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ABSTRACT

This paper presents a randomized algorithm for single-source short-
est paths on directed graphs with real (both positive and negative)
edge weights. Given an input graph with n vertices and m edges,
the algorithm completes in O(mn®/?) time with high probability.
For real-weighted graphs, this result constitutes the first asymp-
totic improvement over the classic O(mn)-time algorithm variously
attributed to Shimbel, Bellman, Ford, and Moore.
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1 INTRODUCTION

This paper considers the problem of single-source shortest paths
(SSSP) with possibly negative real weights. The input to the SSSP
problem is a directed graph G = (V, E, w) with real edge weights
given by the function w : E — R and a designated source vertex s.
If the graph does not contain negative-weight cycles, then the goal
is to output the shortest-path distance from the source s to every
vertex v € V. If there is a negative-weight cycle in the graph, then
the algorithm should instead report the presence of such a cycle.

The classic algorithm for SSSP with real weights, due to Shim-
bel [20], Ford [11], Bellman [2], and Moore [18], henceforth called
the Bellman-Ford algorithm, has a running time of O(mn) on a
graph with m edges and n vertices. With no further restrictions to
graph topology or weights, this algorithm remains the best known
algorithm for SSSP.

If weights are all nonnegative reals, Dijkstra’s algorithm applies,
which can be made to run in O(m + nlog n) time using Fibonacci
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heaps [12]. For undirected graphs, Duan et al. [9] obtain a running
time of O(m+/logn - loglog n) using a randomized algorithm.

For the case of integer weights (negative and positive), there has
been significant further progress [1, 5, 6, 13-15, 21], culminating in
nearly linear-time algorithms [3, 4]. These integer-weight solutions
apply scaling or optimization techniques, and they all include at
least a log W term in their running times, where —W is the most-
negative weight in the graph. Because the number of arithmetic
operations performed depends on the magnitude of the weights
and not just the size of the graph, these algorithms are all weakly
polynomial. The O(mn)-time Bellman-Ford algorithm remains the
best strongly polynomial runtime known.

The main result of this paper is captured by the following theo-
rem. The model used throughout is the Real RAM (see, e.g., [10]),
which augments the word RAM with unit-cost arithmetic opera-
tions on real numbers.

THEOREM 1.1. There exists a (Las Vegas) randomized algorithm
that solves the SSSP problem for real-weighted graphs in O(mn®/%)
time, with high probability, where m is the number of edges and n is
the number of vertices in the graph.

The algorithm in this paper uses the Real RAM in a “reasonable”
way. Notably, the only arithmetic operations on reals employed
herein are addition, subtraction, negation, and comparison. As such,
the usage of the Real RAM here is consistent with the “comparison-
addition model” used in prior work [9, 19]. Moreover, all intermedi-
ate real numbers computed throughout the execution correspond to
the sum/difference of at most a polynomial number of edge weights.
(Proof of this claim and is deferred to the full version of the paper.)
As such, the result also immediately translates to integer weights
in the word RAM, and hence the algorithm is strongly polynomial.

Note that efficiently handling arithmetic on rational numbers in
the word RAM presents different challenges that are not addressed
herein. (These challenges exist even in the case of nonnegative edge
weights.) Most notably, intermediate rational numbers may have
significantly larger binary representations than the input weights.
Karczmarz et al. [17] provide SSSP algorithms designed specifically
for rational weights in the word RAM.

1.1 Preliminaries

The O denotes the soft-O notation. Formally, f(x) = é(g(x)) if
there exists an integer k such that f(x) = O(g(x) - Iogk (g(x))).
For the remainder, consider a graph G = (V,E, w), let m = |E|
and n = |V|. For a vertex v € V, out(v) denotes the set of v’s
outgoing edges. For a subset X C V of vertices, out(X) denotes the
set of outgoing edges from X, i.e., out(X) = {(x,y) € E|x € X}.
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For a path p, the total weight of the path is given by w(p) =
2eep w(e). The size of the path is the number of edges on the
path, denoted by |p|. A cycle C is a path that starts and ends at the
same vertex, and a negative-weight cycle is one where w(C) < 0.
A path p from u to v is a shortest path if all u-to-v paths p’ satisfy
w(p) < w(p’). If there exists a shortest path p from u to v, then
we define the shortest-path distance from u-to-v as distg(u,v) =
w(p); if there is no u-to-v path, then distg(u,v) = oo; if there is a
path but no shortest path (i.e., there is a negative-weight cycle),
then distg(u,v) = —co. When G is clear from context, we often
write dist(u,v) in place of distg(u,v).

For a subset S C V of vertices, the shortest-path distance from
any vertex in S to v, denoted by distG (S, v), is defined as

dist;(S,v) = min (distg(u,v)) .
ues

The problem of computing distg (S, v) for all v € V corresponds to
that of solving SSSP on a slightly augmented graph: create a “super
source” vertex s, for all u € S add edges (s, u) with w(s,u) = 0 to
the graph, and finally solve SSSP from the super source s in the
augmented graph. Johnson’s algorithm [16] uses this same graph
augmentation with S = V.

Simplifying assumptions (without loss of generality). We assume
throughout that every vertex has degree at most O(m/n); thus, a
subgraph on n/r vertices has O(m/r) edges. This assumptions is
without loss of generality as it can be obtained from an arbitrary
input graph via a simple graph transformation without increasing
the size of the graph by more than a constant factor.

The following two assumptions serve to simplify the statement
of performance bounds. First, we assume that m = Q(n). Second,
we assume that at least a constant fraction of the edges have non-
negative weight. As such, the nonnegative-weight edges dominate
the size of the graph.

Hop-limited shortest paths. It is a simple exercise to construct
a SSSP algorithm that runs in O(hm) time when shortest paths
are limited to h > 1 negative-weight edges or “hops.” (Section 2
introduces corresponding notation and briefly summarizes such an
algorithm.) The novel algorithm in this paper applies hop-limited
SSSP as a black-box subroutine.

Price functions. As with most of the integer-weight algorithms for
SSSP, the algorithm in this paper relies on price functions intro-
duced by Johnson [16] to transform the graph to an equivalent one
without negative weights; then Dijkstra’s algorithm can be used to
solve the SSSP problem on the reweighted graph. In more detail, a
price function is a function ¢ : V. — R. Given a price function ¢,
define wy (4, 0) = w(w,0) +¢(u) — ¢(v) and G4 = (V, E, wg). Modi-
fying the weights in this way has the following key properties [16]:
(1) a path p is a shortest path in Gy if and only if it is a shortest
path in G, and (2) every cycle C has the same weight in both G and
Gy, so negative-weight cycles are preserved. More precisely, all
u-to-v paths p satisty wg(p) = w(p) + ¢(u) — ¢(v); if p is a cycle
then ¢(u) = ¢(v) and hence wy (p) = w(p). Price functions also
compose in the natural way, i.e., (wg, )¢, (1, 0) = wg, 14, (w,0).

We call ¢ or wy a valid reweighting if wy does not cause any
edge weights to become negative. That is, if Ve € E((w(e) > 0) =
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(wg(e) 2 0)). We call a vertex a negative vertex if it has an out-
going edge with negative weight initially. We say that ¢ or wy
eliminates a negative vertex v if for all e € out(v), wy(e) = 0.

Johnson [16] shows that, assuming no negative-weight cycles,
the problem of eliminating all negative vertices can be accomplished
by setting ¢(v) = dist(V,v). Using Bellman-Ford to solve the super-
source problem, the running time is O(mn). When there are k < n
negative vertices, applying hop-limited SSSP is better, giving a
running time of O(km).

See Section 2 for further discussion of negative edges, negative
vertices, and valid reweightings. Importantly, these classifications
are decided at the beginning of each invocation of the elimination
algorithm, discussed next, with no change until the next one.

1.2 Main Result

This paper solves the problem of efficiently computing a reweight-
ing that eliminates a significant number of negative vertices. We
say that an algorithm is an f(k)-elimination algorithm if, when
given an input graph G = (V, E, w) with k negative vertices, i.e., k
vertices having negative-weight outgoing edges, the algorithm (1)
computes a valid reweighting that eliminates at least f(k) of these
negative vertices!, or (2) correctly determines that the graph con-
tains a negative-weight cycle. Given an f(k)-elimination algorithm
A, SSSP can be solved by repeatedly applying A until no nega-
tive vertices remain, and then applying Dijkstra’s algorithm. This
strategy of gradually eliminating negative vertices is reminiscent
of Goldberg’s algorithm [15] for integer-weighted graphs.

THEOREM 1.2. There exists a randomized ©(k'/3)-elimination
algorithm for real-weighted graphs that has running time O(mk?/9),
with high probability, where m and k are the number of edges and
negative vertices in the input graph, respectively.

