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ABSTRACT

Contention resolution addresses the problem of coordinating ac-

cess to a shared communication channel. Time is discretized into

synchronized slots, and a packet transmission can be made in any

slot. A packet is successfully sent if no other packet is also trans-

mitted during that slot. If two or more packets are sent in the same

slot, then these packets collide and fail. Listening on the channel

during a slot provides ternary feedback, indicating whether that

slot had (0) silence, (1) a successful transmission, or (2+) noise. No

other feedback or exchange of information is available to packets.

Packets are (adversarially) injected into the system over time. A

packet departs the system once it is successfully sent. The goal is

to send all packets while optimizing throughput, which is roughly

the fraction of successful slots.

Most prior contention resolution algorithms with constant

throughput require a short feedback loop, in the sense that a

packet’s sending probability in slot Ī + 1 is fully determined by its

internal state at slot Ī and the channel feedback at slot Ī . This

paper answers the question of whether these short feedback loops

are necessary; that is, how often must listening and updating occur

in order to achieve constant throughput? We can restate this

question in terms of energy e�ciency: given that both listening

and sending consume signi�cant energy, is it possible to have a

contention-resolution algorithm with ternary feedback that is

e�cient for both operations?

A shared channel can also su�er random or adversarial noise,

which causes any listener to hear noise, even when no packets are

actually sent. Such noise arises due to hardware/software failures

or malicious interference (all modeled as “jamming”), which can

have a ruinous e�ect on the throughput and energy e�ciency. How

does noise a�ect our goal of long feedback loops/energy e�ciency?
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Tying these questions together, we ask: what does a contention-

resolution algorithm have to sacri�ce to reduce channel accesses?

Must we give up on constant throughput? What about robustness

to noise? Here, we show that we need not concede anything by

presenting an algorithm with the following guarantees. Suppose

there are Ċ packets arriving over time and J jammed slots, where

the input is determined by an adaptive adversary. With high prob-

ability in Ċ + J , our algorithm guarantees Θ(1) throughput and

polylog(Ċ + J) channel accesses (sends or listens) per packet. We

also have analogous guarantees when the input stream is in�nite.
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1 INTRODUCTION

Since the 1970s, randomized backo� protocols such as binary ex-

ponential backo� [48], have been used for managing contention on

a shared communication channel. Originally used in the ALOHA

system [1] and Ethernet [48], randomized backo� plays an im-

portant role in a wide range of applications, including WiFi [35],

wireless sensor networks [39], transactional memory [34, 59], and

congestion control [62]. The salient feature of the communication

channel is that it supports only one message transmission at a time:

if more than onemessage is sent simultaneously, there is a collision

resulting in indecipherable noise [30, 31, 41, 48, 65].

This contention-resolution problem is formalized as follows.

There are Ċ packets arriving over time, and each packet needs to
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be successfully transmitted on the channel.1 Time is divided into

synchronized slots, each of which is sized to �t a single packet.

To be successfully sent, the packet requires exclusive access to the

channel that is, the packet must be the only one transmitted during

that slot. Otherwise, if two or more packets are transmitted in the

same slot, the result is a collision, where none of the transmitted

packets succeed. A packet departs the system once it is successfully

sent. There is no a priori coordinator or central authority; packet

transmissions are scheduled in a distributed manner. The objective

is to send all packets while optimizing the throughput of the

channel, which is roughly the fraction of successful slots.

A popular contention-resolution protocol is binary exponential

backo� [48] (see [3–5, 32, 32, 37, 38, 58, 60]). Informally, under

binary exponential backo�, a packet that has been in the system

for Ī slots is sent with probability Θ(1/Ī).

Feedback loops: short versus long (versus no feedback). An elegant,

but ultimately problematic, feature of classical binary exponential

backo� is that it is oblivious—packets remaining in the system do

not use channel feedback to adjust their behavior: a packet with age

Ī sends with probabilityΘ(1/Ī) until it succeeds, regardless of chan-

nel history. The unfortunate result is that with adversarial packet

arrivals, binary exponential backo� supports only a subconstant

throughput—speci�cally, ċ (1/logĊ ); in fact, even for the batch

case where all Ċ packets arrive at the same time, the throughput

of binary exponential backo� is only ċ (1/logĊ ) [8].

In contrast, contention-resolution protocols can exploit frequent

channel feedback to achieve Θ(1) throughput under adversarial

arrivals [7, 10–12, 14]. These protocols are not oblivious—packets

listen on the channel and adjust their sending probabilities up or

down based on this feedback.

The primary model for channel feedback is the

ternary-feedback model [2, 6, 10, 19–21, 28, 29, 33, 40]. In this

model, a packet can listen on the channel in each slot and learn

whether that slot is (0) empty, if no packets send, (1) successful,

if exactly one packet sends, or (2+) noisy, if two or more packets

send. Based on this ternary feedback, the packet can decide when

to attempt to send next. Once a packet succeeds, it immediately

departs the system.

Most constant-throughput algorithms with ternary-feedback

(e.g., [7, 10–12, 14, 25, 52, 55–57]) listen on the channel in every slot

(or every constant number of slots). That is, these algorithms have

a short feedback loop: a packet’s sending probability in slot Ī + 1

is fully determined by its internal state at slot Ī and the channel

feedback at slot Ī . For example, the algorithm by Chang, Jin, and

Pettie [14], listens in every slot Ī and multiplicatively updates the

sending probability in slot Ī + 1 based on whether it heard silence,

a successful transmission, or a collision in slot Ī .

A key question is as follows: how frequently does the packet need

to listen on the channel and update its behavior in order to achieve

constant throughput? In every slot? In a vanishingly small fraction of

slots? How short a feedback loop is necessary for good throughput?

1For ease of exposition, we slightly abuse terminology and have the packets themselves
taking action (e.g., sending themselves on the channel, listening on the channel), rather
than introducing “agents”/“devices”/“senders”, where each one arrives on the scene
with a packet to transmit.

As an analogy, one cannot navigate a ship without a control

feedback loop: monitoring the surroundings and correcting course.

One option is to constantly monitor and continuously update the

heading to avoid obstacles. But the analogous question is whether

one can still safely navigate with only a vanishingly small amount of

course correction. In contention resolution, themonitoring is via the

channel sensing and the course being corrected is the transmission

probabilities.

Robustness and noise. Finally, in addition to the factors discussed

above, much of the recent work on contention resolution [2, 6, 7,

10, 14, 16, 18, 36, 52, 55–57] has sought to address an additional

factor, which is that the real world is often noisy. Sometimes inter-

ference prevents transmissions in a slot and listeners hear noise

even if nobody actually sends. Noisy channels arise due to hard-

ware/software failures, co-located devices, or malicious jamming

[17, 45, 49, 53, 66]. Regardless of the source of the noise in a slot,

we may think of these slots as being “jammed” by an adversary.

Jamming has evolved from a mostly-theoretical risk into a credi-

ble threat to systems over the past decade, with several publicized

examples [23, 50, 51, 61].

After a long line of work, there are now many

contention-resolution protocols that achieve constant throughput

in the presence of noise (e.g. [7, 10, 14, 52, 55–57]); however, again,

these protocols listen to the channel in every slot and update their

sending probabilities accordingly. Our goal is to eliminate short

feedback loops not just in the classical model, but also with

jamming.

