
Single-Source Shortest Paths with Negative Real Weights in

$̃ (<=8/9) Time

Jeremy T. Fineman
Georgetown University
WASHINGTON, USA
jf474@georgetown.edu

ABSTRACT

This paper presents a randomized algorithm for single-source short-

est paths on directed graphs with real (both positive and negative)

edge weights. Given an input graph with = vertices and< edges,

the algorithm completes in $̃ (<=8/9) time with high probability.

For real-weighted graphs, this result constitutes the �rst asymp-

totic improvement over the classic$ (<=)-time algorithm variously

attributed to Shimbel, Bellman, Ford, and Moore.

CCS CONCEPTS

• Theory of computation→ Shortest paths.

KEYWORDS

shortest paths, randomized algorithms

ACM Reference Format:

Jeremy T. Fineman. 2024. Single-Source Shortest Paths with Negative Real

Weights in ċ̃ (ģĤ8/9) Time. In Proceedings of the 56th Annual ACM Sym-

posium on Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver,

BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3618260.3649614

1 INTRODUCTION

This paper considers the problem of single-source shortest paths

(SSSP) with possibly negative real weights. The input to the SSSP

problem is a directed graph � = (+ , �,F) with real edge weights

given by the functionF : � → R and a designated source vertex B .

If the graph does not contain negative-weight cycles, then the goal

is to output the shortest-path distance from the source B to every

vertex E ∈ + . If there is a negative-weight cycle in the graph, then

the algorithm should instead report the presence of such a cycle.

The classic algorithm for SSSP with real weights, due to Shim-

bel [20], Ford [11], Bellman [2], and Moore [18], henceforth called

the Bellman-Ford algorithm, has a running time of $ (<=) on a

graph with< edges and = vertices. With no further restrictions to

graph topology or weights, this algorithm remains the best known

algorithm for SSSP.

If weights are all nonnegative reals, Dijkstra’s algorithm applies,

which can be made to run in $ (< + = log=) time using Fibonacci

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649614

heaps [12]. For undirected graphs, Duan et al. [9] obtain a running

time of $ (<
√

log= · log log=) using a randomized algorithm.

For the case of integer weights (negative and positive), there has

been signi�cant further progress [1, 5, 6, 13–15, 21], culminating in

nearly linear-time algorithms [3, 4]. These integer-weight solutions

apply scaling or optimization techniques, and they all include at

least a log, term in their running times, where −, is the most-

negative weight in the graph. Because the number of arithmetic

operations performed depends on the magnitude of the weights

and not just the size of the graph, these algorithms are all weakly

polynomial. The $ (<=)-time Bellman-Ford algorithm remains the

best strongly polynomial runtime known.

The main result of this paper is captured by the following theo-

rem. The model used throughout is the Real RAM (see, e.g., [10]),

which augments the word RAM with unit-cost arithmetic opera-

tions on real numbers.

Theorem 1.1. There exists a (Las Vegas) randomized algorithm

that solves the SSSP problem for real-weighted graphs in $̃ (<=8/9)

time, with high probability, where< is the number of edges and = is

the number of vertices in the graph.

The algorithm in this paper uses the Real RAM in a “reasonable”

way. Notably, the only arithmetic operations on reals employed

herein are addition, subtraction, negation, and comparison. As such,

the usage of the Real RAM here is consistent with the “comparison-

addition model” used in prior work [9, 19]. Moreover, all intermedi-

ate real numbers computed throughout the execution correspond to

the sum/di�erence of at most a polynomial number of edge weights.

(Proof of this claim and is deferred to the full version of the paper.)

As such, the result also immediately translates to integer weights

in the word RAM, and hence the algorithm is strongly polynomial.

Note that e�ciently handling arithmetic on rational numbers in

the word RAM presents di�erent challenges that are not addressed

herein. (These challenges exist even in the case of nonnegative edge

weights.) Most notably, intermediate rational numbers may have

signi�cantly larger binary representations than the input weights.

Karczmarz et al. [17] provide SSSP algorithms designed speci�cally

for rational weights in the word RAM.

