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Abstract—Human activity recognition is at the basis of several
applications in the smart living domain, such as energy man-
agement, elder care, and health management. Human activity
recognition research can be divided into two categories, depend-
ing on the type of sensors used: wearable sensors, such as those
found in mobile phones and smart watches, and ambient sensors,
such as motion sensors or cameras placed in the environment.
Among ambient sensors, binary sensors are often perceived as
less invasive than sensors that collect video, audio, or biometric
data. However, the performance of classifiers trained on binary
sensor data is often lower since the data inherently contains
less information. In this paper, we propose a non-intrusive
human activity recognition framework that only exploits binary
sensor data and results in high classification accuracy. Our
approach is inspired by audio and image processing applied to
binary sensors. Specifically, we exploit the Short-Time Fourier
Transform (STFT) to extract features from binary data. These
features are used to train a hybrid machine learning model
which pairs Convolutional Neural Network (CNN) with a Long-
Short-Term Memory (LTSM) architecture. We use a real dataset
of human activities monitored through binary sensor data for
evaluating the impact of the features on classifier performance.
Results show that the proposed method significantly outperforms
state-of-the-art solutions, requiring minimal training data needed
to achieve a given level of accuracy.

Index Terms—Internet of Things, Smart Home, Human Ac-
tivity Recognition, Spectrogram, Short-Time Fourier Transform

1. INTRODUCTION

Human activity recognition (HAR) has been an area of
active research, with applications including elder care and
health management [10, 3, 11], energy use predictions [1, 5,
21, 15, 7], smart home/smart environment [4], security and
surveillance, indoor navigation, retail, and others [13]. Gener-
ally, HAR approaches use data from sensors, such as wearable
sensors (e.g., accelerometers, GPS transceivers, smart phones)
and ambient sensors (e.g., motion sensors, temperature sen-
sors, switches, cameras, and microphones) [6]. Through these
sensors, the user interaction with the environment is observed.
Wearable sensors can provide information on the user’s move-
ments and location, while ambient sensors can detect opened
doors and drawers, noises made in the environment, and the
user motion through cameras and infrared sensors. This data is
used to infer the activity that the user is performing. Examples

Simone Silvestri
Department of Computer Science
University of Kentucky
Lexington, USA
silvestri @cs.uky.edu

of these activities include sleeping eating, working, washing
disches, etc.

An alternative approach to wearable sensors is the use of
ambient sensors with binary output. Such sensors are less
invasive and do not reveal privacy sensitive information such
as cameras. The Center for Advanced Studies in Adaptive Sys-
tems (CASAS) at Washington State University [8] produced a
“smart home in a box” system that includes infrared motion
sensors, temperature sensors, light level sensors, and a small
server for processing and storing data. The CASAS produced
over 30 datasets, many of which are publicly available at
their website.! These works were undertaken in the late 2000s
and early 2010s before the rise of deep learning and use
what are now called traditional machine learning techniques.
They required a domain expert to create features, a more
compact representation of the raw data that captures significant
properties. The rise of deep learning encouraged new work
with the existing datasets as researchers started applying deep
neural networks to learn which features to use for classification
instead of specifying them beforehand [16]. As of 2023, deep-
learning models predominate.

Classification algorithms usually require the input data to
be transformed into features, a condensed representation that
captures the most statistically significant components of the
input. This transformation step can be further broken down
into segmentation and encoding. During segmentation, the in-
put sequence is partitioned so that each resulting subsequence
represents a single example to be associated with a label. The
subsequences are used to compute features during encoding.
When combined with labels, the examples can be used as input
to a statistical model that predicts the most likely label for
each example. Different segmentation and encoding schemes
can significantly affect the final classification accuracy [12].

A. Related Works

Several efforts on HAR research have focused on the use
of mobile/wearable sensors. Accelerometer and gyroscope data
were used in [14], and [9] uses phase shift data from RFID
tags. The use of Fourier-related transforms for compression
and feature selection has also been adopted. For example,
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the discrete cosine transform (DCT) is central to the JPEG
compression scheme [24]. These approaches adopt mobile and
wearable sensors which are inherently invasive and thus may
make users reluctant to use such devices. The accuracy of clas-
sification systems that use wearable sensors with continuous
output is often higher because of the richer training data.

Works in HAR with binary ambient sensors can be grouped
by how they segment and encode the raw data and classifier
architecture as in table I.

