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Abstract

This paper introduces a Multi-Object Tracking (MOT) framework for agricultural applications that estimates
global positions in pixel coordinates using the local feature matching transformer – LoFTR. We design an
efficient tracker that augments the capabilities of a state-of-the-art tracking algorithm by incorporating a
novel association strategy based on spatial information of targets leaving and returning the camera field
of view. We evaluate our framework using the publicly available LettuceMOT benchmark dataset and an
adapted version of the AppleMOTS benchmark dataset that we denominate AppleMOT. Our experimental
results demonstrate that our method outperforms cutting-edge algorithms for robotic plant tracking in the
LettuceMOT dataset. The evaluation metrics show average improvements of up to 25% compared to the best
publicly available results, demonstrating the benefits of our spatial association approach. For the AppleMOT
dataset, we obtained bounding-box-based MOT evaluation metrics comparable to the segmentation-based
(MOTS) counterparts presented in the original AppleMOTS paper. These findings highlight the effectiveness
and potential of our approach in addressing the unique challenges posed by agricultural environments.

1. Introduction

The increasing global population [1] and decreasing
availability of agricultural workers [2] highlight
the importance of addressing the critical issue of
food production. To meet escalating demands
for food while ensuring improved quality and
efficiency throughout supply chains, the agricultural
industry has embraced the transformative potential
of Industry 4.0 [3]. Specifically, integrating robotics
and Artificial Intelligence (AI) within this framework
is revolutionizing agricultural processes. Such
processes include detecting fruits, plants, flowers,
and weeds, as well as classifying related diseases [4,
5]. Plant phenotyping [6, 7, 8], irrigation [9], and
harvesting [10] are also related areas of current
research of great significance in agricultural research
and production management [11].

In this evolving landscape, computer vision has

emerged as a critical component in the sensing
and perception mechanisms of robotic systems that
perform agricultural tasks. Visual perception plays
a vital role in precision agriculture and related
applications involving human-robot interaction [12,
13] as it enables the detection, segmentation, and
tracking of plants, flowers, fruits, and humans [14].
Multiple object tracking (MOT) is a remarkably
complex but essential task for advanced autonomous
systems.

MOT is an active research area in computer
vision with complex challenges and broad
applicability across various sectors, including
urban surveillance, autonomous driving, and
agriculture. Recent methods such as Simple
Online and Real-Time Tracking (SORT) [15] and
DeepSORT [16] integrate advanced data association
techniques with features obtained using deep learning
strategies. These approaches have shown outstanding
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performance in MOT problems in urban and human-
centered scenarios. Improvements in motion
prediction mechanisms, such as those proposed in
CenterTrack [17], which focuses on predicting object
displacements, and in ByteTrack [18], which aims
to minimize identity switches, further contributed
to significant recent advances in MOT techniques
applied to urban and human-centered scenarios
[19, 20]. Recently, segmentation-based approaches,
such as TrackRCNN [21] and PointTrack [22],
introduced the ability to precisely delineate objects
of interest and keep track of their identity over time.
Monitoring objects at the level of individual pixels
enables a more accurate description of the physical
characteristics of objects of interest, such as their
shapes and sizes [23]. It also increases the robustness
of the tracker against temporary occlusions, which
are very common in agricultural research and
production environments [24]. Unfortunately, the
training data requirements of current segmentation
and tracking techniques still prevent their broad
applicability to a variety of agricultural scenarios
[25].

Applying MOT techniques to agricultural settings
introduces challenges not typically encountered
in urban environments or other human-centered
applications. Agricultural settings are characterized
by high object homogeneity since crops and
plants exhibit limited distinctive visual features,
making tracking individual objects particularly
challenging [26]. The dynamic nature of these
environments, compounded by factors such as
varying illumination conditions, weather changes,
and the inherent clutter of natural scenes, further
complicates the reliable detection and tracking of
relevant objects in agricultural contexts [27].

Accurately tracking fruits and plants in the
agricultural sector is crucial for automating chemical
spraying and yield estimation [28]. These
applications are highly dependent on the precision
of tracking systems, as they directly influence
the efficiency and effectiveness of resource use in
farming operations. Fruit counting is fundamental
for yield estimation, which informs farmers in
decisions about crop management and market
supply chains [11]. Reliable MOT systems can

automate the counting process, ensuring that each
fruit is accurately accounted for, which is vital
for economic planning and reducing waste [26].
For automated spraying, accurate tracking ensures
that each plant receives the correct treatment
without unnecessary applications of pesticides and
nutrients. The application of adequate amounts of
chemicals optimizes productivity, reduces runoff, and
mitigates the environmental impact of agricultural
operations [9]. Efficient automated systems ensure
that each plant or area is sprayed or treated
exactly once, maximizing coverage and minimizing
waste [11]. These operations require the precise
localization of each fruit and plant and consistent
identification over time, even when plants are
occluded or temporarily move out of the field of view
(FOV) of the camera.

The availability of relevant datasets for agricultural
applications is limited. In the 2020 survey by Lu and
Young [29], only 34 datasets were identified for image
classification, object detection, and segmentation in
agricultural scenarios. Joshi et al. [30] noted that
the majority of the agricultural datasets in their 2023
study were sourced from Lu and Young’s work [29].
Furthermore, only two publicly available datasets are
explicitly designed for MOT in agricultural scenarios:
AppleMOTS [26] and LettuceMOT [27]. These
datasets provide annotated trajectory identifiers for
apples and lettuces, respectively.

