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ABSTRACT

Predicting the properties of molecular crystals is imperative to the
field of materials design. In lieu of alternative methods, advances in
machine learning have made it possible to predict the properties of
materials before synthesis. This is especially important for organic
semiconductors (OSCs) that are prone to exhibit polymorphism, as
this phenomenom can impact the properties of a system, including
the bandgap in OSCs. While graph neural networks (GNNs) have
shown promise in predicting the bandgap in OSCs, few studies
have considered the impact of polymorphism on their performance.
Using the MatDeepLearn framework, we examine five different
graph convolution layers of ALIGNN, GATGNN, CGCNN, MEGNet,
and SchNet, which all have graph convolutions implemented in
torch geometric. A dataset of functional organic molecular crys-
tals is extracted from the OCELOT database, which has calculated
density functional theory (DFT) values for the bandgap as well as
several sets of polymorphs. The trained models are then evaluated
on several test cases including the polymorphs of ROY. In future
work we plan to examine the impact of graph representations on
the performance of these models in the case of predicting properties
of polymorphic OSCs.
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1 INTRODUCTION

Organic semiconductors (OSCs) have a wide array of applications
in electronics due to their great versatility, novel properties, and
low environmental impact[11]. These OSCs are often deployed in
the form of molecular crystals. While these materials offer a rich
design space, traditional "trial and error" discovery methods can be
costly in terms of time and resources. Furthermore, the resulting
candidate may not have desirable properties. In response to this,
materials informatics (MI) and machine learning (ML) have shown
great promise at enhancing materials design by feeding and training
models to screen candidate materials[2, 16].

The field of materials informatics has skyrocketed in the past
decade. Databases such as the Organic Materials Database,[3], the
Cambridge Structural Database (CSD),[8] Organic Crystals in Elec-
tronic and Light-Oriented Technologies (OCELOT),[1] and the Ma-
terials Project[9] offer a large coverage of known chemical space
and have proven ripe for data mining. Some of these databases also
include properties of interest either experimentally measured[8] or
calculated with density functional theory (DFT) or quantum chemi-
cal calculations[1, 3]. Previous work has shown the success of these
databases in MI, with Padula et al. mining the CSD to screen for
singlet fission candidates using the CSD python API[16]. Addition-
ally, these databases are also being used as fodder for training ML
models[2].

Graph neural networks (GNNs) have shown great promise in re-
cent years for property prediction when trained on these databases.
GNNs have made a splash in the materials community since the
debut of the crystal graph convolution neural network (CGCNN).
GNN s have been used in previous work to predict the bandgap of or-
ganic molecular crystals, a key property in OSCs.[6, 19] Taniguchi
et al. recently utilized the MatDeepLearn (MDL)[6] framework to
show how different graph convolution layers can impact the perfor-
mance of GNNs on predicting the bandgap of materials extracted
from the OMDB.[19] They found that the MEGNet model exhibited
the best performance, with the lowest MAE of 0.240 eV.

However, they found that their model struggled with two poly-
morphic test cases. This is important because polymorphism, the
ability of a molecule to crystallize in more than one solid form, is
common in organic molecular crystals. Polymorphism can arise
from crystallization conditions, such as solvent, temperature, and
pressure, or kinetics. Polymorphism can impact the physichochem-
ical properties of a material, including the bandgap. Hence, it is
crucial that any property prediction method used is able to account
for and differentiate between polymorphs of OSCs. For the poly-
morphs of ROY and BP4VA, the MEGNet model had a MAE of 0.40
and 0.52 eV, respectively, which is higher than that of the MAE on
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the OMDB. Taniguchi et al. noted that more recent graph convo-
lution layers, such as ALIGNN or M3GNet, may lead to enhanced
prediction accuracy overall. Furthermore, they hypothesized that
the model struggled with polymorphism because their training
data, extracted from the OMDB, did not contain any polymorphs.
They expected that the inclusion of polymorphs in the training data
would lead to enhanced prediction accuracy for these systems[19].