1.1 Preliminaries

The $̃ denotes the soft-O notation. Formally, 5 (G) = $̃ (6(G)) if

there exists an integer : such that 5 (G) = $ (6(G) · logġ (6(G))).

For the remainder, consider a graph � = (+ , �,F), let< = |� |

and = = |+ |. For a vertex E ∈ + , out (E) denotes the set of E ’s

outgoing edges. For a subset - ¦ + of vertices, out (-) denotes the

set of outgoing edges from - , i.e., out (-) = {(G,~) ∈ � |G ∈ - }.

3

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Jeremy T. Fineman

For a path ? , the total weight of the path is given by F (?) =
∑

ě∈Ħ F (4). The size of the path is the number of edges on the

path, denoted by |? |. A cycle � is a path that starts and ends at the

same vertex, and a negative-weight cycle is one whereF (�) < 0.

A path ? from D to E is a shortest path if all D-to-E paths ? ′ satisfy

F (?) f F (? ′). If there exists a shortest path ? from D to E , then

we de�ne the shortest-path distance from D-to-E as distă (D, E) =

F (?); if there is no D-to-E path, then distă (D, E) = ∞; if there is a

path but no shortest path (i.e., there is a negative-weight cycle),

then distă (D, E) = −∞. When � is clear from context, we often

write dist (D, E) in place of distă (D, E).

For a subset (¦ + of vertices, the shortest-path distance from

any vertex in (to E , denoted by distă ((, E), is de�ned as

distă ((, E) = min
ī∈ď
(distă (D, E)) .

The problem of computing distă ((, E) for all E ∈ + corresponds to

that of solving SSSP on a slightly augmented graph: create a “super

source” vertex B , for all D ∈ (add edges (B,D) with F (B,D) = 0 to

the graph, and �nally solve SSSP from the super source B in the

augmented graph. Johnson’s algorithm [16] uses this same graph

augmentation with (= + .

Simplifying assumptions (without loss of generality). We assume

throughout that every vertex has degree at most $ (</=); thus, a

subgraph on =/A vertices has $ (</A) edges. This assumptions is

without loss of generality as it can be obtained from an arbitrary

input graph via a simple graph transformation without increasing

the size of the graph by more than a constant factor.

The following two assumptions serve to simplify the statement

of performance bounds. First, we assume that< = ¬(=). Second,

we assume that at least a constant fraction of the edges have non-

negative weight. As such, the nonnegative-weight edges dominate

the size of the graph.

Hop-limited shortest paths. It is a simple exercise to construct

a SSSP algorithm that runs in $̃ (ℎ<) time when shortest paths

are limited to ℎ g 1 negative-weight edges or “hops.” (Section 2

introduces corresponding notation and brie�y summarizes such an

algorithm.) The novel algorithm in this paper applies hop-limited

SSSP as a black-box subroutine.

Price functions. As with most of the integer-weight algorithms for

SSSP, the algorithm in this paper relies on price functions intro-

duced by Johnson [16] to transform the graph to an equivalent one

without negative weights; then Dijkstra’s algorithm can be used to

solve the SSSP problem on the reweighted graph. In more detail, a

price function is a function q : + → R. Given a price function q ,

de�neFč (D, E) = F (D, E) +q (D) −q (E) and�č = (+ , �,Fč). Modi-

fying the weights in this way has the following key properties [16]:

(1) a path ? is a shortest path in �č if and only if it is a shortest

path in� , and (2) every cycle� has the same weight in both� and

�č , so negative-weight cycles are preserved. More precisely, all

D-to-E paths ? satisfy Fč (?) = F (?) + q (D) − q (E); if ? is a cycle

then q (D) = q (E) and hence Fč (?) = F (?). Price functions also

compose in the natural way, i.e., (Fč1
)č2
(D, E) = Fč1+č2

(D, E).

We call q orFč a valid reweighting ifFč does not cause any

edgeweights to become negative. That is, if∀4 ∈ � ((F (4) g 0) =⇒

(Fč (4) g 0)). We call a vertex a negative vertex if it has an out-

going edge with negative weight initially. We say that q or Fč

eliminates a negative vertex E if for all 4 ∈ out (E),Fč (4) g 0.

