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Abstract—Human activity recognition is at the basis of several
applications in the smart living domain, such as energy man-
agement, elder care, and health management. Human activity
recognition research can be divided into two categories, depend-
ing on the type of sensors used: wearable sensors, such as those
found in mobile phones and smart watches, and ambient sensors,
such as motion sensors or cameras placed in the environment.
Among ambient sensors, binary sensors are often perceived as
less invasive than sensors that collect video, audio, or biometric
data. However, the performance of classifiers trained on binary
sensor data is often lower since the data inherently contains
less information. In this paper, we propose a non-intrusive
human activity recognition framework that only exploits binary
sensor data and results in high classification accuracy. Our
approach is inspired by audio and image processing applied to
binary sensors. Specifically, we exploit the Short-Time Fourier
Transform (STFT) to extract features from binary data. These
features are used to train a hybrid machine learning model
which pairs Convolutional Neural Network (CNN) with a Long-
Short-Term Memory (LTSM) architecture. We use a real dataset
of human activities monitored through binary sensor data for
evaluating the impact of the features on classifier performance.
Results show that the proposed method significantly outperforms
state-of-the-art solutions, requiring minimal training data needed
to achieve a given level of accuracy.

Index Terms—Internet of Things, Smart Home, Human Ac-
tivity Recognition, Spectrogram, Short-Time Fourier Transform

I. INTRODUCTION

Human activity recognition (HAR) has been an area of

active research, with applications including elder care and

health management [10, 3, 11], energy use predictions [1, 5,

21, 15, 7], smart home/smart environment [4], security and

surveillance, indoor navigation, retail, and others [13]. Gener-

ally, HAR approaches use data from sensors, such as wearable

sensors (e.g., accelerometers, GPS transceivers, smart phones)

and ambient sensors (e.g., motion sensors, temperature sen-

sors, switches, cameras, and microphones) [6]. Through these

sensors, the user interaction with the environment is observed.

Wearable sensors can provide information on the user’s move-

ments and location, while ambient sensors can detect opened

doors and drawers, noises made in the environment, and the

user motion through cameras and infrared sensors. This data is

used to infer the activity that the user is performing. Examples

of these activities include sleeping eating, working, washing

disches, etc.

An alternative approach to wearable sensors is the use of

ambient sensors with binary output. Such sensors are less

invasive and do not reveal privacy sensitive information such

as cameras. The Center for Advanced Studies in Adaptive Sys-

tems (CASAS) at Washington State University [8] produced a

“smart home in a box” system that includes infrared motion

sensors, temperature sensors, light level sensors, and a small

server for processing and storing data. The CASAS produced

over 30 datasets, many of which are publicly available at

their website.1 These works were undertaken in the late 2000s

and early 2010s before the rise of deep learning and use

what are now called traditional machine learning techniques.

They required a domain expert to create features, a more

compact representation of the raw data that captures significant

properties. The rise of deep learning encouraged new work

with the existing datasets as researchers started applying deep

neural networks to learn which features to use for classification

instead of specifying them beforehand [16]. As of 2023, deep-

learning models predominate.

Classification algorithms usually require the input data to

be transformed into features, a condensed representation that

captures the most statistically significant components of the

input. This transformation step can be further broken down

into segmentation and encoding. During segmentation, the in-

put sequence is partitioned so that each resulting subsequence

represents a single example to be associated with a label. The

subsequences are used to compute features during encoding.

When combined with labels, the examples can be used as input

to a statistical model that predicts the most likely label for

each example. Different segmentation and encoding schemes

can significantly affect the final classification accuracy [12].

A. Related Works

Several efforts on HAR research have focused on the use

of mobile/wearable sensors. Accelerometer and gyroscope data

were used in [14], and [9] uses phase shift data from RFID

tags. The use of Fourier-related transforms for compression

and feature selection has also been adopted. For example,

1https://casas.wsu.edu/
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the discrete cosine transform (DCT) is central to the JPEG

compression scheme [24]. These approaches adopt mobile and

wearable sensors which are inherently invasive and thus may

make users reluctant to use such devices. The accuracy of clas-

sification systems that use wearable sensors with continuous

output is often higher because of the richer training data.