The LettuceMOT dataset is particularly relevant
as it captures diverse scenarios related to autonomous
robotic navigation in agricultural fields. These
scenarios include dynamic obstacle avoidance and
actions such as leaving and returning to the working
area to recharge batteries or refill chemicals for
spraying. In addition to the LettuceMOT dataset,
in [27], the authors present a benchmark evaluation
of several tracking algorithms for lettuce tracking,
including cutting-edge techniques such as SORT [15]
and ByteTrack [18].

The AppleMOTS dataset addresses the notable
gap in datasets for homogeneous agricultural objects,
where similar appearance and environmental
conditions complicate tracking tasks [26]. This
dataset, which contains manually annotated
segmentation masks of apples captured using an
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uncrewed aerial vehicle (UAV) and wearable sensor
platforms, is the first resource for developing and
testing MOTS algorithms in agricultural scenarios.
In addition to encouraging research in this relevant
field, the dataset highlights the increased difficulty
posed by the homogeneity and dense clustering
typical of orchard settings.

To address the specific challenges exhibited by
datasets such as LettuceMOT, the LettuceTrack
model [31] uses the spatial relationships among
objects to monitor their trajectory. This approach
exploits the stationary nature of plants in scenarios
featuring linear robot movement, guiding tracking
by the central axis of the orchard’s layout. This
approach results in a significant improvement in
tracking accuracy. However, it faces difficulties
capturing the spatial relations among different plants
when the robot does not follow a straight-line
trajectory. This limitation hinders the correct
association and longer-term re-association of plants
or fruits.

Given the complexities highlighted above, there is
a critical need to develop MOT systems specifically
tailored to handle the unpredictable elements of
agricultural environments. The objective of this work
was to devise an MOT method capable of keeping
track of the identities of multiple agricultural objects
of interest, such as plants and fruits, even when those
go out of and later return to the camera’s field of
view, without losing generality in the broader MOT
context.

Therefore, we propose a novel tracking method
for agricultural settings. We design a tracking-
by-detection algorithm based on the bounding
box regression technique for tracking introduced
in [32], which we denominate FloraTracktor. We
also incorporate into our tracker a novel spatial
association module, providing a flexible and efficient
tracking framework. The proposed approach builds
upon the Local Feature Matching Transformer
(LoFTR) introduced in [33] to perform object
association and longer term re-association. In
contrast to the extended Tracktor++ [32], which
relies on separate modules for camera alignment,
motion updates, and re-identification (reID), our
method adopts LoFTR to build a unified module

that seamlessly handles alignment, motion, and re-
association. As a result, our improved algorithm
eliminates the need for tracking annotations,
outperforming Tracktor, which does not require
tracking annotations either, and Tracktor++, which
relies on temporally consistent ID labels for training.
This paper presents the following key contributions:

• We introduce a robust tracking-by-detection
framework for effective plant tracking.

• The framework incorporates a spatial association
module that leverages spatial relationships
among static objects to estimate the robot’s
motion.

• A comprehensive experimental evaluation
establishes a new benchmark performance level
for the LettuceMOT dataset and the AppleMOT
dataset. AppleMOT is an adaptation of
AppleMOTS for the task of bounding-box-based
MOT. The performance gains shown by the
proposed framework highlight the potential
for substantial advancements in plant tracking
accuracy and precision.

• Our framework is publicly available in the
following repository: ag-tracking

The remainder of this paper is organized as follows.
Section 2 provides a detailed description of our
tracking and association algorithms. Section 3
first describes the experimental setup based on the
protocols proposed in [27, 31] and a set of benchmark
metrics for the AppleMOT dataset before presenting
the performance of our approach in comparison with
existing methods. Finally, Section 4 concludes the
paper.

2. Materials and Methods

Figure 1 illustrates our tracking framework. It
comprises two main building blocks: a tracking-by-
detection algorithm and a spatial association module.
The tracking algorithm draws inspiration from the
paradigm introduced in [32]. Our tracker handles
occlusions, false positives, and false negatives by
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Figure 1: Our framework performs real-time video tracking using input frames It and It−1. The FloraTracktor module updates
active tracks, denoted as τa

t . The Spatial Association Module carries out image matching between consecutive frames, estimates
a global transformation Ht−1,t used to update the global coordinates xt, and finally uses the estimated global position xt to
associate potential new tracks in Bp

t with inactive tracks in τ i
t .

comparing retained and suppressed bounding boxes
in a single non-maximum suppression (NMS) step.
The second component is a novel association module
tailored for agricultural applications that leverages
spatial relationships among plants. The association
module provides a global position estimate of each
object of interest, allowing for longer-term re-
association even when objects go out of and back
into the camera’s FOV. Our tracking framework is
denominated FloraTracktor+. Algorithm 1 presents
the global pipeline of the approach. Please refer to
Appendix A for a comprehensive description of our
notation. The following sections describe the two
main components of our method in details.

2.1. FloraTracktor
As described in [32], Tracktor uses a detector from

the region-based convolutional neural network family
(R-CNN [34]). Specifically, it uses the FasterRCNN
model [35] as its base detector. It employs the
region of interest (ROI) regression head [36] to
predict the bounding boxes of active tracks τa

t given
the latent features of the input image at time t
and the bounding boxes of the active tracks in
the previous frame τa

t−1. It then uses the set of
regressed bounding boxes Ba

t = {ba1
t , ba2

t , · · · } and
the set of new detections Bd

t =
{︂

bd1
t , bd2

t , · · ·
}︂

to
distinguish between false positives, occluded objects,
and potential new tracks. Each bounding box
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Algorithm 1 FloraTracktor+: Iterative tracking
updates integrating FloraTracktor with the Spatial
Association Module.
Input: Set of input images I = {It}N

t=1
Output: Set of plant tracks T = {τa

t }
N
t=1

1: It−1 ← I0, xt−1 ← [0, 0, 1]⊤, τa
t−1 ← ∅, τ i

t−1 ← ∅
2: for each It ∈ I do
3: τa

t , τ i
t , Bp

t ← FloraTracktor(It, τa
t−1,

τ i
t−1)

