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Introduction: Myoelectric control of prostheses is a long-established technique,
using surface electromyography (SEMG) to detect user intention and perform
subsequent mechanical actions. Most machine learning models utilized in control
systems are trained using isolated movements that do not reflect the natural
movements occurring during daily activities. Moreover, movements are often
affected by arm postures, the duration of activities, and personal habits. It is crucial
to have a control system for multi-degree-of-freedom (DoF) prosthetic arms that
is trained using SEMG data collected from activities of daily living (ADL) tasks.

Method: This work focuses on two major functional wrist movements: pronation-
supination and dart-throwing movement (DTM), and introduces a new wrist
control system that directly maps sEMG signals to the joint velocities of the multi-
DoF wrist. Additionally, a specific training strategy (Quick training) is proposed that
enables the controller to be applied to new subjects and handle situations where
sensors may displace during daily living, muscles can become fatigued, or sensors
can become contaminated (e.g., due to sweat). The prosthetic wrist controller
is designed based on data from 24 participants and its performance is evaluated
using the Root Mean Square Error (RMSE) and Pearson Correlation.

Result: The results are found to depend on the characteristics of the tasks. For
example, tasks with dart-throwing motion show smaller RSME values (Hammer:
6.68 deg/s and Cup: 7.92 deg/s) compared to tasks with pronation-supination
(Bulb: 43.98 deg/s and Screw: 53.64 deg/s). The proposed control technique
utilizing Quick training demonstrates a decrease in the average root mean square
error (RMSE) value by 35% and an increase in the average Pearson correlation value
by 40% across all four ADL tasks.

KEYWORDS

prosthetic control, deep learning, training strategy, surface electromyography, activities
of daily living

1. Introduction

The human upper limb function is crucial to perform daily living activities. The
loss of one or both arms causes severe disability that greatly affects a person’s ability to
perform essential daily activities (Kuiken et al., 2009). To date, there are nearly two million
people living with limb loss in the United States, with ~41,000 individuals suffering from
major upper limb amputations (Atzori and Miiller, 2015). The number of individuals with
amputation is increasing, resulting in a significant rise in health care costs. In 2009, hospital
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costs associated with amputation totaled more than 8.3 billion
dollars (Semasinghe et al., 2019). As a result, the development of
upper-limb prosthetic devices is considered to be crucial in helping
amputees adapt to daily activities and reintegrate into society.

In order to restore the upper limb function of amputees,
the development of myoelectric prosthesis started in the early
1940s (Kobrinskiy, 1960; Popov, 1965). A myoelectric prosthesis is
electrically-powered, utilizing the electrical signals generated from
some flexor and extensor muscles of the residual limb, which are
surface electromyography (SEMG) signals that reflect the user’s
intention. To date, almost all commercial electric prostheses use
a “direct myoelectric control” approach, where each direction of
a motor in a prosthetic joint or the opening/closure of a specific
grasp type in a robotic hand is controlled by a specific muscle. The
myoelectric controller often uses the on-off method using a pre-
defined threshold, but all commercial manufacturers also provide
proportional control that can provide essentially continuous output
to the active DoF of the prosthetic system (Fougner et al., 2012). To
actuate multiple active degrees of freedom prosthetic devices, state
machine technique has been suggested, which employs two SEMG
signals to operate a single joint but also permits switching between
other joints by co-activation of both muscles (Vujaklija et al,
2016). For example, SSSA-MyHAND (Controzzi et al., 2017) used
state-machine, which switched to various grasps such as lateral, bi-
directional, power, hook, pointing up and down by co-activation of
both muscles. The state-machine complexity increases significantly
when the number of prosthetic joints increases (Resnik et al., 2018)
and it lacks the capability of simultaneous control of multiple DoFs
which hinders the dexterity of the hand movement during daily
living tasks.