Works in HAR with binary ambient sensors can be grouped

by how they segment and encode the raw data and classifier

architecture as in table I.

Ref Datasets Segmentation Encoding Best Arch.
[18] Aruba Event, Dynamic DWN CNN2D
[27] Aruba Event, Dynamic DWN CNN-LSTM
[25] De novo Time, Window Activations CNN1D
[11] De novo Time, Window FTW CNN1D-LSTM
[17] CMK3 Time Activations LSTM
[10] Aruba Time, Window Activations CNN
[22] Kasteren Time, Window Activations LSTM

Table I
RELATED WORK IN AMBIENT SENSOR-BASED HAR. IN THE ”DATASETS”

COLUMN, ”CMK3” REFERS TO THE CASAS CAIRO, MILAN, AND

KYOTO3 DATASETS

Segmenting by time using a fixed-size sliding window

appears to be the most common method [25, 11, 19, 22]. An

event-based segmentation scheme was used in [20, 18, 27]

wherein sensor events are used to define segment boundaries.

Time-based segmentation schemes usually require resampling

the input data at a uniform rate. Correlation-based approaches

were used in [27] and [18] to dynamically determine segment

boundaries instead of a fixed-size window.

Classifier architectures often constrain the shape of the input

or vice versa. For example, the 2D CNNs often used for image

processing take 3D input: one 2D array of intensity values for

each color channel. In [25], [26], and [12], different encoding

schemes were examined and it was found that the choice

of encoding can have a significant impact on accuracy and

resource requirements.

The scheme listed as “Activations” in table I refers to using

n × m arrays for binary sensor data where n is the number

of time windows and m is the number of sensors. Each entry

in the activation matrix Anm represents the number of times

sensor m was activated during the n-th time window. The

other encoding schemes in Table I were created to address

some challenges associated with using raw activations. The

authors of [18] mention two such challenges:

• Activity segments of different lengths can be problematic

for CNNs because the data must be zero-padded to a

uniform length and the CNN cannot ignore the padding,

perhaps (mis)interpreting it as useful information;

• Extraction of features that can capture behavioral se-

mantics and spatio-temporal correspondences at the same

time.

Directed Weighted Networks, or DWNs, use a method called

stigmergy inspired by ant colonies to encode movement be-

tween different sensor locations. Stigmergy is an emergent

modeling paradigm where independent agents coordinate indi-

rectly by traces left in the environment [18, 27]. Ant colonies

are a canonical example of stigmergy in action. Each ant

deposits marker chemicals called pheromones that attract other

ants. The ants are sensitive to the concentration of pheromones

which are volatile and thus, their concentration in the environ-

ment decreases over time. When presented with multiple tracks

of pheromones, ants will preferrentially follow the one with the

highest concentration. Thus, over time the colony is able to act

in a coordinated manner without direct communication. DWNs

encode a digital version of these stigmergic tracks by using

sensor activations over time to determine where ”pheremones”

are concentrated.

B. Contributions

Despite the existing efforts in HAR using binary senors,

they generally suffer from relatively low accuracy. In this

work, we propose a novel method for feature extraction

from binary sensors based on Short-Time Fourier Transform

(STFT). These features are used to train a hybrid machine

learning model which pairs Convolutional Neural Network

(CNN) with a Long-Short-Term Memory (LTSM) architec-

ture. We perform an extensive evaluation using the “Aruba”

dataset produced by the Center for Advanced Studies in

Adaptive Systems (CASAS). Results show that the proposed

method significantly outperforms state-of-the-art solutions by

achieving a significantly higher classification accuracy of the

considered activities.

II. PROBLEM FORMULATION AND SYSTEM MODEL

We consider a set of H ambient sensors deployed in a smart

home. These sensors have a binary output and are loosely

synchronized. Formally, we refer to si[t] as the state of sensor

i at time t. si[t] is a discrete-time vector-valued function. Let

Fi[τ ] be a feature vector that is derived from one or more state

vectors for sensor i at time τ . We discuss in the next section

our approach to extract these features. We consider a set of

label L, containing the user activities we plan to classify. Our

problem is the following:

Given a sequence of state vectors for each sensor and

the set of activity labels L, predict the most likely

label l ∈ L for each F (τ).

