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Abstract
Numerous factors influence the timing of spring migration in birds, yet the relative 
importance of intrinsic and extrinsic variables on migration initiation remains unclear. 
To test for interactions among weather, migration distance, parasitism, and physiology 
in determining spring departure date, we used the Dark-eyed Junco (Junco hyemalis) 
as a model migratory species known to harbor diverse and common haemosporidian 
parasites. Prior to spring migration departure from their wintering grounds in Indiana, 
USA, we quantified the intrinsic variables of fat, body condition (i.e., mass ~ tarsus 
residuals), physiological stress (i.e., ratio of heterophils to lymphocytes), cellular im-
munity (i.e., leukocyte composition and total count), migration distance (i.e., distance 
to the breeding grounds) using stable isotopes of hydrogen from feathers, and hae-
mosporidian parasite intensity. We then attached nanotags to determine the timing of 
spring migration departure date using the Motus Wildlife Tracking System. We used 
additive Cox proportional hazard mixed models to test how risk of spring migratory 
departure was predicted by the combined intrinsic measures, along with meteoro-
logical predictors on the evening of departure (i.e., average wind speed and direction, 
relative humidity, and temperature). Model comparisons found that the best predictor 
of spring departure date was average nightly wind direction and a principal compo-
nent combining relative humidity and temperature. Juncos were more likely to depart 
for spring migration on nights with largely southwestern winds and on warmer and 
drier evenings (relative to cooler and more humid evenings). Our results indicate that 
weather conditions at take-off are more critical to departure decisions than the meas-
ured physiological and parasitism variables.
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1  |  INTRODUC TION

Over-wintering duration and timing of departure for avian spring 
migration is a process influenced by a host of extrinsic and intrin-
sic factors (Covino et al., 2015; Hurlbert & Liang, 2012; Satterfield 
et al., 2018). The timing of spring migration must balance the ad-
vantages of early arrival on the breeding grounds, including higher 
quality mates and territories (Gunnarsson et al., 2006; Møller, 1994; 
Newton, 2010; Rotics et  al., 2018; Smith & Moore, 2005), with 
the risk of arriving before adequate food resources are available 
(Gunnarsson et  al.,  2006; Møller,  1994; Newton,  2010; Rotics 
et al., 2018; Smith & Moore, 2005). Stressors experienced on the 
wintering grounds can also affect the timing and duration of spring 
migration. Extrinsic factors such as changing weather conditions 
(Marra et al., 2005) and intrinsic factors such as high parasite inten-
sity (Dietsch, 2005; Reed et al., 2003) can alter stopover duration 
as birds recover from or accommodate these additional physio-
logical burdens (Schmaljohann et al., 2009). The relative contribu-
tion of extrinsic and intrinsic factors experienced at the wintering 
grounds in shaping spring departure remains less well-understood, 
and studies addressing these interactions are especially valuable 
as anthropogenic pressures continue to influence the climate and 
natural habitat (Kubelka et al., 2022; Visser et al., 2009; Wilcove & 
Wikelski, 2008).

For decades, ornithologists have known that weather vari-
ables influence avian migration timing in both spring and fall (see 
Richardson,  1978). Factors that influence the probability of mi-
gratory departure include wind speed (Chapman et  al.,  2016; 
Drake et  al., 2014; Kemp et  al., 2010; Liechti,  2006; Nussbaumer 
et  al.,  2022), wind direction (Covino et  al.,  2015; Hebrard,  1971; 
Horton et  al.,  2016; Kemp et  al.,  2010; Lack,  1963; Lack & 
Eastwood,  1962; Sinelschikova et  al.,  2007), temperature 
(Hüppop & Winkel,  2006; Marra et  al.,  2005; Saino et  al.,  2007; 
Tøttrup et al., 2010; Usui et al., 2017), and relative humidity (Klaassen 
et  al., 2012; Liechti,  2006; Schmaljohann et  al., 2009; Serra-Cobo 
et al., 1998; Zhang & Wu, 2018). The high correlation among these 
weather variables adds to the difficulty in disentangling the influ-
ence of these factors from potential additional stressors. For exam-
ple, warm air can hold more moisture than cold air; thus, at the same 
absolute humidity, cooler air (perhaps counterintuitively) has higher 
relative humidity than warmer air (Lawrence, 2005).

