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ABSTRACT

This work presents Agile Queue, a queue specifically designed to
support high concurrency on modern GPUs. At its core is to replace
conflicting accesses to shared objects with independent accesses
to private data. The proposed Agile queue operates on two differ-
ent granularity - thread block and warp. While the thread block
granularity exploits better parallelism among threads, it requires a
synchronization primitive to designate a master thread. The warp
granularity, on the other hand, leverages work sharing strategy
among threads in a warp without any synchronization, which re-
duces the inherent branch divergence. Both variants support the
wrap-around of the head and tail across the ring buffer. Each request
to the ring buffer generates a ticket for strict ordering without fully
blocking at queue boundary conditions. While the thread block
variant utilizes shared memory to reduce global memory accesses,
the warp variant broadcasts the offset to all other lanes in the warp
by the leader (first active) thread within the warp. Our experiments
demonstrate the superior performance and scalability of the Ag-
ile queue over existing solutions. Specifically it outperforms the
BWD (Broker Queue Work Distributor), the fastest GPU queue
to our knowledge, by more than 2x without compromising FIFO
semantics.
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1 INTRODUCTION

The queue serves as an important data structure for building nu-
merous applications yet designing and implementing scalable con-
current queues for GPUs is a challenging task due to elevated con-
currency. Traditionally concurrent queue design strategies often
prioritize lock-free approaches for performance but the frequent
failure of Compare and Swap (CAS) operations outweighs the ben-
efits of lock-free designs [2, 3]. Blocking approaches [4-6] mitigate
such bottlenecks but suffer from poor scalability.
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We presents a novel scalable and linearizable concurrent queue
named Agile Queue that is specifically designed for modern GPU
architectures. The key features of the Agile queue and our technical
contributions are summarized as follows.

o It utilizes fetch-and-add (FAA) operations along with a per-
element ticketing system to achieve linearizability.

o It efficiently manages boundary conditions within the queue
without the need for additional atomic counters.

o It efficiently consolidates overlapping requests using a single
global update.

e We evaluate and compare the proposed design using real-
world benchmarks to assess its performance under practical
conditions.

2 AGILE QUEUE

The Agile queue is based on a circular array and implements tech-
niques that allocate elements at specific positions within the queue
array without failing CAS operations. As such, we coalesce memory
requests with array indices and update them with a non-failing
atomic exchange operation. The data structure of the Agile queue
consists of 1) head and tail pointers representing the positions
within the circular buffer after a modulo operation and establish-
ing the priority of operations that are atomically incremented in
response to dequeue and enqueue requests, 2) items that store data,
and 3) tickets that assign a ticket for each request and align them
with the respective buffer index position.

2.1 Tickets for FIFO Semantics

When an operation increments head or tail via non-failing FAA,
it not only updates these pointers but also establishes the priority
of the subsequent operation right after the increment. It is vital for
dequeue or enqueue operation to wait for the enqueue or dequeue
in progress for the same index position to complete in order to
maintain the FIFO semantics. Consider a group of 5 concurrent
requests listed up by their invocation order (T1-T5). Depending on
thread scheduler, these requests might execute in a different order
(e.g., T1,T2,T4,T3,T5), deviating from the original invocation or-
der. In Figure 1, T3, T5 threads execute later than T1,T2,T4. Three
requests (enq(x), deq:x, enq(x)) occur on index 0, expecting
x on the dequeue operation. Without any technique to maintain
the order, the sequence can become jumbled, leading to dequeuing
of a different value z instead of x.

One effective approach to maintain order is by attaching a ticket
to requests when they are initiated to establish their order. For each
index in the queue, we employ a strategy where we attempt to
match the ticket associated with the operation before proceeding; if
not matched, we wait until it becomes available. Specifically, for an
enqueue operation, we attach a ticket which in later incremented
by one for a dequeue operation on the same index position. After
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employing ticketing mechanism, the previous example changes its
behavior as

e T4 initiates before T3, yet it waits until the ongoing dequeue
operation (deq:x) at the same index completes its execution.

e Once T3 completes its operation (publishing the node and
issuing a new ticket which is the old ticket + 1), the sub-
sequent enqueue operation (enq(z)) can match the ticket
associated with the zero-th index position.
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Figure 1: Example of ticketing mechanism.

2.2 Algorithm Variants

The Agile queue implements two variants at different granularity
(thread block and warp). The thread block granularity, called master
thread, utilizes shared memory to minimize slow global memory
accesses. However, it exhibits a challenge of thread divergence
when enqueue and dequeue requests are mixed across threads.
The warp granularity, called coalescing active threads, overcomes
thread divergence by coalescing only active threads of the diverged
path within a warp. The Agile queue achieves high performance
by blending two variants. This hybrid approach of two variants
leverages the benefits of utilizing shared memory while effectively
managing thread divergence within warps.

3 EXPERIMENTAL RESULTS AND ANALYSIS

We measured the performance of the Agile queue in various settings
(i.e., master thread, coalescing active threads, hybrid and dynamic
approach) on an NVIDIA RTX 4090. We also compare them with
the Broker Queue [4], Broker Queue Work Distributor (BWD) [4],
Gottlieb Queue [1].

In our investigation of the balanced scenario (Figure 2), we find
similar performance between two variants of Agile queue. Notably,
the blend of master thread-based enqueue and coalescing active
thread-based dequeue demonstrates superior performance over all
other competitors. In an imbalanced scenario where workload dis-
tributions favor either enqueue or dequeue operations, most queues
exhibit roughly 50% lower throughput than the Agile queue hybrid
approach. This disparity arises due to boundary conditions encoun-
tered under such scenarios. We benchmark for 50:50 enqueue and
dequeue ratios (Figure 3). Compared to our queue, Broker Queue,
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Figure 3: Performance of Enqueue-Dequeue Mix (50:50).

WD and Gottileb Queue throughput saturate or drop under such

high contention as they suffer from atomic operations and thread
divergence.

4 CONCLUSION

This extended abstract introduces Agile Queue, a concurrent queue
that is designed to achieve high performance and scalability on mod-
ern GPUs. Unlike previous approaches which either compromise
FIFO semantics or exhibit blocking behavior at queue boundaries,
the Agile queue leverages modern GPU features to exploit par-
allelism. Our experiments demonstrate that the combination of
two granularity-based approaches yields the highest throughput
compared to existing concurrent queues, in both balanced and im-
balanced scenarios. Additionally, we ensure the linearizability of
our queue through a ticketing mechanism.
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