4: xt ← EstimateMotion(It, It−1, xt−1)
5: τ r

t ← Associate(τ i
t , Bp

t , xt)
6: τa

t , τ i
t , τt ← (τa

t ∪ τ r
t ) ,

(︁
τ i

t \ τ r
t

)︁
,

(︁
τa

t ∪ τ i
t

)︁
7: It−1, xt−1, τ i

t−1 ← It, xt, τ i
t

8: end for
9: T =

⋃︁N
t=1 τa

t

at frame t is represented by the vector blj

t =[︂
x

lj

t , y
lj

t , w
lj

t , h
lj

t , s
lj

t

]︂⊤
, where clj

t = (xlj

t , y
lj

t ) denotes

the coordinates of its centroid, w
lj

t its width, h
lj

t

its height, and s
lj

t its confidence score. We define
each track in τ l

t as a vector τ
lj

t = [IDlj , blj⊤
last, xlj ]⊤,

where IDlj is the track ID, blj

last is the bounding box
of the track in the previous frame it was observed,
and xlj is its estimated global position. If the
regressed bounding boxes have confidence scores
higher than sactive, their corresponding tracks stay
alive. Otherwise, they become part of the set of
inactive tracks τ i

t .
Like Tracktor, we take the image It as input to

perform detection and regress the bounding boxes
of the active tracks τa

t−1 in the previous frame.
Tracktor performs three NMS steps: i) among
the raw detections in Bd

t ; ii) among the regressed
bounding boxes of the active tracks in Ba

t to account
for occlusions; and iii) between each active track
bounding box in Ba

t and all the new detections in
Bd

t to discard detections already covered by existing
tracks. Instead of performing NMS separately on
Bd

t and Ba
t to account for possible occlusions, we

perform a single NMS step on their union using a
unique intersection-over-union (IoU) threshold λnms.
After the NMS step, we use the retained bounding

boxes to determine whether they belong to an active
track, to a track that is currently occluding and thus
temporarily deactivating another track, or if they
are new detections that may correspond to a new
object and hence require creating a new track. We
denote this set of potentially new bounding boxes as
Bp

t = {bp1
t , bp2

t , · · · }. To activate an inactive track
in τ i

t or create a new one, a new bounding box must
have a confidence score greater than snew.

In agricultural applications, all the objects in
the field must be consistently tracked for precise
spraying and accurate counting while allowing for
the robot’s trajectory to be flexible and enabling
dynamic planning. Therefore, our framework stores
all the deactivated tracks to allow for longer-term
re-association. Since appearance features are not
sufficiently discriminative for the re-identification of
individual plants, we retain only the estimated global
locations of the target objects, as discussed in Section
2.2. In other words, our algorithm relies exclusively
on the bounding boxes provided by an object detector
to keep track of the global positions of all the objects
of interest captured by the data acquisition platform.

Finally, our method creates new tracks considering
the size of the bounding box and its distance from the
image edge. The size is generalized to the diameter of
a circular approximation of the bounding box, which
is given by

ϕ
(︂

blj

t

)︂
= 2 ·

√︄
w

lj

t · h
lj

t

π
. (1)

The new tracks centroid cpj

t must be at most fd ·
ϕ

(︂
blj

t

)︂
away from the image edge to be considered

valid, where fd is a dataset-specific threshold.
Our tracker is denoted as FloraTracktor(·) in
Algorithm 1.

2.2. Spatial Association Module
Our association module is based on the LoFTR [33]

image matching model, which generates keypoint
correspondences between two partially overlapping
images. Given as input the pair of frames (It−1, It),
LoFTR generates a set of C point correspondences
Kt =

{︁
(kc

t , kc
t−1)

}︁C

c=1 where kc
t = [xc

t , yc
t ]⊤ are the
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coordinates of the c-th keypoint on frame t. This
process is referred to as LoFTR(·) in Algorithm 2.

The set of correspondences is then used to
estimate a homogeneous transformation Ht−1,t ∈
R3×3 between frames It−1 and It, which defines the
relationship between points in subsequent frames.
We estimate Ht−1,t using RANSAC [37] to handle
possible outliers in the set of correspondences Kt.
The n-point algorithm [38] is used at each RANSAC
iteration. These two steps are performed by the
function EstimateHomography(·) in Algorithm 2.
As Step 4 of the algorithm indicates, this
transformation is then used to update the camera
position xt at time t.

Algorithm 2 Homography-based motion
estimation.

1: function EstimateMotion(It, It−1, xt−1)
2: Kt ← LoFTR(It−1, It)
3: Ht−1,t ← EstimateHomography(Kt)
4: xt ← xt−1 + Ht−1,t · xt−1
5: return xt

6: end function

Our implementation of Algorithm 1 executes
the FloraTracktor(·) and EstimateMotion(·)
functions in parallel. Upon the conclusion of both
processes, we carry out a distance-based association
step by invoking the function Associate(·), which is
summarized in Algorithm 3 and described in detail
below.