The relationship between wind and bird migration has been 
observed for decades, and prevailing winds were a likely a selec-
tion factor in that shaping the evolution of migratory patterns 
(Able,  1973; Alerstam,  1979a, 1979b; Richardson,  1978). Birds 
that are highly selective of favorable winds can maximize flight 
speed and minimize energy expenditure across both long-  and 
short-distance migratory flights (Alerstam, 1979a). Migrants have 
faster ground and air-speeds in spring migration than fall (Horton 
et  al., 2016), and spring migration is typically completed over a 
shorter duration than fall (Newton, 2010). As such, models that 
forecast bird migration rely heavily on wind data (Erni et al., 2002; 
Van Doren & Horton, 2018).

Intrinsic factors have also been recognized to affect readiness 
for migratory departure. Given the energetic costs of migration 
(Wikelski et al., 2003), adequate fat stores are integral in providing 
fuel for long-distance flight and larger stores can be a reliable predic-
tor of migratory readiness (Price, 2010; Ramenofsky, 1990; Weber 
et al., 1994; Witter & Cuthill, 1993); correspondingly, measures of 
body condition (i.e., mass ~ tarsus residuals) allow for standardized 
body size comparisons among individuals (Labocha & Hayes, 2012). 
The degree of physiological stress and immune state of individuals 
at the wintering grounds can also affect spring migratory timing. 
Preparation for long-distance migration increases plasma concentra-
tions of corticosterone (the primary avian glucocorticoid responsible 
for maintaining homeostasis) in many songbirds (Holberton, 1999; 
Landys et al., 2004), which can facilitate earlier departure from the 
wintering grounds or spring stopover (Eikenaar et al., 2013, 2017). 
Elevated corticosterone can shift the composition of leukocytes in 
blood, subsequently elevating the ratio of heterophils to lympho-
cytes (HL ratios; Davis et  al., 2008). While plasma corticosterone 
levels are highly sensitive to the acute stress of capture, stress-
induced changes in leukocyte profiles occur more slowly, such that 
HL ratios can serve as a more tractable approximation of energetic 
costs prior to migration (Davis & Maney, 2018). In a similar fashion, 
the energetic cost of migratory preparation can induce trade-offs 
with the immune system (Lochmiller & Deerenberg,  2000), such 
that migrants may downregulate immune activity or rely primarily 
on less costly immune defenses. For example, several thrush species 
show lower total leukocyte counts upon arrival at stopover sites in 
spring, reflecting such trade-offs (Owen & Moore, 2008). Variation 
in immune investment may in turn affect departure decisions; recent 
work demonstrated that songbirds with higher titers of natural an-
tibodies and immunoglobulin Y have longer spring stopovers (Brust 
et al., 2022).