Minimizing channel accesses = energy e�ciency. Up until now,

we have discussed whether one can minimize listening and thus

avoid providing immediate feedback for a contention-resolution

algorithm. Another way of viewing this problem is through the lens

of energy e�ciency. Each channel access—whether for sending or

listening—consumes energy. Most work on contention resolution

is sending e�cient, but is not listening e�cient (e.g., [7, 10, 11,

24, 25, 36, 55–57]). That is, most protocols optimize how frequently

a packet sends, but allow a packet to listen in every slot “for free”.

In fact, both sending and listening are expensive operations (e.g.,

[26, 43, 54, 67]), and minimizing energy usage by having devices

sleep as much as possible has been a long-standing and popular

strategy to maximize the network lifetime (for example, the devel-

opment of duty-cycle protocols [44, 47, 68]). Why optimize listening

in contention resolution protocols if packets must receive messages

(for other network applications)? Informally, there are two types

of listening: listening to receive messages, and listening to execute

a contention resolution protocol (which is what enables sending

messages). To receive messages, packets do not need to listen in

every time slot; there exist methods for optimizing this �rst type of

listening. Although this is beyond the scope of this paper, as one ex-

ample, in many wireless settings, a central base station can monitor

the channel constantly and facilitate message exchange [27].

We call a protocol fully-energy e�cient if it is both sending

e�cient and listening e�cient. By de�nition, such a protocol cannot

have short feedback loops, since it can access the channel only

rarely.
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Past work: Minimizing listening by allowing for explicit synchro-

nization. Currently, the only known path to full energy e�ciency is

via explicit synchronization. This means that the model is extended

so that packets can send synchronization messages to each other

whenever they broadcast [12, 25, 46]. In [12], these synchronization

messages have size Θ(logĊ ) bits each, which means that an arbi-

trary polynomial amount of communication can be expressed in

a slot. In [25, 46], the synchronization messages are smaller (ċ (1)

bits), but some packets are permitted to stick around as “Good

Samaritans” in order to serve as long-term coordinators (that send

many messages via many broadcasts).

Using Θ(logĊ )-bit synchronization messages, Bender,

Kopelowitz, Pettie, and Young [12] give an algorithm with Θ(1)

throughput and expected ċ (log(log∗ Ċ )) channel accesses per

packet. Using Good-Samaritan packets, De Marco and

Stachowiak [25] and De Marco, Kowalski, and Stachowiak [46]

provide a constant-throughput algorithm that is sending e�cient

(ċ (logĊ ) transmissions per packet) and conjecture that their

techniques can be extended to achieve fully energy e�ciency

(ċ (polylogĊ ) channel accesses per packet), with high probability

and even without collision detection.

In all of these cases, even with the help of explicit synchroniza-

tion, it remains open whether one can achieve such results in the

presence of adversarial noise. Indeed, noise has the potential to

be extra-problematic for energy-e�cient algorithms since these

algorithms listen to the channel less frequently and can potentially

be thrown o� by a small amount of well-placed noise.

This paper. We show that it is indeed possible to achieve con-

stant throughput with full energy e�ciency while being robust

to adversarial noise. Moreover, these results hold in the standard

ternary-feedback model, without requiring the addition of any sort

of explicit synchronization.

Our algorithm belongs to a natural family of multiplicative-

weight-update algorithms (e.g., [7, 14, 52, 55–57]). When a packet

hears silence, it multiplicatively increases both its listening and

sending probabilities. Conversely, when a packet hears noise, it

multiplicatively decreases these probabilities. There are no control

messages, no Good Samaritan packets, and no leaders elected.

What makes our algorithm/analysis interesting is that we are

able to support a multiplicative-weight-update framework while

having each packet ‘cover its eyes’ almost all of the time. This is

in stark contrast to prior constant-throughput algorithms, which

adjust sending probabilities in every slot. Because each packet

listens to so few slots, the di�erent packets that are in the system

at the same time may end up with very di�erent perspectives on

the world from each other. In order to analyze the ‘herd behavior’

of the packets in this potentially chaotic setting, substantially new

techniques end up being required. These techniques are also what

allow us to handle the additional chaos that adversarial jamming

adds to the system.

1.1 Model

A �nite or in�nite stream of indistinguishable packets arrives over

time; the number of arrivals is unknown to the algorithm. Each

packet must be sent on themultiple-access channel. Time is di-

vided into synchronized slots, each of which is su�ciently large

to send a single packet. An adversary (speci�ed below) controls

how many packets are injected into the system in each slot. When

a packet successfully transmits, it departs the system. There is no

universal numbering scheme for the slots; that is, there is no global

clock from which a packet could infer the system lifetime or slot

parity. Additionally, the packets do not receive any additional in-

formation about how many packets have arrived or will arrive.

Instead, packets only receive information through the ternary feed-

back model.

We now describe the ternary feedback model. Initially, we will

de�ne the model without jamming. In each time slot, each packet

in the system can take one of three actions: (i) sleep, (ii) send, or

(iii) listen to the channel. Packets that take actions (ii) or (iii) are

said to access the channel. If no packets choose to send during a

slot, then that (non-jammed) slot is empty/silent; if exactly one

packet sends, then that (non-jammed) slot is full and successful;

if two or more packets send, then that slot is full and noisy. A

packet that listens during a slot (action iii) learns whether the slot

was (0) empty, (1) successful, or (2+) noisy. A packet that sleeps

during a slot (action i) learns nothing about the state of the slot.

A packet that sends (action ii), either transmits successfully and

leaves the system, or collides and remains in the system.2

We now add jamming to the picture; an adversary determines

which slots are jammed. To jam a particular slot, the adversary

broadcasts noise into that slot. All jammed slots are thus full and

noisy. A packet that listens in a jammed slot hears that the slot was

noisy, but does not know whether that noise came from jamming

or was merely a collision between two or more packets. A packet

that sends during a jammed slot collides and thus remains in the

system.

An adversary determines, for each slot Ī , how many packets to

inject in slot Ī and whether to jam in that slot. This paper considers

an adaptive adversary, which bases its decision on the entire state

of the system so far, i.e., up to the end of slot Ī − 1, but not the

outcomes of future coin tosses. Thus, if at slot Ī , a packet Ħ decides

whether to send based on a coin �ip, the adaptive adversary does

not get to see that coin �ip until after slot Ī .

A basic metric: (overall) throughput. The main objective of con-

tention resolution is to optimize throughput, de�ned next. A slot

is active if at least one packet is in the system during that slot;

inactive slots can be ignored in our analysis. Without loss of gen-

erality, assume throughout that the �rst slot is active. Without

jamming, the throughput at time Ī is de�ned as ĐĪ/ďĪ , where ĐĪ
is the number of successful transmissions during slots 1, 2, . . . , Ī ,

and ďĪ is the number of active slots in the same time interval.3 On

a �nite input, the (overall) throughput is de�ned with respect to

the �nal active slot Ī ; at this point, the overall throughput is Ċ /ď ,

where Ċ = ĐĪ is the total number of packets and ď = ďĪ is the total

number of active slots. Overall throughput is not well-de�ned on

an in�nite execution.