The function Associate(·) first obtains the set
of inactive bounding boxes Bi

t from the set of
inactive tracks τ i

t , using the GetBoundingBoxes(·)
function. For each bounding box bj

t ∈ B
p
t ∪ Bi

t, we
translate its centroid to the global coordinate system
using the global camera position xt so that the global
coordinates of the centroids at time t are given by
xlj

t = clj

t +xt. The algorithm builds a distance matrix
Mt ∈ R|Bp

t |×|Bi
t| containing the Euclidean distances

between the global coordinates of the bounding boxes
in Bp

t and Bi
t. That is, let xpk

t and xik
t be the global

coordinates of the bounding boxes corresponding to
the predicted and inactive tracks, the elements of Mt

are given by Mpkik
= ||xpk

t − xik
t ||, pk = 1, . . . , |Bp

t |,

Algorithm 3 Spatial association step.
1: function Associate(τ i

t , Bp
t , xt)

2: Bi
t ← GetBoundingBoxes(τ i

t )
3: for bj

t ∈ B
p
t ∪ Bi

t do
4: cj

t ← Centroid(bj
t )

5: cj
t ← cj

t + xt

6: end for
7: Mt ← Dist(Bp

t ,Bi
t)

8: At ← Hungarian(Mt)
9: τ r

t ← ∅
10: for (bpi

t , bij

t ) ∈ At do
11: if Mij < dp then
12: τ r

t ← τ r
t ∪

{︂
τ

ij

t

}︂
13: end if
14: end for
15: return τ r

t

16: end function

and ik = 1, . . . , |Bi
t|.

We employ the Hungarian algorithm
Hungarian(·) to find the optimal associations

A =
{︂

(bpj

t , bij

t )
}︂min(|Bp

t |, |Bi
t|)

j=1
between inactive and

potential new tracks. The track corresponding to
bij

t becomes active only if its distance to an existing
track is below the threshold dp, defined by

dp = 2
|Bp

t ∪ Bi
t|

∑︂
∀blj ∈Bp

t ∪Bi
t

ϕ(blj ), (2)

which represents the average diameter of the circular
bounding box approximation. The algorithm returns
the set of re-associated tracks τ r

t .

3. Experiments and Results

This section shows the performance of our
framework with experiments conducted on the
LettuceMOT and AppleMOT datasets. We begin
with a brief introduction to the datasets and
the metrics used for evaluation. In our first
experiment, we present our main results on the
LettuceMOT dataset. We evaluate the performance
of our framework through comparisons with the
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baseline provided by the LettuceMOT paper [27]
and the benchmark established by the LettuceTrack
paper [31]. Then, we establish benchmark
performance MOT metrics for the AppleMOT
dataset using our framework and compare it to
the performance of the ByteTrack algorithm [18],
which is currently one of the best-performing general
MOT methods. We also examine the impact
of the modifications introduced to Tracktor by
FloraTracktor and FloraTracktor+. Finally, a
sensitivity analysis is conducted on the parameters
of our tracking framework: snew, sactive, and λnms.

3.1. Datasets

We use the publicly available LettuceMOT and
AppleMOTS datasets to evaluate our method. To
use the AppleMOTS dataset, we derive a bounding-
box-based version denominated AppleMOT. The
construction of AppleMOT and the main properties
of each dataset are described below.

3.1.1. The LettuceMOT dataset
This dataset consists of eight video sequences of a

lettuce patch captured by an RGB camera mounted
on a mobile robotic platform [27]. Each sequence
includes annotated bounding boxes and frame-to-
frame consistent identifiers for each lettuce plant.
The different sequences represent typical situations
in robotic-aided agricultural tasks, including various
weather conditions, different plant growth stages,
and various platform motion patterns. The eight
sequences comprise 5,466 frames with a resolution of
810×1080 pixels and 707 unique object instances with
42,735 annotations.

The dataset contains four sequences captured
in a forward motion of the robot, denoted as
straight1-straight4. Two additional sequences
represent obstacle avoidance by moving forward
and backward in a lettuce row and are called
B&F1-B&F2 sequences. Finally, the two remaining
sequences represent chemical refilling or battery
charging situations, where the robot goes outside the
crop row and re-enters at a different point. These
sequences are referred to as the O&I1-O&I2 sequences.

3.1.2. The AppleMOTS dataset
The AppleMOTS dataset comprises 12 video

sequences captured using three distinct systems: i) a
Matrice 210 RTK V2 UAV, ii) a Parrot Anafi UAV,
and iii) a custom wearable sensor [26]. Each sequence
includes annotated instance segmentation masks
and identifiers for individual apples that remain
consistent over the video frames. These sequences
represent diverse scenarios encountered in computer
vision-based agricultural tasks, encompassing
varying illumination conditions and stages of fruit
maturity. The 12 sequences comprise 1,673 frames
with a resolution of 1296×972 and 2304 unique
object instances with 86,000 annotated masks.

Since our method performs tracking based on
bounding boxes, we use the mask annotations
provided by the dataset to obtain the corresponding
bounding boxes. The MOT-formatted bounding
boxes, along with the original RGB images, comprise
the AppleMOT dataset.

3.2. Evaluation Metrics
Our evaluation is based on the well-established

and widely recognized CLEAR-MOT metrics [39] and
the Higher Order Tracking Accuracy (HOTA) metric
introduced in [40]. Appendix B includes a detailed
description of the metrics used in this work.

MOTA (Multi-Object Tracking Accuracy)
measures the overall tracking accuracy by
computing the alignment of predicted and
actual detections while maintaining consistent
object identities over time. It penalizes identity
switches but not identity transfers.

IDP (ID Precision) measures the precision of
identity assignments, penalizing incorrect
positive identity associations.

IDR (ID Recall) measures the recall of identity
assignments, penalizing missed identity
associations.

IDF1 (ID F1 Score) combines the precision and
recall of identity assignments, offering a balanced
measure of identity consistency over time.
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AssPr (Association Precision) measures the
precision of trajectory associations across
frames by penalizing incorrect associations over
time.

AssRe (Association Recall) measures the recall
of trajectory associations across frames by
penalizing missed associations over time.