Related to seasonal variation in physiological stress and immu-
nity, songbirds may also experience additional overwintering stress-
ors that affect spring migration. For example, exposure to toxins 
such as neonicotinoids in wintering food sources (Eng et al., 2017) 
can delay migration departure or increase stopover duration as 
birds recover from or accommodate these burdens. An additional 
such stressor could be through parasite infection, such as that 
from dipteran-borne haemosporidian blood parasites (i.e., the gen-
era Plasmodium, Haemoproteus, and Leucocytozoon). Experimental 
infections of captive birds have shown migration-relevant physio-
logical costs of infection, such as reduced general activity (Mukhin 
et al., 2016; Yorinks & Atkinson, 2000) and body condition (Atkinson 
et al., 1995) as well as shifts in the development of migratory rest-
lessness (Kelly et al., 2016, 2020). Observational studies have also 
identified impacts of haemosporidian infection on body condi-
tion in migrating birds (Garvin et al., 2006; Merrill et al., 2018), on 
the timing of arrival to the breeding grounds (Asghar et  al., 2011; 
Santiago-Alarcon et al., 2013), and on autumn departure timing (Ágh 
et al., 2019). However, it remains unclear how haemosporidian in-
fections interact with extrinsic and other intrinsic factors to affect 
migration timing.
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In this study, we used overwintering migratory Dark-eyed 
Juncos (Junco hyemalis; hereafter “junco”) to test the hypothesis 
that physiological state and haemosporidian infection interact 
with weather conditions and migration distance to shape spring 
migratory departure timing. Haemosporidia have been well-
characterized in Dark-eyed juncos, with chronic (i.e., long-term) 
infections detected in wintering and breeding populations (Becker 
et  al., 2019, 2020; Deviche et  al., 2001; Ferrer,  2022; Martínez-
Renau et al., 2022; Slowinski et al., 2018; Talbott et al., 2022). We 
used stable isotopes of hydrogen from feathers to estimate the dis-
tance to breeding grounds for each individual (Bowen et al., 2014; 
Hobson, 1999; Hobson et al., 2012; Rubenstein & Hobson, 2004; 
Wunder, 2010) and the Motus Wildlife Tracking System to deter-
mine departure date (Taylor et al., 2017). We predicted that birds 
with higher fat reserves, low intensity or no haemosporidian para-
sitism, lower HL ratios, and lower total leukocyte counts would de-
part earlier in the year and during evenings of following winds (i.e., 
tailwind). We also predicted that wind direction (following winds) 
would be more important than wind speed and that headwinds 
would be the strongest deterrent to departure, even more so than 
intrinsic predictors.

2  |  METHODS

2.1  |  Junco sampling and captive housing

We caught wild juncos from January 31, 2020, to February 26, 2020, 
at four locations within 15 km of Bloomington, Indiana, USA. None 
of the birds was captured at the release site, and we systematically 
rotated capture efforts through all four sites to avoid confounding 
results by capture date or location. We captured juncos using baited 
mist nets and walk-in traps, took standard morphometric measure-
ments including wing, tail, tarsus and bill length, mass, condition, and 
body fat (Fudickar et al., 2016; Jawor et al., 2006; Singh et al., 2019). 
We assigned a numerical rank to subcutaneous fat visible beneath 
the skin as a measure of fat score and assigned a numeric value 
to flight muscle thickness as a measure of condition (Labocha & 
Hayes, 2012). We then fit each bird with an aluminum U.S. Fish & 
Wildlife Service leg band (federal permit # 20261, Indiana state per-
mit 20-528).

While capture efforts were ongoing, juncos were held at an in-
door aviary at Indiana University to prevent additional exposure to 
arthropod vectors of haemosporidia. Juncos were provided ad libi-
tum water and food (mealworms, organic millet, organic sunflower 
seeds, and a blended mixture of organic millet, organic carrots, and 
organic blueberries) and could fly freely in 6.4 × 3.2 m rooms. Light 
cycles for rooms reflected the natural photoperiod of Bloomington, 
Indiana, at the time of the study.

As a potential additional extrinsic factor, juncos in this study 
were randomly dosed with either a neonicotinoid (imidacloprid sus-
pended in sunflower seed oil) or control (sunflower seed oil) to exper-
imentally test impacts on migration timing. However, imidacloprid 

metabolites of 5-OH-imidacloprid and imidacloprid-olefin were de-
tected in only one bird's post-dose plasma at 46.67 and 72.23 ng/
mL, respectively. This individual was removed from all subsequent 
analyses. Imidacloprid or metabolites were not detected in pre-
dose or post-dose (6 h after) plasma of any other individuals (n = 37; 
Table S1). Therefore, we did not include imidacloprid exposure as 
a possible predictor of migratory timing. Possible explanations for 
the absence of imidacloprid detection in plasma samples are that the 
dose was regurgitated or rapidly metabolized by all birds.

On the days of release (March 3, 2020, and March 4, 2020), 
we attached a nanotag to each bird (Lotek model NTQB2-2, 
11 × 5 × 4 mm, 0.32 g, ≦0.5 g total mass including leg harness). Birds 
were released at Kent Farm Research Station (located nine miles east 
of Bloomington, IN), an area frequented by overwintering juncos; we 
provided organic seed in feeders and on the ground in an attempt to 
minimize departure from the area due to resource limitation (Bridge 
et al., 2010).

