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Abstract
Modeling unsteady, fast transient, and advection-
dominated physics problems is a pressing chal-
lenge for physics-aware deep learning (PADL).
The dynamics of complex systems is governed
by large systems of partial differential equations
(PDEs) and ancillary constitutive models with
nonlinear structures, as well as evolving state
fields exhibiting sharp gradients and rapidly de-
forming material interfaces. Here, we investi-
gate an inductive bias approach that is versatile
and generalizable to model the generic nonlin-
ear field evolution problem. Our study focuses
on the recent physics-aware recurrent convolu-
tions (PARC), which incorporates a differentiator-
integrator architecture that inductively models
the spatiotemporal dynamics of generic physical
systems. We extend the capabilities of PARC
to simulate unsteady, transient, and advection-
dominant systems. The extended model, referred
to as PARCv2, is equipped with differential oper-
ators to model advection-reaction-diffusion equa-
tions, as well as a hybrid integral solver for stable,
long-time predictions. PARCv2 is tested on both
standard benchmark problems in fluid dynamics,
namely Burgers and Navier-Stokes equations, and
then applied to more complex shock-induced reac-
tion problems in energetic materials. We evaluate
the behavior of PARCv2 in comparison to other
physics-informed and learning bias models and
demonstrate its potential to model unsteady and
advection-dominant dynamics regimes.
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1. Introduction
Physics-aware deep learning (PADL) has been gaining at-
tention for the simulation of spatiotemporal dynamics, i.e.,
time-evolving fields of physical systems. The physical be-
haviors of continua are represented as a system of partial
differential equations (PDE), expressing the rate of change
∂x
∂t of a field x(t, r) as a function f(t,x,y,∇x,∇y, · · · )
where t is time, r ∈ Rd is a position vector, x is the evolving
field variable, and y(t, r) is a covariate field that influences
the evolution of x. As a simple case, the heat equation
∂x
∂t = ∇2x is one such governing PDE that describes the
diffusion of heat and appears frequently in various computer
vision and machine learning literature.

As the complexity of the physics displayed by a system
increases, the governing PDEs increase in number and com-
plexity accordingly, with nonlinear coupling between the
dependent variables and source terms inducing a wide range
of spatial and temporal scales. The constitutive laws de-
scribing the material response can also become complex
nonlinear differential equations. Furthermore, depending
on the physics problem, governing PDEs relating x and y
may not even be available in an explicit form, and hence the
equations governing the evolution of these variables may
need to be learned from data.

Particularly, interesting machine-learning challenges may
emerge when there are large, localized spatial gradients in
x and y. Examples may include shocks, fast transients,
collapsing interfaces, reaction fronts, and evolving inter-
nal/external boundaries interacting with the evolving field.
An archetype of such problems is the shock-induced initia-
tion of porous energetic materials (Perry et al., 2018; Mang
and Hjelm, 2021; Mi et al., 2020), as in the benchmark prob-
lem presented in Section 4.3. When exposed to external
shock loading, pores in these materials collapse and release
strong localized energy, forming high-temperature regions
called “hotspots.” In this process, both the traveling shock
and the energy localization near hotspots render intense
spatiotemporal gradients in the evolving temperature and
pressure fields. Collapsing pore boundaries also interact
with these evolving fields, producing intricate sharp patterns
on the reaction front. Hence, accurately predicting such
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sharp and complex features evolving over time is critical
to capture the physics of ignition and reaction in shocked
reactive materials.

Simulating the intricate physics of systems with fast tran-
sients and evolving spatiotemporal fields demands high-
fidelity numerical techniques, incurring substantial com-
putational costs and resulting in limited training data for
machine learning. To address this challenge, previous works
have used the squared sum of residuals of PDEs, known as
physics-informed loss, to regularize the training. However,
strong regularization can introduce undesired “smoothing
effects,” generate conflicting network gradients during train-
ing, and may be inapplicable when direct mathematical
relationships between the evolving field x and covariate
fields y are unavailable. Given these practical scenarios,
our goal is to model the governing PDEs of spatiotemporal
dynamic systems using neural networks. This enables us to
either approximate the solution of a complex PDE system
(Sections 4.1 & 4.2) or discover unknown governing PDEs
from data (Section 4.3).

We hypothesize that a previously published inductive mod-
eling approach called physics-aware recurrent convolution,
or PARC, may offer a route to addressing the above chal-
lenges (Nguyen et al., 2023a). PARC presents advantages
originating from its recurrent differentiator-integrator ar-
chitecture: governing PDEs of generic dynamics systems
are learned from data by the differentiator network and then
integrated to predict the future states of the evolving field
by the integrator network. The previous work of Nguyen
et al. demonstrated the predictive capabilities of PARC
when applied to the problem of predicting hotspot evolu-
tion in shocked porous reactive materials. Additionally, the
physics-awareness aspect of PARC was also justified to a
certain extent. However, the validation study in the previous
work was limited to a single problem obtained by regular-
izing the advection phenomena and the model’s predictive
capability was not thoroughly scrutinized on more generic
problems.

In this study, we first substantively extend the work of
Nguyen et al. (2023a) by introducing new design con-
siderations and training schemes for PARC, enabling it
for unsteady, fast transient, and advection-dominant field
evolution problems. The extended PARC, referred to as
PARCv2, incorporates spatial derivatives to model more gen-
eral advection-diffusion-reaction equations. Additionally,
PARCv2 utilizes a hybrid integration method, leveraging
both numerical and data-driven integration for more stable
and accurate predictions for unsteady and highly transient
physics problems.

Furthermore, we examine and characterize the behavior of
PARCv2 on standard fluid dynamics benchmark problems,
namely Burgers and Navier-Stokes equations, testing its

prediction accuracy and compliance with the known gov-
erning PDEs. These benchmark problems represent sim-
ple diffusion-dominant systems with the weak influence
of advection (Burgers) and advection-dominant fluids with
boundaries and unsteady vorticity patterns (Navier-Stokes).
Finally, we test PARCv2 on a real-world physics problem
of predicting the evolving temperature and pressure fields in
shocked energetic materials. This problem exhibits strong
advection dominance, fast transient reactions, and sharp
spatiotemporal gradients, challenging PARCv2’s limits on
its predictive power.