Pattern recognition has been suggested and widely explored
(Hargrove et al, 2007). Based on
SEMG activation patterns, the amplitude of sSEMG was used

for the past few decades

to decode the information and transfer the instructions to the
motor, that could identify the user’s intended hand and wrist
motions (Scheme and Englehart, 2011; Parajuli et al, 2019).
Statistical methods such as LDA (Linear Discriminant Analysis)
and SVM (Support vector machine) were used to classify user
intention with feature extraction, which were clinically tested on
several amputee trials (Al-Timemy et al, 2013; Stango et al,
2014). For neural-based models, ANN (Artificial neural network)
and MLP (Multilayer perceptron) were one of the initial deep
learning algorithms researchers explored (Kawasaki et al., 2014).
In comparison to traditional methods, these models were easily
trainable and have the capability of modeling with non-linear
data (Ahmad et al., 2011). Recently, Tam et al. (2021) designed
a gesture recognition system using a CNN for myoelectric hand
prosthesis control, in which the user could be able to monitor the
gesture recognition output in real time. This pattern recognition-
based classification method could only support discrete movement
classification, which was rather non-intuitive compared to the
natural way of controlling hands’ pose (Yang et al., 2022).

To overcome the limits of classification approaches, several
researchers have used deep learning techniques to control hand
movements with regressions. Bao et al. (2021b) proposed the
regression supervised domain adaptation (SDA) for estimating
wrist angles using SEMG data. This study investigated the domain-
shifting problem of the model when handling new subjects by
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categorizing the dataset of each subject as either the source or
target domain and generating pairwise samples instead of single
ones. A specific loss function, discrepancy loss, was also introduced
for better description of the data. Stival et al. (2018) combined
and IMU (Inertial Measurement Unit) features for the control of
prosthetic devices. However, the study by Bao et al. was limited
to simple wrist flexion/extension movements, while Stival et al.’s
study was based on an online database and only presented two
movements (flexion of three fingers or flexion of the wrist), which
had the best performance.

In this study, to overcome the limitations of existing methods,
a CNN-based wrist controller using a regression model is proposed
and evaluated based on real-life ADL data. The proposed controller
continuously estimates the wrist angle velocity from sEMG sensors
placed on the participants forearm, enabling continuous control
of a multi-DoF prosthetic wrist in a more natural way. The model
was trained using data collected while participants performing ADL
tasks that focused on pronation-supination and dart-throwing-
motion of the wrist. To increase the robustness of the model,
ADL tasks were conducted to collect movement data at different
heights. To use this model by a new participant within a short
time, a method utilizing Pre-training and Quick training data is
also suggested. This method can be used by participants within
the existing data set to reduce the retraining time, as fast training
is frequently required for amputee participants due to donning-
doffing, muscle fatigue, or contamination (e.g., sweat; Ameri et al.,
2020). An overview of the proposed method is shown in Figure 1.
The results varied depending on the characteristics of the tasks. For
example, tasks with dart-throwing motion showed smaller RSME
values (Hammer: 6.68 deg/s and Cup: 7.92 deg/s) compared to tasks
with pronation-supination (Bulb: 43.98 deg/s and Screw: 53.64
deg/s). The proposed control technique utilizing Quick training
demonstrated a decrease in the average root mean square error
(RMSE) value by 35% and an increase in the average Pearson
correlation value by 40% across all four ADL tasks.

2. Data collection

The study was approved by the Institutional Review Board of
University at Buffalo. Participants provided written consent prior to
the experiment. Only individuals with fully functioning biological
arms and unrestricted arm movement were included in the study.
And, for the current feasibility test, we recruited only right-handed
participants to ensure homogeneous data. Participants included 24
healthy individuals. Their average age, height, and weight were
25.38 £ 3.00 years, 171.74 £+ 8.40 cm, and 69.90 + 14.67 kg,
respectively. All participates were right-handed.

2.1. Sensor system

The Trigno® Wireless Biofeedback System (Delsys, MA) is a
device designed to make and biofeedback signal detection reliable
and easy. The system transmits signals from Trigno Avanti'™
sensors to a receiving base station using a time-synchronized
wireless protocol that minimizes latency in data transmission across
sensors. In this study, eight sensors were placed around the forearm
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FIGURE 1

movements (DTM) with a training strategy.