2For ease of presentation, in our algorithms, we say that a packet can listen and send
simultaneously, but any packet that is sending actually does not need to listen to
determine the state of the channel. If the packet is still in the system after sending in
slot Ī , then slot Ī was noisy.
3By assumption that the �rst slot is active, we have ďĪ g 1 and hence throughput is
always well de�ned.
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A de�ciency of the throughput metric (when de�ned naïvely)

is that even if an algorithm guarantees Θ(1) overall throughput,

it is not possible to achieve Θ(1) throughput uniformly across

time. For example, if there is a burst of Ċ packets at time 0, and

Ċ is unknown to the algorithm, then the throughput will be 0

for a superconstant number of slots (e.g., see [15, 64]), and this

is provably unavoidable regardless of the backo� strategy being

used. Thus (overall) throughput is only meaningful at the end of

the execution, or at points in time where there are no packets in

the system.

A stronger metric: implicit throughput [11]. In order to support

a meaningful notion of throughput, even at intermediate points

in time, Bender, Kopelowitz, Kuszmaul, and Pettie [11] propose a

re�ned de�nition that they term “implicit throughput” [11]. The

implicit throughput at time Ī is de�ned as ĊĪ/ďĪ , where ĊĪ is

the total number of packets that arrive at or before time Ī and ďĪ is

the total number of active slots so far.4

One perspective on implicit throughput is that it is an analyti-

cal tool. Indeed, whenever we reach a point in time where overall

throughput is meaningful (i.e., there are no packets left in the sys-

tem), the two metrics become provably equal. This includes both

at the end of any �nite execution or during quiet periods of in-

�nite executions. Another perspective on implicit throughput is

that it is a stronger metric that o�ers a meaningful guarantee even

at intermediate points in time: what constant implicit throughput

means is that the number of active slots used so far should never be

asymptotically larger than the number of packets that have arrived.

Throughout the rest of the paper, we focus exclusively on implicit

throughput. We should emphasize, however, that this only makes

our results stronger—the results also imply the standard constant-

throughput guarantees that one would normally strive for.

Extending to adversarial jamming. We next extend the de�nitions

of throughput and implicit throughput for the case of jamming

following [10]. An algorithm wastes a slot if that slot has silence

or a collision, and throughput measures the fraction of slots that

the algorithm could have used but instead wasted. Let JĪ denote

the number of jammed slots through slot Ī . Then, the throughput

of an execution ending at time Ī is de�ned to be (ĐĪ + JĪ )/ďĪ , and

the implicit throughput at slot Ī is de�ned to be (ĊĪ + JĪ )/ďĪ .

Some useful properties of implicit throughput, and applications to

adversarial queuing theory. We conclude the section by summariz-

ing several useful properties of implicit throughput.

Observation 1 ([11]). Consider any inactive slot Ī , i.e., where there

are no active packets in the system. Then the implicit throughput and

throughput are the same at slot Ī .

Observation 2 ([11]). Let ą be any lower bound on the implicit

throughput of an algorithm; that is, suppose the algorithm achieves

implicit throughput of at least ą at all times. Let ĊĪ and ďĪ denote

the total number of packet arrivals and active slots, respectively, at or

before time Ī . Then ďĪ f ĊĪ/ą . Consequently:

4Notice that while ĊĪ depends on the adversary, the number of active slots depends
on the algorithm, whose goal it is to make slots inactive by completing packets.

• Overall throughput. Suppose that there are a total of Ċ g 1

packet arrivals. Then the total number of active slots is at most

Ċ /ą , and hence the overall throughput is at least ą .

• Backlog reprieve. If ĊĪ < ąĪ , then there exists an inactive slot

Ī ′ f Ī . Thus, all packets that arrived before Ī ′ have completed

before Ī ′, and hence the throughput at time Ī ′ is at least ą .

Finally, we observe that there are several natural settings in

which implicit-throughput guarantees directly imply strong guar-

antees on packet backlog, even for in�nite input sequences. Suppose,

in particular, that packets arrive according to adversarial queuing

theory, which parameterizes the “burstiness” of packet-arrival in

in�nite streams. In adversarial queuing theory [8, 13, 19, 22], the ad-

versary is restricted from injecting too many packets/jammed slots

over a set of consecutive slots of length ď , where ď is a parameter

of the model that we refer to as the granularity. For granularity ď ,

the number of packet arrivals plus the number of jammed slots is

limited to Čď , where the arrival rate Č is a constant less than one.

On the other hand, how the packet arrivals are distributed within

each ď-sized window is adversarial: no restrictions are placed on

how the (at most) Čď packets and jammed slots are distributed. By

showing that the implicit throughput of all active slots is ¬(1),

we obtain as a corollary a strong bound of ċ (ď) on the number

of packets backlogged in the system at all times, as long as Č is a

su�ciently small constant.

1.2 Main results

We present an algorithm that with high-probability guarantees

¬(1) implicit throughput in all active slots and full energy e�-

ciency. Thus, we resolve two open questions in contention resolu-

tion: First, we show that full-energy e�ciency is feasible, even with

only ternary feedback. Second, we show that these guarantees are

achievable, even in the presence of adversarial jamming.

Our algorithm relies on the natural multiplicative-weight ap-

proach to backo�—with a careful choice of probabilities and up-

dates rules. In contrast to some previous approaches, we do not

rely on packet batching (to turn the online problem into a series of

batch problems), leader election, busy tones, population estimation,

dividing the channel into simulated subchannels (e.g., odd and even

slots) for packet coordination, or other approaches seen in many

modern algorithms; alas, these seem problematic in our setting.

Given the simplicity of our algorithm, the technical innovation

lies in choosing the update parameters, analyzing the underlying

combinatorial process, and proving that it is fast, robust, and fully

energy e�cient.

Our algorithm Low-Sensing Backoff guarantees the main the-

orems below.5

Theorem 3 (Implicit throughput, in�nite packet streams).

At the Ī-th active slot, the implicit throughput is ¬(1) w.h.p. in Ī .

Corollary 4 (Throughput, �nite packet streams). Consider an

input stream of Ċ packets with J jammed slots. The throughput for

the execution is Θ(1) w.h.p. in Ċ + J .

Corollary 5 (Bounded backlog for adversarial-queuing

arrivals). Consider adversarial-queuing-theory arrivals with a

5An event occurs with high probability (w.h.p.) in Į if for any �xed constant ę g 1,
the probability of the event is at least 1 − Į−ę .
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su�ciently small constant arrival-rate Č and granularity ď ; i.e., in

any interval of length ď , the total number of packet arrivals and

jammed slots is at most Čď . Then, for any given slot Ī , the number of

packets currently in the system is at most ċ (ď) w.h.p. in ď .

Theorem 6 (Energy, �nite executions). Consider a �nite execu-

tion with Ċ total packet arrivals and J total jammed slots against an

adaptive adversary. Any given packet accesses the channelċ (polylog

(Ċ + J)) times w.h.p. in Ċ + J .

Theorem 7 (Energy, adversarial queuing). Consider a (�nite

or in�nite) packet stream with adversarial-queuing arrivals with

granularity ď andwhere the arrival rate is a su�ciently small constant.

Then any given packet accesses the channel ċ (polylog(ď)) times

w.h.p. in ď against an adaptive adversary.

