data,

and 3) tickets that assign a ticket for each request and align them

with the respective buffer index position.

2.1 Tickets for FIFO Semantics

When an operation increments head or tail via non-failing FAA,

it not only updates these pointers but also establishes the priority

of the subsequent operation right after the increment. It is vital for

dequeue or enqueue operation to wait for the enqueue or dequeue

in progress for the same index position to complete in order to

maintain the FIFO semantics. Consider a group of 5 concurrent

requests listed up by their invocation order (T1-T5). Depending on

thread scheduler, these requests might execute in a different order

(e.g., T1,T2,T4,T3,T5), deviating from the original invocation or-

der. In Figure 1, T3,T5 threads execute later than T1,T2,T4. Three

requests (enq(x), deq:x, enq(x)) occur on index 0, expecting

𝑥 on the dequeue operation. Without any technique to maintain

the order, the sequence can become jumbled, leading to dequeuing

of a different value 𝑧 instead of 𝑥 .

One effective approach to maintain order is by attaching a ticket

to requests when they are initiated to establish their order. For each

index in the queue, we employ a strategy where we attempt to

match the ticket associated with the operation before proceeding; if

not matched, we wait until it becomes available. Specifically, for an

enqueue operation, we attach a ticket which in later incremented

by one for a dequeue operation on the same index position. After
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employing ticketing mechanism, the previous example changes its

behavior as

• T4 initiates before T3, yet it waits until the ongoing dequeue

operation (deq:x) at the same index completes its execution.

• Once T3 completes its operation (publishing the node and

issuing a new ticket which is the old ticket + 1), the sub-

sequent enqueue operation (enq(z)) can match the ticket

associated with the zero-th index position.

Figure 1: Example of ticketing mechanism.

2.2 Algorithm Variants

The Agile queue implements two variants at different granularity

(thread block and warp). The thread block granularity, calledmaster

thread, utilizes shared memory to minimize slow global memory

accesses. However, it exhibits a challenge of thread divergence

when enqueue and dequeue requests are mixed across threads.

The warp granularity, called coalescing active threads, overcomes

thread divergence by coalescing only active threads of the diverged

path within a warp. The Agile queue achieves high performance

by blending two variants. This hybrid approach of two variants

leverages the benefits of utilizing shared memory while effectively

managing thread divergence within warps.

3 EXPERIMENTAL RESULTS AND ANALYSIS

Wemeasured the performance of the Agile queue in various settings

(i.e., master thread, coalescing active threads, hybrid and dynamic

approach) on an NVIDIA RTX 4090. We also compare them with

the Broker Queue [4], Broker Queue Work Distributor (BWD) [4],

Gottlieb Queue [1].

In our investigation of the balanced scenario (Figure 2), we find

similar performance between two variants of Agile queue. Notably,

the blend of master thread-based enqueue and coalescing active

thread-based dequeue demonstrates superior performance over all

other competitors. In an imbalanced scenario where workload dis-

tributions favor either enqueue or dequeue operations, most queues

exhibit roughly 50% lower throughput than the Agile queue hybrid

approach. This disparity arises due to boundary conditions encoun-

tered under such scenarios. We benchmark for 50:50 enqueue and

dequeue ratios (Figure 3). Compared to our queue, Broker Queue,

Figure 2: Performance of Enqueue-Dequeue Pair.

Figure 3: Performance of Enqueue-Dequeue Mix (50:50).

BWD and Gottileb Queue throughput saturate or drop under such

high contention as they suffer from atomic operations and thread

divergence.

4 CONCLUSION

This extended abstract introduces Agile Queue, a concurrent queue

that is designed to achieve high performance and scalability onmod-

ern GPUs. Unlike previous approaches which either compromise

FIFO semantics or exhibit blocking behavior at queue boundaries,

the Agile queue leverages modern GPU features to exploit par-

allelism. Our experiments demonstrate that the combination of

two granularity-based approaches yields the highest throughput

compared to existing concurrent queues, in both balanced and im-

balanced scenarios. Additionally, we ensure the linearizability of

our queue through a ticketing mechanism.
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