The prediction is performed based on a set of training

examples, where each example is a pair of the form (F [τ ], l).

III. PROPOSED SOLUTION

The approaches to segmentation in the literature can be

classified by whether they define segment boundaries using

time intervals or sensor state changes. The two approaches

are linked because the time of state changes is known, so

each pair of state changes could be used to define a time

interval. If segments are defined in terms of time intervals

other than those such as a fixed-length sliding window, then

resampling of the discrete-valued si[t] will be necessary. In

either case, the segments can be defined mathematically using

the concept from signal processing called window functions.

These functions are defined so they have a value of zero

everywhere except for an interval where they take on values in
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the range [0, 1]. Multiplying a sequence by a window function

has the effect of selecting a subset of the sequence. If w[t−τ ]
is a time-shifted window function and si[t] represents the state

of sensor i at time t, then segmentation can be represented by:

si[t]w[t− τ ] (1)

The encoding step takes the segmented input data and outputs

features. This can be modeled as the application of a function

E to the segmented input data to produce feature Fi:

Fi[τ ] = E[si[t]w[t− τ ]] (2)

Our solution differs substantially from the others presented

in Table I in how the features are encoded. With the exception

of FTWs, the feature encodings in Table I produce one or two-

dimensional feature vectors. Our approach treats each sensor

as a separate channel independent of the others, much as color

images can be processed as three independent color channels.

For each sensor, we segment the data using an overlapping

fixed-length window. Then, each segment is encoded by ap-

plying the discrete Fourier transform. The combination of

overlapping window and Fourier transform is called the Short-
Time Fourier Transform and is often used to study signals with

time-varying frequency spectra such as audio. The magnitude-

squared output of the STFT is called a spectrogram.

The STFT can be defined as the discrete-time Fourier

transform (DTFT) of a sampled signal x[t] multiplied by a

shifted window function. We consider a symmetric window

function on the range [−T/2, T/2]. The size of the range,

T , is often called the length of the window. The formulation

presented here is adopted from [23]. Let D be a constant that

determines how many samples the window moves between

DFT calculations. If the sampled signal x[t] has a length of

n, the discrete STFT is given by:

S[τ, ω] =
n−1∑

t=0

x[t]w[t− τD] e−iωt/n (3)

where w[t− τD] is the complex conjuate of the window

function. The STFT combines the segmenting and encoding

steps into a single operation. If si[t] is each sensor’s state as

a function of time, the features for each sensor as a function

of window index τ are obtained by applying the STFT:

Fi[τ ] =
n−1∑

t=0

si[t]w[t− τD] e−iωt/n (4)

The classifier portion of the proposed system is a hybrid

CNN-LSTM architecture. We have experimentally verified that

such an architecture yields better results compared to a plain

CNN or LSTM architecture. The architecture is shown in

Figure III. The block labels in the block diagram correspond

to the function signature for each layer. Dimensions for arrays

at each step are given for spectrogram and DWN feature

encodings (DWN is used for comparison, as explained in the

following section). n refers to the number of examples of

training data, and ws//2 is the integral part of window size
divided by 2. The dimensions are the same after the Conv1D

Input

Batch
Normalization

Conv1D(64,3)

LSTM(64)

Dense

Softmax

Dims
Spect DWN

Figure 1. Hybrid CNN-LSTM Classifier architecture.

for all models tested, and the size of the output is the number

of labels.

IV. RESULTS

In this section we provide an extensive evaluation of the

proposed method versus state of the art solutions. In the

following, we first describe the dataset, then the experimental

setup, and finally present the results.

A. Dataset

We tested the performance of the proposed spectrogram

feature encoding using a public dataset called “Aruba,” one of

the datasets produced by the CASAS Smart Home-in-a-Box

project [8]. The Smart Home-in-a-Box system used wireless

infrared motion sensors, contact sensors on doors and drawers,

temperature sensors, and light-level sensors placed throughout

the home. The sensors communicated with a central server

by sending messages that included a timestamp, sensor id,

message type, and payload. For example, the infrared motion

sensors would send messages saying ”ON” when motion is

first detected and ”OFF” after not detecting any motion for

1.25 seconds.

The Aruba dataset was collected in the home of an adult

volunteer who lived alone but had visitors on a regular basis.