Theorem 8 (Energy, in�nite executions). Consider an in�nite

packet stream, and let ĊĪ and JĪ denote the number of arrivals and

jammed slots, respectively, up until time Ī against an adaptive adver-

sary. Then any given packet accesses the channelċ (polylog(ĊĪ +JĪ ))

times before time Ī , w.h.p. in ĊĪ + JĪ .

Theorem 3 is proved in Section 5.5 where it appears as Corollary

30. Corollary 5 corresponds to Corollary 33. The remaining theo-

rems are proved in Section 5.6. In particular, Theorem 6 corresponds

to Theorem 34, and Theorem 7 corresponds to Theorem 36. Finally,

Theorem 8 is included in Theorem 38. The details of these results

are presented in the full version of our paper [9].

1.3 Extensions to Reactive Adversary

A reactive adversary [40, 56, 63] has an instantaneous reaction

time; that is, this adversary listens to the channel and can decide

whether to jam and/or inject new packet(s) in slot Ī based on what

it hears in slot Ī itself. In contrast, the standard adaptive adversary

would not know whether any packet chooses to send in slot Ī until

slot Ī + 1. This allows a reactive adversary to cheaply prevent any

particular packet Ħ from transmitting successfully by jamming only

those slots where Ħ makes transmission attempts. Thus, against a

reactive adversary, the total number of channel accesses required is

at least linear in the amount of jamming. For exponential backo�,

the situation is more dire: for any Đ a reactive adversary can also

drive the throughput down to ċ (1/Đ ) by jamming a single packet

a mere Θ(logĐ ) times.

Note that reactivity and adaptivity are somewhat orthogonal.

Reactivity addresses how quickly the adversary can react to the

detectable channel state—importantly, only sending is revealed,

since it is detectable. In contrast, an adaptive adversary knows

all of the internal state and random choices of packets up to the

previous slot, and in particular this adversary also knows if packets

choose to listen.

In addition to our main results on purely adaptive adversaries,

we also address an adversary that is both adaptive and reactive. It

turns out that the reactive adversary does not impact our implicit-

throughput bounds for our algorithm (our analysis applies whether

or not the adversary can see the channel activity at the current

time). Reactivity thus only impacts the number of channel accesses.

Roughly speaking, the theorem states that the reactive adversary

has nontrivial impact on the worst-case number of channel accesses

Low-Sensing Backoff for packet ī

Key Variables:

• ĭī (Ī): window size of ī in slot Ī .

If ī is injected at time slot Ī , thenĭī (Ī) = ĭmin.

• ę: a su�ciently large positive constant.

In every slot Ī , packet ī executes the following four steps

with probability
ę ln3 (ĭī (Ī ))

ĭī (Ī )
:

• Listen

• Send with probability
1

ę ln3 (ĭī (Ī))
• If ī heard a silent slot, then

ĭī (Ī + 1) ← max

{

ĭī (Ī )

1 + 1/(ę ln(ĭī (Ī )))
, ĭmin

}

• If ī heard a noisy slot, then

ĭī (Ī + 1) ← ĭī (Ī) ·

(

1 +
1

ę ln(ĭī (Ī ))

)

Figure 1: Low-Sensing Backoff algorithm.

and thus energy, which is to be expected, but it does not have

signi�cant impact on the average.

Theorem 9 (Energy, reactive adversary). The following apply

to a reactive and adaptive adversary.

(1) Finite streams. Consider a �nite execution with Ċ total packet

arrivals and J total jammed slots. Any given packet accesses the

channel ċ ((J + 1) polylog(Ċ )) times w.h.p. in Ċ + J . More-

over, the average number of channel accesses is only ċ ((J/Ċ +

1) polylog(Ċ + J)) times w.h.p. in Ċ + J .

(2) Adversarial queuing. Consider a (�nite or in�nite) packet

stream with adversarial-queuing arrivals with granularity ď and

where the arrival rate is a su�ciently small constant. Then any

given packet accesses the channel at most ċ (ď) times, w.h.p.

in ď . In addition, the average number of accesses per slot is

ċ (polylog(ď)), w.h.p. in ď .

(3) In�nite executions. Consider an in�nite packet stream, and

let ĊĪ and JĪ denote the number of arrivals and jammed slots,

respectively, up until time Ī . Then any given packet accesses the

channelċ ((JĪ + 1) polylog(ĊĪ + JĪ )) times before time Ī , w.h.p.

in ĊĪ + JĪ . Moreover, the average number of channel accesses is

ċ ((JĪ/ĊĪ + 1) polylog(ĊĪ + JĪ )).

The items of Theorem 9 are each proved separately as Theo-

rems 35, 37, and 38 in Section 5.6 of our full paper [9].

2 LOW-SENSING BACKOFF ALGORITHM

This section presents the Low-Sensing Backoff algorithm; see

Figure 1. For ease of presentation, we describe our algorithm as

listening whenever it sends. However, the packet need not actually

do both; observe that any packet that is sending does not need to

listen to determine the state of the channel, since if the packet is

still in the system after sending in slot Ī , then slot Ī was noisy.

The probabilities for sending and listening in Low-Sensing

Backoff are determined by a single parameter, which we call
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packet ī’s window size. Let ĭī (Ī) denote packet ī’s window

size at time slot Ī . When ī is injected into the system, its win-

dow size is set to the minimum allowed value: ĭmin g 2. Let ę

be a su�ciently large positive constant. The sending and listen-

ing rules are as follows. First, packet ī listens with probability

ę ln3 (ĭī (Ī)) /ĭī (Ī). Then, conditioned on listening, ī sends with

probability 1/(ę ln3 (ĭī (Ī))).

A packet ī only has the option to change its window size when

it accesses the channel. Speci�cally, if at time Ī , packet ī listens to

the channel and learns that the slot Ī is busy, then the window size

increases (or backs o�) by a backo� factor of 1 + 1/(ę ln(ĭī (Ī )));

that is, ĭī (Ī + 1) ← ĭī (Ī) (1 + 1/(ę ln(ĭī (Ī)))). Similarly, if at

time Ī , packet ī accesses the channel and learns that the slot Ī is

empty, then the window size shrinks (or backs on) by a backon

factor of 1+ 1/ę ln(ĭī (Ī)), or until it gets back down toĭmin, that

is,ĭī (Ī + 1) ← max {ĭī (Ī)/(1 + 1/(ę lnĭī (Ī))), ĭmin}.

3 TECHNICAL OVERVIEW

This section gives a technical overview. In Section 3.1, we intro-

duce the notion of contention. In Section 3.2, we introduce our

potential function ¨(Ī). Section 3.3 gives the main structure of

our analysis in terms of intervals. Finally, Section 3.4 provides a

synopsis of the main analytical results achieved and how they are

deployed to make progress towards our main results (Section 1.2).

That is, we describe the main point of each of the technical sections;

namely, Sections 5.1–5.6, which are available in the full version of

our paper [9].