Ref Datasets Segmentation Encoding Best Arch.
[18] Aruba Event, Dynamic DWN CNN2D

[27] Aruba Event, Dynamic DWN CNN-LSTM
[25] De novo  Time, Window Activations CNNI1D

[11] De novo  Time, Window FTW CNNI1D-LSTM
[17] CMK3 Time Activations LSTM

[10] Aruba Time, Window Activations CNN
[22] Kasteren  Time, Window Activations LSTM
Table 1

RELATED WORK IN AMBIENT SENSOR-BASED HAR. IN THE "DATASETS”
COLUMN, "CMK3” REFERS TO THE CASAS CAIRO, MILAN, AND
KYOTO3 DATASETS

Segmenting by time using a fixed-size sliding window
appears to be the most common method [25, 11, 19, 22]. An
event-based segmentation scheme was used in [20, 18, 27]
wherein sensor events are used to define segment boundaries.
Time-based segmentation schemes usually require resampling
the input data at a uniform rate. Correlation-based approaches
were used in [27] and [18] to dynamically determine segment
boundaries instead of a fixed-size window.

Classifier architectures often constrain the shape of the input
or vice versa. For example, the 2D CNNss often used for image
processing take 3D input: one 2D array of intensity values for
each color channel. In [25], [26], and [12], different encoding
schemes were examined and it was found that the choice
of encoding can have a significant impact on accuracy and
resource requirements.

The scheme listed as “Activations” in table I refers to using
n x m arrays for binary sensor data where n is the number
of time windows and m is the number of sensors. Each entry
in the activation matrix A,,,, represents the number of times
sensor m was activated during the n-th time window. The
other encoding schemes in Table I were created to address
some challenges associated with using raw activations. The
authors of [18] mention two such challenges:

o Activity segments of different lengths can be problematic
for CNNs because the data must be zero-padded to a
uniform length and the CNN cannot ignore the padding,
perhaps (mis)interpreting it as useful information;

o Extraction of features that can capture behavioral se-
mantics and spatio-temporal correspondences at the same
time.

Directed Weighted Networks, or DWNs, use a method called
stigmergy inspired by ant colonies to encode movement be-
tween different sensor locations. Stigmergy is an emergent
modeling paradigm where independent agents coordinate indi-
rectly by traces left in the environment [18, 27]. Ant colonies

are a canonical example of stigmergy in action. Each ant
deposits marker chemicals called pheromones that attract other
ants. The ants are sensitive to the concentration of pheromones
which are volatile and thus, their concentration in the environ-
ment decreases over time. When presented with multiple tracks
of pheromones, ants will preferrentially follow the one with the
highest concentration. Thus, over time the colony is able to act
in a coordinated manner without direct communication. DWNs
encode a digital version of these stigmergic tracks by using
sensor activations over time to determine where “pheremones”
are concentrated.

B. Contributions

Despite the existing efforts in HAR using binary senors,
they generally suffer from relatively low accuracy. In this
work, we propose a novel method for feature extraction
from binary sensors based on Short-Time Fourier Transform
(STFT). These features are used to train a hybrid machine
learning model which pairs Convolutional Neural Network
(CNN) with a Long-Short-Term Memory (LTSM) architec-
ture. We perform an extensive evaluation using the “Aruba”
dataset produced by the Center for Advanced Studies in
Adaptive Systems (CASAS). Results show that the proposed
method significantly outperforms state-of-the-art solutions by
achieving a significantly higher classification accuracy of the
considered activities.

II. PROBLEM FORMULATION AND SYSTEM MODEL

We consider a set of H ambient sensors deployed in a smart
home. These sensors have a binary output and are loosely
synchronized. Formally, we refer to s;[¢] as the state of sensor
i at time t. s;[t] is a discrete-time vector-valued function. Let
F;[7] be a feature vector that is derived from one or more state
vectors for sensor ¢ at time 7. We discuss in the next section
our approach to extract these features. We consider a set of
label L, containing the user activities we plan to classify. Our
problem is the following:

Given a sequence of state vectors for each sensor and
the set of activity labels L, predict the most likely
label | € L for each F(7).

The prediction is performed based on a set of training

examples, where each example is a pair of the form (F[7],1).