2. Related Works
According to the taxonomy proposed by Karniadakis et al.
(2021), there are three different ways to inform machine
learning models with prior physics knowledge. One of these
three categories is the observational bias, which incorpo-
rates physics principles and constraints implicitly through
data (Cheng et al., 2023; Yang et al., 2019). Observational
bias approaches are straightforward to implement with off-
the-shelf deep learning models. However, to generate predic-
tions that adhere to the necessary physical laws they require
sufficiently large sets of data, which are usually unavailable
in the physical sciences.

Learning Bias Methods On the other hand, learning bias
approaches, incorporate the governing PDEs more explic-
itly into the training process. A representative body of
work in this category is exemplified by the physics-informed
neural networks, or PINN (Raissi et al., 2019). PINN di-
rectly approximates the solution space of PDEs using neural
networks. Derivative terms in PDEs are computed using
automatic differentiation (Baydin et al., 2018). The physics-
informed loss term guides the network parameters during
training to minimize the PDE residuals. Raissi et al. (2019)
demonstrated the efficacy of such formulation on Navier-
Stokes equation, Allen–Cahn equation, Schrödinger equa-
tion, and other benchmark problems in physics.

The initial success of Raissi et al. (2019) motivated vigorous
research centered around PADL in recent years. Numerous
PADL models branched out of PINN, such as PhyCRNet
(Ren et al., 2022) and physics-informed neural operators (Li
et al., 2023). These models were tested and validated on
various physics problems, contributing to the accumulation
of a significant body of scientific knowledge around PADL.
From these previous endeavors, the research community has
discovered several important machine-learning challenges,
especially for physics problems that are unsteady, fast tran-
sient, and advection-dominant.

For instance, problems such as wave equations with high
wave number (Basir and Senocak, 2021) or advection flow
with a high advection coefficient (Krishnapriyan et al., 2021)
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Figure 1. PARCv2 architecture.

are known to yield intricate loss landscapes for the physics-
informed loss terms (PDE residuals), which hamper the con-
vergence of a model during training (Krishnapriyan et al.,
2021). A few solutions were proposed to address this issue,
such as casting the physics-informed loss terms as equality
constraints (Basir and Senocak, 2021) or adopting the cur-
riculum training strategy (Krishnapriyan et al., 2021). These
solutions were proven to smoothen the PINN loss landscape
and facilitate its convergence.

Spectral bias is another current challenge, arising from the
tendency of PINN models to favor low-frequency modes in
field evolution problems. This is largely due to unbalanced
sampling of high-frequency patterns during the evaluation
of PDE residuals, and can thus be somewhat mitigated by
incorporating adaptive weighting (Wang et al., 2022) or
Fourier/spectral features (Wang et al., 2021). However, for
physics problems with large Kolmogorov n-width, e.g., ones
exhibiting high advection dominance, spatial localization
phenomena, discontinuous phases, and/or sharp gradients,
learning bias models still fail to learn crucial intricate details
(Mojgani et al., 2023).

Inductive Bias Methods In contrast to enforcing phys-
ical constraints by minimizing PDE residuals, inductive
bias approaches attempt to embed prior physics knowledge
within the network’s computational graph itself. For ex-
ample, equivariant neural networks (Weiler et al., 2018;
Batzner et al., 2022; Gong et al., 2023; Ma et al., 2023)
preserve the symmetry under a group operation (e.g., the
standard Euclidean group SE(n)) by redefining the convo-
lution filters in such a way that the convolution responses
are equivariant under certain geometric transformations.

However, little to no previous work has been done for induc-
tive bias modeling of more general nonlinear field evolution
problems that extend beyond problems exhibiting group
symmetry. Finite volume neural network (FINN), intro-
duced by Karlbauer et al. (2022), is among these minori-
ties. In FINN, multiple neural network modules are used
to model specific parts of the target PDE. These modules
interact with each other in a distributed and compositional

manner, aiming to model the physics governed by the target
PDE. FINN demonstrated success in dealing with various
types of PDEs, including Burgers, diffusion-reaction, and
Allen–Cahn equations. However, one of the limitations of
FINN is that the PDE constants, e.g., the diffusion coef-
ficient, are treated directly as network parameters (either
trainable or untrainable). This restricts the model’s expres-
siveness in modeling nonlinearities in PDEs and may limit
its performance when dealing with PDEs with large varia-
tions of constants.

The physics-aware recurrent convolutional neural networks,
or PARC (Nguyen et al., 2023a;b) is the another notable
work in this category. PARC aims to model the gov-
erning equation of a simplified dynamical system ∂x

∂t =
f(t,x,y,∇x,∇y, · · · ) and its time integration using re-
cursively connected convolutional neural network (CNN)
blocks, called differentiator and integrator. The differentia-
tor CNN approximates the function f in the above expres-
sion. The time derivative ∂x

∂t predicted by the differentiator
CNN is then integrated by the integrator CNN, which ap-
proximates the integral operator using a CNN. Applied re-
cursively, the differentiator-integrator architecture emulates
the process by which traditional physics solvers obtain the
solution of governing PDEs.

However, despite certain success, the previous work of
Nguyen et al. (2023a) does not fully extend to a broader
spectrum of PDEs, especially the ones in the regime of
strong advection dominance. Nguyen et al. circumvented
such a limitation by normalizing the velocity field and re-
moving advection, but it is questionable if such a normaliza-
tion strategy would generalize to more complex, transient
physics phenomena.

3. Method
Here, we consider a wide group of advection-diffusion-
reaction processes, in which the temporal evolution of a
state field x in a continuum domain is the combination of
advection (u · ∇)x driven by a physical force represented
with a (velocity) vector field u, diffusion (∇ · k∇)x with
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diffusion coefficient k, and the generation/consumption of
a source/sink (reaction) R(x, c). By explicitly incorporat-
ing the spatial gradient ∇x of the state field and its diver-
gence ∇ ·∇x into the differentiator architecture, we inform
PARCv2 with physics priors (Section 3.1). Furthermore, a
hybrid integration approach is introduced to leverage the
benefits of numerical integration with data-driven integra-
tion (Section 3.2), enabling accurate and stable predictions
over a long time period. Finally, we also present a two-stage
training scheme that separates the process of learning the
PDEs and the time integration (Section 3.3).

3.1. Architecture Design

The dynamics of an advection-diffusion-reaction system can
be described by the following form of PDE:

∂x

∂t
= k∆x− u · ∇x+Rx(x,u, c) , (1)

where x(r, t) is the physical variable of interest at position
r ∈ Rd and time t, and the operators ∇ and ∆ := ∇2

denote the gradient and the Laplacian, respectively. u · ∇x
is the advection term and k∆x is the diffusion term with
the diffusivity coefficient k. Rx(x,u, c) represents the
generation or consumption sources for the state fields, with
c denoting a set of constant parameters.