AssA (Association Accuracy) measures the
overall accuracy of trajectory associations,
penalizing incorrect and missed associations
over time, thus accounting for both ID switches
and transfers.

DetA (Detection Accuracy) measures the
accuracy of the detection process by comparing
the predicted detections to actual detections and
penalizing both false positives and negatives.

HOTA (Higher Order Tracking Accuracy)
measures tracking performance by balancing
detection accuracy (DetA) and association
accuracy (AssA). It reflects both the accuracy
of detecting objects and the precision of
maintaining their trajectories over time. HOTA
is calculated as HOTAα =

√︁
DetAα ·AssAα,

providing a holistic view of tracking
performance. Refer to [40] for more details.

All metrics described are scored on a scale where
higher values indicate better performance (↑) with
a maximum possible score of 1, or 100%. Except
for MOTA, which can take negative values under
critically poor tracking conditions, the metrics have
a lower bound of 0. All the results reported in the
following sections were obtained using the TrackEval
tool [41].

3.3. Lettuce Tracking Performance Evaluation
We compare the performance of our proposed

approach with baseline results from the LettuceMOT
dataset paper [27] and the results reported in the
LettuceTrack paper [31]. We follow the performance
evaluation procedures described in the respective
references to ensure a fair comparison. To compare
with the LettuceMOT method, we train our detector

using the sequences straight1 and straight3 and
test it on the remaining sequences. For the
LettuceTrack comparison, we train our detector using
the sequences straight3 and straight4 and test
it on the remaining sequences. The results below
are obtained using the following default parameter
values: fd = 1, snew = 0.5, sactive = 0.5, and
λnms = 0.2.

Table 1 presents a performance comparison
between the proposed method and the
baseline results presented in [27]. Specifically,
GIAOTracker [42] is the best approach in
the LettuceMOT paper, where it is referred
to as Bytetrack [18] + NSA Kalman Filter.
FloraTracktor+ is our base tracker combined with
our spatial association algorithm. The results
demonstrate that FloraTracktor+ consistently
surpasses the performance of the baseline method.
This improvement is especially remarkable in
association, as observed in the Association Accuracy
(AssA), with an improvement of nearly 50% in
the B&F sequences, 12% in the straight sequences,
and 5% in the O&I sequences. The association
directly and positively influences ID consistency,
as quantified by the IDF1 metric. It is also worth
highlighting the significant enhancement observed in
the HOTA metric, which considers both temporal
association and the maintenance of ID consistency
over time. The HOTA metric shows an average
improvement of 35% in the B&F sequences, 10%
in the straight sequences, and 15% in the O&I
sequences. Despite the general improvement, the
O&I sequences still face difficulties since parts of the
videos include frames without any visible object of
interest.

Table 2 compares our FloraTracktor+ method with
the baseline results from the LettuceTrack paper.
In this scenario, SORT [15] and LettuceTrack [31]
are the existing leading methods. The LettuceTrack
paper omits assessments of the O&I sequences since
the approach is tailored specifically for scenarios
where the robot’s movement is linear, anchoring
tracking to the central axis of the orchard’s
layout [31]. FloraTracktor+ not only addresses
this shortcoming but also significantly enhances
association performance by more than 25%, leading
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Table 1: Results obtained following the test methodology described in the LettuceMOT paper [27]: train on sequences straight1
and straight3 and test on the remaining sequences. Values not reported in [27] are represented by a dash (-). The ↑ means
that higher values represent better performance.

Dataset Method MOTA↑ HOTA↑ DetA↑ AssA↑ AssRe↑ AssPr↑ IDF1↑ IDR↑ IDP↑

straight2 GIAOTracker [42] 90.20 87.24 86.31 88.15 - - 94.72 - -
FloraTracktor+ (ours) 98.30 98.21 99.36 98.04 98.41 99.58 98.50 98.56 98.44

straight4 GIAOTracker [42] 86.43 84.41 84.01 84.83 - - 92.722 - -
FloraTracktor+ (ours) 98.09 97.10 99.17 98.04 98.70 99.30 98.51 98.74 98.44

B&F1 GIAOTracker [42] 91.93 68.66 89.79 52.50 - - 59.66 - -
FloraTracktor+ (ours) 98.12 98.24 99.12 98.15 98.51 99.75 98.56 98.45 98.67

B&F2 GIAOTracker [42] 86.51 62.73 84.02 46.86 - - 52.07 - -
FloraTracktor+ (ours) 98.08 98.94 99.12 97.84 98.51 99.30 98.43 98.54 98.41

O&I1 GIAOTracker [42] 89.91 65.61 85.81 50.20 - - 58.73 - -
FloraTracktor+ (ours) 97.34 74.11 98.89 55.54 55.93 98.99 61.30 61.46 61.13

O&I2 GIAOTracker [42] 51.30 52.90 61.92 45.23 - - 46.25 - -
FloraTracktor+ (ours) 95.38 72.61 96.36 54.71 55.46 98.39 58.06 59.03 57.11

to a corresponding increase in IDF1 score of more
than 15% and an overall HOTA score improvement
of more than 25%. O&I results are omitted from
Table 2 because they are virtually indistinguishable
from those shown in Table 1.

3.3.1. Computation Time
FloraTracktor+ shows real-time performance, with

an average execution time of 82.7 ± 22 milliseconds
per frame, which corresponds to a rate of
approximately 12 frames per second (fps). These
results were obtained on a workstation with an
NVIDIA GeForce 3090 GPU and an 11th Gen Intel
Core i7-11700KF @ 3.60GHz CPU. The algorithm
was implemented in Python without optimizations to
reduce execution time. Optimizations, such as using
tensorRT [43, 44] for model inference or employing
model pruning and quantization as in [45, 46], could
substantially reduce the computation time of the
proposed framework, but they are beyond the scope
of this study.