III. PROPOSED SOLUTION

The approaches to segmentation in the literature can be
classified by whether they define segment boundaries using
time intervals or sensor state changes. The two approaches
are linked because the time of state changes is known, so
each pair of state changes could be used to define a time
interval. If segments are defined in terms of time intervals
other than those such as a fixed-length sliding window, then
resampling of the discrete-valued s;[t] will be necessary. In
either case, the segments can be defined mathematically using
the concept from signal processing called window functions.
These functions are defined so they have a value of zero
everywhere except for an interval where they take on values in
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the range [0, 1]. Multiplying a sequence by a window function
has the effect of selecting a subset of the sequence. If w[t — 7]
is a time-shifted window function and s;[t] represents the state
of sensor ¢ at time ¢, then segmentation can be represented by:

si[tjwlt — 7] (1)

The encoding step takes the segmented input data and outputs
features. This can be modeled as the application of a function
FE to the segmented input data to produce feature F;:

Fi[r] = E[si[tjw]t — 7]] 2)

Our solution differs substantially from the others presented
in Table I in how the features are encoded. With the exception
of FTWs, the feature encodings in Table I produce one or two-
dimensional feature vectors. Our approach treats each sensor
as a separate channel independent of the others, much as color
images can be processed as three independent color channels.
For each sensor, we segment the data using an overlapping
fixed-length window. Then, each segment is encoded by ap-
plying the discrete Fourier transform. The combination of
overlapping window and Fourier transform is called the Short-
Time Fourier Transform and is often used to study signals with
time-varying frequency spectra such as audio. The magnitude-
squared output of the STFT is called a spectrogram.

The STFT can be defined as the discrete-time Fourier
transform (DTFT) of a sampled signal z[¢t] multiplied by a
shifted window function. We consider a symmetric window
function on the range [—7/2,7/2]. The size of the range,
T, is often called the length of the window. The formulation
presented here is adopted from [23]. Let D be a constant that
determines how many samples the window moves between
DFT calculations. If the sampled signal z[t] has a length of
n, the discrete STFT is given by:

n—1
Slr,w] = Z z[twlt — 7 D] et/ (3)

t=0

where w[t —7D] is the complex conjuate of the window
function. The STFT combines the segmenting and encoding
steps into a single operation. If s;[¢] is each sensor’s state as
a function of time, the features for each sensor as a function
of window index 7 are obtained by applying the STFT:

n—1
Fi[r] =) siltlwlt — 7D] e~/ “

t=0
The classifier portion of the proposed system is a hybrid
CNN-LSTM architecture. We have experimentally verified that
such an architecture yields better results compared to a plain
CNN or LSTM architecture. The architecture is shown in
Figure III. The block labels in the block diagram correspond
to the function signature for each layer. Dimensions for arrays
at each step are given for spectrogram and DWN feature
encodings (DWN is used for comparison, as explained in the
following section). n refers to the number of examples of
training data, and ws//2 is the integral part of window size
divided by 2. The dimensions are the same after the Conv1D

Dims
Spect DWN
Input (nyws//2+1,35) (n,ws,2)
Batch
Normalization (n,ws//2+1,35)  (n,ws,2)
Conv1D(64,3) (ws//2—1,64) (n,ws—2,2)

LSTM(64) (64)
(11)
Softmax (11)

Figure 1. Hybrid CNN-LSTM Classifier architecture.

for all models tested, and the size of the output is the number
of labels.

IV. RESULTS

In this section we provide an extensive evaluation of the
proposed method versus state of the art solutions. In the
following, we first describe the dataset, then the experimental
setup, and finally present the results.

A. Dataset

We tested the performance of the proposed spectrogram
feature encoding using a public dataset called “Aruba,” one of
the datasets produced by the CASAS Smart Home-in-a-Box
project [8]. The Smart Home-in-a-Box system used wireless
infrared motion sensors, contact sensors on doors and drawers,
temperature sensors, and light-level sensors placed throughout
the home. The sensors communicated with a central server
by sending messages that included a timestamp, sensor id,
message type, and payload. For example, the infrared motion
sensors would send messages saying "ON” when motion is
first detected and "OFF” after not detecting any motion for
1.25 seconds.