Theorem 1.1 is a corollary of Theorem 1.2. A similar argument
occurs in [15], so the full proof is omitted here. The main idea is
that O(k?/?) repetitions of O(k!/3)-elimination suffice to reduce
the number of negative vertices by a constant factor. The total
running time of these repetitions is O(mks/g) = O(mn8/9) toreduce
k < n by a constant factor. And O(log n) of these constant-factor
reductions are enough to eliminate all negative vertices.

Sketch of algorithm. The remainder of this paper focuses on
solving the problem of ©(k!/3)-elimination, thereby proving The-
orem 1.2. At a very high level, the algorithm reweights the graph
so that ©(k'/3) of the negative vertices are “remote” or “far away”
from most of the graph. (In particular, only an O(1/ k1/9) fraction
of the graph is “nearby” these vertices.) Then, it reweights the
graph again to eliminate these O(k/3) negative vertices using
Johnson’s strategy. Because these remote vertices are far from most
of the graph, it turns out that it is possible to eliminate them in
O(k/3 - (m/k'%)) = O(k*/°m) time, which improves over the
straightforward but insufficient O(k'/*m) bound by a k!/? factor.

A key challenge is, of course, to establish this remote subset of
negative vertices. The algorithm performs several gradual reweight-
ing steps to ensure remoteness, each applying hop-limited shortest
paths. In slightly more detail, the first reweighting selects a random

!The reweighted graph G thus has at most k — f(k) negative vertices.
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sample of vertices and use hop-limited shortest paths “spread out”
the graph. Next, the algorithm searches for a large subset of nega-
tive vertices that are relatively “close together,” or failing that finds
a large subset that are “independent.” (Resolving the latter case is
easier.) The goal now is only to eliminate this subset of negative
vertices, so all other negative edges (those not incident on these ver-
tices) are removed from consideration. A subsequent reweighting
moves most of the graph away from these close-together vertices,
which renders them remote. Then a final reweighting step is per-
formed to eliminate these now remote vertices; this last reweighting
is the only one guaranteed to eliminate any negative vertices.

Outline. Before giving any further detail of the algorithm, Section 2
establishes useful notations and definitions to formalize these types
of manipulations. Section 3 then gives an overview of the algorithm
with some intuition. Finally, Sections 4-7 provide details of each
step of the algorithm and the analysis.

2 PRELIMINARIES

This section provides basic definitions and notation. In addition,
this section discusses one of the main black-box subroutines: hop-
limited shortest path. There are various definitions introduced later
in the paper as well, but most of those represent novel insights
into the structure of an efficient solution. This section also includes
several useful claims for which the proofs are all simple exercises
and hence omitted.

Transpose graph and STSP. For a fixed target t, the problem of
computing distg(u,t) for all u € V is called the single-target
shortest-paths (STSP) problem. This problem can be solved by
solving SSSP from ¢ in the transpose graph. The transpose graph is
the graph obtained by reversing all the edges. That is, the transpose
graph is a graph GT = (V, ET, wT) where ET = {(v,u)|(u,0) € E}
and wl (0, u) = w(u,0).

Negative vertices, negative edges, nonnegative edges, and the in-
put graph. The input graph refers to the graph G on which the
main algorithm of Theorem 1.2 is called, possibly with a modi-
fied weight function. We shall always denote the input graph by
G = (V,E* U E",w), where the edge set has been partitioned
into the nonnegative edges E* and the negative edges E~. Ini-
tially, E* = {e € E|lw(e) > 0} and E~ = {e € E|w(e) < 0}, where
E = E* UE™ is the full edge set. For every edge (u,v) € E™, the ver-
tex u is called a negative vertex. Throughout, let n = |V|, m = |E|,
and k denote the number of negative vertices.

As a slight abuse of notation, the U symbolin G = (V,EYUE™, w)
is not simply a union, but also signifies which edges are classified
as negative edges (those in E™), and which are nonnegative (those
in E*). As the algorithm progresses, the weight function changes,
but the classification of edges does not. Thus, having a negative
edge (u,0) € E~ with w(e) > 0 is allowed; that edge is still called
a negative edge, and u is still called negative vertex. In contrast,
because the algorithm only produces valid price function, it shall
always be the case that w(e) > 0 for all e € E*. Because this
last premise always holds, it is omitted from most lemma/theorem
statements for the sake of readability.
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Whenever the partition is not provided, e.g., if referring to an
auxiliary graph H = (V’, E’, w’), then implicitly the term “negative
edges” refers to those edges whose weight is negative.

(Negative)-hop-limited paths and distances. A path p is an h-hop
path if at most h of the edges on the path are negative edges. Non-
negative edges do not count towards the number of hops. Paths
need not be simple, and each occurrence of a negative edge con-
tributes to the hop count.

The h-hop distance, denoted

distg(u, v) = min {w(p)|p is an h-hop path from u to v in G} ,

is the weight of a shortest h-hop path from u to v; define dist}é (u,0) =
oo if there is no path from u to v. We also extend the distance nota-
tion for distance from a set of vertices (as in Section 1). Specifically,

for any S C V, define dist}é (S,0) = minyeg (dist}(‘;(u, U)). When G

is clear from context, we often write dist" instead of distg.

Just as with normal distance, it is easy to see that h-hop distances
obeys the following modified triangle inequality, which has been
adjusted to incorporate the hop counts.

LEMMA 2.1 (TRIANGLE INEQUALITY). For all integers hi, hy > 0
and all vertices x, y, z, we have

disth1*he (x,2) < disth (x,y) + disthz(y, z).

For any nonnegative edge (y, z), dist™ (x,2) < dist™ (x,y) +w(y, 2).

If disté(u, v) <Oor distg(zz, u) < 0, then we say that u and v are
negatively h-hop related. The negative h-hop reach of a vertex
u is the set of vertices that can be reached by a negative-weight
h-hop path. More generally, for a set subset S C V of vertices, the
negative h-hop reach of S is

RE(S) = fo € Vidistly(5.0) < o} .

The size of the reach is its cardinality. As with distance, the sub-
script G may be dropped when G is clear from context.

Reweighting and invariance of h-hop paths. The algorithm per-
forms several steps that each partially reweight the graph by way of
a sequence of price functions ¢. The notation Gy = (V, E*UE~, Wg)
denotes the reweighted graph, i.e., the input graph reweighted by
price function ¢. When G is clear from context, we use the sub-

script ¢ as a shorthand for G in all notations where the subscript

specifies the graph of concern, e.g., distg means distéqﬁ.

The classification of edges as negative or nonnegative does not
change when the graph is reweighted, and the validity of the price
function is defined with respect to the initial classification. Specifi-
cally, a price function ¢ is valid if for all e € E*, wg(e) > 0. When
going from price function ¢ to ¢’, function ¢’ may still be valid
evenif wy(e) > 0and wy(e) <Oaslongase € E™.

Importantly, since the classification of edges does not change,
h-hop paths in the input graph are invariant across reweighting.
That is, a path p is an h-hop path in G4 = (V,E* U E™, wy) if and
only if it is an h-hop path in G = (V,E* U E~, w). Ensuring this
invariant is the primary reason negative edges were defined in the
specific manner above. This invariant allows us to more-cleanly
reason about paths and distances when the algorithm performs
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several reweighting steps, avoiding any issues that could arise if
the algorithm “accidentally” makes an edge weight nonnegative.
Specifically, we immediately have the following.

LEmMMA 2.2. Consider the input graph G = (V,E* U E~,w), and
let ¢ be a price function. Then for allu,v € V, we have

distg(u, v) = dist"(u,0) + ¢ (u) — $(0) .

Computing h-hop distances. Given a source vertex s, the problem
of computing h-hop distances from s to all other vertices is called the
h-limited SSSP problem. There is a natural solution for hA-limited
SSSP that combines Bellman-Ford and Dijkstra’s algorithm, called
BFD here.? BFD interleaves (h + 1) full executions of Dijkstra’s
algorithm (but without reinitializing distances) on the nonnegative
edges and h “rounds” of Bellman-Ford on the negative edges.> The
running time of BFD is thus O(hmlogn) when h > 1.

LEMMA 2.3 (FOLLOWS FROM, E.G., [3, 8]). Consider a graph G =
(V,EYUE™,w), letn = |V| and m = |V|, and let k denote the number
of negative vertices. BFD solves the h-limited SSSP problem in time
O((h+1)(m+nlogn)). That is, given source vertexs and integerh > 0,
it returns dy (v) = dist]é(s,u) forallv € V. Moreover, the algorithm
can also return all smaller-hop distances dy, (v) = distg (s, v) for all
h’ €{0,1,2,..., h} with the same running time.

For h = k + 1, BFD solves the regular SSSP problem.