Eq. 1 is a generic form of PDE that covers a variety of
different physical phenomena. For example, by setting the
reactive term Rx to zero, one may obtain the Burgers’ equa-
tion, or by setting u · ∇x = 0 and Rx(x,u, c) = 0, one
may obtain the simple diffusion equation. Additionally, be-
yond physics, Eq. 1 is also equivalent to the Fokker–Planck
equation in stochastic process modeling, or closely related
to the Black–Scholes equation in financial dynamics, which
appears in various machine learning literature.

In addition to Eq. 1, the velocity field u may also be gov-
erned by the momentum equation in many physical systems:

∂u

∂t
= −u · ∇u+Ru(x,u, c), (2)

where Ru(x,u, c) term encapsulates the forces applied to
a unit volume element.

The system of PDEs comprised of Eqs. 1 & 2 is usually
accompanied by the following initial conditions:u(t = 0) = u0

x(t = 0) = x0,
(3)

and this initial value problem can be solved numerically
using the forward update scheme:uk+1 = uk +

∫ tk+1

tk
Fu(u,∇u,x,∇x, c)dt

xk+1 = xk +
∫ tk+1

tk
Fx(u,x,∇x, c)dt,

(4)

where:Fu=−uk · ∇uk +Ru(xk,uk, c)

Fx =−uk · ∇xk + k∆xk +Rx(xk,uk, c).
(5)

Here, to minimize the notational burden, we hereinafter
denote the time integration

∫ tk+1

tk
Fudt and

∫ tk+1

tk
Fxdt as

shorthand integral operators Ψu and Ψx, respectively.

Illustrated in Figure 1 is a realization of this formulation in a
recurrent neural network. As shown in the purple box of the
figure, PARCv2 approximates the governing PDEs, namely
Fx and Fu in Eq. 5, using CNN layers. The differentiator
module (the purple box) takes the physical state x(r, t) at
time t as input alongside the velocity field u(r, t). It then
predicts the future state x(r, t+∆t) and the future veloc-
ity field u(r, t +∆t) after the time interval ∆t. Here, the
differential operators ∇ and ∆ in the advection and diffu-
sion terms are approximated via the central finite difference
scheme. The reaction functions Rx and Ru are modeled
using separate CNN layers. Subsequently, the integrator
(the orange box in Figure 1) integrates the time derivatives
ẋ and u̇ outputted by the differentiator to update the fields
x and u. The details on the integrator are presented in the
following section.

3.2. Hybrid Integration

For physical systems with unsteady and fast transient char-
acteristics, simulations can quickly deviate from the true
dynamic trajectories as numerical and modeling errors ac-
cumulate during time integration. Traditional numerical
methods for initial value problems such as the Runge-Kutta
methods or the Adams methods take multiple steps in time
to correct the error accumulation heuristically. However,
unsteady and fast transient problems require a higher-order
correction with a small time step, making it less tractable
for our purpose of rapidly estimating the dynamics. The
original PARC (Nguyen et al., 2023a) and other works in
literature (e.g., Shen et al. (2020)) explored the use of a
deep neural network-based quadrature for time integration.
However, as we will demonstrate in Sections 4.2 & 4.3,
these purely data-driven integrators fail to predict advection
features with sharp boundaries precisely.

To address such limitations, we propose a hybrid approach,
in which the low-order truncation errors are corrected using
a conventional numerical integration, whereas higher-order
errors are learned from data and compensated via CNN
layers: uk+1 = uk +Ψu + Su(uk, Fu|ϕu)

xk+1 = xk +Ψx + Sx(xk, Fx|ϕx).
(6)

Here, Ψu and Ψx are the integrals computed by a con-
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ventional numerical method, whereas Su and Sx represent
higher-order terms approximated by convolutional neural
networks with network parameters ϕu and ϕx. Here, the
choice of numerical integration method for Ψu and Ψx

depends on the tradeoff between the complexity of the prob-
lem and computational speed. For instance, we found that
the second-order forward Euler scheme (Heun’s method)
worked reasonably well for Burgers’ (Section 4.1) and
Navier-Stokes equations (Section 4.2), while for the en-
ergetic materials problem (Section 4.3), the fourth-order
Runge-Kutta (RK4) method was necessary.

3.3. Training

In PARCv2, the differentiator and the integrator are trained
separately. We empirically found that the two-stage training
yielded more accurate prediction results than end-to-end
training. While this empirical observation is partially sup-
ported by the previous work of Poli et al. (2020) on the
hypersolvers for Neural ODE, we do not have a concrete
explanation in this regard and hence this tendency awaits
future investigation.

In this two-stage training process, the differentiator is
trained without the data-driven higher-order error terms
Su and Sx, but only with the numerical integrals Ψu and
Ψx in the loss function:

L(θu, θx) :=
∑
tk

||ûk+1 − ûk −Ψu [Fu(ûk|θu)] ||1

+
∑
tk

||x̂k+1 − x̂k −Ψx [Fx(x̂k|θx)] ||1.
(7)

Here, the upper hat denotes the ground truth. Gradient-based
optimization is employed for training, in which the gradi-
ents are computed by differentiating through the integration
operations of the forward pass.

Once the differentiator is trained, the weights are frozen.
Then the data-driven integrals Su and Sx are trained with
the following training loss:

L(ϕu, ϕx) :=
∑
tk

||ûk+1 − ûk −Ψu − Su(uk, Fu|ϕu)||1

+
∑
tk

||x̂k+1 − x̂k −Ψx − Sx(xk, Fx|ϕx)||1

(8)

where ûk+1 and x̂k+1 are ground truth values of velocity
and state variables at time tk+1 and ûk and x̂k are ground
truth values at time tk.

4. Results
Here, we evaluate PARCv2’s performance on different
physics benchmark problems, namely the Burgers equa-

Figure 2. Validation on the Burgers’ equation.

tion, cylindrical flow (Navier-Stokes equations), and pore-
collapse in energetic materials. The Burgers’ equation (Sec-
tion 4.1) represents advection-diffusion systems with weak
advection dominance, while the cylindrical flow problem
represents systems with unsteady dynamics and strong ad-
vection dominance. The energetic materials problem serves
as an archetype of fast transient systems with strong sharp
gradients and rapidly deforming boundaries. Details on
these benchmark problems can be found in the Appendix.