The Aruba dataset was collected in the home of an adult
volunteer who lived alone but had visitors on a regular basis.
The timestamps range from 2010-11-04T00:03:50 to 2011-06-
11T23:20:35, a span of 219 days. We resampled the raw data
to a uniform rate of one sample per second for each of the
binary sensors in the Aruba smart home, yielding an array with
dimensions (19005405,35). Figure 2 shows where the sensors
were placed in the smart home where the Aruba dataset was
collected. The dataset is distributed as a text file with one event
record per line. Activities are annotated by noting when they
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Figure 2. Location of motion sensors in smart home. The dotted ellipses
with text in the center represent infrared motion sensors with a wide area of
detection. The other sensors, represented by small circles with text above or
below, are sensitive to motion in a one meter circle directly below the sensor.

start and end. The annotations and their relative frequency in
the dataset are:

« No annotation (55.2 %)
o Relax (21.3 %)

o Meal_Preparation (17.9 %)
o Sleeping (2.04 %)

o Work (1.02 %)

« Eating (0.959 %)

« Housekeeping (0.656 %)
o Wash_Dishes (0.647 %)
o Enter_Home (0.126 %)
o« Leave_Home (0.121 %)
o Bed_to_Toilet (0.083 %)

The dataset is typical for HAR data in that it is highly
unbalanced, even if the un-annotated portion is discarded. We
tried our experiments with and without this unannotated data
included. Where we used the un-annotated data, we assigned
all un-annotated events a label of “Other”.

B. Experimental Setup

We used the Aruba dataset to test the proposed activity
recognition system versus several other state-ot-the-art encod-
ings from the literature. The various implementations used a
sliding window for segmentation and the same overall network
architecture for fair comparisons. Classification accuracy was
the metric chosen to evaluate performance. We used a leave-
one-day-out cross-validation scheme for all experiments where
each day’s worth of data is held out as a test set in turn. We
randomly sampled which days of the dataset to include in
the experiments. All experiments were run on a consumer-
grade desktop computer with an 8-core CPU, 128 GB of
RAM, and an NVidia RTX 3080 Ti GPU. The preprocessing
steps and experiments were implemented using Tensorflow
and other Python-based tools inside of a container to improve
repeatability.

In all experiments, our approach is referred to as “Spect”,
given its spectrogram nature. We consider the following com-
parison approaches: DWN, Activations, and Last, using the
same time-based segmentation method and classifier architec-
ture as the spectrogram-based models. The DWN encoding
was used in [27, 18] and can be considered an extension of
the Activations method used in [22, 17, 25, 10]. DWN extends
the Activations method by adding an exponential decay to the
summation. Returning to the ant colony analogy, if one unit of
pheromone is deposited for each unit of time a sensor is active
and p percent of the pheromone evaporates each time step, then
the concentration or intensity of pheromone remaining at time

t is:
te—1

[=Y (1—p)ett 5)

ls

ts and t. are the start and end times of the activity segment,
respectively.

C. Experiments Performed

We performed several experiments varying different model
hyperparameters to evaluate the proposed system and compare
it with the current state of the art. We tested varying numbers
of days of training data, window size, and inclusion/exclusion
of ”Other” labels for models using the “spectrogram,” "DWN,”
”Activations,” and “Last” feature encodings. Additionally, we
tried varying hyperparameters specific to the proposed spec-
trogram feature encoding such as the amount of overlap in the
sliding window and the shape of the window function.

D. Impact of Training Data Size

We first investigate the accuracy versus the amount of train-
ing data. The objective of this experiment is to show how the
classification performance change with respect to the amount
of data available for training. Figure 3 shows the average
accuracy versus the number of days of training data with the
”Other” labels included. All approaches stabilize in accuracy
with 5-10 days of data. With the “Other” label included, the
comparison approaches converge to an accuracy around 75%.
Conversely, our spectrogram-based model is able to achieve
an accuracy above 90%. This is due to our solution producing
higher-dimensional features that are effectively compressed by
the application of a Fourier-related transform. Our approach
significantly out performs the comparison solutions providing
15% higher accuracy and a comparable number of training
days to converge. When the ~Other” labels are not included,
the gap in accuracy between the spectrogram method and the
others decreases to about 5 %, and the spectrogram models
converge to their maximal accuracy more quickly.