Johnson [16] shows that, assuming no negative-weight cycles,

the problem of eliminating all negative vertices can be accomplished

by setting q (E) = dist (+ , E). Using Bellman-Ford to solve the super-

source problem, the running time is$ (<=). When there are : j =

negative vertices, applying hop-limited SSSP is better, giving a

running time of $̃ (:<).

See Section 2 for further discussion of negative edges, negative

vertices, and valid reweightings. Importantly, these classi�cations

are decided at the beginning of each invocation of the elimination

algorithm, discussed next, with no change until the next one.

1.2 Main Result

This paper solves the problem of e�ciently computing a reweight-

ing that eliminates a signi�cant number of negative vertices. We

say that an algorithm is an Ĝ (ġ)-elimination algorithm if, when

given an input graph � = (+ , �,F) with : negative vertices, i.e., :

vertices having negative-weight outgoing edges, the algorithm (1)

computes a valid reweighting that eliminates at least 5 (:) of these

negative vertices1, or (2) correctly determines that the graph con-

tains a negative-weight cycle. Given an 5 (:)-elimination algorithm

A, SSSP can be solved by repeatedly applying A until no nega-

tive vertices remain, and then applying Dijkstra’s algorithm. This

strategy of gradually eliminating negative vertices is reminiscent

of Goldberg’s algorithm [15] for integer-weighted graphs.

Theorem 1.2. There exists a randomized Θ(:1/3)-elimination

algorithm for real-weighted graphs that has running time $̃ (<:2/9),

with high probability, where< and : are the number of edges and

negative vertices in the input graph, respectively.

Theorem 1.1 is a corollary of Theorem 1.2. A similar argument

occurs in [15], so the full proof is omitted here. The main idea is

that $ (:2/3) repetitions of Θ(:1/3)-elimination su�ce to reduce

the number of negative vertices by a constant factor. The total

running time of these repetitions is $̃ (<:8/9) = $̃ (<=8/9) to reduce

: f = by a constant factor. And $ (log=) of these constant-factor

reductions are enough to eliminate all negative vertices.

Sketch of algorithm. The remainder of this paper focuses on

solving the problem of Θ(:1/3)-elimination, thereby proving The-

orem 1.2. At a very high level, the algorithm reweights the graph

so that Θ(:1/3) of the negative vertices are “remote” or “far away”

from most of the graph. (In particular, only an $ (1/:1/9) fraction

of the graph is “nearby” these vertices.) Then, it reweights the

graph again to eliminate these Θ(:1/3) negative vertices using

Johnson’s strategy. Because these remote vertices are far from most

of the graph, it turns out that it is possible to eliminate them in

$̃ (:1/3 · (</:1/9)) = $̃ (:2/9<) time, which improves over the

straightforward but insu�cient $̃ (:1/3<) bound by a :1/9 factor.

A key challenge is, of course, to establish this remote subset of

negative vertices. The algorithm performs several gradual reweight-

ing steps to ensure remoteness, each applying hop-limited shortest

paths. In slightly more detail, the �rst reweighting selects a random

1The reweighted graphăč thus has at most ġ − Ĝ (ġ) negative vertices.

4

Single-Source Shortest Paths with Negative Real Weights in ċ̃ (ģĤ8/9) Time STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

sample of vertices and use hop-limited shortest paths “spread out”

the graph. Next, the algorithm searches for a large subset of nega-

tive vertices that are relatively “close together,” or failing that �nds

a large subset that are “independent.” (Resolving the latter case is

easier.) The goal now is only to eliminate this subset of negative

vertices, so all other negative edges (those not incident on these ver-

tices) are removed from consideration. A subsequent reweighting

moves most of the graph away from these close-together vertices,

which renders them remote. Then a �nal reweighting step is per-

formed to eliminate these now remote vertices; this last reweighting

is the only one guaranteed to eliminate any negative vertices.