An essential feature of using PlantTracktor+
for ground plant tracking is that the spatial
association module uses image matching for
localization. LoFTR can find enough keypoint
correspondences with 50% overlap between images
without performance degradation [33]. Therefore,
the relative displacement of an object should be
accurately estimated if it is visible in approximately

two frames in a row. This allows PlantTracktor+
to retain the object for effective longer-term
re-association. For the LettuceMOT straight
sequences, an object is visible for 40 to 50 frames
from the first time it becomes fully visible to when it
starts leaving the field of view. Hence, our method
performs equally well even if the video frames are
down-sampled at a 20:1 ratio. This allows for a
twenty-fold increase in robot motion speed under the
same data acquisition conditions.

3.4. Apple Tracking Performance Evaluation
The AppleMOT dataset allows us to evaluate the

generalization capability of our approach. Since
the AppleMOT dataset contains sequences with
vanishing points in the images, we use a threshold
fd = max(IW , IH) in Eq. 1, where (IW , IH) represent
the image dimensions. Following the AppleMOTS
paper [26], we present the aggregated results over
the test sequences 0006 to 0012. Table 3 presents
the performance comparison between our framework
and the state-of-the-art tracker ByteTrack [18].

Our approach shows better tracking accuracy
performance than ByteTrack as measured by
the MOTA and HOTA metrics. The higher
association accuracy and recall are largely due to
the significantly lower detection accuracy obtained by
ByteTrack. The dramatic reduction in true positive
detections artificially inflates the association recall
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Table 2: Results obtained following the test methodology described in the LettuceTrack paper [31]: train on sequences straight3
and straight4 and test on the remaining sequences. Values not reported in [31] are represented by a dash (-). The LettuceTrack
paper does not provide results for the O&I sequences since it cannot handle these scenarios. The ↑ means that higher values
represent better performance.

Dataset Method MOTA↑ HOTA↑ DetA↑ AssA↑ AssRe↑ AssPr↑ IDF1↑ IDR↑ IDP↑

straight1
SORT [15] - 80.01 79.66 80.34 84.33 91.31 94.01 90.36 97.97
LettuceTrack [31] - 77.59 79.41 75.81 76.86 95.73 86.05 77.34 96.98
FloraTracktor+ (ours) 98.54 98.52 99.56 98.49 98.84 99.64 98.72 98.79 98.64

straight2
SORT [15] - 78.08 77.73 78.46 82.99 88.88 94.12 90.96 97.50
LettuceTrack [31] - 71.62 71.26 71.99 72.32 98.97 84.07 72.55 99.95
FloraTracktor+ (ours) 98.30 98.21 99.36 98.04 98.41 99.58 98.50 98.56 98.44

B&F1
SORT [15] - 58.31 78.57 43.30 44.39 91.72 54.28 51.63 57.22
LettuceTrack [31] - 76.81 79.69 74.03 75.42 94.50 85.30 76.76 95.97
FloraTracktor+ (ours) 98.12 98.24 99.12 98.15 98.51 99.75 98.56 98.45 98.67

B&F2
SORT [15] - 52.81 71.89 38.87 39.98 88.30 48.36 45.19 52.01
LettuceTrack [31] - 70.32 72.24 68.45 69.53 95.55 81.86 70.88 96.87
FloraTracktor+ (ours) 98.08 98.94 99.12 97.84 98.51 99.30 98.43 98.54 98.41

Table 3: Summary of results following the test methodology proposed in the AppleMOTS paper [26]: train on sequences 0001
to 0005 and test on the remaining sequences. The ↑ means the higher the metric, the better performance.

Dataset Method MOTA↑ HOTA↑ DetA↑ AssA↑ AssRe↑ AssPr↑ IDF1↑ IDR↑ IDP↑

testing ByteTrack [18] 32.99 38.21 28.86 50.96 53.97 74.97 45.21 31.49 80.12
FloraTracktor (ours) 48.55 45.45 60.08 34.81 36.11 86.66 42.39 38.91 46.56

and, consequently, the accuracy. The comparable
IDF1 obtained by both methods further supports
this finding. The results obtained by our method
are comparable with the Multi-Object Tracking and
Segmentation Accuracy (MOTSA) reported in the
AppleMOTS paper [26]. Note that the authors of [26]
define image regions with limited visibility as “ignore
regions.” They report results for several tracking
algorithms with and without excluding these regions
at evaluation, but ground truth masks for these areas
are not publicly available. The best method reported
in [26] is PointTrack [22], which obtains a MOTSA
of 52.9% when it filters the “ignore regions” and
46% when it does not. Our approach outperforms
the equivalent MOTSA without filtering the “ignore
regions” by 2.5%.

3.5. Evaluation of Improvements over Tracktor

We use the LettuceMOT dataset for this
experiment since it includes sequences with
ground plants and different scenarios of objects
re-entering the camera’s FOV, which are explicitly

addressed by our method as described in Section 2.
Table 4 presents a performance evaluation
based on the overall MOTA, HOTA, and IDF1
metrics. Specifically, Tracktor and Tracktor++
are the original approaches described in [32].
FloraTracktor is our modified version of Tracktor,
and FloraTracktor+ includes our spatial association
module defined in Section 2.2.

Table 4 shows that FloraTracktor enhances
performance by approximately 2–4%, with consistent
standard deviations compared to Tracktor. Although

Table 4: Aggregated performance metrics for the proposed
approach on the LettuceMOT dataset compared to the
baseline trackers Tracktor and Tracktor++. The values are
presented in the format µ ± 3σ where µ is the mean value,
and σ is the standard deviation. The ↑ means the higher the
metric, the better performance.