2.2  |  Hematological analyses

At capture, we collected ≤150 μL blood from each bird by pricking 
the brachial vein with a sterile needle, followed by collection with 
heparinized capillary tubes. We also collected the first second-
ary feather from each bird for stable isotope analysis (Fudickar 
et al., 2016). We separated plasma and red blood cells (centrifuged 
for 10 min at 11,180 g) and stored samples at −20°C until DNA ex-
traction using a Maxwell RSC Whole Blood DNA Kit (Promega). Any 
birds unable to be sexed by wing length and plumage were verified 
using sexing PCR of extracted DNA (Griffiths et  al.,  1998). Only 
males (n = 37) were included to control for sex differences in migra-
tion timing, as female juncos migrate earlier than males (Nolan & 
Ketterson, 1990).

Because birds were held in captivity for variable lengths between 
capture and release with nanotags (x̄  = 25, range of 13–33 days), we 
collected additional blood samples 24 h prior to release, using the 
blood collection protocol described above. We prepared thin blood 
smears on glass slides stained with Wright–Giemsa (Quick III, Astral 
Diagnostics). We then evaluated leucocyte profiles and haemospo-
ridian intensity using light microscopy (AmScope, B120C-E1). A sin-
gle observer (TBV) recorded the number of leukocytes under 400× 
magnification across 10 random fields to estimate inflammatory 
state and investment in cellular immunity. A differential count was 
then performed by recording the identity of the first 100 leukocytes 
(heterophils, lymphocytes, monocytes, eosinophils, and basophils) 
at 1000× magnification (oil immersion; Campbell, 1995). We then 
screened 100 fields of view at 1000× magnification for Plasmodium 
spp., Haemoproteus spp., and Leucocytozoon spp. (Becker et al., 2019, 
2020; Cosgrove,  2005; Valkiunas et  al.,  2008). We derived the 
mean total leukocyte count, HL ratios, and the total number of 
haemosporidian-infected erythrocytes (parasite intensity) as three 
predictor variables. Usable blood smears were available for 34 of our 
37 tagged individuals.
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2.3  |  Hydrogen isotope analysis

We used stable isotopic analysis of hydrogen (δ2H) in feathers to 
infer probable breeding latitude and median distance from cap-
ture point (Bowen et al., 2014; Hobson, 1999; Hobson et al., 2012; 
Rubenstein & Hobson,  2004; Wunder,  2010). Feathers were 
cleaned using a 2:1 chloroform: methanol solution to remove ex-
ternal oils and contaminants. We used a forced isotopic equilibra-
tion procedure to ensure exchangeable hydrogen with a water 
vapor of known isotopic composition in a flow-through cham-
ber system at 115°C (Sauer et  al., 2009; Schimmelmann, 1991). 
Samples were analyzed using a thermal conversion element 
analyzer coupled with a ThermoFinnigan Delta Plus XP isotope 
ratio mass spectrometer at the Indiana University Stable Isotope 
Research Facility. Isotopic data are reported in standard per mil 
notation (‰) relative to Vienna Standard Mean Oceanic Water 
(VSMOW) using two reference materials: USGS77 (polyethylene 
powder) and hexatriacontane 2 (C36 n-alkane 2). Analytical preci-
sion was ±1.0‰ for δ2H values. We calculated the isotopic com-
position of the non-exchangeable hydrogen per sample, assuming 
a 17% exchangeability rate for feathers (Schimmelmann,  1991; 
Schimmelmann et al., 1999).

We performed Bayesian geographic assignments for the breed-
ing location of individual birds based on feather δ2H values using the 
assignR package (Chao et al., 2020). To calibrate our precipitation-
feather isoscape, we used growing season precipitation isoscape 
rasters from water​isoto​pes.​org (Bowen et  al.,  2005; Bowen & 
Revenaugh, 2003) and the isotopic composition of non-migratory 
Dark-eyed juncos from previous studies (Becker et al., 2019; Hobson 
et al., 2012). Median latitudinal and distance estimates were calcu-
lated from geographic assignment probability maps by extracting 
the geographic cell coordinates with the highest posterior proba-
bility (top 10%) using the raster package (Hijmans, 2019). Migration 
distance was defined as the distance from the release site to the 
centroid of the estimated breeding polygon (Becker et  al.,  2022; 
Wanamaker et al., 2020).