3.1 Contention

For any slot Ī , we de�ne the contention ÿ (Ī) =
∑

ī 1/ĭī (Ī) to be

the sum of the sending probabilities in that slot, i.e., the expected

number of packets that attempt to send during that slot. We say

contention is high when ÿ (Ī) > ÿhigh, where ÿhigh> 1 is some

�xed positive constant. Conversely, we say that contention is low

when ÿ (Ī) < ÿlow, where we de�ne ÿlow to be some �xed positive

constant such that ÿlow f 1/ĭmin. Otherwise, if contention is in

[ÿlow,ÿhigh], then we say that contention is good.

3.2 Our potential function

Throughout the execution of Low-Sensing Backoff, we maintain

a potential function ¨(Ī) that captures the state of the system at

time Ī and measures the progress toward delivering all packets.

When a slot Ī is inactive, ¨(Ī) = 0. We will see that packet arrivals

increase¨(Ī) byΘ(1) per newly arrived packet, that packets exiting

the system successfully decrease ¨(Ī) by Θ(1) per packet, that a

jammed slot increases ¨(Ī) by ċ (1), and that on average each slot

decreases the potential by Θ(1), ignoring newly arrived packets.

For any slot Ī , Ċ (Ī) is the number of packets in the system,

ĭī (Ī) is ī’s window size,ĭmax(Ī) is the largest window size over

all packets, and ÿ1, ÿ2, and ÿ3 are positive constants. Our potential

function consists of three terms. Implicitly, the third term is 0 if

there are no packets in the system (and thusĭmax (Ī) = 0):

¨(Ī) = Ă1Ċ (Ī) + Ă2

∑

ī

1

ln(ĭī (Ī))
+ Ă3

ĭmax (Ī)

ln2 (ĭmax (Ī))
.

We abbreviate ¨(Ī) as:

¨(Ī) = Ă1Ċ (Ī) + Ă2Ą (Ī) + Ă3Ĉ(Ī),

where Ă1, Ă2, and Ă3 may be set so that ¨(Ī) will decrease as time

progresses for all values of contentionÿ (Ī). The notation Ą (Ī) and

Ĉ(Ī) is used to highlight that these terms capture the impact on ¨

from high contention and low contention, respectively.

Why these terms? There are three main features of the state of

the system that are captured by the potential function: the number

of packets, the contention, and the size of the windows. (Note

that these are not independent, as larger windows correspond to

lower contention.) Roughly speaking, when there are many active

packets, potential should be high, and when there are no packets,

the potential should be 0. The Ċ (Ī) term captures this idea directly

by counting the number of packets.

TheĄ (Ī) term is chosen so that the expected change toĄ (Ī) in a

slot is proportional to the contention. When the contention is high

(and the slot is most likely to have a collision), in expectation Ą (Ī)

decreases proportional to the contention (due to the update rule on

noisy slots). On the other hand, when the contention is low (and the

slot is most likely to have silence), Ą (Ī) increases proportional to

the contention. Overall, this is pretty great: when contention is high,

Ą (Ī) is likely to decrease by a lot. When contention is low, there is

a small expected increase, but that increase is counterbalanced by

the (small) expected number of packet successes re�ected in Ċ (Ī).

Choosing Ă1 > Ă2 makes the net e�ect a decrease.

Finally, the Ĉ(Ī) term allows us to cope with the situation that

the contention is low but some packets in the system have large

windows (e.g., there is a single packet with a very large window).

As it is likely to take a long time for the packet to succeed, the

potential should be high. Ĉ(Ī) is roughly the expected time for

a packet with window ĭmax (Ī) to decrease its window size to a

constant if all slots are silent. The analysis then needs to show that

any increases to Ĉ(Ī) are counterbalanced by decreases in the other

terms, ensured by Ă1 > Ă2 > Ă3.

Challenge with Ĉ(Ī). The Ċ (Ī) and Ą (Ī) terms are well-behaved

in the sense that they change on a per-slot basis, while the Ĉ(Ī) term

cannot. To see why, consider the case that several packets with

window size ĭmax (Ī) remain. The Ĉ(Ī) term only decreases after

all of those packets have chosen to listen and observed silence. On

any step that multiple such packets remain, it is extremely unlikely

that all of the packets choose to listen. Thus, Ĉ(Ī) does not decrease

by a constant in expectation. Instead, we need a coarser granularity

to understand the behavior of Ĉ(Ī).

3.3 Analyzing intervals

Our analysis divides the execution into disjoint intervals of time.

The �rst interval starts at the �rst step with an active packet. An

interval starting at time Ī has size ă = (1/ęă )max{Ĉ(Ī),
√

Ċ (Ī)},

where ęă is a constant. If any active packets remain, the next interval

starts immediately after the previous interval ends. (Otherwise, an

interval begins the next time there is an active packet.)

A key technical theorem is the following. Let A and J denote

the number of arrivals and jammed slots, respectively, in the size-

ă interval. For A = J = 0, the lemma states that the potential

decreases by ¬(ă) across the interval, with high probability in ă ,
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meaning a decrease of ¬(1) per slot. For generalA,J , the potential

decreases by ¬(ă) −ċ (A + J).

Theorem 27 (Decrease in Ā(Ī) over interval I w.h.p. in |I|).

Consider an interval I starting at Ī of length |I | = ă = (1/ęă ) ·

max
{ ĭmax (Ī )

ln2 (ĭmax (Ī ))
, Ċ (Ī)1/2

}

. Let A and J be the number of packet

arrivals and jammed slots inI. With high probability in ă ,¨ decreases

over I by at least ¬(ă) −ċ (A + J). That is,

Pr
[

(¨(Ī ′) − ¨(Ī)) g Θ(A + J) − ¬(ă)
]

f (1/ă)Θ(1) .

Our proof of Theorem 27 is broken into several lemmas according

to the level of contention. Speci�cally, we have separate cases for

high contention, good contention, and low contention. In each of

the cases, absent arrivals and jamming, we argue that there is a net

decrease in potential, with high probability, but the contributing

term is di�erent in each case. The interplay between Ċ (Ī) andĄ (Ī)

is tight enough that we analyze the net e�ect on the sum of these

terms together, but we analyze Ĉ(Ī) separately. A more detailed

summary is provided next in Section 3.4.

A signi�cant complication is that (1) the probability stated in

Theorem 27 depends on the size of the interval, and (2) the interval

sizes are determined adaptively by actions of the adversary. To

analyze the full process, we model an execution as a speci�c biased

random walk that we set up as a betting game (Section 5.5). The

bounds provided by the betting game translate into high-probability

bounds with respect to the total number of packets.

Throughout the paper, standard Cherno� bounds sometimes

cannot be used for two reasons. First the adversary can adaptively

in�uence the length of an interval. Moreover within each interval,

the adversary can in�uence which slots are high, low, and good

contention. To be able to analyze these slots separately, we must in-

stead apply a generalization of Azuma’s inequality (see Theorems 13

and 14 in Section 5.1, taken from [42]) that gives us Cherno�-like

bounds but with adaptively chosen probability distributions.

Finally, good upper bounds for ¨(Ī) enable us to characterize

the (implicit and standard) throughput and energy consumption of

Low-Sensing Backoff in all its variety of settings (�nite versus in-

�nite executions, arbitrary in�nite versus in�nite with adversarial-

queuing arrivals, adaptive adversaries that are reactive versus non-

reactive). The most direct application of ¨(Ī) is to bound implicit

throughput. ¨(Ī) also gives us an upper bound on the maximum

window size ĭmax (Ī), speci�cally, ĭmax (Ī) = ċ
(

¨(Ī) log2 (¨(Ī))
)

,

which we use to prove energy bounds in Section 5.6.