Overview of the proposed method. This multi-DoF controller will estimate the angular speed for pronation/supination (PS) and dart-throwing

8 Uniformly spaced SEMG sensors

FIGURE 2
SEMG sensors were placed beneath the elbow, uniformly spaced
from each other.

near the elbow to capture muscle signals during experiments,
as depicted in Figure 2. The sEMG sensor data was sampled at
2,000 Hz. Ten Vero motion capture cameras (Vicon, UK) were
used to capture the movements of the participants. A total of nine
markers were placed on the upper body and were divided into four
different body segments (Fazil et al., 2022).

2.2. Experimental task

Four representative activities of daily life were specifically
chosen for the experiment focusing on pronation-supination (PS)
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FIGURE 3

The activities of daily living (ADL) tasks are trained/tested through
the Screw rotation, Bulb twisting, Hammering, and Cup drinking
(from left to right).

movement or dart-throwing movement (DTM). Specifically, PS
and DTM were chosen for our prosthetic emulator in Poddar et al.
(2021) and Poddar and Kang (2022). The Bulb twisting task and
the Screwdriver task were designed for PS movements, and the
Hammering task and the Cup drinking task were designed for
DTM, as depicted in Figure 3. In each experiment, the participant
started the tasks once all the sensors and markers had been placed.
For each experiment, the participant was provided with different
tools set up on a table in front of them. For the Bulb Twisting task,
a custom-made board with a bulb socket fitted in parallel to the
participant was placed at the edge of the table, and a bulb was placed
within reach to its right. For the Screwdriver task/Hammering task,
a steel panel with a nail in the center was fixed by a clamp and placed
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at the edge of the table, while the screwdriver/hammer was placed
within reach to its right. The nail was placed ~2 cm above the table.
For the Cup drinking task, a paper cup was placed in front of the
center of the participants body on the table within reach.

For each trial, the procedure was as follows: First, the
participant started from the T-pose position which stretches the
arm shoulder height with palms facing down and feet on designated
marks on the floor. The participant’s toes were ~40 cm away from
the edge of the table, with the distance adjusted based on the reach
range of each individual. Recording began after a voice cue. After2 s
of recording, the participant was visually/orally prompted to begin.
In the Screwdriver/Hammering/Cup Drinking task, the participant
reached forward to pick up the screwdriver/hammer/cup and
performed the screwing/hammering/drinking action 10 times. The
procedure for the Bulb twisting task was slightly different. The
twisting was performed 10 times in a clockwise direction and
10 times in a counterclockwise direction. After the participant
completed the final movement, the tools were returned to the initial
position on the table.

For each activity of daily living task, the trial was repeated
three times by incrementally increasing the height of the table.
The height of the table for the first trial started at 78.5 cm and
increased by 5 cm each time, ending at 88.5 cm. A verbal cue
was given before each trial to start. The participant was instructed
to perform the movements at a consistent speed to maintain
uniformity and integrity of data. A practice trial was conducted
prior to the recording sessions to familiarize the participant with
the steps involved in each trial. Participants performed four tasks
sequentially in random order.

2.3. Data set generation

The data collection system consisted of a motion capture
system, eight Delsys wearable sensors, a height-adjustable table, and
four sets of tools for conducting experiments. In the experiment
of this study, upper limb motion is measured using ten motion
capture cameras and sSEMG data were collected from eight wireless
Trigno sensors. In the present ADL tasks, two angles were
calculated: the pronation-supination (PS) angle and the dart-
throwing motion (DTM) angle. These angles were calculated by
constructing pairs of vectors within the markers in 3D space
and computing the angle between them as in Fazil et al. (2022).
As shown in Figure 4, the sEMG data were first filtered using
a low-pass Butterworth first-order filter at 1 Hz. To generate
feature data, the filtered data from eight sensors were cut into
segments using a sliding window. The length of the window
was set to 250 frames, which corresponds to 125 ms, with an
overlap of 240 frames. The resulting feature data had a shape
of (250, 8).