2.4  |  Motus data processing

Motus data (project 240; available at https://​motus.​org/​data) were 
downloaded on July 25, 2020, four months after the known pe-
riod of spring migration in Indiana of wintering juncos (Ketterson 
& Nolan, 1982). Data were filtered and cleaned following a stand-
ard protocol using the motus package in R (Taylor et  al.,  2017). 
Specifically, we removed runs with a low probability of being a 
true detection (i.e., motusFilter = 0) and adopted a moderately 
strict filter to be more conservative about detection inclusions. 
We then derived the departure date as the last day (ordinal date) 
a bird was detected at the Kent Farm Research Station Motus sta-
tion. We additionally report cases in which birds were detected 
at other Motus stations between banding and our data download 
date.

2.5  |  Weather data

We obtained relative humidity data from ncei.​noaa.​gov (Diamond 
et  al.,  2013) and all remaining weather variables (humidity, wind 
speed, wind direction [converted to wind rose] and weather type) 
from timea​nddate.​com (Thorsen, 1995–2023). We averaged hourly 
data from 1800 to 2400 on departure date evenings (thus, variables 
are labeled average humidity, etc).

Because average relative humidity and average temperature are 
dependent (Lawrence, 2005), we conducted a principal components 
analysis (PCA) of these two variables, with variables centered and 
scaled to have unit variance. The first PC (hereafter weather PC1) 
explained 56% of the variation and was loaded negatively by aver-
age relative humidity (−0.71) and positively by average temperature 
(0.71); resulting values indicate increasingly warm and dry evening 
weather. This variable was used in downstream analyses alongside 
average wind speed and average wind direction.

2.6  |  Statistical analyses

Prior to analyses of migration timing, we used a linear mixed ef-
fects model with a random effect of site to derive an index of body 
condition through the residuals of a regression of mass (measured 
prior to release) on tarsus length (Schulte-Hostedde et  al.,  2005; 
Wanamaker et al., 2020).

We modeled days until spring migratory departure under an 
event-time analysis framework, using additive Cox proportional haz-
ard mixed models (CPHMMs, Therneau & Grambsch, 2000).These 
semi-parametric models allow determining how the risk of departure 
changes with covariates that can also vary with time and thus the 
terms “risk” or “hazard” are used to accurately describe what is mod-
eled (e.g., “risk of spring migration”). These models have been ap-
plied to study migration timing in both avian and non-avian systems 
(Castro-Santos & Haro, 2003; Dossman et  al., 2015).We used the 
mgcv package to fit CPHMMs with a random effect of site. To test 
the direct and interactive effects of extrinsic (i.e., weather PC1, wind 
direction, wind speed) and intrinsic predictors (i.e., fat, body condi-
tion, total leukocytes, HL ratios, haemosporidian intensity) on risk 
of spring departure (Wood, 2017). Including all predictor variables 
and biologically relevant interactions in a single full model was not 
possible given our sample size (n = 34, excluding birds without hema-
tology data). We instead built 10 candidate CPHMMs representing a 
priori hypotheses of additive and interactive effects while restricting 
models to at most three fixed effects to limit overfitting (Burnham & 
Anderson, 2002). Most predictors showed low collinearity (ρ ranged 
from −0.63 to 0.62, x̄  = 0.01), and moderately correlated predictors 
(i.e., weather PC1 and wind speed, ρ = −0.63; body fat and condi-
tion, ρ = 0.62) were excluded from the same models. All predictors 
were modeled using thin plate splines with smoothing penalty with 
the exception of wind direction, which used a cyclic cubic spline to 
account for circular data. Interaction terms were modeled as ten-
sor products. Our models represented additive effects of intrinsic 
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variables only (e.g., fat, haemosporidian intensity, and total leuko-
cytes), additive effects of extrinsic variables only (e.g., wind direc-
tion and weather PC1), additive effects of both intrinsic and extrinsic 
variables (e.g., haemosporidian intensity, HL ratios, and weather 
PC1), interactive effects of intrinsic variables (e.g., effects of hae-
mosporidian intensity dependent on HL ratios), interactive effects 
of extrinsic variables (e.g., effects of wind speed depend on wind 
direction), and interactive effects of intrinsic and extrinsic variables 
(e.g., effects of weather PC1 depend on haemosporidian intensity).