3.4 Proof organization

The main analysis in this paper, including all of the proofs, appears

in Section 5 in our Appendix, which is available in the full ver-

sion of our paper [9]. This section summarizes the proof structure,

highlighting the key lemma statements.

Overview of Section 5.1. Preliminaries. This section lists several

well-known inequalities that are used throughout our analysis.

We review bounds on the probability that a slot is noisy, empty,

or contains a successful transmission as a function of contention

(Lemmas 10, 11 and 12). The lemmas in this section allow us to imme-

diately obtain constant bounds on the probabilities of empty slots,

successful slots, and noisy slots in di�erent contention regimes.

Theorems 13 and 14 give upper and lower bounds for the sum

of random variables, where the distribution of each subsequent

random variable is determined by an adaptive adversary. This ad-

versarial, multiplicative version of Azuma’s inequality is a powerful

tool from [42] that allows us to analyze the performance of our

algorithm in situations where a simpler Cherno�-bound-style ar-

gument does not appear to work, given the adaptive nature of our

adversary.

Overview of Section 5.2. Ċ (Ī) +Ą (Ī): over single slots and intervals,

when contention is low, high, and good. This section addresses the be-

havior of Ċ (Ī) andĄ (Ī). When contention is high, we expect to see

a decrease in Ą (Ī), which should be large enough that its reduction

outweighs any increase from Ĉ(Ī), and thus ¨(Ī) decreases.

Lemma 18 shows how much Ą (Ī) changes as a result of a spe-

ci�c packet listening during a slot Ī—that is, how much Ą (Ī) in-

creases when the slot is silent and decreases when the slot is noisy.

Lemma 19 analyzes the change to Ċ (Ī) + Ą (Ī) due to the low and

good contention slots in an arbitrary interval. We highlight that the

adaptive adversary exerts some control over which slots have low

and good contention, since it can inject packets and/or jam in slot

Ī +1 based on the packets’ random choices in slot Ī . In particular, let

|G| denote the number of good slots in the interval, then Lemma 19

shows the following. Over good-contention slots, Ċ (Ī) + Ą (Ī) de-

creases by ¬( |G|), minus the number of packet injections, jammed

slots, and a polylog term in the length of the interval, w.h.p. in the

interval length. Lemma 19 also shows that over the low-contention

slots, Ċ (Ī) + Ą (Ī) increases by at most the number of packet injec-

tions, jammed slots, and a polylog term in the length of the interval,

again w.h.p. in the interval length.

Lemma 18 (Increase/decrease in Ą (Ī) due to a silent/noisy

slot). When packet ī listens to a silent slot Ī , Ą (Ī) increases by

Θ
( 1
ę ln3 ĭī

)

due to packet ī. When a packet ī listens to a noisy slot,

Ą (Ī) decreases by Θ
( 1
ę ln3 ĭī

)

due to packet ī.

Lemma 19 (Net delta in contribution of Ċ (Ī) and Ą (Ī) to po-

tential over low and good contention slots). Let I be an arbi-

trary interval starting at time Ī with length |I | = ă . Let L be the set

of slots in I during which ÿ (Ī) f ÿlow. Let G be the set of slots in I

during whichÿ (Ī) > ÿlow andÿ (Ī) f ÿhigh. LetAL be the number

of packet arrivals in time slots in L. LetAG be the number of packet

arrivals in time slots in G. Let JL be the number of jammed slots in

L. Let JG be the number of jammed slots in G. De�ne:

• the net delta over L to be the sum of the changes in Ċ (Ī) and

Ą (Ī) during the slots in L, i.e.,
∑

Ī ′∈L

(

Ă1
(

Ċ (Ī ′ + 1) − Ċ (Ī ′)
)

+ Ă2
(

Ą (Ī ′ + 1) − Ą (Ī ′)
)

)

.

• the net delta over G to be the sum of the changes in Ċ (Ī) and

Ą (Ī) during the slots in G, i.e.,
∑

Ī ′∈G

(

Ă1
(

Ċ (Ī ′ + 1) − Ċ (Ī ′)
)

+ Ă2
(

Ą (Ī ′ + 1) − Ą (Ī ′)
)

)

.

Then, for proper choices of Ă1 and Ă2:

• The net delta over L is at mostċ (ln2 ă) +Ă1 (AL +JL) w.h.p.

in ă .
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• The net delta over G is at most ċ (ln2 ă) + Ă1 (AG + JG) −

¬( |G|) w.h.p. in ă .

Lemma 20 provides a symmetric high-probability bound on

Ċ (Ī) + Ą (Ī) over the high-contention slots in an arbitrary inter-

val. For the high-probability bound, in this case, we have that

Ċ (Ī) + Ą (Ī) will decrease by ¬( |H |), where |H | is the number

of high-contention slots, up to the usual additional terms of jam-

ming, packet injections, and a polylog term in terms of the interval

length.

Lemma 20 (Net delta in contribution of Ċ (Ī) and Ą (Ī) to po-

tential over high contention slots). Let I be an arbitrary inter-

val starting at time Ī with length |ą | = ă . LetH be the set of slots in I

during whichÿ (Ī) > ÿhigh. LetAH be the number of packet arrivals

in time slots inH , and let JH be the number of jammed slots inH ,

De�ne the net delta over H to be the sum of the changes in Ċ

and Ą during the slots inH , i.e.,
∑

Ī ′∈H

(

Ă1
(

Ċ (Ī ′ + 1) − Ċ (Ī ′)
)

+ Ă2
(

Ą (Ī ′ + 1) − Ą (Ī ′)
)

)

.

Then the net delta over H is at most ċ (ln3 ă) + Ă1AH − ¬( |H |)

w.h.p. in ă .

It is worth noting that the proofs of Lemmas 19 and 20 are tech-

nically involved. One of the reasons for this is that these lemmas

contain our main applications of Theorems 13 and 14. This is neces-

sary because the potential-function terms behave very di�erently in

the three contention regimes—and because the adaptive adversary

has the ability to change the contention in a slot on the �y.

Lemma 21 then collates Lemmas 19 and 20 to show that over an

arbitrary interval of length ă , it is either the case that almost all of

the slots are low contention slots, or the �rst two terms decrease by

¬(ă) with high probability (again, up to terms for packet insertions

and jamming). Lemma 21 considers all slots, rather than only those

of a particular contention regime. This lemma is the only one from

this subsection that will be used later in the analysis, but the earlier

lemmas in the subsection are necessary to build up to it.

Lemma 21 (Unless most slots have low contention,

ÿ1Ċ (Ī) + ÿ2Ą (Ī) decreases). Let I be an arbitrary interval of

length ă > ¬(1) with A packet arrivals and J jammed slots. With

high probability in ă , at least one of the following two conditions

holds:

• Less than 1/10 of slots satisfy ÿ (Ī) g ÿlow.

• Ă1Ċ (Ī) + Ă2Ą (Ī) decreases by ¬(ă) −ċ (A + J) over I.