3. Deep learning wrist controller

3.1. Inception-time model

Hierarchical Vote Collective of Transformation-based
Ensembles (HIVE-COTE; Lines et al.,, 2016) recently emerged as
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one of the most popular methods for Time Series Classification
tasks; Such method
classifiers, including Time Series Forest, Shapelet Transform
Classifier, and KNN-based classifiers. Although this algorithm
has achieved outstanding performance on the benchmark

is a meta-ensemble built on several

datasets, it suffers from O(n? - T*) time complexity. Recently,
Ismail Fawaz et al. (2020) introduced a deep Convolutional
Neural Network (CNN), called Inception-Time, which not
only outperforms the accuracy of HIVE-COTE but is also
substantially faster while the complexity of Inception-Time
increases almost linearly with an increase in the time series’
length. The high accuracy and scalability of Inception-Time
make it an ideal candidate for system development. In
this study, we adapted the Inception-Time model to handle
regression tasks.

e The fully-connected layer at the end of the network is
substituted by a fully connected dense layer.

e The loss function is changed to a mean-square-error function.

e In each Inception module, kernel sizes and the numbers of
filters are selected to fit the study.

3.2. Quick training strategy

As depicted in Figure5, a unique training strategy is
proposed. In this study, 24 participants performed three trials.
The data was divided into four parts: pre-training group, model
selection group, “Quick training” group, and test group. The pre-
training group consisted of all trials of the first 15 individuals
and the first trial of the 16th participants three trials. The
data in this group was used to initially train the modified
Inception-Time model. The remaining two trials of the 16th
participant were used as the validation set, and the model
with the best performance, as measured by Pearson Correlation,
was selected. The remaining data from the eight participants
were considered new subjects, as they were unseen by the
selected model. For each participant, the first trial was used
for “Quick training,” and the model was evaluated on the rest
two trials.

For the implementation of the Inception-Time model and
Quick training, Python 3.0 was used to design the wrist controller.
The NumPy Python library is frequently used for scientific
computing operations. The model was built on TensorFlow 2.5.0.
Tools which was used for generating labels, normalization, and
performance evaluations in Python. Most parts of our programs
were computed on an NVIDIA GeForce RTX 3080 10G GPU.

In the present study, four different models were created for each
task. The tasks could be divided into pronation-supination based
Bulb and Screw tasks and dart-throwing-motion based Hammer
and Cup tasks. The input of models was set in the form of (250,
8), which means the length of the sliding window is 250 frames
(125 ms), and eight-channel signals were collected from eight
sEMG sensors. Besides the Butterworth filter mentioned before, a
scaler was used to normalize the data when generating features
from the data. Same scaler was also applied to the data of the
validation group, “Quick training” group, and test group.
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3.3. Performance metrics

In this study, two common measures are used for numerical
evaluations: Root Mean Square Error (RMSE) and Pearson
correlation (PC), with following formulas. ; represents the true
angle (PS angel or DTM angle) at time frame i, while 6; represents

the true joint velocity at time frame i. § stands for the predicted

joint velocity, and (-) as the mean value of (-). The number of total
time frames is denoted as #.

i1 116 — 6ill?
n

RMSE =

~

76— 0)(6; — )

L6 — 67T 6 - 62

where Pearson Correlation is a measure of linear correlation

Pearson Correlation =

between two sets of data. It is essentially a normalized measurement
of the covariance, such that the result always has a value between —1
and 1.

4. Result

The comparisons between the measured and predicted data
with Quick training of four different tasks are depicted in Figure 6.
The data shows the data fit better for the positive values compared
to the negative angular speed in general. The Screw and Bulb task
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follows the true value better. The Cup and Hammer task has smaller
range of angular speed compared to Screw and Bulb tasks.

The Bulb task used a model with a depth of 5, which means
five Inception blocks are used. In each block, there are three
convolutional layers with kernel sizes of 64, 16, and 4, respectively.
The number of filters is 128. The numbers of epochs for the
pre-training and “Quick training” part are both set as 30. When
the model is pre-training, optimizer Adam (adaptive moment
estimation) is used with a learning rate starting as le-3 and
other parameters as default. The learning rate is decayed to half
of its original value every 10 epochs. On data from the pre-
training group, the selected model has RMSE of 19.723 deg/s,
and Pearson Correlation of 0.669. On data from the validation
group, the selected model has RMSE of 21.123 deg/s, and Pearson
Correlation of 0.628. For the Screw task, an eight-depth model
is utilized, which employs eight Inception blocks. Each block
is composed of three convolutional layers with kernel sizes of
64, 16, and 4, respectively. The number of filters used is 128.
Pre-training is done for 40 epochs, while “Quick training” is
done for 30 epochs, using the Adam optimizer as before. The
pre-training group achieved RMSE of 9.467 deg/s and Pearson
Correlation of 0.849. On the validation group data, the selected
model achieved RMSE of 25.265 deg/s and Pearson Correlation of
0.727.