Outline. Before giving any further detail of the algorithm, Section 2

establishes useful notations and de�nitions to formalize these types

of manipulations. Section 3 then gives an overview of the algorithm

with some intuition. Finally, Sections 4–7 provide details of each

step of the algorithm and the analysis.

2 PRELIMINARIES

This section provides basic de�nitions and notation. In addition,

this section discusses one of the main black-box subroutines: hop-

limited shortest path. There are various de�nitions introduced later

in the paper as well, but most of those represent novel insights

into the structure of an e�cient solution. This section also includes

several useful claims for which the proofs are all simple exercises

and hence omitted.

Transpose graph and STSP. For a �xed target C , the problem of

computing distă (D, C) for all D ∈ + is called the single-target

shortest-paths (STSP) problem. This problem can be solved by

solving SSSP from C in the transpose graph. The transpose graph is

the graph obtained by reversing all the edges. That is, the transpose

graph is a graph �Đ
= (+ , �Đ ,FĐ) where �Đ = {(E,D) | (D, E) ∈ �}

andFĐ (E,D) = F (D, E).

Negative vertices, negative edges, nonnegative edges, and the in-

put graph. The input graph refers to the graph � on which the

main algorithm of Theorem 1.2 is called, possibly with a modi-

�ed weight function. We shall always denote the input graph by

� = (+ , �+ ∪ �−,F), where the edge set has been partitioned

into the nonnegative edges �+ and the negative edges �−. Ini-

tially, �+ = {4 ∈ � |F (4) g 0} and �− = {4 ∈ � |F (4) < 0}, where

� = �+ ∪ �− is the full edge set. For every edge (D, E) ∈ �−, the ver-

tex D is called a negative vertex. Throughout, let = = |+ |,< = |� |,

and : denote the number of negative vertices.

As a slight abuse of notation, the∪ symbol in� = (+ , �+∪�−,F)

is not simply a union, but also signi�es which edges are classi�ed

as negative edges (those in �−), and which are nonnegative (those

in �+). As the algorithm progresses, the weight function changes,

but the classi�cation of edges does not. Thus, having a negative

edge (D, E) ∈ �− withF (4) g 0 is allowed; that edge is still called

a negative edge, and D is still called negative vertex. In contrast,

because the algorithm only produces valid price function, it shall

always be the case that F (4) g 0 for all 4 ∈ �+. Because this

last premise always holds, it is omitted from most lemma/theorem

statements for the sake of readability.

Whenever the partition is not provided, e.g., if referring to an

auxiliary graph � = (+ ′, � ′,F ′), then implicitly the term “negative

edges” refers to those edges whose weight is negative.

(Negative)-hop-limited paths and distances. A path ? is an Ğ-hop

path if at most ℎ of the edges on the path are negative edges. Non-

negative edges do not count towards the number of hops. Paths

need not be simple, and each occurrence of a negative edge con-

tributes to the hop count.

The ℎ-hop distance, denoted

dist
ℎ
ă (D, E) = min {F (?) |? is an ℎ-hop path from D to E in �} ,

is theweight of a shortestℎ-hop path fromD to E ; de�ne distℎă (D, E) =

∞ if there is no path from D to E . We also extend the distance nota-

tion for distance from a set of vertices (as in Section 1). Speci�cally,

for any (¦ + , de�ne distℎă ((, E) = minī∈ď

(

dist
ℎ
ă (D, E)

)

. When �

is clear from context, we often write distℎ instead of distℎă .

Just as with normal distance, it is easy to see that ℎ-hop distances

obeys the following modi�ed triangle inequality, which has been

adjusted to incorporate the hop counts.

Lemma 2.1 (Triangle ineqality). For all integers ℎ1, ℎ2 g 0

and all vertices G,~, I, we have

dist
ℎ1+ℎ2 (G, I) f dist

ℎ1 (G,~) + distℎ2 (~, I) .

For any nonnegative edge (~, I), distℎ1 (G, I) f dist
ℎ1 (G,~) +F (~, I).