In this work, we present preliminary results of our adaptations
to the MatDeepLearn framework[6]. First, we implemented two
new graph convolution layers available in torch geometric: the
edge gated graph convolution of ALIGNN[5] and the graph atten-
tion graph convolution of GATGNN[13]. Second, in contrast to
Taniguchi et al. we train these GNNs on the OCELOT dataset which
contains several sets of polymorphs[1]. Third, we evaluate the per-
formance of the trained GNNs on ROY, a well known challenge to
the problem of polymorphism. We perform density functional the-
ory calculations on the polymorphs of ROY extracted from the CSD
with the same settings as those used in the OCELOT database[1] to
obtain the predicted bandgap. The bandgaps of the polymorphs of
ROY vary over a narrow range, so this should provide a stringent
test case for our models. In future work we hope to examine the
impact of graph representations on model performance, both in
general and for polymorphic systems.

2 METHODS

2.1 Data

The OCELOT database is made up of molecular crystals extracted
from the CSD as well as contributions from the community[1]. In
this work, we chose to only look at publicly available data, i.e. those
extracted from the CSD. The bandgap of the crystal structures is
calculated via density functional theory (DFT) within the Vienna
Ab-Initio Simulation package (VASP)[10] using the generalized
gradient approximation of Perdew, Burke, and Ernzerhof (PBE)[17]
paired with the Grimme D3 dispersion correction[7].

The bandgap distribution of the OCELOT database is shown in
Figure 1a. As can be seen, the average bandgap is 2.31 eV, which is
fairly similar to that of Olsthorn et al., who created a database of
crystal structures mined from the OMDB([15]. The dataset contains
the calculated bandgaps as the distance between the minimum en-
ergy of the lowest conduction band and the maximum energy of the
highest valence band independently. There are 9479 data points as
compared to 10472 in the work of Taniguchi et al.[19]. The OCELOT
dataset also contains 476 sets of polymorphs, with 1248 polymorphs
total, as seen in Figure 1b. We used a train:validation:test split of
85:5:10, similar to both Taniguchi et al.[19] and Fung et al.[6]. This
leads to a training, validation, and testing set of 8056, 474, and 948
samples, respectively.

2.1.1  ROY. 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile

(ROY) has 11 polymorphs that are available in the CSD. These crys-
tals were extracted from the CSD and then optimized with PBE+D3
using the GPAW[14] and D3[7] codes available from the atomic
simulation environment[12] with the same settings used to produce
the OCELOT database[1].
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Figure 1: The (a) bandgap distribution and (b) polymorph
count of the OCELOT database. For (b), the x-axis tells how
many polymorphs are in each set of polymorphs and the
y-axis tells how many of the compounds have that number
of polymorphs. For example, more than 350 of the crystal
structures have 2 polymorphs.

2.2 Graphs

There is a common architecture across most GNNs: an encod-
ing/embedding layer the converts the crystal structures into graphs,
a series of convolution layers, a series of pooling layers, a series of
dense layers, and then a final output layer. For this work, we use
the same encoding/embedding for all the models examined, i.e. the
same graph representation. The crystal structures are converted
into graphs based on atomic coordinates. The main focus of this
work is to examine the performance of different graph convolu-
tions. The creation of edges, which are representative of interatomic
distances, relies on two parameters: the distance cutoff and the max-
imum number of nearest neighbors. Taniguchi et al. found that the
best performance was obtained with a distance cutoff of 8 rA and
12 maximum nearest neighbors, so we use those values here as
well[19]. The node elements were one-hot encoded following the
procedure of Xie et al.[20] The graph convolutions examined here,
those of CGCNN,[20] SchNet,[18] MEGNet,[4] ALIGNN,[5] and
GATGNN,[13] were previously developed and later implemented
in torch geometric.

In ALIGNN, the residual gated graph convolutional operator is
used where node features are updated using a series of gates com-
posed of MLPs using sigmoid activation functions[5]. In CGCNN,
the central node features, neighboring node features, and edge fea-
tures are concatenated before being passed through a series of gated
multilayered perceptron (MLP) updates, using sigmoid and soft-
plus activation functions[20]. In GATGNN, the graph attentional
operator uses attention coefficients calculated with LeakyReLU
activation functions to update node features[13]. In MEGNet, the
convolution operates on the concatenated central node features,
neighboring features, and edge features. Both the node and edge
features are updated in a series of MLPs before updating global
attributes in a final convolution[4]. In SchNet, interaction blocks
are used for convolutions where interatomic distances between
atoms are passed through a series of MLPs[18].