Baseline methods for comparison include the original PARC
(Nguyen et al., 2023a), as well as state-of-the-art PADL
methods including PhyCRNet (Ren et al., 2022), Fourier
Neural Operator (FNO) (Li et al., 2021), and FNO with a
physics-informed loss (PIFNO). PARC was implemented
in two different ways, one with purely data-driven integra-
tion (original PARC) and one with a traditional numerical
solver (forward Euler), for the ablation study on the effect
of different integration methods. For all benchmark mod-
els, we mostly adopted the implementation of the original
authors, except for minor modifications made to make the
algorithm compatible with the problem settings. All details
are described in the Appendix.
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Table 1. Prediction accuracy of PARCv2 and the other baseline models. The derivation of the metrics reported in the Table is given in the
Appendix (Section A.4)

MODEL BURGERS NAVIER-STOKES ENERGETIC MATERIALS
RMSEu(cm/s) RMSEu(m/s) RMSET (K) RMSEP (GPa)

PARC (NUMERICAL INT.) 0.0074 0.2336 249.99 1.491
PARC (DATA-DRIVEN INT.) 0.0236 0.3089 306.99 4.111
FNO 0.0289 0.2147 248.39 2.685
PHYCRNET 0.0588 0.2094 - -
PIFNO 0.0338 0.2307 - -
PARCV2 (THIS STUDY) 0.0129 0.0727 229.52 1.634

Table 2. Solution quality of PARCv2 and the other baseline models.The process of computing the metrics introduced in the table is given
in the Appendix (Section A.4)

MODEL BURGERS NAVIER-STOKES ENERGETIC MATERIALS
||fu|| ||fu|| εdiv εThs εAhs εṪhs εȦhs

(cm/s2) (m/s2) (1/s) (K) (µm2) (K/ns) (µm2/ns)

DNS 0.1241 2.7041 0.0398 - - - -
PARC (NUMERICAL INT.) 0.1262 2.8568 0.4465 409.58 0.0253 269.09 0.0248
PARC (DATA-DRIVEN INT.) 0.1176 6.2244 4.3241 972.38 0.0728 839.64 0.0681
FNO 0.1537 2.5351 0.9170 622.60 0.0431 425.91 0.0527
PHYCRNET 0.0560 2.4904 0.0565 - - - -
PIFNO 0.1058 0.8552 0.0768 - - - -
PARCV2 (THIS STUDY) 0.1292 3.7095 0.3738 149.27 0.0060 228.98 0.0094

Figure 3. Prediction accuracy (left) and solution quality (right)
on the Burgers’ equation cases with respect to varying diffusion
coefficients R.

4.1. Burgers’ Equation

We first tested the capability of PARCv2 for solving Burgers’
equation describing the formation and decay of a shock
wave. The top row of Figure 2 displays the ground truth
phenomenon simulated by a direct numerical solver (DNS).
Notice the formation of a sharp front at the bottom-right
corner and the decay of the velocity on the tail end (top-left).
From the visual inspection of Figure 2, both PARC and
PARCv2 appear to predict the formation of the sharp front
and the decay on the tail end, while other models tend to
exhibit blurred and smeared fronts. This observation can

further be confirmed by the quantitative results reported
in the first column of Table 1, in which both PARC and
PARCv2 yielded root mean squared errors (RMSEs) of the
predicted velocity field of around 0.010 cm/s, which is about
half of the RMSEs of the other models. Notably, employing
the pure data-driven integration in the case of PARC yields
less accurate predictions compared to the use of numerical
integration with the same differentiator architecture and the
hybrid integration of PARCv2 (first column of Table 1).

In terms of solution quality, measured by the residual of
Burgers’ equation from the predicted fields (Table 2), both
PARC and PARCv2 demonstrated comparable results to
other models. While PhyCRNet and PIFNO exhibited the
lowest residuals, likely due to explicit minimization of the
PDE residual through physics-informed training loss, the
solution quality of PARC and PARCv2 was not significantly
inferior, especially considering the ground truth data (DNS)
already had a similar PDE residual of 0.1241 cm/s2. The ob-
served high solution quality and low prediction accuracy of
PhyCRNet and PIFNO may result from over-regularization
due to incorporating the PDE residual term in the training
loss. Indeed, this concern has been previously documented
in the literature, and the validation results presented here
reaffirm its significance.

Additionally, Figure 3 depicts trends in RMSE and PDE
residuals across different diffusion coefficients R. The
shaded area represents the range of R covered by the train-
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Figure 4. Validation on the Navier-Stokes equation (cylindrical
flow).

ing set. All models appear to be generalizable over different
values of R, with an observation that PARC with a numeri-
cal integrator quickly deteriorated in its prediction accuracy
(RMSE). Interestingly, the solution quality (PDE residual)
stayed more or less the same. We suspect that this could
be attributed to overfitting in PARC, as its training lacks
the physics-informed loss term as a regularizer. However,
due to the physics-aware architecture, PARC still ensures
adherence to physical laws that are governed by the Burgers’
equation.

Finally, it is worthwhile to note that despite choosing a
relatively large discrete time step, which may appear to con-
travene the Courant-Friedrichs-Lewy (CFL) condition of
conventional explicit solvers, the stability of the solutions
by PARCv2 remains unaffected by this large step size se-
lection. While lacking more solid evidence, we speculate
that errors stemming from our discretization choices have
been mitigated by both the differentiator and integrator of
PARCv2, owing to their robust modeling capabilities.

4.2. Navier-Stokes Equations

Another popularly used benchmark problem is the cylin-
drical flow, expressed with the Navier-Stokes equations.
Compared to the Burgers’ equation cases, this problem in-

troduces additional complexity with the phenomenon of
vortex shedding, resulting in unsteady flow fields with intri-
cate and deformable boundaries.

Figure 4 displays the fluid velocity fields predicted by the
models. Visually, all methods appear to capture the oscil-
latory vorticity patterns to a certain extent. However, the
oscillatory phase of the vorticity patterns was most accurate
in PARCv2, highlighting its stable long-time prediction ca-
pabilities. This observation is further supported by Table 1,
where the RMSE of PARCv2 was 0.0727 m/s—roughly 1/4
of the values obtained by the other methods.