For the Hammer task, a model with a depth of 4 is
employed, utilizing four Inception blocks. Each block contains
three convolutional layers with kernel sizes of 64, 16, and 4,
respectively. The number of epochs for pre-training and “Quick
training” is set to 30, and the Adam optimizer is used as before.
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FIGURE 5

Proposed training strategy including Pre-training process and Quick training process.

The selected model achieved RMSE of 5.679 deg/s and Pearson
Correlation of 0.817 on the pre-training group data. However,
on the validation group data, the selected model achieved RMSE
of 5385 deg/s and Pearson Correlation of 0.166. As for the
Cup task, a model with a depth of 3 is used, employing three
Inception blocks. Each block consists of three convolutional layers
with kernel sizes of 128, 32, and 8, respectively. The number of
epochs for pre-training and “Quick training” is set to 30, and
the Adam optimizer is used as before. Unfortunately, during the
second trial of Subject 2, the SEMG sensors disconnected from
the software, so the entire set of Subject 2 had to be dropped.
The selected model achieved RMSE of 2.298 deg/s and Pearson
Correlation of 0.961 on the pre-training group data. However, on
the validation group data, the selected model achieved RMSE of
4.701 deg/s.

In Table 1, RMSE and Pearson Correlation for all new
individuals are presented for each task. When tested on eight
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new participants, the average RMSE increased and the Pearson
Correlation decreased, which means the performance drop of the
model by unseen data. However, if the “Quick training” process
was applied with a small amount of data, the results improved
to similar level as those of the training group. For example, in
the Bulb task, the selected model had RMSE of 19.723 deg/s,
and a Pearson Correlation of 0.669 on the training group. If
new participants were applied to the model, RMSE increased to
43.977 deg/s, and Pearson Correlation dropped to 0.526. After
the “Quick training” process was utilized, the average RMSE
decreased to 25.813 deg/s and the average Pearson Correlation rose
to 0.702. Similar trends were also observed through other tasks.
In general, the performance improved after the “Quick training”
process, however, there were some exceptional cases, especially
on the Cup task for participants 1 and 6. This discrepancy of
performance between the participants will be further discussed in
the following section.
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5. Discussion

The presented study shows a new framework to use real ADL
task data to train a multi-DoF prosthe tic wrist using SEMG signals.
The “Quick training” shows the utilization of a large data pool for
creating a generic model but applies to a new user by using only a
small amount of data for improving the model performance. Four
tasks were tested to create the ML models by recruiting a total
of 24 participants and tested on eight participants, which showed
comparable performance with other models using a larger data set
or training only simple motions.

Comparing between tasks, the Screw and Bulb tasks showed
higher Pearson‘s correlation than the Cup and Hammer tasks.
This is presumably because high variation was found in the
movement in Cup and Hammer tasks for various reasons. First,
participants chose different movement strategy to perform the Cup
and Hammer tasks. Some participants preferred moving only their
wrists when lifting the hammer, while other participants preferred
only moving their wrists when dropping the hammer. Participants
chose different movement coordination between the wrist, elbow,
and shoulder to perform the Cup and Hammer task. Second,
the end-effector (tool) movement to fulfill the task had different
kinematic redundancy. The Bulb and Screw tasks required to rotate
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the screw or bulb exactly along the screw thread. However, the cup
or hammer task was not performed with restricted end-effector
as Bulb and Screw tasks. Lastly, participants had different fluency
to perform the hammer task. Even though 5-min practice session
was provided for each task, there were participants who never
used a hammer before. This could be another factor to create
deviation in the movement, resulting different SEMG patterns
among participants. Even though higher Pearson’s Correlation was
observed in the Cup and Hammer tasks, it should be noted that
the Cup and Hammer tasks had larger RMSE. This was due to
the different range of motion of the pronation-supination and
the dart-throwing-motion tasks. Pronation-supination tasks (Bulb
and Screw) had a significantly larger range of motion than dart-
throwing-motion tasks (Hammer and Cup), which naturally led to
larger RMSE despite higher Pearson’s correlation.