The timestamps range from 2010-11-04T00:03:50 to 2011-06-

11T23:20:35, a span of 219 days. We resampled the raw data

to a uniform rate of one sample per second for each of the

binary sensors in the Aruba smart home, yielding an array with

dimensions (19005405,35). Figure 2 shows where the sensors

were placed in the smart home where the Aruba dataset was

collected. The dataset is distributed as a text file with one event

record per line. Activities are annotated by noting when they
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Figure 2. Location of motion sensors in smart home. The dotted ellipses
with text in the center represent infrared motion sensors with a wide area of
detection. The other sensors, represented by small circles with text above or
below, are sensitive to motion in a one meter circle directly below the sensor.

start and end. The annotations and their relative frequency in

the dataset are:

• No annotation (55.2 %)

• Relax (21.3 %)

• Meal Preparation (17.9 %)

• Sleeping (2.04 %)

• Work (1.02 %)

• Eating (0.959 %)

• Housekeeping (0.656 %)

• Wash Dishes (0.647 %)

• Enter Home (0.126 %)

• Leave Home (0.121 %)

• Bed to Toilet (0.083 %)

The dataset is typical for HAR data in that it is highly

unbalanced, even if the un-annotated portion is discarded. We

tried our experiments with and without this unannotated data

included. Where we used the un-annotated data, we assigned

all un-annotated events a label of “Other”.

B. Experimental Setup

We used the Aruba dataset to test the proposed activity

recognition system versus several other state-ot-the-art encod-

ings from the literature. The various implementations used a

sliding window for segmentation and the same overall network

architecture for fair comparisons. Classification accuracy was

the metric chosen to evaluate performance. We used a leave-

one-day-out cross-validation scheme for all experiments where

each day’s worth of data is held out as a test set in turn. We

randomly sampled which days of the dataset to include in

the experiments. All experiments were run on a consumer-

grade desktop computer with an 8-core CPU, 128 GB of

RAM, and an NVidia RTX 3080 Ti GPU. The preprocessing

steps and experiments were implemented using Tensorflow

and other Python-based tools inside of a container to improve

repeatability.

In all experiments, our approach is referred to as “Spect”,

given its spectrogram nature. We consider the following com-

parison approaches: DWN, Activations, and Last, using the

same time-based segmentation method and classifier architec-

ture as the spectrogram-based models. The DWN encoding

was used in [27, 18] and can be considered an extension of

the Activations method used in [22, 17, 25, 10]. DWN extends

the Activations method by adding an exponential decay to the

summation. Returning to the ant colony analogy, if one unit of

pheromone is deposited for each unit of time a sensor is active

and ρ percent of the pheromone evaporates each time step, then

the concentration or intensity of pheromone remaining at time

t is:

I =

te−1∑

ts

(1− ρ)te−t−1 (5)

ts and te are the start and end times of the activity segment,

respectively.

C. Experiments Performed

We performed several experiments varying different model

hyperparameters to evaluate the proposed system and compare

it with the current state of the art. We tested varying numbers

of days of training data, window size, and inclusion/exclusion

of ”Other” labels for models using the ”spectrogram,” ”DWN,”

”Activations,” and ”Last” feature encodings. Additionally, we

tried varying hyperparameters specific to the proposed spec-

trogram feature encoding such as the amount of overlap in the

sliding window and the shape of the window function.

D. Impact of Training Data Size

We first investigate the accuracy versus the amount of train-

ing data. The objective of this experiment is to show how the

classification performance change with respect to the amount

of data available for training. Figure 3 shows the average

accuracy versus the number of days of training data with the

”Other” labels included. All approaches stabilize in accuracy

with 5-10 days of data. With the ”Other” label included, the

comparison approaches converge to an accuracy around 75%.

Conversely, our spectrogram-based model is able to achieve

an accuracy above 90%. This is due to our solution producing

higher-dimensional features that are effectively compressed by

the application of a Fourier-related transform. Our approach

significantly out performs the comparison solutions providing

15% higher accuracy and a comparable number of training

days to converge. When the ”Other” labels are not included,

the gap in accuracy between the spectrogram method and the

others decreases to about 5 %, and the spectrogram models

converge to their maximal accuracy more quickly.