Interestingly, the original PARC, only with a purely data-
driven integrator (fourth row in Figure 4), exhibited highly
noisy predictions. This may be indicative of the rapid accu-
mulation of network prediction errors in unsteady flows with
sharp features. It is also worthwhile to compare PARCv2
(second row in Figure 4) with the original PARC with the
numerical integrator (third row in the same figure). Com-
pared to the purely data-driven integration case, the original
PARC exhibited a more stable prediction with the numer-
ical integrator. However, the original PARC still appears
to be off from the ground truth in terms of the oscillatory
phase of the vorticity pattern, while PARCv2 aligns well
with the true phase. This result highlights the importance
of the data-driven higher-order correction in the integrator.
Furthermore, not only the phase but also the geometric pat-
tern slightly deviates from the ground truth in the case of
the original PARC, in contrast to the PARCv2 result where
the geometric patterns are faithfully reproduced. This is
indicative of the role of the spatial gradient terms newly
introduced in the PARCv2 architecture.

The solution quality of the PARC model family, however,
lags notably behind the other physics-informed benchmark
models (i.e., PhyCRNet and PIFNO). Particularly, PARCv2
tends to deviate noticeably from the divergence-free condi-
tion (εdiv), affecting its compliance with the incompressibil-
ity of the flow. In other words, although PARCv2 may visu-
ally produce more accurate vorticity patterns, it significantly
violates the incompressibility constraint. On the contrary,
the physics-informed benchmarks, while may look visually
less accurate, at least can comply well with the physical
constraints. Arguably, such a contrast between PARCv2 and
physics-informed models appears to stem from the optimiza-
tion problem during training. That is, gradients from the
physics-informed loss (PDE residual) and data loss (RMSE)
often conflict, hindering model convergence. In contrast,
PARCv2 does not face such conflicts but may not fully ad-
here to physics constraints upon convergence. Hence, there
is an opportunity where physics-informed loss terms could
be supplemented to PARCv2 training after the initial conver-
gence is made. However, determining the optimal trade-off
between the two aspects requires further research beyond
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Figure 5. Prediction of energy localization in energetic materials.

the scope of this paper.

4.3. Energy Localization in Energetic Materials

Energetic materials, such as explosives and propellants, ex-
hibit unsteady and fast transient thermomechanics with
abrupt changes in temperature and pressure fields dur-
ing their initiation process. Furthermore, physics-based
simulation of energetic materials may take days on high-
performance clusters. These issues pose an interesting
machine-learning challenge, in which unsteady and fast
transient field evolutions must be learned from limited data.
The presence of sharp state field gradients, including travel-
ing shocks and evolving boundaries, further intensifies the
complexity. Moreover, the lack of an explicit equation for
the thermodynamics at the mesoscale is another obstacle
that one needs to overcome.

In this problem, while the details are deferred to Appendix
(Section A.3), we are interested in predicting the evolution

of temperature T and pressure P fields, given the material
condition µ. Explicitly defined governing equations describ-
ing the changes in temperature and pressure as functions of
T , P , and µ are unavailable. Therefore, one must depend
solely on data to learn the underlying physics. It is crucial
to highlight that the lack of a governing equation makes
it impossible to define the physics-informed loss term for
learning-bias models like PhyCRNet and PIFNO. Without
a PDE, PIFNO becomes identical to the regular FNO and
PhyCRNet is essentially a convolutional long short-term
memory (LSTM) model (Shi et al., 2015) that is physics
naı̈ve and there is no need for a separate discussion. Hence,
these models were excluded from the experiment.

Figure 5 illustrates the temperature and pressure field evo-
lution predictions made by PARCv2, PARC (with the nu-
merical integrator and the data-driven integrator), and FNO.
As shown in the figure, PARCv2 predictions reproduced the
most amount of details in terms of the position and shape of
temperature “hotspots” (localized high-temperature regions).
From the comparison with the original PARC results, it is
observable the efficacy of the newly introduced spatial gra-
dient terms in the PARCv2 architecture. Furthermore, with
hybrid time integration, PARCv2 effectively reproduces the
shape and boundary of the hotspot in the temperature field
evolution.

The quantitative results in Table 1 further supported this
observation. For the temperature RMSE, there was no sig-
nificant difference between PARCv2 (∼230 K) and the other
two methods (∼250 K). In the case of the pressure RMSE,
the difference between PARC with numerical integration
(∼1.5 GPa) and FNO (∼2.7 GPa) was more prominent.
More noteworthy are the solution quality metrics reported
in Table 2. In this case, we used the average temperature
and area of hotspots (Ths, Ahs) and their growth rates (Ṫhs,
Ȧhs) as the measures of solution quality, following the stan-
dard practice in the energetic materials community (Nguyen
et al., 2022; Seshadri et al., 2022). For these metrics, the
performance difference between PARCv2 and the other two
benchmarks was more prominent.

5. Discussion
The enhanced performance found in PARCv2 compared
to other baselines across all benchmark problems may be
explained theoretically as follows.

Borrowing the views of mathematical physics and differen-
tial geometry, an evolving field of a physical quantity can be
treated as a trajectory, or a curve, in the Galilean spacetime.
A submanifold embedded in the Galilean spacetime would
describe some physical rules and constraints. That is, if the
physical quantity is subjected to such rules and constraints,
the corresponding trajectory or curve must lie on the mani-
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fold. Additionally, when there are multiple observations of
such evolving fields under different conditions, these obser-
vations create a visual of a bundle of curves all of which are
lying on the dynamics manifold.

In this setting, PARCv2 can be viewed as learning the topo-
logical structures of the dynamics manifold, in contrast to
the learning bias approaches that enforce physics via ge-
ometric constraints in spacetime. Particularly, PARCv2
attempts to learn the approximation of the tangent spaces
on the dynamics manifold (tangent bundle), as well as a
“cone” in each tangent space describing where the dynamics
may head at a given state. On the contrary, other physics-
informed models aim to fit the manifold itself directly, by
evaluating the manifold positions across different sample
points, or what the literature refers to as “collocation points.”

Given this theoretical view, we argue that the problem of
learning the tangent bundle and the tangent cones therein
in the case of PARCv2 is a simpler optimization problem,
compared to fitting the manifold directly such as in other
baselines. The empirical evidence on multiple benchmark
problems supports this argument, as discussed in Section
4 about the “tension” between prediction error (RMSE)
and solution quality (PDE residuals). When the dynamics
manifold is relatively smooth, previous PIML methods may
approximate the manifold geometry effectively. However, in
the presence of strong nonlinearity and limited data, fitting
the solution manifold globally becomes extremely challeng-
ing. PARCv2 addresses this by imposing hard constraints on
the topology of the dynamics manifold and conducting local
physics-informed regularization, allowing for better learn-
ing capability in the presence of strong nonlinearity. This
approach narrows the search space of PARCv2 learning,
resulting in enhanced performance compared to previous
PIML methods in handling strong nonlinearity.