Property Prediction of Functional Organic Molecular Crystals with Graph Neural Networks

3 RESULTS AND DISCUSSION

The results of the graph convolutions are shown in Figure 2a and
Figure 2b, which show the training and validation loss as a function
of epoch and the parity between the predicted and DFT calculated
values, respectively. As can be seen, the training loss was fairly
smooth for all five models while the validation loss was more erratic.
This could be attributed to the size of the validation set, which was
474 data points. The model with the lowest training and validation
loss was MEGNet, which is in agreement with Taniguchi et al.[19]
The newer implementations, ALIGNN and GATGNN, had similar
train and validation losses to the previous models.

The MEGNet model also has the lowest mean absolute error
(MAE) and root mean square error (RMSE) on the testing set. Ad-
ditionally, MEGNet had the highest R? value of the five models,
implying that it is not only the most accurate but the most consis-
tent. The performance rankings of the models according to MAE
are: MEGNet > CGCNN > GATGNN > SchNet > ALIGNN. Taniguchi
et al. had predicted that the ALIGNN model would perform bet-
ter than MEGNet, but in fact we find that ALIGNN performed the
worst in terms of MAE and RMSE and had the lowest R? value
of the models examined here. It could be that the key to the high
performance of the ALIGNN model seen elsewhere[5] could be the
actual graph representation as opposed to the graph convolution
layer. This will be a focus of future work.
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Figure 2: Training and validation error (a) and parity plots
(b) for ALIGNN (i), CGCNN (ii), GATGNN (iii), MEGNet (iv),
and SchNet (v). The training and validation errors are shown
in blue and orange, respectively. The black line in (b) repre-
sents the line y = x, comparing DFT calculated values to ML
predicted values. All values are averaged across three rounds
of training.

3.1 Polymorphs

3.1.1 OCELOT. Of the 1421 crystal structures in the test set, 128
of them are polymorphic, with either a polymorph in the test set
or the training set. The performance of the 5 models on these
polymorphs is shown in Figure 3a. Similar to Figure 2b, MEGNet is
the best performing model with an MAE of 0.082 eV and an RMSE
of 0.144 eV along with an R? value of 0.952. The rankings for the
performance on this task are MEGNet > CGCNN > GATGNN >
SchNet > ALIGNN.
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Figure 3: Parity plots on the prediction of bandgaps for
polymorphs within (a) the test set of OCELOT and (b) the
polymorphs of ROY using the (i) ALIGNN, (ii) CGCNN, (iii)
GATGNN, (iv) MEGNet, and (v) SchNet models. The baseline
bandgaps of (a) and (b) were calculated with DFT using the
settings described in [1]. The black line represents y = x.

3.1.2  ROY. The predictions of the 5 models for the polymorphs
of ROY are shown in Figure 3b. Surprisingly, the MEGNet model
performs the worst with the highest MAE (1.714 eV) and RMSE
(1.734 eV). The SchNet model performs the best with an MAE of
0.237 eV and an RMSE of 0.276 €V. All of the models tend to over-
estimate the bandgap for all polymorphs except for SchNet and
CGCNN, which is in agreement with previous work[19]. Taniguchi
et al. observed an MAE of 0.40 eV using the MEGNet model. So
while the SchNet model greatly improves upon that, the MEGNet
model in this work performs significantly worse. Since the OCELOT
database is smaller than that of Olsthorn et al.[15], which had 10472
entries compared to OCELOT’s 9479, which Taniguchi et al. trained
on, it could be that the MEGNet model is more data hungry than
the SchNet model. Examining the impact of training size on model
performance will be tackled in future work.

4 CONCLUSION

In conclusion, we have presented preliminary results for our work
using graph neural networks to predict the bandgap of organic
molecular crystals. We have used the graph convolutions imple-
mented in the MatDeepLearn framework and introduced two new
graph convolutions from ALIGNN and GATGNN. We trained five
models on the OCELOT database, which is a collection of organic
molecular crystals with promising optoelectronic properties that
contains several sets of polymorphs. In agreement with previous
work, we find that the MEGNet model performed best on our test
set[19]. However, we found that the MEGNet model performed
poorly when predicting the bandgaps of the polymorphs of ROY.
In that case, SchNet performed the best. We plan to examine other
graph representations and conduct further test cases for property
prediction, such as screening the Cambridge Structural Database[8]
for promising OSC materials similar to [16, 19].
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