We compared CPHMMs fit with maximum likelihood using 
Akaike information criterion adjusted for small sample size (AICc) 
with the MuMIn package (Bartoń,  2013). We also derived Akaike 
weights (wi) to facilitate comparison and considered models within 
two ΔAICc of the top model to be competitive. Competitive models 
were refitted to the full dataset, with CPHMM predictions visual-
ized as relative hazards with 95% confidence intervals (Nakagawa & 
Schielzeth, 2013).

3  |  RESULTS

3.1  |  Hydrogen isotopes and likely breeding origins

Hydrogen isotopic composition of junco feathers ranged from 
−158.9% to −95.8%, reflecting median breeding locations from 66 
to 51° N, respectively (Figure 1). Maximum and minimum latitudi-
nal estimates spanned from 70 to 36° N. Estimated distances to 
breeding grounds accordingly ranged from approximately 2086 to 

3900 kilometers (x̄  = 3297, SE = 78.4). Incidentally, we detected 
six of our 37 tagged juncos at other Motus towers following their 
departure from Indiana (Figure 1). Five birds were detected at the 
Lake Petite station in Wisconsin (42.5117°, −88.5488°), and one 
bird was detected at the Werden station (42.7551°, −80.2724°) in 
Ontario, Canada.

3.2  |  Haemosporidian infection

We identified haemosporidian infections in 11 of 34 juncos prior 
to release (32.4%, 95% CI: 19.1–49.2%). Only two individuals had 
detectable Haemoproteus spp. infection (intensity = 16–23 infected 
erythrocytes from 100 fields of view), and nine individuals had 
detectable Leucocytozoon spp. infection (intensity = 1–7 infected 
erythrocytes from 100 fields of view); no individuals harbored co-
infecting haemosporidian parasites. We also opportunistically de-
tected Trypanosoma spp. in a single bird (1/34, two parasites were 
detected from 100 fields of view), and this individual was not in-
fected by either Haemoproteus spp. nor Leucocytozoon spp. parasites.

3.3  |  Extrinsic and intrinsic predictors of 
migration timing

All birds departed 8–31 days after release (x̄  = 19.11 ± 0.81 SE), be-
tween March 11 and April 3 2020 (Figure 2). Comparison among 10 
CPHMMs predicting risk of departure date as a function of extrinsic 

F I G U R E  1 Estimated breeding 
locations and migratory distances based 
on junco feather δ2H. Orange shading 
represents overlapping geographic 
breeding assignments of individuals. 
Estimates reflect cells within the top 
10% highest posterior probability 
(Bowen et al., 2014; Ma et al., 2020; 
Wunder, 2010). Points on the map 
represent the centroid of each estimated 
breeding polygon, colored by distance to 
location of capture (star; Bloomington, 
IN). Lines radiating from the star represent 
subsequent Motus detections after 
departure. The seasonal breeding range 
for Junco hyemalis (Baillie et al., 2004) is 
shown in light gray (the species' full range 
map was used to construct geographic 
assignment maps).
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and intrinsic factors identified only one competitive model, which 
included the nonlinear additive effects of wind speed and weather 
PC1 (wi = 0.61; Table 1). Wind direction had the greatest relative im-
portance among predictors (99%), followed by weather PC1 (62%); 
wind speed, the interaction between wind speed and weather PC1, 
and estimated migration distance all had lesser importance (38%, 
22%, and 16%, respectively). All intrinsic predictors (i.e., fat, body 
condition, total leukocytes, HL ratios) and their interactions were 
unimportant (≤1%).