E. Impact of Window Size

In the next experiment we focus on the impact of the

window size on the classification accuracy. We use fifteen days

worth of data for training and vary the length of the window

used for segmentation, for all approaches. Our rationale is

that for all the methods tested, fifteen days is large enough
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Figure 3. Number of days of training data versus accuracy. Error bars show
an interval [−σ, σ]

to stabilize the accuracy, and the accuracy is close to the

maximum seen for each of the different methods. We vary the

window size. This setting dictates the maximum resolution

in frequency as described in [2] and others. This can be

appreciated intuitively by the inverse relationship between

period and frequency.

Figure 4. Window size vs accuracy.Number of days (of data) versus accuracy.
Error bars show an interval [−σ, σ]

Figure 4 shows the results when the ”Other” label is

included. Our approach provides a higher accuracy in these

experiments as well. All approaches suffer when the window

size increases beyond 64 samples. At a sample rate of 1

Hz, 64 samples corresponds to 64 seconds of sensor data.

Increasing the window length increases frequency resolution,

especially for lower frequencies. However, with the improved

frequency resolution comes a corresponding loss of temporal

resolution. With a longer window, the labels in the training

data are applied to longer periods of time. As an example, if

activities A and B are interleaved in time and activity B only

occurs for a few seconds within much longer blocks of activity

A, insufficient temporal resolution would make two closely-

spaced occurrences of B indistinguishable from one longer

occurrence. Overall, these results show that the setting of the

time window is not critical, and any value less than 64 would

provide high accuracy. Our approach outperforms the state-

of-the-art with 15% higher accuracy. As with the experiments

varying data size, when the ”Other” labels are excluded, the

gap in performance is reduced to around 5 %.

Note that the amount of overlap between windows has a

also impact on the performance of our spectrogram model.

However, more overlap resulted in a modest effect on the

amount of training data required. The final run of experiments

to produce Figures 3 and 4 used a window with 50 percent

overlap for all of the spectrogram-based models. Increasing the

overlap beyond 50 percent yielded no benefit to accuracy but

increased training time due to the larger number of examples.

We also considered changing the shape of the window func-

tion. This also has minimal impact on the accuracy. A simple

rectangular window, sometimes called a “boxcar” window,

produced consistently good performance. Triangular, cosine,

and exponential windows performed worse than rectangular

windows, but they were all within a few percent of each other.

F. Effect of Unannotated Data

The Aruba dataset has gaps in the annotations; some events

are recorded but not annotated with an activity label. We

investigated the effect of including these unannotated events

by assigning them all the label “Other.” The presence of

the Other category makes the classification problem more

difficult, because there may be significant variation in what the

examples in this category look like. Additionally, the relative

frequency of the Other class is very high, making the dataset

more unbalanced. To explore the impact of the Other category,

we generated confusion matrices from the predictions of our

spectrogram models and DWN model. We also show the

confusion matrices without the Other category, for comparison.

The confusion matrices for the models that include the “Other”

label are shown in Figures 5 (a) and (b).

Both of the confusion matrix of Spec and DWN exhibit

a skew toward the Other class as expected. The column

associated with Other contains relatively high values, which

means that the classifier often mislabeled activities as Other.

As expected this effect is more pronounced where the non-

other class has a very low relative frequency. This is evident

in Figures 5 (a) and (b). Both models label incorrectly most

occurrences of “Bed-to-toilet”, “Enter”, “Dishes”, “House-

keeping”. Nevertheless, this result show the superiority of our

approach with respect to DWN. The spectrogram model has

fewer rows in the “Other” column, and better distributes the

labels across the diagonal (correct labeling). This suggests that

our approach is less affected by highly unbalanced datasets.

This results also show that both models have trouble distin-
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(a) (b)

Figure 5. Confusion matrices of Spect (a) and DWN (b) when the “Other” class is included.

(a) (b)

Figure 6. Confusion matrices of Spect (a) and DWN (b) when the “Other” class not included.

guishing between activities that typically occur in the same

part of the smart home. For example, both models struggled

to correctly distinguish between “Meal Prep” and “Dishes”.

We now show the confusion matrices when the data labelled

Other is not included. Figures 6 (a) and (b) show the results.