A few other researchers also studied various regression models
for controlling prosthetic wrist. Stival et al. (2018) combined
sEMG and IMU features to control prosthetic systems, and tested
their model on a publicly available database as shown in Table 2.
The Pearson’s correlation of our study in Table I was changed
to correlation coefficient similar to the study in Stival et al
(2018). Our controller performed comparably to theirs on the
Bulb and Hammer tasks, and significantly better on the Screw
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TABLE 1 RMSE* and Pearson'’s correlation (PC) values between measured and predicted angular velocity of regression module before and after Quick

training.

Task Train Metric 1 2 3 4 5 6 7 8 Ave ‘

Bulb WO RMSE* 104.09 20.96 33.66 34.07 40.47 148.33 3327 41.32 43.98
Quick PC 0.30 0.60 0.66 0.80 0.50 0.01 0.85 0.61 0.53
With RMSE* 30.31 21.28 27.56 21.15 35.56 22.26 26.78 21.62 25.81
Quick PC 073 0.62 0.68 0.78 0.71 0.77 0.66 0.67 0.70

Screw WO RMSE* 50.25 26.97 30.26 48.45 172.91 12.05 62.53 25.70 53.64
Quick PC 0.65 0.71 0.48 0.32 0.36 0.82 0.54 0.64 0.57
With RMSE* 15.49 20.23 20.49 20.71 31.60 8.19 10.25 14.90 17.73
Quick PC 0.77 0.85 0.60 0.59 0.73 0.82 0.68 0.68 0.72

Hammer WO RMSE* 10.05 5.13 3.31 3.81 6.77 9.56 10.24 4.61 6.68
Quick PC 0.36 0.41 0.16 0.15 0.48 0.21 0.22 —0.08 0.24
With RMSE* 8.43 6.38 2.68 3.70 6.37 2.90 7.39 3.98 5.23
Quick PC 0.48 0.54 0.38 0.19 0.49 0.42 0.33 0.06 0.36

Cup WO RMSE* 13.02 - 3.15 9.79 7.29 4.42 14.20 3.59 7.92
Quick PC —0.15 - 0.54 0.45 0.57 —0.13 0.68 0.21 0.31
With RMSE* 6.23 - 3.06 9.36 7.13 433 14.47 3.23 6.83
Quick PC —0.22 - 0.59 0.45 0.57 —0.21 0.66 0.26 0.30

A total of eight new participants were tested. *Unit of RMSE is deg/s.

TABLE 2 Correlation coefficient for the considered movements Stival
et al. (2018) method and ADL tasks in our method.

TABLE 3 Best R? of the hybrid CNN-LSTM model (Bao et al., 2021a) on
single-Dof tasks and our method on ADL tasks.

Movement 3 Movement 13 ‘ Task R? ‘
sEMG and IMU 0.7659 0.8634 CNN-LSTM (Bao et al., Flexion/Extension 0.89
(Stival et al., 2018) 2021a)
Bulb  Screw Hammer Cup Pronation/Supination 0.70
Our method ‘ 0.7651 0.8863 0.7578 ‘ 0.5463 Radial/Ulnar deviation 0.83
Pearson’s correlation in Table 1 is converted to correlation coefficient. Our method Bulb 0.530
Screw 0.685
Hammer 0.195
task, exceeding their sSEMG and IMU data fusion methods. It
. R Cu 0.405
should be noted that Stival et al.’s method only showed results P

for two tasks that performed the best (three-finger flexion and
wrist flexion), while our method focused on more complex
ADL movements. Our model was trained with data from 16
participants, with each of them performing three trials, whereas
Stival et al’s method was trained on 35 participants, with six
trials each.