More generally, given a set S C V, it is possible to compute the
distances dp (v) = distg(S, v) forallv € V and k' < h with the
same time complexity. In addition, for allv € V, the algorithm can be
augmented to return s(v) € S such that dy,(v) = disté(s(v), 0).

Note that some textbook descriptions of Bellman-Ford (e.g.,
CLRS [7]) update distance estimates in place, which when extended
to BFD would only guarantee dj,(v) < disté (s,v). The inequality
may be problematic when reasoning about hop-limited paths. We
instead require the return values to be exactly the h-hop distances.

Subgraphs of negative edges. For a subset X C V of negative
vertices on the input graph, we use out™ (X) = E~ N out(X) to
denote the negative edges outgoing from X. We use GX to denote
the subgraph GX = (V,E* U out™ (X), w), i.e., the subgraph with
all negative edges except those leaving X removed. Moreover, G;f
denotes the reweighted subgraph G;( = (V,E* U out™ (X), wg)-
Because negative vertices are defined to be those vertices with
outgoing negative edges, X is the set of all negative vertices in GX.

Since all of the nonnegative edges are included in G, it should
be obvious that for any price function ¢, if w is a valid reweighting
of GX then it is also a valid reweighting of G. Moreover, since all
of X’s outgoing edges appear in GX, if wy eliminates X in GX then
it also eliminates those vertices in G. Working with subgraphs GX
thus suffices to solve the problem. Specifically, the algorithm shall
eventually reach a subgraph GX with |X| = ©(k!/3) and find a
reweighting that eliminates X from GX.

2See, e.g., [8], for a deeper discussion of one variant of this algorithm. Bernstein et
al. [3] apply an optimized version of BFD that does not reconsider a vertex in the
next round unless its distance has improved; their algorithm for integer-weight SSSP
leverages a tighter bound for the case that most shortest paths have few hops.

3 A “round” of Bellman-Ford means “relaxing” all the edges once. A full execution of
Bellman-Ford is n rounds.
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Algorithm 1: Algorithm for eliminating ©(k'/3) negative
vertices. Negative-weight cycles may be discovered inside
steps (1), (2), or (4), causing early termination.

input: A graph G = (V,E* UE~, w) with w(e) > 0 for
ec Etand w(e) <0Ofore € E-
let k be the number of negative vertices and let r = o(k!/?)
(Section 3.2, 4) perform betweenness reduction on G with
f=r+landr=r
let ¢1 be the price function computed by this step
(Section 3.4, 5) find a size-Q (k/3) negative sandwich
(x,U,y) or independent set I in Gy,

-

)

if this step discovers an independent set then
L (Section 3.5) find p.f. ¢ that eliminates I in Gél
return ¢ + ¢;
else arbitrarily remove vertices from U until |U| = O(k!/3)
(Section 3.3, 6) reweight the graph G, to try to make U
become r-remote
let ¢ be the price function computed by this step

if ‘R;ﬁ_@ (U)| > n/r then restart Algorithm 1

©w

U
P1+¢2

'S

(Section 3.1, 7) use the hop-reduction technique on G
to eliminate U

let ¢ be the price function computed by this step

return ¢ + ¢1 + ¢

3 ALGORITHM OVERVIEW

This sections provides an overview of the algorithm for o(k/3)
elimination. This section includes some intuition of correctness for
each of the main components of the algorithm, but the details and
most of the proofs are deferred to Sections 4-7 or the full paper.

The main goal of the algorithm is to find either a large (i.e., size-
©(k!/3)) r-remote set or a large 1-hop independent set of negative
vertices, both defined next, and then to eliminate that set. (We shall
eventually set r = o(k!/?)).

Definition 3.1. Consider a graph G = (V,EF UE~,w),letn = |V]|,
and let X be a subset of negative vertices. If the negative r-hop
reach of X has size at most n/r, i.e., |R"(X)| < n/r, then X is an
r-remote set. We also call the subgraph induced by the negative
r-hop reach of X an r-remote subgraph.

Definition 3.2. Consider a graph G = (V,E* UE™,w). Let I be a
subset of negative vertices. We say that I is a 1-hop independent
set if Vx, y € I, x and y are not negatively 1-hop related in G.

Algorithm 1 outlines the algorithm. Note that some of the ter-
minology will be revealed later in this section. Nevertheless, the
reader may wish to refer to this psuedocode to see how steps fit
together. Each of the main steps is marked with the corresponding
sections that explain them. For expository reasons, these steps are
presented out of order in this overview section (but in order later
in the paper). The algorithm produces a sequence of price functions
through several steps. Each step computes the next price function
relative to the current weighting of the graph. Thus, the actual
weight is obtained by composing (adding) all of the price functions.
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Roughly speaking, there are two main components in the algo-
rithm. The first component is an efficient algorithm to either find a
large r-remote set (also with large r) or, failing that, to find a large
1-hop independent set. Unfortunately, neither may exist with the
original weight function of the graph—it is not hard to construct
graphs where (1) every pair of negative vertices is negatively 1-hop
related, and (2) every negative vertex has large 1-hop reach, i.e.,
|R1 ({u})| = Q(n). The first component of the algorithm thus entails
not simply finding such a set, but also adjusting the weight function
to ensure that such a set exists. This component spans all but the
last numbered step in the pseudocode.

The second component is an efficient algorithm that eliminates
all of outgoing edges from the r-remote or 1-hop-independent set.
The second problem is easier, and it also helps to motivate why
r-remote sets are useful. Thus, this section addresses the second
component first. (Efficiently eliminating a 1-hop independent set is
almost trivial, so that is deferred to Section 3.5.)

3.1 Hop Reduction: Eliminate Remote Vertices

Recall that Johnson’s strategy [16] for eliminating negative vertices
entails solving SSSP. If there are k negative vertices, then the run-
ning time is O(mk) using BFD. The goal is to accelerate this SSSP
computation for the case that the negative vertices are remote.

To illustrate the approach, consider first a graph G = (V,E* U
N, w), where X is the set of negative vertices, but X is not known
to be remote. (Notationally, the use of N and k= |X| here serve to
emphasize that this step is applied to a subgraph; however, because
this entire section concerns the same subgraph and not the original
graph, we write G instead of G¥X to simplify the notation.)

The goal is to produce a new auxiliary graph H = (Vy, Eg, wrp)
such that (1) V C Vp, and (2) for all hop counts A > 0 and u,v € V,
dist}é(u, v) > distgl/r] (u,v) > distg(u,v). That is to say, all h-hop
paths in G correspond to [h/r]-hop paths in H. We say that H is
an r-hop reduction of G. If there are no negative-weight cycles in
G, then shortest paths are simple and have at most k hops where k
is the number of negative vertices. Thus, we can compute SSSP for
G by instead computing SSSP in H with a cost of (3((/2/r) -my),
where my = |Eg| is the size of H. As we shall see next, there
is a fairly straightforward construction of an O(rm)-size r-hop
reduction of G. Unfortunately, the running time of SSSP remains
é((l%/r) -(rm)) = O(l%m). But given an r-remote set, it is possible
to improve this construction and running time.

The construction of H is roughly as follows. First, for each vertex
v € V,add r+1 copies v = vg, 01, ..., 0, to V. Add the nonnegative
edges to each layer of the graph, i.e., for each edge (u,v) € E* and
each 0 < i < r, add the edge (u;,v;) to Ey. As for the negative
edges (u,v) € N, create the edges (u;,v;j4+1) for 0 < i < r to Eg.
Each copy of the negative edge thus moves from the i-th layer of
the graph to the (i + 1)th layer. Finally, add edges (v;, v9) for all v
and i to allow a way to get back to the 0th layer.

It remains to specify the weight function wg. The goal is to
ensure that only the edges (v;,v9) have negative weight, and thus
an r-hop subpath in G can be simulated by a 1-hop path in H that
moves through copies 0, 1,2, ... r,0. This goal can be accomplished
by roughly running Johnson’s reweighting limited to r hops, i.e.,
computing i-hop SSSP from V for all i < r, and setting wgy (u;,0;) =
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w(u,v) + distiG(V, u) — dist]G(V,v), For each (u,v) € N, it follows
that wry(u;, vi41) > 0 because distg1 (V,0) < distg(V, u) + w(u,0).

The graph H has size mgy = O(rm) by construction. Moreover,
from Lemma 2.3 the SSSP distances and hence weights wyy can be
calculated in O(rm) time.