Our top model explained 30.5% of the deviance in spring mi-
gration risk, with both wind direction (�2

1.8,2
 = 17.42, p < .001) and 

weather PC1 (�2

1.4,3
 = 29.61, p < .001) being significant nonlinear pre-

dictors of departure. Specifically, the risk of spring departure was 

greatest with average nightly southwestern winds and for humid and 
cool nights (Figure 3).

4  |  DISCUSSION

Numerous factors influence the timing of spring departure in 
birds, yet the relative influence of intrinsic and extrinsic variables 
on migration initiation remains a topic of debate. In this study, we 
tested the relative influence of these diverse factors on the risk 
of spring departure in a modestly sized group of wild-caught jun-
cos. Weather variables outperformed all tested intrinsic variables. 
We predicted that both wind direction and speed would have the 

F I G U R E  2 (a) Release and departure 
timing inferred from Motus at the Kent 
Farm Research Station for all 37 tagged 
juncos. (b) Mean probabilities of spring 
departure as inferred from Kaplan–
Meier survival curves (i.e., 1—survival 
probabilities) using the survival R package 
alongside 95% confidence intervals.

Fixed effects ΔAICc wi DE, %

~ s(wind direction) + s(weather PC1) 0.00 0.61 31

~ s(wind speed) + s(wind direction) + ti(wind speed, 
wind direction)

2.09 0.22 3

~ s(wind speed) + s(wind direction) + s(migration 
distance)

2.69 0.16 4

~ s(intensity) + s(weather PC1) + ti(intensity, weather 
PC1)

8.04 0.01 20

~ s(intensity) + s(HL ratios) + s(weather PC1) 12.71 <0.01 10

~ s(intensity) + s(total leukocytes) + ti(intensity, total 
leukocytes)

26.54 <0.01 25

~ s(body condition) + s(migration distance) 27.87 <0.01 5

~ s(fat score) + s(migration distance) 27.87 <0.01 5

~ s(intensity) + s(total leukocytes) + s(HL ratios) 28.15 <0.01 4

~ s(intensity) + s(HL ratios) + ti(intensity, HL ratios) 28.15 <0.01 4

TA B L E  1 Comparison of CPHMMs 
predicting junco risk of spring departure; 
all models include a random effect of 
site. Candidate models are ranked by 
ΔAICc alongside Akaike weights (wi) and 
deviance explained (DE).
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greatest influence on departure; however, only wind direction was 
supported by our top model. Temperature and relative humidity 
(i.e., weather PC1) also influenced departures, with humid and cool 
nights having greater risk of departure than warmer, drier nights. 
While we predicted that birds with intense haemosporidian infec-
tion would depart later than uninfected individuals or those with 
low-intensity infections, infection intensity did not influence depar-
ture risk. Additionally, higher fat reserves, lower leukocyte counts, 
and lower HL ratios did not affect departure risk. Our results sug-
gest that the advantage of following winds outweigh the cost of 
haemosporidian infections and the other measured physiological 
variables during spring migration.

Many migratory birds harbor haemosporidian infections 
throughout the year, including during migration, (Cornelius 
et al., 2014; Pulgarín-R et al., 2019; Ricklefs et al., 2017) and on-
going research continues to clarify the effects of avian malaria 
on migration timing, duration, and distance. Prior work on jun-
cos found greater prevalence of haemosporidian infections in a 
non-migratory subspecies compared with sympatric overwinter-
ing migrants following fall migration, suggesting that infected 
birds may be more likely to experience disease-induced mortal-
ity during migration (Slowinski et al., 2018). Similarly, juncos with 
longer migrations were more likely to show elevated HL ratios 
upon arrival to their wintering grounds; this effect was stronger in 
haemosporidian-infected birds, suggesting interactive effects of 
migration and infection on host energetics (Becker et  al., 2019). 
Therefore, we predicted that juncos with more intense infections 
might delay migration initiation to mitigate these potential phys-
iological costs. However, our results indicate that weather has a 
strong impact on migration irrespective of haemosporidian inten-
sity. Importantly, our study focused on spring migration in adult 
juncos. While chronic haemosporidian infections may not impact 
migration timing during this life stage, it is unclear whether this 
pattern would hold true for juncos during autumn migration, es-
pecially juveniles. In fact, juvenile European robins (Erithacus ru-
becula) with haemosporidian infections arrive at wintering ground 
later than uninfected subadults (Ágh et  al., 2019). Thus, season, 
age and stage of infection may influence whether haemosporid-
ian infections delay migration initiation. Experimental infections 

in conjunction with departure tracking would provide more con-
clusive data on how weather interacts with parasite intensity to 
influence migration initiation.