Method MOTA↑ HOTA↑ IDF1↑

Tracktor [32] 93.94 ± 0.92 81.71 ± 12.00 74.19 ± 18.88
Tracktor++ [32] 97.01 ± 0.68 74.38 ± 6.44 67.03 ± 12.68
FloraTracktor 95.29 ± 0.91 83.81 ± 12.27 78.03 ± 17.70
FloraTracktor+ 97.74 ± 0.96 91.98 ± 10.77 88.82 ± 16.85
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Tracktor++ achieves a modest increase in the MOTA
metric due to its motion estimation module, it
experiences a significant setback caused by false
re-identifications that impair overall association, as
reflected in the IDF1 metric. Consequently, this
leads to a 7% decline in the HOTA metric in our
experiments. Notably, our association algorithm in
FloraTracktor+ not only achieves a MOTA score
comparable to that of Tracktor++ but also leads
to a 10% increase in IDF1 and an 8% HOTA
improvement. Our method outperforms Tracktor
with a 10% higher HOTA score and a 14% better
IDF1 score.

3.6. Parameter Sensitivity Analysis
This section assesses the impact of parameter

variations on the tracking performance of the
proposed framework, mainly focusing on the MOTA,
HOTA, and IDF1 metrics. As shown in Figure 2,
our method exhibits consistent performance across
various parameter settings. This stability persists
even when parameter values fluctuate between 0.2
and 0.8, underscoring the model’s reliability without
meticulous parameter tuning.

In particular, the system’s resilience to changes
in the NMS threshold underscores the efficacy of
the improved tracking-by-detection approach. This
approach is less dependent on NMS for distinguishing
between true and false positives than the standard
Tracktor model. Additionally, the relatively low
impact of the detection threshold, snew, highlights
the framework’s capacity to handle slight detection
inaccuracies effectively. The consistent performance
across regression threshold values further validates
our method’s enhanced precision in bounding box
prediction, a critical aspect of the temporal accuracy
required in the spatial association module for
agricultural monitoring.

3.7. The Spatial Association Module in Action
Figures 3-5 visually represent the estimated global

positions of the lettuce plants. This representation
demonstrates the accurate spatial relationships
estimated by the proposed framework on various
sequences of the LettuceMOT dataset, emphasizing
the effectiveness of the spatial association module.

This qualitative analysis indicates that sequences
categorized under O&I pose significant challenges,
notably when the camera’s FOV lacks target objects
for extended periods. These gaps often lead to an
accumulation of positional errors, which manifest as
distortions in the reconstructed panorama. While
these distortions primarily appear as rendering
artifacts and do not directly affect the core
performance metrics, they highlight potential issues
with error accumulation in the estimated global
position.

The quantitative results presented in Table 1
support these observations, indicating that despite
the visual anomalies in the O&I sequence, the spatial
association module significantly enhances tracking
performance. This enhancement is particularly
relevant in agricultural scenarios where robotic MOT
involves nonlinear motion. However, distortions also
point to limitations in our methodology, especially
concerning error propagation in prolonged periods
of complete absence of objects of interest. Our
qualitative assessments further suggest that if our
system has visibility of at least one trackable object,
it can maintain accurate localization.

The implications of error buildup are relevant,
especially for applications that rely on high
cumulative positional accuracy. While our results
validate the effectiveness of our approach, they
also highlight areas requiring further refinement.
Specifically, enhancing the robustness of the spatial
association algorithm to handle extended periods of
absolute object absence is a relevant area for ongoing
and future research.

4. Conclusions and Future Work

We introduce a novel tracking algorithm designed
specifically for mobile robots in agricultural
environments, where the homogeneity of fruits
and plants, coupled with nonlinear robot motion
paths, presents significant challenges to conventional
tracking frameworks. Our experiments show that
our algorithm effectively addresses these challenges,
demonstrating robustness and effectiveness,
particularly in ground-plant tracking scenarios.
A central feature of our approach is the innovative
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Figure 2: Performance of our approach for different values of snew, sactive, and λnms.
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Figure 3: Global position estimates for the robot (camera) in sequence straight4 over 300 frames. The estimated trajectory on
the global coordinate system (in pixels) is illustrated with a red path with arrows representing the direction of the speed vector.
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Figure 4: Global position estimates for the robot (camera) in sequence B&F1 over 360 frames. The estimated trajectory on the
global coordinate system (in pixels) is illustrated with a red path with arrows representing the direction of the speed vector.

spatial association method, which leads to significant
performance improvements, particularly when at
least one object of interest remains within the
camera’s FOV.

Remarkably, our approach stands out as it does not
require tracking annotations, laying the foundation
for a potential semi-automated tracking labeling
methodology. Furthermore, our tracker requires
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Figure 5: Global position estimates for the robot (camera) in sequence O&I2 over 850 frames. The estimated trajectory on the
global coordinate system (in pixels) is illustrated with a red path with arrows representing the direction of the speed vector.

few parameter adjustments, offering a user-friendly
interface without compromising performance. The
performance of our algorithm remains relatively
stable across large ranges of these parameters,
underscoring its versatility and positioning it as a
valuable asset in agricultural contexts.

Our work advances plant tracking technology
and establishes a baseline performance for the
modified AppleMOTS dataset and benchmark
performance for the LettuceMOT dataset. Through
a comprehensive set of experiments, results,
and discussions, we have demonstrated the
FloraTracktor+ framework’s superior performance,
surpassing both the LettuceMOT and LettuceTrack
benchmarks. Furthermore, our sensitivity analysis
has underscored the model’s stability across diverse
parameter settings, reducing the need for intricate
parameter tuning.