Now let us improve the construction if X is an r-remote set.
Consider a vertex u € V that falls outside the r-remote subgraph.
Then r-remoteness implies that disté;(V, u) =0foralli < ras
there is no negative-weight path and there is a 0-weight path (the
empty path from u). There is thus no reason to include multiple
copies of this vertex in H as each copy’s incident edges would
be weighted identically—it suffices to keep the single copy u =
up, or equivalently to contract all copies into u and remove any
redundant edges. In summary, when given an r-remote subgraph,
H comprises r copies of the remote subgraph plus a single copy of
the original graph. Applying the assumption that the maximum
degree is O(m/n), the total size of H now becomes mg = O(r -
(n/r) - (m/n) + m) = O(m). Moreover, H still constitutes an r-hop
reduction of G. We are thus left with the following lemma; (the
second term in the runtime is the cost of constructing wgy).

LEMMA 3.3. Consider a (sub)graph G = (V,E* U N, w). Let X be
,and k = |X|. If X is r-remote,
then there exists an é((l%/r)m + rm)-time deterministic algorithm

that either (1) correctly determines that G contains a negative-weight
cycle, or (2) computes a valid reweighting that eliminates X.

the set of negative vertices, m = |E+

3.2 Betweenness Reduction

We are left with the more difficult problem of uncovering an r-
remote set or 1-hop independent set, which as previously noted
entails some reweighting. But it is not clear how to attack this
problem directly. Roughly speaking, one of the challenges is that
even though the classification as negative edges is invariant across
reweighting, changing the price of a vertex affects distances. In
particular, if ¢(u) < ¢(v), it is possible that dist}é(u, v) > 0 and
distg (u,v) < 0,1.e.,new negative h-hop relationships may be intro-
duced. It thus seems difficult to argue that a particular reweighting
causes the number of h-hop relationships to decrease.

The key insight here is to think in terms of “betweenness” instead
of direct distances. We can then later translate to an r-remote set,
but that transformation is more restricted so easier to reason about.

Definition 3.4. For the following, consider a graph G, vertices u,

x, and v, and integer f§ > 0.
The B-distance from u to v through x is defined as

thrué (u,x,0) = disté (u,x) + distg(x, ).

We say that x is f-between u and v if thrug (u,x,0) < 0. The -
betweenness of u and v is the number of vertices f-between u and

v, denoted BW‘g(u, v) = Hx € V|thru/é(u, x,0) < OH

For all of these notations, the G may be dropped if clear from
context, and ¢ is used as shorthand for Gy.

The goal is to find a price function ¢ so that for given parameter 7,
all pairs u,v € V have BWg (w,0) < njr. Wewilluser=p—-1=r,
but the algorithm is described with parameters f and 7.) The algo-
rithm is fairly simple. Sample a size-© (7 log n) subset of vertices.
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Then find any reweighting for which all f-hop distances to or from
the sampled vertices are nonnegative, or determine that the graph
contains a negative-weight cycle. Roughly speaking, the reweight-
ing entails computing ©( 7 log n)-limited SSSP (because we want
©(p)-hop subpaths between each of the ©(r log n) samples). There
are many relatively straightforward ways to achieve the desired
reweighting, and the details are deferred to Section 4.

We are left with a question: does reweighting in this way en-

sure that BWg (u,v) < n/t? Consider the distance from u to v
through a vertex x. It follows from Lemma 2.2 that thrug (u,x,0) =

thruP (u, x,v) + ¢(u) — ¢(v), which importantly does not depend
on ¢(x). The u-to-v distances through other vertices thus compare
in the same way before and after reweighting. Therefore, if any
sampled vertex y has thruP (u,y,0) < thruP (u, x,v), then it follows
that x is not f-between u and v in Gy because y is not either. With
high probability, there is a sample y taken from the smallest 1/7-
fraction of through distances, and hence at most a 1/7 fraction of
vertices is f-between u and v in Gy. Thus, we obtain the following,
with proof in Section 4:

LEMMA 3.5. Consider input graph G = (V,E* U E~,w) and let
m = ‘E+| Then there exists an O(frm + rn)-time (Monte Carlo)
randomized algorithm that always satisfies one of the following three
cases, and it falls in one of the first two with high probability: (1)
it correctly determines the graph contains a negative-weight cycle,

(2) it finds valid price function ¢ such thatBWf;(u, v) < n/7 forall
u,v € V, or (3) it returns a valid price function, but the betweenness
goal is not achieved.

3.3 From Sandwiches to r-Remoteness

Consider a graph G = (V,ET U E~, w). The goal is to argue that if
G has low betweenness, then it is not too hard to reweight G so
that there is an r-remote subset. To do so, we apply a new object
called a negative sandwich.

Definition 3.6. A negative sandwich is a triple (x,U,y) with
the following properties.

e U is a subset of negative vertices,
e x € Vand dist' (x,u) < 0forallu € U, and
e y e Vanddist' (u,y) <0forallu e U.

The size of the sandwich is the cardinality of U.

For now, let us ignore the task of finding such a sandwich. The
goal here is only to argue that a negative sandwich is useful.

Given a negative sandwich (x, U, y) and hop count f, consider
the price function ¢(v) = min(0, max(distﬁ(x, 0), —distﬁ(v, Y))).
Roughly speaking, there are two main goals of this price func-
tion: (1) for all u € U, ¢(u) = 0, and (2) for most other vertices v,
¢(v) < 0and ¢(v) < dist? (x,v). Because the 1-hop distance from
x to u is negative (by definition of a negative sandwich), these to-
gether would imply that the (f — 1)-hop distance from u to v in the
reweighted graph becomes positive. In general, however, ensuring
(1) in a way that also gives a valid reweighting somewhat interferes
with (2). This is why the price function here uses dist? (v, y) to limit
how negative ¢ (v) can get. It is not hard to see that (1) is ensured be-
cause in a negative sandwich distP (u, y) < Oforallu € U. The price
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function also ensures (2) because when v is not f-between x and y,
distP (x, v) + distP (v, y) = 0or distP (x,v) > —dist? (v, y); the impli-
cation is that max(distﬁ (x,0), —dist? (v,y)) = distP (x, ) as desired.
That is to say, the only vertices that remain in the (f —1)-hop reach
of U in G are (a subset of) those vertices that are -between x and
y in G. It follows that if x and y have f-betweenness at most n/z,
then U becomes min(z, f — 1)-remote.

The following lemma formalizes these ideas and also proves that
the reweighting is valid. That the reweighting is valid may not be
obvious, but the proof (in Section 6) essentially amounts to applying
the triangle inequality.

LeEMMA 3.7. Consider a graph G = (V,E* U E", w), a negative
sandwich (x, U, y), and an integer > 1. Let ¢ be the price function

$(v) = min(0, max(dist?, (x, 0), ~dist’,(0,))) -
Then we have the following:
(1) ¢ is a valid reweighting, i.e., wg(e) > 0 foralle € E*.
(2) Foreveryv e V: ifthrug (x,0,y) = 0 (i.e, v is not f-between
x andy), thenov ¢ Ré;l(U).

Choosing f = r + 1 and 7 = r as parameters in the betweenness
reduction (i.e., Lemma 3.5), we obtain the following corollary:

COROLLARY 3.8. Suppose we are given a negative sandwich (x, U, y)
and that BW™(x,y) < n/r for integer r > 1. Then there is an
O(rmlogn)-time deterministic algorithm that finds a valid price
function ¢ such that U is r-remote in G.

Proor. Lemma 3.7 gives the following properties of ¢: (1) ¢ is
valid, and (2) ‘Rg;l)_l(U)‘ < BW™1(x,y) < n/r. Thus, U’s r-hop
reach has size at most n/r, which means that U is r-remote. The
price function ¢ can be computed by solving (r + 1)-limited SSSP
from x and (r + 1)-limited STSP to y. Applying the running time
for BFD (Lemma 2.3) completes the proof. O

This step may fail to make U become r-remote only if the Monte
Carlo betweenness reduction failed to ensure that x and y have low
betweenness; in this case, the entire algorithm must be restarted.

3.4 Finding a Sandwich or Independent Set

The final problem is that of finding a negative sandwich or 1-hop
independent set. The main tool is given by the following lemma,
proved in Section 5.

LEMMA 3.9. Consider an input graph G = (V,ET U E~, w); let
n=|V|andm = |E+|. Let Uy be any subset of negative vertices in G,
let k = |Up|, and let p be an integer parameter with1 < p < k.

There exists a (Las Vegas) randomized algorithm whose running
time is O(mlog? n), with high probability, that takes as input G, Uy,
and p and always does one of the following:

(1) correctly determines that G contains a negative-weight cycle,

(2) returns a subset U C Uy of negative vertices and vertex y such

that |U| = Q(l%/p) and for allu € U, dist'(u,y) <0, or

(3) returns a 1-hop independent set I C Uy with |I| = Q(p).

Given Lemma 3.9, we immediately obtain the following corol-
lary by running the algorithm twice with p = ©(k!/3). The first
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execution is on the original graph with Uy being all negative ver-
tices, which finds y but reduces the number of negative vertices to
Q(k?/3). The second execution uses the transpose graph, finding x
and reducing the number of negative vertices to Q(k!/3).