6. Conclusion
This study extended PARC to a broader range of spatiotem-
poral dynamics phenomena. Through the incorporation of
new advection and reaction terms, as well as the introduc-
tion of a hybrid integration solver, PARCv2 demonstrated
improved predictive performance compared to the original
PARC and previous learning bias approaches on various
benchmark physics problems. The validation experiments
also revealed that the PARCv2 differentiator-integrator ar-
chitecture can produce results that comply with underlying
physics laws, with a comparable solution quality to the other
learning-bias approaches, despite no explicit PDE residual
terms during training. Finally, PARCv2 was shown to be
capable of discovering unknown physics in the absence of
explicitly defined governing equations.

These advantages underscore the significance and potential

of the inductive bias research direction, positioning it as a
promising complement to current mainstream learning bias
approaches. It is, in fact, important to note that PARCv2
is not positioned as an exclusive alternative to learning-
bias methods, as the incorporation of physics-informed loss
during PARC training is still possible. Future research direc-
tions may explore the synergistic leverage of soft constraints
imposed by the physics-informed loss and the inductive bias
provided by the PARC differentiator-integrator architecture.
Enhancing the computational efficiency of PARCv2 is also
another opportunity for improvement. From our experi-
ments, PARCv2 is slightly heavier than other PIML models,
while still significantly less expensive than direct numerical
simulations. To this end, potential valuable research direc-
tions would include reduced-order modeling (i.e., dimension
reduction or learning the latent space dynamics).

Beyond applied physics research, we also envision the
broader use of PARCv2 in computer vision and machine
learning contexts. The flexibility of not requiring the ex-
plicitly defined governing quations enables the application
of PARCv2 to various problems in computer vision and
machine learning framed as physics or stochastic processes,
such as diffusion modeling for image generation or neural
ordinary differential equations.

Finally, considering the potential societal impacts of
PARCv2 is also crucial. For one, interpretability and vi-
sualization of PARCv2 is what we deem as the most urgent
issue, as it can shed light on how reliable and trustworthy the
predictions are. Furthermore, the ability to rapidly explore
complex physical phenomena may also be a double-edged
sword, as the characterization of sensitive materials, for
example, may result in various consequences. Therefore,
PARCv2 should be used carefully to avoid any unwanted
negative societal impact.
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A. Appendix
A.1. Burgers’ Equation

Burgers’ equation is a convection-diffusion equation that occurs in a variety of applications such as fluid mechanics,
acoustics, plasma physics, and traffic flows. With the presence of the viscous (diffusion) term, the shock discontinuities
are smoothed out and one can expect to obtain a well-behaved and smooth solution which will make the learning task less
challenging for PARCv2 and other models. Therefore, learning to solve Burgers’ equation can be considered the most
straightforward compared to the other two validation studies and was used as the first experiment for our validation.

The two-dimensional Burgers’ equation is given as:

∂u

∂t
= −u · ∇u+

1

R
∆u

∂v

∂t
= −v · ∇v +

1

R
∆v

(9)

where u(r, t) := [u(r, t), v(r, t)]⊤ is the velocity of fluid at position r and time t and R is the Reynolds number.

In the experiment presented in this paper, we assume that the fluid velocity is initially distributed according to the following
initial condition:

u(r, t)|t=0 = v(r, t)|t=0 = a exp(−||r||22/w) (10)

Additionally, for all experiments, we consider the domain with a spatial dimension of 6 cm × 6 cm, resolved on a 64× 64
grid (1 pixel = 0.09375 cm). The total simulation time is 2 seconds, uniformly divided into 100 discrete time steps of length
0.02 seconds. The zero-velocity boundary condition is also applied to the spatial domain, such that x0(r, t) = 0, ∀r ∈ ∂Ω.

The fluid parameters, i.e., the Reynolds number R and the initial velocity distribution a and w are varied according to
the values listed in Table 3. Note that the fluid parameters in the train-test split are designed to test the models’ abilities
to not only interpolate within the training distributions but also extrapolate/generalize to conditions outside the training
distributions.

Table 3. PDE constants for 2D Burgers’ equation used for training and testing

TRAINING TESTING

R (cm2/s) 1000, 2500, 5000, 7500, 10000 100, 500, 3000, 6500, 12500, 15000
a (cm/s) 0.5, 0.6, 0.7, 0.8, 0.9 0.35, 0.40, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.00
w (cm) 0.7, 0.8, 0.9, 1.0 0.55, 0.6, 0.65, 0.75, 0.85, 0.95, 1.05

The training data was obtained by solving Eq. 9 with numerical simulation using implicit backward Euler integration. Data
was generated using the open-source code provided by Fries et al. (2022). The original numerical simulation data included
1,500 snapshots and was down-sampled to 100 snapshots to be used for training. The spatial resolution of the numerical
simulation data was kept during the training.

A.2. Navier-Stokes Equation

Fluid flow around an obstacle has been a standard benchmark problem in fluid mechanics for decades, with laminar vortex
shedding emerging as a particularly interesting and extensively studied phenomenon. Flow separation and vortex shedding
occur due to high positive pressure gradients, resulting in flow fields characterized by relatively sharp features that evolve
rapidly in space, especially at high Reynolds numbers. In comparison to the Burgers’ equation case, the flow around an
obstacle exhibits more advective characteristics, posing additional challenges for machine learning, as discussed earlier.
Therefore, we selected this benchmark problem to assess and validate the modeling capability of PARCv2, building on its
success with the Burgers’ equation.

The Navier-Stokes equations are a system of PDEs describing the mechanical behavior of fluids. The Navier-Stokes
equations for the motion of an incompressible viscous fluid with constant density consist of a continuity equation for
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conservation of mass and an equation for conservation of momentum:

∇ · u = 0 (continuity)
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

1

Re
∆u (momentum)

(11)

Here, u(r, t) denotes the velocity vector at position r and time t, p(r, t) the pressure, and ρ and R the density and Reynolds
number respectively.

Oftentimes, the magnitude of the Reynolds number R has a significant influence on the stability of fluid. When R is small,
the flow is inert and sluggish, rendering a rather stable flow pattern. On the other hand, when R is large, the flow becomes
unstable and starts to render complex patterns.