Bao et al. (2021a) also proposed a CNN-LSTM model
for wrist kinematics estimation. The data was collected from
six participants with 12 sensors. Bao et al.’s method trained a
model on 3/4 of the data and tested it on the remaining 1/4.
The trained model was evaluated by using R?, and the detailed
numeric results for the model are listed in Table 3. Although
our method showed less R? values, it is important to note that
our study performed more complicated ADL movements with
only eight sensors. Additionally, our “Quick Training” process
required much less training data, and the performance of LSTM
models would decrease substantially over time due to its natural
instincts that the model itself depends on its previous predictions,

Frontiersin Neurorobotics

Pearson’s correlation in Table 1 is converted to R?.

which means minor turbulence could cause large deviation.
Moreover, the way they combined CNN and LSTM required
separate tuning, which would affect the efficiency of the proposed
method significantly.

Another
Domain Adaptation (SDA) for estimation of the wrist angle
of flexion/extension through sEMG data (Bao et al, 2021b).
Domain shifting problem was applied to the model to increase

study proposed the regression Supervised

the performance on new subjects. Eight participants were
recruited in total, trained on 7, and tested on the last one. The
model was evaluated by Normalized root mean square error
(NRMSE) and the RMSE of our result in Table I was changed
to NRMSE for selected models. Detailed information is shown
in the Table 4. The study showed that the model had NRMSE
of 0.181 on designated simple flexion/extension movements.
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TABLE 4 Average NMSE of regression SDA (Bao et al., 2021b) on the
selected movements and our method on ADL tasks.

Flexion/Extension

Regression SDA 0.181
(Bao et al., 2021b)

Bulb  Screw Hammer Cup
Without “Quick 0.191 0.185 0.726 0.443
training”
With “Quick 0.133 0.120 0.138 0.191
training”

RMSE in Table 1 is converted to NMSE.

Our method had slightly worse NRMSE on Bulb (0.191) and
Screw (0.185) tasks but achieved further improvements on
overall more complicated movements with the introduction
of the “Quick Train” process (0.133 on Bulb task, 0.120
on Screw task, 0.138 on Hammer task, and 0.191 on Cup
task, respectively).

Our future studies will focus on addressing the current
limitation of the study. First, we performed four different ADL
tasks in the present work, thus, more diverse ADL tasks could
be explored, and taking extra data into consideration would
potentially improve the performance, such as including elbow
angles as additional data when predicting wrist angles for tasks
that showed different coordination between wrist and elbow
joint movements among participants. Secondly, we used MSE
as loss function in our model. The model could be presumably
improved by modifying the loss function by introducing functions
related to Pearson’s correlation. Thirdly, the current model was
designed for each task. Future models will classify motions
into DTM or PS movements and then performing regression
could allow our method to be used more generically, similar
to previous work (Swami et al, 2021). Some other promising
aspects of model generalization including associating not only
types of ADL tasks, but also grasp types (Masiero et al,
2023), or arm positions (Gloumakov et al., 2022), could also be
utilized to improve the performance. Lastly, complex ADLs that
include three dimensional wrist motion will be trained in the
model as well in the future. The current study uses ADLs that
focus on majorly one dimensional rotation. In the future, the
suggested controller will be implemented in the UBArm (Kim,
2022) featuring all three dimensional rotation of the prosthetic
wrist with power grasping. With the UBArm, the tasks that
were used to train in the presented paper and new tasks will
be evaluated in real-time. To test the controller on amputee
participants, the protocol will be further optimized and tested.
For example, the number of sensors with less importance will
be reduced by computing feature importance. Local surrogate
models for identifying feature importance will be used such
as SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al,
2016a,b) to determine the important sensors. For the amputee
participants, the sEMG signals can be inconsistent depending
on the location of the amputation. We will test 20% or 30%
MVC (Maximum Voluntary Contraction) test and check which
position of the muscle shows the most consistent sSEMG signals for
the controller.
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6. Conclusion

This study employed a data collection approach that included
activities of daily living to ensure the datasets reflect realistic wrist
motions used in day-to-day scenarios. A CNN model based on the
Inception-Time architecture was implemented to train the models
using a specific method that allows the designed wrist controller
to perform on new subjects. The Quick training process improved
the performance of the controller when facing new subjects, while
significantly decreasing on-site training time. We believe our
method will provide a practical solution for new participants using
the model as well as handling situations where sensors may displace
during daily living, muscles can become fatigued, or sensors can
become contaminated (e.g., due to sweat).
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