COROLLARY 3.10. Consider an input graph G = (V,E* UE™, w);
letn=1|V|,m= |E+|, and let k be the number of negative vertices.

There exists a (Las Vegas) randomized algorithm whose running
time is O(mlog? n), with high probability, that always does one of
the following:

(1) correctly determines that G contains a negative-weight cycle,
(2) returns negative sandwich (x,U,y) with |U| = Q(kl/S), or
(3) returns a 1-hop independent set I with |I| = Q(k1/3).

We are left with the problem of constructively proving Lemma 3.9.
Let C(Up,0) = |{u € U0|distlc(u, v) < 0}| denote the number of ver-
tices in Uy that can reach v with a negative-weight 1-hop path.

The algorithm for Lemma 3.9 is roughly as follows, with details
in Section 5. The first task is to estimate C(Up, v) for allv € V. More
precisely, the goal is to partition Uj into two subsets H and L (for
heavy and light, respectively), such that Vo € H, C(Up,v) = Q(l% /p)
and Vv € L, C(Uy,v) = O(l%/p). This task can be accomplished by
randomly sampling each vertex u € Uy with probability p/k into
a subset U’, then computing R (U"). If C(Up, v) > lg/p, then it is
reasonably likely that v € R1(U”). Conversely, if C(Up,v) < I%/p,
then it is likely that o ¢ R'(U’). Repeating this process ©(log n)
times and applying a Chernoff bound allows us to correctly partition
the vertices, with high probability.

If H is nonempty, then select any y in H and run STSP to compute
U= {u € Up|dist! (u,y) < 0}4 Finally, verify that |U| = Q(l;/p) just
in case the estimation procedure failed.

If instead H is empty, then L = Uy, and all vertices v € Uy should
have C(Uy,v) = O(l;/p) Then it is straightforward to construct a
large random independent set. Select a uniformly random subset
I’ C Uy with [I’| = ©(p). Then, set I = I’ — R1(I’), where “~” here
denotes set subtraction, which ensures that the set I is independent.
For each vertex in v € I, there is only a constant probability that
there is another vertex u € I’,u # v such that dist!(u,0) < 0.
Thus, as long as there no negative-weight cycles, there is at least
a constant probability that |I| = Q(p). Repeating ©(logn) times
gives high probability of successfully finding an independent set.

3.5 The Full Algorithm

Assuming the lemmas stated in this section, we have almost all the
components necessary to prove Theorem 1.2. The only remaining
pieces are eliminating an independent set and determining the
appropriate value for r.

Eliminating an independent set. Let I be a 1-hop independent
set of negative vertices in the graph G = (V,E* U E",w). Con-
sider the subgraph G'. Then simply use the price function ¢(v) =
distéI(V,v), which can be computed by running 1-hop BFD in
O(mlogn) time. It is not too hard to see that this price function
accomplishes the task. (Proof is in the full paper.)

LeEMMA 3.11. Consider the input graph G and let I be any 1-hop
independent set of negative vertices. Then the price function given
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Algorithm 2: Algorithm for betweenness reduction

input:A graph G = (V,EY UE ", w)
input:Parameters 7 and f§ and constant ¢ > 1, with f > 1
and1 <7< |V|

letn=|V|
let T C V be a uniformly random subset of c¢z[ln n] vertices
foreach x € T do

run f-hop SSSP and STSP, computing f-hop distances
L from and to x, respectively

[

)

oW

construct a new graph H = (V, Eg, wgy) as follows:

Eg=(TxV)U(VXT)

wr (u, ) = dist; (4, 0) using precomputed distances to/from
vertices in T

let ¢ = 2|T| (which equals 2cz[ln n])

compute super-source distances d(v) = distil(V, v) and
d’(v) = dist{g{l(V,v) forallv e V

if Jov such that d’(v) < d(v) then terminate algorithm and
report “cycle”

else return price function ¢ = d

«

=Y

N}

o

©

by $(v) = distlcl(V, v) is a valid price function that eliminates all

negative vertices from Gl

Choosing r to minimize runtime. Fixing f — 1 = ¢ = r, there
are two components that dominate the running time of the algo-
rithm: the betweenness reduction, with a running time of O(r*m)
(Lemma 3.5), and eliminating the r-remote subset using hop reduc-
tion, with a running time of O((k'/3/r)m + rm) (Lemma 3.3). The
total running time is thus O(m- (r? + k'3 /r)), which is minimized
by setting r = o(k!/?), yielding O(k*°m), as per Theorem 1.2.

Proving Theorem 1.2. The proof of Theorem 1.2 is not interesting—
it primarily entails tracing through the steps of Algorithm 1 and
applying the appropriate lemmas. Specifically, use Lemma 3.5 for
Step 1, Corollary 3.10 and Lemma 3.11 for Step 2, Lemma 3.5 and
Corollary 3.8 for Step 3, and Lemma 3.3 for Step 4. Due to space
constraints, the full proof is deferred to the full version of the paper.
The one potentially interesting point is that Lemma 3.5 gives a
Monte Carlo algorithm, and a failure is not observed until Step 3.

4 BETWEENNESS REDUCTION

This section expands on the betweenness reduction introduced
in Section 3.2, with the goal of proving Lemma 3.5. Throughout,
let G = (V,E* U E~,w) denote the input graph and let n = |V]|
and m = |E+’ The variables f and 7 denote the parameters for
betweenness reduction, with f > 1 and 1 < 7 < |V|. Recall that
the goal is to find a price function ¢ such that for all vertices u, v,
we have BWg(u, v) < n/r. The algorithm is parameterized by a
constant ¢ > 3 used to adjust the probability of success.

Algorithm 2 presents the algorithm for betweenness reduction.
The algorithm begins by sampling a subset T of vertices with |T| =
ct[lnn] vertices. The remainder of the algorithm is devoted to
reweighting the graph so that all f-hop distances to or from vertices
in T become nonnegative.
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There are many straightforward ways to accomplish the goal
of nonnegative -hop distances to/from T; Algorithm 2 is just one
concrete example. Algorithm 2 proceeds by computing all f-hop
distances from each vertex in T and all f-hop distances to each
vertex in T, using SSSP and STSP, respectively. Then, an auxiliary
graph H is constructed. The graph H contains all edges of the form
(x,v) and (v, x) where x € T and v € V. Thus, all edges in H are, by
construction, incident on a vertex in T. The weights of these edges
are the corresponding f-hop distances in G that have already been
computed. The final step of the algorithm is to apply Johnson’s
strategy [16] to H. That is, compute distances to each vertex using
super-source shortest paths. Because all edges are incident on a
vertex in T, the computation stops at 2 |T| + 1 hops, at which point
either the algorithm has discovered a negative-weight cycle, or
the 2 |T|-hop distances are the actual shortest path distances in H.
Finally, these distances are returned as a price function for G.

There are two main aspects of correctness to prove. (1) The
algorithm finds a price function ¢ such that all f-hop distances
to/from x € T in G4 are nonnegative. The idea here is that from
Johnson’s strategy [16], the shortest-path distances in H constitute
a valid price function ¢ that eliminates all negative edges in H.
These edges in H correspond to f-hop paths in G to/from vertices
in T. Thus, applying ¢ to G ensures that these f-hop paths have
nonnegative weight. (2) The algorithm reduces the betweenness
of all pairs to at most n/z, as discussed in Section 3.2. The claims,
along with running time, are proved next.

LEmMA 4.1. Consider an execution of Algorithm 2 on input graph
G(V,EYUE~, w) starting from line 3 with any arbitrary subsetT C V.
(That is, this claim does not rely on any randomness of the sample.)
Then we have the following:

o Ifthe algorithm reports a negative-weight cycle, then G con-
tains a negative-weight cycle.
o Otherwise, the algorithm returns a price function ¢ such that

forallv € Vandx € T:distéb (x,0) >0 anddistgq5 (v,x) > 0.

Moreover, if the initial weight satisfies w(e) > 0 foralle € E*,
then the price function is valid.

ProoF. Let us start with the following observation: all simple
paths in H have size at most 2 |T|, which follows from the fact that
all edges in H are incident on vertices in T. (If the path is larger, some
vertex in T has at least 2 incoming or outgoing edges, and hence the
path is not simple.) Simple paths therefore also have at most 2 |T|
negative-weight edges. Thus, H has a negative-weight cycle if and
only if there exists a vertex v such that distgr1 (V,0) < distﬁi(V, v),
where ¢ = 2|T|. We have thus established that a cycle is reported if
and only if H has a negative-weight cycle. Moreover, if no cycle is
reported, then d(v) is the actual super-source distance in H, so the
standard (not hop-limited) triangle inequality applies to d.