The visual representation of the global position
estimates presented in Section 3.7 illustrate the
effectiveness of our spatial association module, even

when faced with the challenges posed by scenarios
of prolonged periods of absolute object absence.
The proposed spatial location estimation module
could seamlessly incorporate auxiliary data sources,
such as GPS and IMU sensors, typically available
in agricultural robots. This integration would
facilitate overcoming one of the critical limitations
of maintaining tracking accuracy in scenarios where
the camera temporarily loses sight of the objects
of interest. We intend to explore a sensor fusion
strategy in future developments to enhance the
robustness of the overall framework. Past studies
suggest that the performance of such integrated
systems often matches or surpasses that of the
most effective individual sensor [47, 48, 49]. This
potential improvement underscores the fundamental
need to incorporate multiple data sources to ensure
consistent and reliable tracking performance in
diverse agricultural environments.
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Appendix A. Paper Notation

Nomenclature

a Superscript indicating membership in the
active set

d Superscript indicating membership in the
detections set (raw)

i Superscript indicating membership in the
inactive set

p Superscript indicating membership in the
potentially new set

r Superscript indicating membership in the re-
associated set

t Subscript indicating time t

IH Frame height

IW Frame width

It Frame at time t

Kt Set of keypoints correspondences between
frame t and t − 1, Kt =

{︁
(kc

t , kc
t−1)

}︁C

c=1,
kc

t ∈ R2

xt Global camera position at time t. The origin
is x0 = [0, 0], xt ∈ R2

Ht−1,t Transformation for camera coordinates from
time t− 1 to time t

blj

t j-th bounding box of set Bl
t, where

l ∈ {a, d, i, p}, comprised of its
centroid coordinates x

lj

t , y
lj

t , width
w

lj

t , height h
lj

t , and confidence s
lj

t ,
blj

t =
[︂
x

lj

t , y
lj

t , w
lj

t , h
lj

t , s
lj

t

]︂⊤
, blj

t ∈ R5

clj

t Centroid of the lj-th bounding box, cj
t =

[x, y]⊤, cl
t ∈ R2

rlj Radius of the circle enclosed by the bounding
box blj

t , rlj = (wlj

t /2 + h
lj

t /2)/2 = (wlj

t +
h

lj

t )/4

τ l
t Tracks in set l ∈ {k, i, p, a} at time t.

Each track in τ l
t is defined as τ

lj

t =
[IDlj , blj⊤

last, xlj⊤, rlj ]⊤ containing the track
ID, its bounding box in the last frame it
was observed, its estimated global position,
and the radius of the circle enclosed by the
bounding box

T Set of all the tracks, active or inactive. T =
{τa

t }
N
t=1

Bl
t Set of bounding boxes corresponding to

the set l ∈ {a, d, i, p} at time t, Bl
t ={︂

bl1
t , bl2

t , · · ·
}︂

snew confidence threshold to initialize a new track
(from a new detection)

sactive confidence threshold to keep a track alive
(from a regressed box)

λnms global non-maxima suppression threshold

dp distance threshold for association defined as
the average diameter assuming a circular
approximation of the shape. The potentially
new tracks re-activate an inactive track if the
distance between them is below dp.

Appendix B. Multiple Object Tracking
Metrics
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Table B.1: Summary of the MOT evaluation metrics used in this work. In the table, mt, fpt, and mmet are the number of
misses, false positives, and mismatches. IDT P , IDF P , and IDF N are the identity-based true positives, false positives, and
false negatives. For additional details, refer to [39, 40].

Metric Name Description Equation
MOTA Multi-Object

Tracking Accuracy
Overall tracking accuracy, computed by aligning predicted and
actual detections while maintaining consistent object identities
over time. It penalizes identity switches but not identity
transfers.

1−

∑︁
t

(mt + fpt + mmet)∑︁
t

gt

IDP ID Precision Precision of identity assignments, penalizing incorrect
associations due to extra predictions.

|IDT P |
|IDT P | + |IDF P |

IDR ID Recall Recall of identity assignments, penalizing missed identity
associations.

|IDT P |
|IDT P | + |IDF N |

IDF1 F1 score for ID
associations

Geometric average between IDP and IDR. |IDT P |
|IDT P | + 0.5|IDF P | + 0.5|IDF N |

A(c) A score Association score for true positive detection c. T P A(c),
F P A(c), and F NA(c) are the sets of true positive, false
positive, and false negative detections with the same id as c.

|T P A(c)|
|T P A(c)| + |F P A(c)| + |F NA(c)|

AssPr Association
Precision

Precision of trajectory associations across frames by penalizing
incorrect associations over time.

1
|T P |

∑︂
c∈(T P )

|T P A(c)|
|T P A(c)| + |F P A(c)|

AssRe Association Recall Recall of trajectory associations across frames by penalizing
missed associations over time.

1
|T P |

∑︂
c∈(T P )

|T P A(c)|
|T P A(c)| + |F NA(c)|

AssA Association
Accuracy

Overall accuracy of trajectory associations, which penalizes
incorrect and missed associations over time, thus accounting
for both ID switches and transfers.

1
|T P |

∑︂
c∈(T P )

A(c)

DetA Detection
Accuracy

Accuracy of similarity between the predicted and actual
detections. Identities are not relevant for this metric.

|T P |
|T P | + |F P | + |F N |

HOTA Higher Order
Tracking Accuracy

Double Jaccard index accounting for detection accuracy and
association Accuracy.

√︃ ∑︁
c∈(T P )

A(c)

|T P | + |F P | + |F N |
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