E. Impact of Window Size

In the next experiment we focus on the impact of the
window size on the classification accuracy. We use fifteen days
worth of data for training and vary the length of the window
used for segmentation, for all approaches. Our rationale is
that for all the methods tested, fifteen days is large enough
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to stabilize the accuracy, and the accuracy is close to the
maximum seen for each of the different methods. We vary the
window size. This setting dictates the maximum resolution
in frequency as described in [2] and others. This can be
appreciated intuitively by the inverse relationship between
period and frequency.
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Figure 4 shows the results when the “Other” label is
included. Our approach provides a higher accuracy in these
experiments as well. All approaches suffer when the window
size increases beyond 64 samples. At a sample rate of 1
Hz, 64 samples corresponds to 64 seconds of sensor data.
Increasing the window length increases frequency resolution,
especially for lower frequencies. However, with the improved
frequency resolution comes a corresponding loss of temporal

resolution. With a longer window, the labels in the training
data are applied to longer periods of time. As an example, if
activities A and B are interleaved in time and activity B only
occurs for a few seconds within much longer blocks of activity
A, insufficient temporal resolution would make two closely-
spaced occurrences of B indistinguishable from one longer
occurrence. Overall, these results show that the setting of the
time window is not critical, and any value less than 64 would
provide high accuracy. Our approach outperforms the state-
of-the-art with 15% higher accuracy. As with the experiments
varying data size, when the “Other” labels are excluded, the
gap in performance is reduced to around 5 %.

Note that the amount of overlap between windows has a
also impact on the performance of our spectrogram model.
However, more overlap resulted in a modest effect on the
amount of training data required. The final run of experiments
to produce Figures 3 and 4 used a window with 50 percent
overlap for all of the spectrogram-based models. Increasing the
overlap beyond 50 percent yielded no benefit to accuracy but
increased training time due to the larger number of examples.
We also considered changing the shape of the window func-
tion. This also has minimal impact on the accuracy. A simple
rectangular window, sometimes called a “boxcar” window,
produced consistently good performance. Triangular, cosine,
and exponential windows performed worse than rectangular
windows, but they were all within a few percent of each other.

E. Effect of Unannotated Data

The Aruba dataset has gaps in the annotations; some events
are recorded but not annotated with an activity label. We
investigated the effect of including these unannotated events
by assigning them all the label “Other.” The presence of
the Other category makes the classification problem more
difficult, because there may be significant variation in what the
examples in this category look like. Additionally, the relative
frequency of the Other class is very high, making the dataset
more unbalanced. To explore the impact of the Other category,
we generated confusion matrices from the predictions of our
spectrogram models and DWN model. We also show the
confusion matrices without the Other category, for comparison.
The confusion matrices for the models that include the “Other”
label are shown in Figures 5 (a) and (b).

Both of the confusion matrix of Spec and DWN exhibit
a skew toward the Other class as expected. The column
associated with Other contains relatively high values, which
means that the classifier often mislabeled activities as Other.
As expected this effect is more pronounced where the non-
other class has a very low relative frequency. This is evident
in Figures 5 (a) and (b). Both models label incorrectly most
occurrences of “Bed-to-toilet”, “Enter”, “Dishes”, “House-
keeping”. Nevertheless, this result show the superiority of our
approach with respect to DWN. The spectrogram model has
fewer rows in the “Other” column, and better distributes the
labels across the diagonal (correct labeling). This suggests that
our approach is less affected by highly unbalanced datasets.
This results also show that both models have trouble distin-
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Figure 6. Confusion matrices of Spect (a) and DWN (b) when the “Other” class not included.

guishing between activities that typically occur in the same
part of the smart home. For example, both models struggled
to correctly distinguish between “Meal Prep” and “Dishes”.
We now show the confusion matrices when the data labelled
Other is not included. Figures 6 (a) and (b) show the results.
Both approaches improve the classification. However, the
DWN model shows a tendency toward diffuse mislabeling.
Conversely, our spectrogram model is able to classify more
activities correctly, resulting in a higher overall accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we describe and test a novel human activity
recognition framework that uses spectrograms of binary sensor
data and a CNN-LSTM classifier to predict the activities taking
place inside a smart home. This is the first time that spectral
features have been used with binary sensors. Our experiments
showed that the spectrogram-based models outperformed the
state-of-the-art in all of our experiments. Our results also show

that all approaches, including ours, suffer labeling activities
with a small number of samples, as well as a decrease in
accuracy when a large unlabeled class is present. These remain
open problems that can be addressed in future works.
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