Our analysis also indicates that migration distance and mean 
wind speed were relatively less informative predictors of spring de-
parture date. Regarding migration distance, we expected that birds 
with longer spring migrations would depart earlier, as these individu-
als would potentially need to undertake prolonged stopovers to rest 
and refuel on the way to their breeding grounds. However, research 
suggests that long-distance migrants have a greater ability to mod-
ify migratory behavior while en route and thus departure date may 
not be directly related to migration distance as migration speed and 
routes are flexible (La Sorte & Fink, 2017; Marra et al., 2005). While 
juncos have been well-studied in regard to differential migration and 
migration timing (Cristol et al., 1999; Ketterson & Nolan, 1976), more 
research is essential to understanding how distance to breeding 
ground influences departure date. Isotopic feather analysis is ad-
vancing work in this field, as is the improvement and proliferation 
of nanotag technology (e.g., Motus, Cellular Tracking Technologies), 
which could help further distinguish the various influences on migra-
tion distance as it relates to departure.

Past studies have shown that both wind speed and direction 
are important predictors of departure and that tail winds can sig-
nificantly increase flight times and greatly decrease energy require-
ments (Alerstam, 1979b; Bloch & Bruderer, 1982; Kemp et al., 2010; 
Liechti, 2006). There are several possibilities as to why these vari-
ables were less important in our analysis. Optimal wind selectivity is 
a product of many factors, including the size of the bird; rate of fat 
use; distance, duration, and altitude of migration; and even the wind 
pattern itself (Alerstam, 1979a). Lastly, birds here departed over a 
relatively short time frame (a minimum of 8 days after release, up to 
31 days); therefore, there may not have been sufficient variation in 
wind speed and direction to outrank other predictors in our models.

In contrast to our expectations about physiological state and 
departure date, body condition, fat score, HL ratios, and leukocyte 
counts were also all uninformative predictors of spring migration 
date. Higher fat reserves are instrumental to migratory performance 
in songbirds (Price, 2010) and may promote the onset of migratory 
restlessness, advancing their departure (Lupi et al., 2017; Studds & 

F I G U R E  3 Relative hazards of spring 
departure estimated from the most 
competitive CPHMM as selected through 
AICc (wi = 0.61). The predicted relative 
hazard and 95% confidence intervals from 
this model are displayed for mean wind 
direction and weather PC1.
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Marra, 2005). The lack of a relationship between physiological mea-
sures and departure date observed here could reflect individual vari-
ation in migration strategies; for example, strong selective pressure 
to arrive early at the breeding grounds may motivate some birds to 
leave in relatively poor body condition and with high HL ratios and 
then compensate during stopover (Prop et al., 2003). Lastly, the time 
between release from captivity and the onset of spring migration 
(8–31 days) may have precluded a true representation of some phys-
iological measures at departure; for example, maximum fat deposi-
tion rates in migratory songbirds have been reported as high as 12% 
differences in lean body mass in 1 day (Lindström, 1991).

The findings presented here add to the large body of information 
on the importance of weather on migration departure in songbirds. 
Importantly, our study focused on migratory departure in male jun-
cos, while females may be differentially impacted by the variables 
measured. Indeed, this species shows sex-based variation in over-
wintering latitudes, with females migrating earlier and further south 
than males (Nolan & Ketterson, 1990). Our sample size is a substan-
tial limitation in understanding and asking these questions, as well. A 
more robust sample size would have increased the confidence in our 
findings. Additional data could also help understand whether the re-
sults of our study are context dependent; for example, intrinsic fac-
tors might become important during years with low food availability 
or inclement weather. This will likely be increasingly important for 
wildlife conservation going forward, as climate change is associated 
with increasingly severe temperatures and unpredictable weather 
events (Stott, 2016; Zhang et al., 2013).
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