In many physics-aware deep learning works in literature, a frequently used benchmark is how well the model can predict
unstable fluid behavior with large Reynolds numbers. Similar to these works, we consider a cylindrical cross-section of 0.25
m diameter embedded in a 2 m × 1 m rectangular domain, as illustrated in Figure 6. The circular obstacle was positioned
0.5 m far from the left and 0.5 m from the top edge. We assume the initial velocity field to be uniformly distributed at the
left side of the domain with initial velocity u0 = 1 m/s. Here the fluid density, ρ, is derived as: ρ = 4 ·R kg/m3. Meanwhile,
the kinematic viscosity, ν, is derived from the dynamic viscosity µ as ν = µ

ρ .

For the train-test split, the Reynolds number was varied according to Table 4. The training data was obtained using finite
volume methods with ANSYS Fluent. The initial data was provided in the triangular mesh format and was rasterized to fit
with the use of CNN using interpolation. The rasterized domain has the size of 128 pixels × 256 pixels with each pixel
corresponding to a 7.8125µm ×7.8125µm area.

Figure 6. Cylindrical flow benchmark.

Table 4. Fluid constants for 2D Navier-Stokes equation

TRAINING TESTING

DYNAMIC VISCOSITY µ (kg/(ms)) 1 1
INLET VELOCITY u0 (m/s) 1 1
REYNOLD NUMBER Re 30,40,80,100,150,200,250,300, 20,60,140,350,550,750,1000

400,450,500,600,650,700,800,
850,900,950

A.3. Energy Localization of Heterogeneous Energetic Materials

Energetic materials (EM), such as explosives and propellants, exhibit intensive and transient thermomechanics. In particular,
the localization of energy during the reaction dynamics of EMs results in high-temperature regions called “hotspots.” The
formation and growth of hotspots under varying input shock loading conditions are important design considerations for EMs
that determine the overall performance and safety of EMs. Here, the morphology of EM microstructures is known to play a
crucial role in the formation and growth of hotspots. For this reason, the problem of predicting the hotspot formation and
growth patterns from a microstructure image is an important problem for the safe design of EMs.

From the machine learning perspective, this problem represents a typical instance of real-world extreme physics, which
can present significant challenges for physics-informed machine learning. Not only is there an absence of a well-defined
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governing equation to apply a physics-informed loss, but the intense and transient thermomechanics also result in strong and
sharp spatiotemporal gradients of temperature and pressure field evolution, the two state variables of interest. Furthermore,
the sharp gradient state fields in this problem may encompass traveling shocks, collapsing interfaces, and evolving
internal/external boundaries that interact with the flow field. These characteristics pose a significant challenge for machine
learning, making the training process more difficult to converge to the target dynamics. Given these challenges rendered
by the nature of the problem, we have chosen this problem as our final experiment to validate the modeling capability of
PARCv2 in the realm of extreme physics.

In this study, we employ a similar setup to the previous work of Nguyen et al. (2023a;b), in which we consider a reduced
dynamical system that includes state variables x := [T, P, µ] and velocity variables u := [ux, uy]. In this system, T
represents the temperature, P represents the pressure, and µ represents the microstructure density. It is important to note
that the specific form of the governing PDEs for this reduced system is unknown and will be learned from data. However,
based on our domain knowledge, the reduced system could be represented as an advection-diffusion-reaction system and the
unknown dynamic can be learned by PARCv2.

For this case study, we trained PARCv2 using 100 simulation instances taken from DNS using the in-house code SCMITAR
3D (Rai and Udaykumar, 2015; Rai et al., 2017; Rai and Udaykumar, 2018). Each simulation instance contains 15 snapshots
of state variable fields and velocity fields. The time interval between snapshots is kept constant at δt = 0.17 (ns). All
simulations are taken with the applied shock of Ps = 9.5(GPa). We also set aside 34 different simulation cases for the
testing purpose. All the fields have the spatial dimension of 1.5× 2.25 (µm), tessellated using a uniform grid having the
size of 128× 192 (pixels).

A.4. Measuring Prediction Accuracy and Solution Quality

Burgers’ Equation For the Burgers’ equation problem, we measure the prediction accuracy by computing the average of
the pixel-wise residual between prediction and ground truth velocity as:

RMSEu =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|uij − ûij |2 (12)

Here uij and ûij are the velocity predicted by machine learning and the corresponding ground truth at the grid point (i, j)
on a H ×W grid. The velocity value at each (i, j) grid point is computed from the directional velocity as:

uij =
√

u2
x + u2

y, (13)

where ux and uy are the velocity values in horizontal and vertical directions, respectively. Meanwhile, the solution quality is
measured by the average PDE residual of the governing PDE:

||fu|| =
1

HW

H∑
i=1

W∑
j=1

√
(fx)2ij + (fy)2ij , (14)

where (fx)ij and (fx)ij the PDE residual in horizontal and vertical directions at the grid (i, j) and are computed as:

fx =
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
− 1

R

(
∂2ux

∂x2
+

∂2ux

∂y2

)
(15)

fy =
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
− 1

R

(
∂2uy

∂x2
+

∂2uy

∂y2

)
(16)

Navier-Stokes’ Equation In the case of Navier-Stokes equation, RMSEu is computed similarly with Burgers’ equation
using Eq. 12 and Eq. 13.

For measuring the solution quality, two physics-informed metrics were used: (1) the residual of the momentum PDE, and (2)
the divergent-free condition of incompressible flow. The momentum residual is computed as:
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||fu|| =
1

HW

H∑
i=1

W∑
j=1

√
(fx)2ij + (fy)2ij , (17)

where (fx)
2
ij and (fy)

2
ij are computed pixel-wise as:

fx =
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
− 1

ρ

∂p

∂x
− 1

Re

(
∂2ux

∂x2
+

∂2ux

∂y2

)
(18)

fy =
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
− 1

ρ

∂p

∂y
− 1

Re

(
∂2uy

∂x2
+

∂2uy

∂y2

)
(19)

The divergent-free condition error is computed as:

εdiv =
1

HW

H∑
i=1

W∑
j=1

(
∂(ux)ij
∂x

+
∂(uy)ij

∂y

)
(20)

Energy Localization in Energetic Materials We measure the prediction accuracy of PARCv2 and other models for the
energetic materials problem by computing the RMSE of two state variables of interest, namely temperature and pressure. In
a domain tessellated into H ×W grid, the RMSE of the predicted temperature and pressure are computed as:

RMSET =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|Tij − T̂ij |2 (21)

RMSEP =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|Pij − P̂ij |2 (22)

Here Tij and Pij are the predicted temperature and pressure at the (i, j) grid location, while the quantities with the hat (̂)
notation are ground truth derived from direct numerical simulation.