Additionally, Ă1Ċ (Ī) +Ă2Ą (Ī) increases by at mostċ (ln3 ă +A+J)

w.h.p. in ă .

Overview of Section 5.3. Amortized behavior of Ĉ(Ī). This section

analyzes Ĉ(Ī)’s behavior over intervals of length |I | = ă = (1/ęă ) ·

max{
ĭmax (Ī )

ln2 (ĭmax (Ī ))
, Ċ (Ī)1/2}. The two main things that we want to

show are that Ĉ(Ī) does not increase by much, regardless of the

contention regime, and that when there are many low-contention

slots, Ĉ(Ī) exhibits a substantial decrease.

Lemma 24 argues that a packet with large-enough window size

is unlikely to have its window change by much during the interval.

This lemma is instrumental when considering packets across an

interval (notably in the proof of Lemma 26) as it means that their

probability of listening also does not change by much.

Lemma 25 provides one of the main results of the section: a tail

bound, and hence also a high probability bound, on how much Ĉ

increases over the interval regardless of contention. The proofs for

both Lemmas 24 and 25 amount to arguing that an individual packet

is unlikely to listen to the channel too many times, which means

that its window size also cannot change by very much. Because we

are pessimistically counting the number of listens, the actual state

of the channel does not appear in the proofs, and thus the number

of jammed slots is irrelevant.

Lemma 24 (Bounds on the factor that a large window can

grow/shrink). Consider any packet during an interval I with ă =

|I |. Let Ė satisfy Ė/ln2 (Ė ) = ă . And letē g ĭmin be the initial

size of the packet’s window. Letē − be the smallest window size the

packet has while still active in the interval, and letē + be the biggest

window size the packet achieves during the interval. Then for large

enough choice of constantsĭmin and ę and any constant parameter

Ą > 0 and ġ g 2:

Ifē = Θ(ġĖ ), then

Pr
[

ē + g ěĄē or ē − <ē /ěĄ
]

f 1/ăΘ(ęĄ lg(Ąġ)) .

Lemma 25 (Tail bound on increase in Ĉ(Ī)). Consider an inter-

val I with length ă = |I | starting from time Ī and ending at time

Ī ′ = Ī + ă . LetA be the number arrivals during the interval. Then for

for large-enough constant ę in the algorithm and any ġ g 2:

Pr
[

Ĉ(Ī ′) g Θ(A + ġă)
]

f 2−Θ(ę (lgă ·lgġ+lg
2 ġ)) .

Lemma 26 is the other main result of the section. This lemma says

that as long as most slots have low contention, then Ĉ decreases by

¬(ă), minus the number of packet arrivals and jammed slots. The

proof focuses on packets with large windows, i.e., window closes

toĭmax (Ī). The main idea of the proof is to give a high-probability

lower bound on the number of times each such packet listens and

hears silence as well as an upper bound on how many times the

packet listens and hears noise. As long as the former is larger by a

constant factor, the packet is likely to decreases its window size by

a constant factor. Taking a union bound across packets is enough

to conclude that all packets with large windows have their window

sizes decrease, with high probability.

Lemma 26 (Mostly low contention implies decrease in Ĉ(Ī)).

Consider an interval I starting at Ī of length ă , where ă = (1/ęă )

max
{

Ĉ(Ī),
√

Ċ (Ī)
}

. Let Ī1 = Ī + ă , and let A and J denote the

number of packet arrivals and jammed slots, respectively, over I.

Then, with high probability in ă , either

• Ĉ(Ī1) f Ĉ(Ī)/Ě +ċ (A), where Ě > 1 is a constant, or

• At least a 1/10-fraction of the slots Ī ′ in the interval I are

either jammed or have contention ÿ (Ī ′) g ÿlow.

Incorporating the fact that ă g Ĉ(Ī)/ęă , it follows that if at least a

9/10 fraction of slots in the interval have contention at most ÿlow,

then (Ĉ(Ī1) − Ĉ(Ī)) f ċ (A + J) − ¬(ă).

Overview of Section 5.4. Combining the analyses of Ċ (Ī), Ą (Ī),

and Ĉ(Ī), to analyze ¨(Ī). This section combines all three terms of

the potential function to characterize the overall behavior of ¨(Ī).

The key tools established in this section are Theorem 27 (stated
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previously in Section 3.3) and Theorem 28, which allow us to argue

that the potential will decrease (most of the time) and that, when

this fails to occur, the amount by which it increases is bounded.

Speci�cally, consider a size-ă interval with A packet arrivals and

J jammed slots. Theorem 27 shows that ¨(Ī) decreases by ¬(ă) −

ċ (A + J) w.h.p. in ă . Theorem 28 establishes tail bounds, proving

that even when the high-probability bound of Theorem 27 fails, the

probability that ¨(Ī) increases by more than ġă2 + ċ (A + J) is

less than 1
poly(ă)

· (1/2)Θ(log
2 ġ) .

Theorems 27 and 28 are the tools needed to �t our betting game,

descussed next and in Section 5.5, and thereby argue that the po-

tential is likely to decrease su�ciently across multiple intervals.

Theorem 28 (Tail bound on increase in Ā(Ī) over interval I).

Consider an interval I of length |I | = ă starting at time Ī and ending

at time Ī ′. Let A be the number of packet arrivals in I. Then the

probability that ¨ increases by at least Θ(A) + Θ(ġă2) is at most

2−Θ(ę (lgă ·lgġ+lg
2 ġ)) f (1/ăΘ(ę) ) ·2−Θ(log

2 ġ) , where ę is the constant

parameter of the algorithm. That is,

Pr
[

(¨(Ī ′) − ¨(Ī)) g Θ(A) + Θ(ġă2)
]

f

(

1

ăΘ(1)

)

· 2−Θ(log
2 ġ) .

Overview of Section 5.5. Using ¨(Ī) to prove throughput via a

betting-game argument. The analysis so far establishes progress

guarantees over su�ciently large intervals in the form of Theo-

rems 27 and 28. Here, we show how to apply these theorems to

give upper bounds on the potential over the execution with high

probability in the total number of packets and jammed slots.

Since the adversary is adaptive, we have to be careful in com-

bining bounds across intervals. The adversary can use the results

of earlier intervals in choosing new arrivals and jamming, which

a�ects the size of later intervals. To reason about this process, we

reframe it in a setting that resembles a random walk, which we

describe below in a be�ing game. Our analysis of this game then

allows us to analyze the implicit throughput (recall Section 1.1).

The Betting Game. We �rst summarize the betting game and then

later relate it to the backo� process. The adversary corresponds to

a be�or who makes a series of bets. Each bet has a size equal to the

duration ă . The bettor also has some amount of money, which is

initially 0 dollars. When the bettor loses a bet, the bettor loses some

money, and when the bettor wins, the bettor wins some money.

(The amounts won or lost are speci�ed below as a function of the

size of the bet.) Additionally, at any time, the bettor may choose

to receive a passive income. The passive income is added to the

bettor’s wealth. The total amount of passive income taken, however,

means that the bettor must play the game longer. The game begins

when the bettor �rst takes some passive income, and the game does

not end until either the bettor goes broke or the bettor has resolved

bets totaling ¬(Č) size, where Č is the passive income received,

whichever comes �rst. The bettor’s goal is to complete the game

without going broke. Importantly, although the bettor can always

choose to take more passive income, doing so increases the total

play time.