Next, suppose that H has a negative-weight cycle C. Then it is
easy to see that G does as well: replace each edge in C with the
corresponding h-hop path in G, which by construction has the same
weight. Therefore, when the algorithm reports a negative-weight
cycle, that result is correct.

For the remainder, suppose that there is no negative-weight cycle
in H, so a price function is returned. Here we prove the claim that
the distance to/from each sample is nonnegative. By the standard
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triangle inequality, for all x € T and v € V (and hence (x,v) € Ef),
we have d(v) < d(x)+wg(x,0) = d(x)+distg (x,0),0r dist’g (x,0)+
d(x) —d(v) = 0. Setting ¢ = d and using Lemma 2.2, we thus have
distg (x,0) = dist?, (x,0)+$(x) ¢ (0) = dist?, (x,0) +d(x)d(v) >
0. Similarly, by the symmetric argument now considering the edge
(v,x) € Eg, we have d(x) < d(v) + wyg(v,x) = d(v) + distg (v, %),
or dist/é(v, x) +d(v) —d(x) > 0. Thus distéﬁ (v,x) = dist/é(v, x) +
$(0) — $(x) > 0,

Finally, let us address the validity of the price function ¢ = d. We
shall again prove this using the triangle inequality. The only issue
here is that H does not include all edges in E*, so we cannot directly
apply the triangle inequality on computed distances to these edges.
Start by noting that d(v) < 0 for all v € V from the empty path.
Now consider any edge (u,0) € E* and suppose w(u,v) > 0. If
d(u) = 0 then trivially wg(u,0) = w(u,0) — d(v) 2 w(u,0) 2 0.
Suppose instead that d(u) < 0. Then a shortest path to u in H is
nonempty and must end with a last edge (x,u) € Eg for some
x € T; that is, d(u) = d(x) + wg(x,u). By Lemma 2.1 on G, for
(u,v) € E* we have dist‘g (x,0) < dist/é (x,u) + w(u,v), and hence
wi(x,0) < wrr(x, u) + w(u,0). Thus, using the triangle inequality
in H we have d(v) < d(x)+wg(x,0) < d(x)+wg(x,u)+w(u,0) =
d(u) + w(u,0), or wy(u,0) = w(u,v) +d(u) —d(v) 2 0. O

Applying Lemma 2.3 for the hop-limited SSSP computations, it is
not hard to prove the following bound on the running time. (Proof
is deferred to the full paper.)

LEMMA 4.2. Consider input graph G = (V,E* U E~,w) and let
m= |E+| and n = |V|. Then there is a realization of Algorithm 2 that
runs in O(Brlog n(m + nlogn) + t°nlog? n) time.

When § - 1 = 7 = O(r), this bound simplifies to O(r?m).

LEmMMA 4.3. Consider an execution of Algorithm 2 on input graph
G = (V,E*¥ UE",w) and let n = |V|. Then with probability at least
1- 1/nc_2, the algorithm either
o correctly reports a negative-weight cycle, or

o returns a p.f. ¢ such that for allu,v €V, BW?

Proor. Fix any pair u,v € V. The proof shows the claim holds
with high probability for this pair. Then taking a union bound
across all n? pairs proves the lemma. All distances in this proof are
distance in G or G¢, so the subscript G is omitted.

Number and order all the vertices in V as x1, x, ..., X, such
that thru® (u, x1,0) < thruP (u,x,0) < - < thruP (u, xp, v). Now
let y = x; be the sampled vertex with lowest index/rank in the
numbering. If the algorithm reports a cycle, then by Lemma 4.1 this
reporting is correct. For the remainder, suppose instead that the
algorithm returns a price function ¢.

By Lemma 4.1, ¢ is such that distg (w,y) = 0 and distg(y, v) >

<n/r.

0 and hence thrug(u, y,v) > 0. From Lemma 2.2, for all x € V,
we have thrug (u,x,0) = distﬂ(u, x) +p(u) — p(x) + distﬁ(x, v) +

d(x) — p(v) = thruﬁ(u, x,0) + ¢(u) — ¢(v). Moreover, for all x;
with i > j, we have thruﬁ(u, Xi,0) = thruﬂ(u, y,v), and hence
thrug(u, Xi,0) = thruﬁ(u, xi,0) + P(u) — $(v) = thruﬁ(u, y,0) +
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Algorithm 3: Algorithm for heavy/light partition
:AgraphG = (V,EYUE",w)
:Subset Up of negative vertices and integer p with
1<p<|Ul
output: A partition (H, L = Uy — H) of Uy
HL-Partition(G = (V,E* UE",w), Uy, p)
1| letk = Ul

input
input

2 foreach v € V do count(v) <« 0

3 for c[Inn] times do

4 generate set U’ by sampling each vertex in Uy with
probability p/ k

5 compute R = Ré(U’)

6 foreach v € R do count(v) « count(v) + 1

7 H « {u € Up|count(u) > (¢/2)[Inn]}
8 L<—Uy—-H
9 return (H, L)

d(u) — P(v) = thrug(u, y,0) > 0. Thus, BW‘(]B5 (u,v) < j— 1, where
xj is the lowest-rank sampled vertex. As long as j < [n/7], we
have j — 1 < n/r and hence BWi(u, v) < n/t.

A failure event (the algorithm neither reports a cycle nor hits the
betweenness guarantee) can thus only occur if j > [n/7]. The last
step of the proof is to bound this probability. For j to be this large,
each sample must be drawn from the b = n — [n/7] other vertices.
If b < |T|, then there is never a failure. Otherwise, the failure

probability is given by (%) (%) (%) .. (fl:m:) < (%)\TI _

(1 - %)Iﬂ < (1 - %)m < (1-1/0)T < (1), .

Proof of Lemma 3.5. Since w(e) > 0 for all e € E*, Lemma 4.2
can be applied, and the algorithm always meets the promised run-
ning time. Moreover, by Lemma 4.1, the algorithm always either
correctly reports a cycle or returns a valid price function. Finally,
Lemma 4.3 states that algorithm is successful with high probability,
in which case it reports a cycle or a price function with the desired
f-betweenness guarantee. o

5 FINDING A NEGATIVE SANDWICH

This section expands on the problem of finding a negative sandwich
or independent set, as introduced in Section 3.4. The bulk of this
section is devoted to proving Lemma 3.9. Recall that the input
comprises the graph G = (V, E* U E~, w), a subset Uy of negative
vertices with k = |Up|, and integer parameter p with 1 < p < k.

As outlined in Section 3.4, the first task of Lemma 3.9 is to parti-
tion the negative vertices in Up into a heavy and light set.

The partitioning algorithm is given by Algorithm 3. The algo-
rithm is parameterized by a constant ¢ > 6 that controls the prob-
ability of failure. The algorithm is straightforward. Sample each
vertex in Uj independently with probability p/ k to get a random
subset U’. For each vertex in the 1-hop reach of Up, increment a
counter. Repeat this process c[In n] times. Finally, the set H is the
set of vertices in Uy with counts at least (¢/2)[Inn].
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Algorithm 4: Algorithm to find a random 1-hop indepen-
dent set

:Agraph G = (V,E* UE",w)

:Subset Uj of negative vertices and integer p with
1<p < |l

output: A 1-hop independent set I C Uy

input
input

RandIS(G = (V,E* UE~,w), Uy, p)
1 let I’ be a uniformly random size-[p/4] subset of Uy
2 solve the super-source problem to compute
d(v) = distIG (I’,v) and also a corresponding starting
vertex s(v) € I’ such that d(v) = disté (s(0),v)
foreach u € I’ do
4 L if d(u) < 0 and s(u) = u then terminate algorithm

5 R « {v|d(v) < 0}
6 I—I-R
7 return [

@

and report “cycle”

To prove the algorithm works, recall the notation C(Up,v) =
|{u € Upldist! (u,v) < 0}| Vertex v is heavy if C(Up,v) > 2k/p
and light if C(Up,v) < (1/8)]2/;). (Some vertices are neither.)

LEmMA 5.1. Consider an execution of Algorithm 3 with input G,
Uy, p. Then with probability at least 1 — 1/n¢/371, the partition is
such that all heavy vertices in U are in H and all light vertices are in
L. Equivalently, with high probability: Vv € H,C(Up,v) > (1/8)12/,0
and Vv € L,C(Uy,v) < Zle/p.