If distℎă (D, E) < 0 or distℎă (E,D) < 0, then we say that D and E are

negatively Ğ-hop related. The negative Ğ-hop reach of a vertex

D is the set of vertices that can be reached by a negative-weight

ℎ-hop path. More generally, for a set subset (¦ + of vertices, the

negative ℎ-hop reach of (is

'ℎă (() =
{

E ∈ + |distℎă ((, E) < 0
}

.

The size of the reach is its cardinality. As with distance, the sub-

script � may be dropped when � is clear from context.

Reweighting and invariance of ℎ-hop paths. The algorithm per-

forms several steps that each partially reweight the graph by way of

a sequence of price functionsq . The notation�č = (+ , �+∪�−,Fč)

denotes the reweighted graph, i.e., the input graph reweighted by

price function q . When � is clear from context, we use the sub-

script q as a shorthand for �č in all notations where the subscript

speci�es the graph of concern, e.g., distℎ
č
means distℎăč

.

The classi�cation of edges as negative or nonnegative does not

change when the graph is reweighted, and the validity of the price

function is de�ned with respect to the initial classi�cation. Speci�-

cally, a price function q is valid if for all 4 ∈ �+,Fč (4) g 0. When

going from price function q to q ′, function q ′ may still be valid

even ifFč (4) g 0 andFč′ (4) < 0 as long as 4 ∈ �−.

Importantly, since the classi�cation of edges does not change,

ℎ-hop paths in the input graph are invariant across reweighting.

That is, a path ? is an ℎ-hop path in �č = (+ , �+ ∪ �−,Fč) if and

only if it is an ℎ-hop path in � = (+ , �+ ∪ �−,F). Ensuring this

invariant is the primary reason negative edges were de�ned in the

speci�c manner above. This invariant allows us to more-cleanly

reason about paths and distances when the algorithm performs

5

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Jeremy T. Fineman

several reweighting steps, avoiding any issues that could arise if

the algorithm “accidentally” makes an edge weight nonnegative.

Speci�cally, we immediately have the following.

Lemma 2.2. Consider the input graph � = (+ , �+ ∪ �−,F), and

let q be a price function. Then for all D, E ∈ + , we have

dist
ℎ
č
(D, E) = dist

ℎ (D, E) + q (D) − q (E) .

Computing ℎ-hop distances. Given a source vertex B , the problem

of computingℎ-hop distances from B to all other vertices is called the

Ğ-limited SSSP problem. There is a natural solution for ℎ-limited

SSSP that combines Bellman-Ford and Dijkstra’s algorithm, called

BFD here.2 BFD interleaves (ℎ + 1) full executions of Dijkstra’s

algorithm (but without reinitializing distances) on the nonnegative

edges and ℎ “rounds” of Bellman-Ford on the negative edges.3 The

running time of BFD is thus $ (ℎ< log=) when ℎ g 1.

Lemma 2.3 (Follows from, e.g., [3, 8]). Consider a graph � =

(+ , �+∪�−,F), let = = |+ | and< = |+ |, and let : denote the number

of negative vertices. BFD solves the ℎ-limited SSSP problem in time

$ ((ℎ+1) (<+= log=)). That is, given source vertex B and integerℎ g 0,

it returns 3ℎ (E) = dist
ℎ
ă (B, E) for all E ∈ + . Moreover, the algorithm

can also return all smaller-hop distances 3ℎ′ (E) = dist
ℎ′

ă (B, E) for all

ℎ′ ∈ {0, 1, 2, . . . , ℎ} with the same running time.

For ℎ = : + 1, BFD solves the regular SSSP problem.

More generally, given a set (¦ + , it is possible to compute the

distances 3ℎ′ (E) = dist
ℎ′

ă ((, E) for all E ∈ + and ℎ′ f ℎ with the

same time complexity. In addition, for all E ∈ + , the algorithm can be

augmented to return B (E) ∈ (such that 3ℎ (E) = dist
ℎ
ă (B (E), E).

Note that some textbook descriptions of Bellman-Ford (e.g.,

CLRS [7]) update distance estimates in place, which when extended

to BFD would only guarantee 3ℎ (E) f dist
ℎ
ă (B, E). The inequality

may be problematic when reasoning about hop-limited paths. We

instead require the return values to be exactly the ℎ-hop distances.