We set the details of the betting game to mirror the backo�

process. Each bet corresponds to an interval. Passive income during

a bet corresponds to the number of arrivals and jammed slots during

the interval. Money corresponds to potential.

The bettor loses a size-ă bet with probability at least 1 − 1
poly(ă)

.

If the better loses the size-ă bet, it loses Θ(ă) dollars. This loss

corresponds to the high-probability event (in ă ) of Theorem 27. The

bettor wins a size-ă bet with probabilityċ (1/poly(ă)). If the bettor

wins the bet, it gets Θ(ă2) dollars, plus ĕ bonus dollars, where ĕ

is a random variable such that Pr[ĕ g ġă2] f 1
poly(ă)

· 2−Θ(log
2 ġ) ;

these winnings correspond to tail bound of Theorem 28. (Of course,

during each bet, the bettor can also gain passive income for arrivals

and jammed slots.)

We pessimistically give the bettor the power to choose arbitrary

bet sizes (subject to a minimum interval size, which itself is de-

termined by ĭmin), and the bettor is even allowed to place bets

whose loss would cause the bettor to end with negative money. (In

the actual backo� process, the interval sizes are dictated by the

current state of the system, and not entirely under the control of

the adversary.)

The rules of betting game are set pessimistically (in favor of the

bettor) such that when the bettor wins, ¨(Ī) increases more slowly

than the bettor’s wealth increases, and when the bettor loses, ¨(Ī)

decreases at least as fast as the bettor’s wealth decreases. Therefore,

this betting game stochastically dominates the potential function.

The takeaway is that at any point Ī , the bettor’s wealth is an upper

bound on ¨(Ī). Because ¨(Ī) is an upper bound on the number

of packets in the system, the bettor going broke corresponds to

all packets succeeding. We thus obtain good implicit throughput,

because there must either be many jammed slots or packet arrivals,

or there must be many packets succeeding, leading to inactive slots.

Upper bounding the bettor’s maximum wealth/potential and show-

ing ¬(1) implicit throughput. In Lemma 29, we provide a high-

probability upper bound on the bettor’s maximum wealth and the

amount of time until it goes broke, which corresponds to there

being no packets in the system.

Lemma 29 (The bettor loses the betting game). Suppose the

bettor receives Č dollars of passive income. Then with high probability

in Č , the bettor never has more thanċ (Č) dollars across the execution.

Moreover, the bettor goes broke within ċ (Č) active slots, with high

probability in Č .

We brie�y explain here how Lemma 29 implies implicit through-

put. Consider a time horizon Ī , and suppose that the bettor has re-

ceived Č = Ī/ę dollars from passive income, for constant ę matching

the big-ċ of the lemma. Then from Lemma 29, with high probability

in Ī/ę , the bettor goes broke within ę · Ī/ę = Ī time; that is, there are

no active packets at time Ī . We thus obtain the ¬(1) throughput

result of Theorem 3.

Overview of Section 5.6. Channel access/energy bounds. In this

section, we establish energy bounds. Two of the theorem state-

ments, namely Theorems 34 and 38; the rest appear in Section 5.6.

Theorems 34–38 are proved via properties of our potential function.

(Several additional useful lemmas about the potential, not high-

lighted above, do appear in Section 5.5). So far, we have primarily

motivated ¨(Ī) as a tool for proving throughput bounds, but ¨(Ī)

also enables channel-access bounds.

Theorem 34 gives energy bounds in the �nite case against an

adaptive adversary. Speci�cally, if the stream has Ċ packets and
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J jammed slots, then w.h.p. each packet accesses the channel

at most polylog(Ċ + J) times. The proof structure is as follows:

Our upper bound on ¨(Ī) immediately gives an upper bound on

a packet’s maximum window size: ĭmax (Ī) = ċ (poly(¨(Ī)) =

ċ (poly(Ċ + J)). Thus, if a packet accesses the channel too many

times, then many of these accesses must have been listening during

silent slots, so that the packet window can get smaller. However,

by the structure of Low-Sensing Backoff, whenever a packet �rst

chooses to listen, there is at least a 1/polylog(Ċ + J) probability

that it also sends. Thus, after polylog(Ċ + J) channel accesses

when all other packets are silent, with high probability that packet

has been transmitted.

Theorem 34 (Energy bound for �nite case against adaptive

adversary). Consider an input stream with Ċ packets and J

jammed slots. Assume that the adversary is adaptive but not reactive.

Then w.h.p. in Ċ + J , every packet accesses the channel at most

ċ (log4 (Ċ + J)) times.

The corresponding proof illustrates one subtle design choice of

Low-Sensing Backoff, which leads to an easier energy analysis.

Speci�cally, a given packet’s sending and listening probabilities are

correlated: if a packet sends, then it has already decided to listen

(but, of course, a packet can listen without deciding to send). We

conclude by observing that, with an adaptive adversary, all packets

have good channel-access bounds.

Theorem 35 gives an analogous result for an adversary that

is both adaptive and reactive. By the very nature of a reactive

adversary, there is no possibility of good per-packet bounds on

channel accesses. (For example, a reactive adversary could target a

speci�c packet and reactively jam whenever it sees this packet try

to transmit.) However, interestingly, the amortized channel-access

bounds are still good. This is because the reactive adversary only

learns about sending on the channel and can react instantaneously;

it does not learn whether a packet is listening in the current slot.

Thus, a targeted packet can still reduce its window (as the other

packets do) and it will succeed in sending unless the adversary does

signi�cant jamming. For example, consider the special case where

the targeted packet is the only packet remaining. Then, unless the

adversary (which does not sense when a packet will listen) jams

a large number of slots, this packet will correctly back on and

transmit successfully.

Theorems 36 and 37 generalize Theorems 34 and 35 to the

adversarial-queuing settingwith granularity ď and su�ciently small

arrival rate Č. The main tool is Lemma 32, which allows us to trans-

form the adversarial queuing case into �nite instances that are not

very large. Theorem 38 applies to in�nite streams with arbitrary

arrivals.

Theorem 38 (Channel access bounds for in�nite case against

adaptive and reactive adversaries). Suppose that up until time

Ī there have been ĊĪ packet arrivals and JĪ jammed slots.

• Consider an adaptive adversary that is not reactive. Then w.h.p. in

JĪ + ĊĪ , each packet makes ċ (log4 (JĪ + ĊĪ )) channel accesses

before time Ī .

• Consider and adaptive adversary that is reactive. Then w.h.p. in

JĪ + ĊĪ , a particular packet accesses the channel at mostċ ((JĪ +

1) log3 (ĊĪ + JĪ ) + log
4 (ĊĪ + JĪ )) times. Moreover, the average

number of channel accesses is ċ ((JĪ/ĊĪ + 1) log
4 (ĊĪ + JĪ )).

4 CONCLUSION

We have provided a simple contention-resolution algorithm that

achieves constant throughput with full energy e�ciency (i.e., low

sending and listening complexity), despite a jamming adversary.

This resolves in the a�rmative two open questions about whether

full-energy e�ciency is possible at all in the popular ternary-

feedback model, and whether it remains possible despite jamming.
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