Both approaches improve the classification. However, the

DWN model shows a tendency toward diffuse mislabeling.

Conversely, our spectrogram model is able to classify more

activities correctly, resulting in a higher overall accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we describe and test a novel human activity

recognition framework that uses spectrograms of binary sensor

data and a CNN-LSTM classifier to predict the activities taking

place inside a smart home. This is the first time that spectral

features have been used with binary sensors. Our experiments

showed that the spectrogram-based models outperformed the

state-of-the-art in all of our experiments. Our results also show

that all approaches, including ours, suffer labeling activities

with a small number of samples, as well as a decrease in

accuracy when a large unlabeled class is present. These remain

open problems that can be addressed in future works.
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Plötz. “On the role of features in human activity recog-

nition”. In: Proceedings of the 2019 ACM Interna-
tional Symposium on Wearable Computers. Sept. 2019,

pp. 78–88.

[13] Zawar Hussain, Michael Sheng, and Wei Emma Zhang.

“Different Approaches for Human Activity Recogni-

tion: A Survey”. In: Journal of Network and Computer
Applications 167 (Oct. 2020), p. 102738.

[14] Wenchao Jiang and Zhaozheng Yin. “Human Activity

Recognition Using Wearable Sensors by Deep Con-

volutional Neural Networks”. In: Proceedings of the
23rd ACM international conference on Multimedia. Oct.

2015, pp. 1307–1310.

[15] Atieh R Khamesi, Eura Shin, and Simone Silvestri.

“Machine learning in the wild: The case of user-

centered learning in cyber physical systems”. In: 2020
International Conference on COMmunication Systems
& NETworkS (COMSNETS). IEEE. 2020, pp. 275–281.

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.

“Deep learning”. In: Nature 521.7553 (May 2015),

pp. 436–444.

[17] Daniele Liciotti et al. “A sequential deep learning appli-

cation for recognising human activities in smart homes”.

In: Neurocomputing 396 (July 2020), pp. 501–513.

[18] Houda Najeh, Christophe Lohr, and Benoit Leduc.

“Convolutional Neural Network Bootstrapped by Dy-

namic Segmentation and Stigmergy-Based Encoding

for Real-Time Human Activity Recognition in Smart

Homes”. In: Sensors 23.4 (Feb. 2023), p. 1969.

[19] Francisco Javier Ordóñez and Daniel Roggen. “Deep

Convolutional and LSTM Recurrent Neural Networks

for Multimodal Wearable Activity Recognition”. In:

Sensors (Basel) 16.1 (Jan. 2016), p. 115.

[20] Worrakit Sanpote et al. “Deep Learning Approaches

for Recognizing Daily Human Activities Using Smart

Home Sensors”. In: Mar. 2023, pp. 469–473.

[21] Eura Shin et al. “A user-centered active learning ap-

proach for appliance recognition”. In: 2020 IEEE In-
ternational Conference on Smart Computing (SMART-
COMP). IEEE. 2020, pp. 208–213.

[22] Deepika Singh et al. “Convolutional and Recurrent

Neural Networks for Activity Recognition in Smart

Environment”. In: 2017, pp. 194–205.

[23] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms

for scientific computing in Python”. In: Nature methods
17.3 (2020), pp. 261–272.

[24] Gregory K Wallace. “THE JPEG STILL PICTURE

COMPRESSION STANDARD”. In: (1991).

[25] Aiguo Wang et al. “Activities of Daily Living Recog-

nition With Binary Environment Sensors Using Deep

Learning: A Comparative Study”. In: IEEE Sensors
Journal 21.4 (Feb. 2021), pp. 5423–5433.

[26] Aiguo Wang et al. “Comparison of Feature Extraction

Techniques for Ambient Sensor-based In-home Activity

Recognition”. In: 2022 International Conference on
Networking and Network Applications (NaNA). Dec.

2022, pp. 1–6.

[27] Zimin Xu, Guoli Wang, and Xuemei Guo. “Online Ac-

tivity Recognition Combining Dynamic Segmentation

and Emergent Modeling”. In: Sensors 22.6 (Mar. 2022),

p. 2250.

383

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on September 30,2024 at 16:44:59 UTC from IEEE Xplore.  Restrictions apply. 