Proor. Consider heavy vertex v € Up. Let X; indicate whether
count(v) increases in the ith iteration of the loop, and let X =
count(v) = Zf:nln"] X;. In each loop iteration, X; = 0 is the event
that none of the vertices that can reach v are sampled. This gives
Pr(X; = 0) < (1 - p/k)CW?) < (1 - p/k)2k/P < 1/e%. Let p =
E[X;]. Then p = Pr(X; = 1) > (1 - 1/e?) > 6/7. Because the
Xi’s are independent identically distributed indicators, a Chernoft-
Hoeffding bound applies, giving Pr(X < (1/2)c[Inn]). Let € =
p—1/20r1/2 = p—e. Thenwe have Pr(X < (1/2)c[Inn]) = Pr(X <

(p —é€)e[lnn]) < ((1‘7;2)1/2 (11_75)1/2)C[lnn1

l/nc/3 when p > 6/7.
The case of a light vertex, which is similar, appears in the full ver-

sion. Taking the union bound across all vertices in Up, the probabil-
c/3-1

< (1/6)(1/3)clnn —

ity that any heavy or light vertex is misclassified is at most 1/n
This bound is only meaningful if c is strictly larger than 3. O

Now let us turn to finding an independent set in the event that the
returned partition has H = 0. The algorithm is given by Algorithm 4.
The algorithm is simple: sample a uniformly random size-[p/4]
subset I’ of Uy, and then remove from I’ any vertices than can be
reached by negative-weight 1-hop paths from any other vertex in
I’. It is easy to see that this set is now a 1-hop independent set.

The argument that I is likely to be large is roughly as follows.
Suppose that Uy has no heavy vertices. Consider a vertex v € I’.
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There are only C(Up, v) < 2k/p other vertices that can “knock out”
o from I’, each of which is only included in I’ with probability
roughly (p/4)/l€ = p/(4l€). Thus, v is not too likely to be knocked
out by other sampled vertices. Applying Markov’s inequality allows
us to conclude that I has a reasonable chance of being large.

There is one issue: if there is a negative-weight 1-hop cycle
from o to itself, then v is never included in I. Thus, the algorithm
also checks whether any of the shortest paths computed by the
black-box subroutine correspond to negative-weight cycles. In par-
ticular, recall that for the super-source version of the problem,
Lemma 2.3 states that BFD (and indeed any relaxation-based SSSP
algorithms) can be augmented to return some vertex s(v) € I’ such
that distIG (I',v) = disté; (s(v),0). If s(v) = v and the distance to v is
negative, then a negative-weight cycle is reported. Once a cycle is
reported, the entire algorithm terminates.

The following lemma states that there is a constant probability
that either I is large or a negative-weight cycle is discovered. The
proof, deferred to the full version, formalizes the preceding ideas.

LEMMA 5.2. Consider an execution of Algorithm 4 with input G,
Uo, p. The algorithm correctly reports a negative-weight cycle (i.e.,
only if G has one) or returns a 1-hop independent set I C Uy.

Suppose that there are no heavy vertices in Uy. Then the probability
that the algorithm returns an independent set with |I| < p/16 is at
most 5/6. Conversely, with probability at least 1/6: the algorithm
correctly reports a cycle or returns an independent set with |I| > p/16.

With all the tools in place, we are ready to complete the algorithm
for Lemma 3.9, which is described in Algorithm 5. This algorithm
is parameterized by a constant ¢’ > 4, which controls the failure
probability. The process matches the outline in Section 3.4. First par-
tition the negative vertices Uy into subsets H and L, where H should
contain the heavy vertices and L should contain the light vertices,
using Algorithm 3. If H is nonempty, then choose any vertex y and
identify the set of negative vertices U = {u € U0|dist%;(u, y) < 0}.
This can be accomplished by computing 1-hop STSP to y using BFD.
As this is supposed to be a Las Vegas algorithm, the next step is to
verify that U is large enough. If so, return y and U. If not (some ver-
tex was misclassified), restart the algorithm. If instead H is empty,
then the algorithm instead searches for a large independent set
I € Uy by calling Algorithm 4 a total of ¢’[lgn] times, stopping
when either a cycle is reported or a large independent set is found.
This step may also fail either because we are unlucky or because
some heavy vertices were misclassified in L. Thus, after ¢’[lgn]
failed attempts, the algorithm is restarted.

Proof of Lemma 3.9. First, we consider the return values. By
Lemma 5.2, if Algorithm 4 reports a cycle, then that reporting is
always correct. Also by Lemma 5.2, the set I is always a 1-hop
independent set. Thus, if Algorithm 5 returns I, then I is a 1-hop
independent set with |I| > p/16. Finally, by construction, U =
{u € U0|distlc(u, y) < 0}, and the algorithm only returns U and y
if |U] > (1/8)k/p.

We next consider the running time. HL-Partition (Algorithm 3)
is dominated by ©(log n) iterations of 1-hop SSSP, or O(mlog? n)
time by Lemma 2.3. There is the potential for a partition failure
event: that some vertex is misclassified in L or H, but Lemma 5.1
indicates the failure probability is at most 1/ n¢/3-1,
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Algorithm 5: Algorithm of Lemma 3.9: find a sandwich
crust or independent set
input :A graphG = (V,EfUE",w)
input :Subset Uy of negative vertices and integer p with
1< p < |0y
output:A 1-hop independent set I C Uj or a vertex y and
set U C Uy such that disté(u, y) <OforallueU.
A negative-weight cycle may be reported inside a
call to RandIS, terminating the full algorithm.
1 let k = |Up|
2 (H,L) « HL-Partition(G, Uy, p)
3 if H # ( then
4 choose arbitrary y € H

5 run STSP with target y to compute

U= {u € U0|dist1G(u, y) < 0}

6 if |U| < (1/8)1;/;) then restart Algorithm 5
7 else return y and U

/* we now have H=0 and L =0 */
s for ¢/[lgn] attempts do
9 I « RandIS(G, Uy, p)
10 | if|I] > p/16 then return ]

/* no large independent set found */

11 restart Algorithm 5

Suppose that there is no partition failure. If H is not empty, then
the algorithm verifies C(Up, y) with one 1-hop STSP. If H = 0, the
algorithm instead proceeds to finding an independent set. Each
call to RandIS (Algorithm 4) entails computing 1-hop SSSP and
scanning through the vertices once, so O(mlogn) time. There are
¢’[lgn] such calls, so the running time is again O(mlog? n). By
Lemma 5.2, each call to RandIS leads to a probability of 5/6 that Al-
gorithm 5 completes, either finding a large-enough independent set
or reporting a cycle and terminating. Thus, conditioned on no parti-
tion failure, the probability that the algorithm does not complete by
the end of the loop is at most (5/6)¢ Menl = 1/nc'18(6/5) < 1/pc'/4,

To conclude, the Algorithm 5 completes in O(mlog? n) time
unless there is a partition failure or there is an unlucky outcome
with independent sets, either of which may result in the algorithm
restarting. Adding up the failure probabilities gives a failure proba-
bility of at most 1/n¢/* + 1/n¢/3~1. Choosing, for example, ¢ = 9
and ¢’ = 8 gives a failure probability of at most 2/n?. O

6 REWEIGHTING A NEGATIVE SANDWICH

This section proves Lemma 3.7. Recall that the lemma states that
given input graph G and negative sandwich (x, U, y), (1) the specific
reweighting ¢ is valid, and (2) the only vertices in Rg_l (U) after

reweighting are those v for which thruP (x,0, y) < 0 before.

Proof of Lemma 3.7. Throughout the proof, we use dist for the
distance in G, i.e., with weight function w, and dist¢ for the distance
in G¢, i.e., with weight function W The latter only occurs at one
point in the proof of (2).
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To prove (1), consider any nonnegative edge (u,0) € E*. We
then have three cases.
Case 1: #(u) = 0. We always have ¢(v) < 0.S0 wy(u,0) = w(u,0)+
d(u) — Pp(v) = w(u,v) +0— ¢(v) > w(u,v) > 0.

For the remaining two cases, observe first the following

max(distﬁ(x, 0), —distﬁ(v, y)) = ¢(v) (1)

(P #0) = ($(u) 2 dist? (x,u) A ($(w) = ~dist’ (uy)))
@)
Case 2: ¢(u) # 0 and max(dist? (x,v), —distP (v, y)) = distP (x,v).
By the triangle inequality (Lemma 2.1), dist? (x,0) < distP (x,u) +
w(u,v) or equivalently distﬁ(x, u) > distﬁ(x, v) — w(u,v). Putting
everything together
o(u) > distﬁ(x, u)

> distﬁ(x, v) —w(u,0)

> @d(v) — w(u,0)
Sow(uo) +¢o(u) —¢g(v) 0.
Case 3: ¢(u) # 0 and max(distﬁ (x,0), —distﬁ(u, Y)) = —distﬁ(o, Y).
By the triangle ineq. (Lemma 2.1), distP (u,y) < w(u,0)+ distﬁ(v, y)
or equivalently —distﬁ(u, y) = -w(u,0) — distﬁ(v, y). Thus,

Equation 2

Equation 1

triangle inequality

d(u) > —distﬁ(u, Y) Equation 2
> —w(u,0) — dist’ (o, y) triangle inquality
> —w(u,0) + $(v) Equation 1
Sow(u, ) + d(u) —¢(v) 2 0.