To assess the solution quality of machine learning prediction, we used the hotspot metrics introduced by Nguyen et al. (2022);
Seshadri et al. (2022) for assessing the solution quality of predictions made by PARCv2 and other models. Particularly, we
computed the RMSE of hotspot metrics, such that:

εThs =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|Ths − ˆThs|2 (23)

εAhs =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|Ahs − Âhs|2 (24)

εṪhs =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|Ṫhs − ˆ̇Ths|2 (25)

εȦhs =

√√√√ 1

HW

H∑
i=1

W∑
j=1

|Ȧhs − ˆ̇Ahs|2 (26)
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Here, the Ths is the average hotspot temperature, Ahs is the total hotspot area, and Ṫhs and Ȧhs are their respective rates
of change over time. These four QoIs are computed as:

Ths (tk) =

∑H
i=1

∑W
j=1

(
Ths
ij (tk)A

hs
ij (tk)

)
Ahs (tk)

, (27)

Ahs(tk) =
H∑
i=1

W∑
j=1

Ahs
ij (tk), (28)

Ṫhs(tk) =
Ths (tk)− Ths (tk−1 )

tk − tk−1
, (29)

˙Ahs(tk) =
Ahs (tj)−Ahs (tj−1)

tk − tk−1
, (30)

where:

Ths
ij (tk) =

{
Tij(tk) if Tij(tk) ≥ 875K,

0 otherwise, (31)

Ahs
ij (tk) =

{
Aij(tk) if Tij(tk) ≥ 875K,

0 otherwise. (32)

In Eqs. Equations (27) to (32), the subscript ij indicates quantities specific to the grid location (i, j). The superscript hs
indicates quantities specific to hotspots. Aij is the area of the grid cell occupied in the hotspot region, which is constant
since a uniform grid was employed.

A.5. PhyCRNet

During our experiment, we kept the architecture of PhyCRNet intact with the one presented in the paper Ren et al. (2022).
Five convolution encoder blocks with filter sizes [4, 3, 4, 3, 4] and strides [2, 1, 2, 1, 2], one Conv-LSTM block with filter
size 3 and stride 1, and one pixel shuffle layer with an upscaling factor of 8 as three 2x downsampling were performed
during the encoding process. To eliminate the effect of number of parameters on prediction accuracy, we picked the number
of channels to be [32, 32, 64, 64, 128, 128] for 2D Burger’s equations and [128, 128, 256, 256, 512, 512] for Navier-Stokes
equations to maintain parameter parity with PARCv2, yielding ∼1 million parameters for 2D Burgers and ∼20 million
parameters for N-S equations.

For PhyCRNet, we tested the performance of the model with only MSE data loss, with only PDE loss, and with a weighted
combination of MSE and PDE loss on the 2D Burger’s Equation problem, and we only used a weighted combination of
MSE and PDE loss on the N-S equation experiment. We used Adam optimizer with an initial learning rate of 10−4 and for
every 100 epochs we halved the learning rate with a minimal learning rate of 10−6. We stopped training when the test loss
stopped improving for 50 epochs.

A.6. FNO/PIFNO

In our experiments, we maintained the same architecture of the Fourier Neural Operator (FNO) as the FNO-2d presented in
the Li et al. (2020): 2d FNO and an RNN structure in time. The 2d FNO first lifts the input to 32 channels for 2D Burgers
(96 for N-S equations, 72 for EM) and then goes through 5 Fourier layers with 32 hidden channels (96 for N-S equations, 72
for EM), and lastly projects down to the number of channels in the output. The number of modes included in each Fourier
layer is 15 for 2D Burgers and 24 for both N-S equations and EM, giving us ∼1 million parameters for 2D Burgers, ∼20
million parameters for N-S equations and ∼15 million parameters for EM, maintaining parameter parity with all other
models presented in this work.
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For FNO, we trained and tested the performance of the model with only MSE data loss in all three experiments. We used the
Adam optimizer with an initial learning rate of 10−4, and for every 60 epochs, we halved the learning rate with a minimal
learning rate of 10−6. We stopped training when the test loss stopped improving for 50 epochs. A weight decay of 10−5

was applied as regularization on both the 2D Burgers and EM experiments and no weight decay on N-S equations.

For PIFNO, we trained and tested the performance of the model with a weighted combination of MSE data loss and PDE
solution quality in both 2D Bugers and N-S equations. We used the Adam optimizer with an initial learning rate of 10−4,
and for every 60 epochs, we halved the learning rate with a minimal learning rate of 10−6. We stopped training when the
test loss stopped improving for 50 epochs. No weight decay or any regularization was applied for PIFNO.

A.7. Detailed Implementation of PARCv2

The detailed implementation of PARCv2 and necessary data for reproducing the results can be found in https://github.
com/hphong1990/PARCv2.

For PARCv2, we used Adam optimizer with a learning rate of 10−5. As mentioned before, we trained PARCv2 using a
two-step training. The differentiator was trained first for 500 epochs. Consequently, the differentiator is frozen and the
integrator was trained for another 500 epochs. For the PARC setting without the data-driven integrator, only the differentiator
was trained. No weight decay or any extra regularization was applied.

A.8. Comparison of Computational Cost

Table 5 reports the computation cost of PARCv2 and other baselines compared to DNS. All baselines were tested on an
NVIDIA A100 Graphic Computing Unit (GPU). DNS was conducted on a high-performance computing (HPC) system with
Intel® Xeon E5-2699v4 CPU @ 2.80 GHz (1,320 processors) and NVIDIA P100 GPUs accelerator.

Table 5. Computation cost comparison

BURGERS NAIVER-STOKES EM

PHYCRNET 0.264 (S) 0.713 (S) −−
FNO 0.433 (S) 0.939 (S) 0.153 (S)
PIFNO 0.433 (S) 0.939 (S) –
PARCV2 0.445 (S) 0.278 (S) 0.820(S)
PARC (NUM. INT.) 0.122 (S) 0.127 (S) 0.089 (S)
PARC (NN. INT.) 0.158 (S) 0.090 (S) 0.149 (S)
DNS 493.2 (S) 1-2 (HOURS) 2-3 (HOURS)
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