Finally, let us prove (2). Consider any u € U and v that is not
p-between x and y. The goal is to argue that t7lisl‘g_1 (u,0) > 0. We
proceed by breaking the proof into two smaller claims, namely (i)
¢(u) = 0 and (ii) —@(v) > —distﬂ_l(u, v). Assuming these claims
hold, Lemma 2.2 gives us that disl‘g_l (u,0) = distP~1(u,0) + d(u) -
¢ (v) > distﬁfl(u, ) +0— distﬁfl(u, v) = 0 as desired.

Claim (i) follows from definition of a negative sandwich and ¢.
That is, dist? (u, y) < dist'(u,y) < 0. Therefore, we have that
max(distﬂ(x, u), —distﬁ(u, y)) > —distﬂ(u, y) > 0,and ¢(u) = 0.

For claim (ii), start with the definition of f-betweenness. By as-
sumption, v is not f-between x and y, so distP (x, v) +distP (v, y) = 0.
Therefore, ¢(v) = min(0, dist? (x,v)) < distP (x,0). By the trian-
gle inequality (Lemma 2.1), ¢(v) < distP (x,0) < dist' (x,u) +
distP~1 (4,0). Because of the negative sandwich dist (x, u) < 0, and
hence ¢(v) < distﬁ_l(u, v), which completes the proof of (if). O

7 HOP REDUCTION

This section proves Lemma 3.3, expanding on the hop-reduction
technique of Section 3.1. We use the notation G = (V,E* U N, w)
to refer to the subgraph being considered, where X is the set of
negative vertices in the subgraph. Algorithm 6 provides pseudocode.
Recall that the crux of the algorithm is building a new graph H =
(Vig, Eg, wrp) so that h-hop paths in G correspond to < [h/r]-hop
paths in H. Hence the SSSP distances can be computed efficiently
by instead computing distances in H.

Aside from the graph construction, the algorithm is straight-
forward. First, compute distances §;(v) = disté(V, v) in G for
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Algorithm 6: Algorithm of Lemma 3.3: eliminate a remote
subset by hop reduction

input :Integerr > 1
input :A (sub)graph G = (V,E* U N, w). Let X be the set
of negative vertices.
output: A valid price function ¢ that eliminates X. The
algorithm may instead terminate by reporting a
negative-weight cycle.
let k = |X|
compute super-source distances §;(v) = disté(V, v) for all
verticesvandall j,0<j<r
R « {0|6,(v) < 0}
construct a new graph H = (Vy, Eg, wyy) (see text)
letk = |'l€/ r]
compute super-source distances d(v) = dist};(V,0) and
d’(v) = distﬁ'l(V, v) forallov € Vg
7 if v € Vg such that d’(v) < d(v) then terminate algorithm
and report “cycle”
else return price function ¢ : V. — R with ¢(v) = d(v)

-

)

w

'

5

o

o

0 < j < r, which by Lemma 2.3 corresponds to one r-limited
SSSP computation. Next, use these distances to construct the graph
H, discussed more below. Finally, compute |'I€/ r] and ([k/ r]+1)-
hop distances in H. If these are different, the algorithm terminates

by reporting a cycle. If these are the same, then the price function
for v € V is given by ¢(v) = distl[f/r] (V,0).

Vertices Viy. For all of the following, let R = {v|d,(v) < 0}. All of
the vertices in V are also in V; define vy = v, so when referring to
avertex v € V in the context of the graph H, we may use either vy
or v.* In addition, for each vertex v € R, Vi contains r additional
copies v1, 02, . . ., vy of the vertex. The subscript £ in vy is called the
layer of the vertex. Layer 0 is the original vertices.

Edges Egy. For the edges, there are several cases depending on
whether the endpoints are in R or not, i.e., whether the endpoints
occur in more than one layer. Let us consider the nonnegative
edges (u,0) € E* first. The number of corresponding edges in
H is determined by whether u € R, and the target of the edges
depends on whether v € R. If u,o € R, then there are r + 1
copies of each endpoint, and there are r + 1 corresponding copies
(ug,v0), (u1,01), - - - , (ur, vy) of the edge included in Efy. These edges
are each within a single layer. If u € Rbut v ¢ R, then there are still
r + 1 copies of the edge, but they are all directed at vy in layer 0,
i.e., the edges have the form (uj,v9) for 0 < j < r.If instead u ¢ R
then u only occurs in layer 0, and hence there is only a single copy
of the edge (ug,vp) in Epy. Notice that for all edges (u,v) € E*, the
corresponding edges in Ey have the form (uj,v;) or (u,v9)—these
edges are never directed toward a higher layer. Moreover, for each
(u,v) € E*, each u; € Vi has exactly one such outgoing edge.

Now consider the negative edges (u,v) € N. Again, the number
of edges is dictated by whether u € R, and the target depends
on whether v € R. If u,0 € R, then there are r corresponding

4The notation vy is generally used when considering distances or weights of edges in
H, and the notation v is generally used when relating the distances back to G.
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copies (up,v1), (u1,02), ..., (ur—1,0,) of the edge in Ep; here, each
(uj,vj4+1) progresses from layer j to layer j + 1, which is the key
difference in the construction for negative edges and nonnegative
edges. If u € Rbut v ¢ R, then there are still r copies of the edge,
but they all directed at layer-0 vertex vy, i.e., the edges have the
form (uj,vg) for 0 < j < r.If instead u ¢ R, then there is only one
copy of the edge in Epj: if v € R, then the edge is (ug,v1); if v € R,
then the edge is (ug, v9). Unlike the nonnegative case, these edges
may be directed toward a higher layer, but it is always at most
one higher. Specifically, for (u,0) € N, the corresponding edges
all have the form (uj,vj41) or (uj,v0). Moreover, for (u,0) € N,
each u; € V7 with i < r has exactly one outgoing edge of the form
(ui,v;) (and moreover j € {0,i+ 1}). The copy of u, in the r-th
layer has no corresponding outgoing edge as there is no layer r + 1.

For u € R, Eg also includes the self edges (uj, uj+1) for0 < j <r
and (ur,ug). These edges form a cycle on copies of u, and the
weights will be set so that this is a 0-weight cycle. These edges
serve two purposes. First, the edges (u,, ug) provide routes from
layer-r to layer-0. Second, the other edges in the cycle simplify the
reasoning about distances in H.

Weights wgr. For each edge (u;,0;) € Eg, the weight is simply
wi = w(u,v) +6;(u) — §;(v), where for notational convenience we
define w(u,u) =0 forallu € V.

Analysis Overview. Proof of Lemma 3.3, which is deferred to the
full version, uses the tools outlined below. The goal is to show that
k-hop paths in H are enough to realize Johnson’s strategy [16] on
G. The running time follows from the fact that X is r-remote, and
hence |R| = n/r, so |Vg| = O(n) and |Eg| = O(m/n) - |[Vg| = O(m).

The first observation is that most edges in H have nonnegative
weight. In particular, the negative edges in H are limited to the
self edges (ur, up) from layer r to layer 0. The proof amounts to
applying the triangle inequality (Lemma 2.1) to several cases.

LEMMA 7.1. Consider the graph G = (V, E* UN, w) and auxiliary
graph H = (Vy, Eg, wy) as constucted by Algorithm 6. The only
edges e € Ery with wig(e) < 0 are the edges e € {(ur,up)}

The next lemmas show a correspondence between paths in H and
paths in G. The first, which is simpler, shows that paths between
vertices in V in the graph H can be simulated by in G, and moreover
those paths have the same weight. The second roughly shows the
converse, but it also bounds the number of hops. Together, these
imply that the distances computed in H can be used to compute
distances in G. The proofs of these claims appear in the full version
of the paper. All of these proofs proceed by induction on the length
of the path, showing constructively how to simulate the path in the
other graph, but there are several cases depending edge type.

LEmMMA 7.2. Consider any sj,v; € V. Let pyy be any si-to-v; path
in H. Then there is an s-to-v path p in G with w(p) = wy(pHg) —
51'(8) + 5]-(0).

LEMMA 7.3. Let p be any h-hop s-to-v path in G, for any s,v €
V. Then there is an hy-hop so-to-v; path py in H, for some layer
0 < j < r, with the following two properties: (1) wgg (prr) = w(p) +
6o(s) —6j(v), and (2) rhyg + j < h.
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COROLLARY 7.4. Let p be any h-hop s-to-v path in G, for any
s,0 € V. Then for all layers i withv; € Vy, there is an [h/r]-hop
So-to-vj path py in H with weight wgr (prr) = w(p) + o (s) — di(v).
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