Subgraphs of negative edges. For a subset - ¦ + of negative

vertices on the input graph, we use out
− (-) = �− ∩ out (-) to

denote the negative edges outgoing from - . We use �Ĕ to denote

the subgraph �Ĕ
= (+ , �+ ∪ out

− (-),F), i.e., the subgraph with

all negative edges except those leaving - removed. Moreover,�Ĕ
č

denotes the reweighted subgraph �Ĕ
č

= (+ , �+ ∪ out
− (-),Fč).

Because negative vertices are de�ned to be those vertices with

outgoing negative edges, - is the set of all negative vertices in �Ĕ .

Since all of the nonnegative edges are included in �Ĕ , it should

be obvious that for any price function q , ifFč is a valid reweighting

of �Ĕ then it is also a valid reweighting of � . Moreover, since all

of - ’s outgoing edges appear in�Ĕ , ifFč eliminates - in�Ĕ then

it also eliminates those vertices in � . Working with subgraphs �Ĕ

thus su�ces to solve the problem. Speci�cally, the algorithm shall

eventually reach a subgraph �Ĕ with |- | = Θ(:1/3) and �nd a

reweighting that eliminates - from �Ĕ .

2See, e.g., [8], for a deeper discussion of one variant of this algorithm. Bernstein et
al. [3] apply an optimized version of BFD that does not reconsider a vertex in the
next round unless its distance has improved; their algorithm for integer-weight SSSP
leverages a tighter bound for the case that most shortest paths have few hops.
3A “round” of Bellman-Ford means “relaxing” all the edges once. A full execution of
Bellman-Ford is Ĥ rounds.

Algorithm 1: Algorithm for eliminating Θ(:1/3) negative

vertices. Negative-weight cycles may be discovered inside

steps (1), (2), or (4), causing early termination.

input :A graph � = (+ , �+ ∪ �−,F) withF (4) g 0 for

4 ∈ �+ andF (4) < 0 for 4 ∈ �−

let : be the number of negative vertices and let A = Θ(:1/9)

1 (Section 3.2, 4) perform betweenness reduction on � with

V = A + 1 and g = A

let q1 be the price function computed by this step

2 (Section 3.4, 5) �nd a size-¬(:1/3) negative sandwich

(G,* ,~) or independent set � in �č1

if this step discovers an independent set then

(Section 3.5) �nd p.f. q that eliminates � in �ą
č1

return q + q1

else arbitrarily remove vertices from* until |* | = Θ(:1/3)

3 (Section 3.3, 6) reweight the graph �č1
to try to make*

become A -remote

let q2 be the price function computed by this step

if
�

�

�'Ĩ
č1+č2

(*)
�

�

� > =/A then restart Algorithm 1

4 (Section 3.1, 7) use the hop-reduction technique on �đ
č1+č2

to eliminate*

let q be the price function computed by this step

return q + q1 + q2

3 ALGORITHM OVERVIEW

This sections provides an overview of the algorithm for Θ(:1/3)

elimination. This section includes some intuition of correctness for

each of the main components of the algorithm, but the details and

most of the proofs are deferred to Sections 4–7 or the full paper.

The main goal of the algorithm is to �nd either a large (i.e., size-

Θ(:1/3)) A -remote set or a large 1-hop independent set of negative

vertices, both de�ned next, and then to eliminate that set. (We shall

eventually set A = Θ(:1/9)).

De�nition 3.1. Consider a graph� = (+ , �+ ∪�−,F), let = = |+ |,

and let - be a subset of negative vertices. If the negative A -hop

reach of - has size at most =/A , i.e., |'Ĩ (-) | f =/A , then - is an

Ĩ-remote set. We also call the subgraph induced by the negative

A -hop reach of - an Ĩ-remote subgraph.

De�nition 3.2. Consider a graph � = (+ , �+ ∪ �−,F). Let � be a

subset of negative vertices. We say that � is a 1-hop independent

set if ∀G,~ ∈ � , G and ~ are not negatively 1-hop related in � .

Algorithm 1 outlines the algorithm. Note that some of the ter-

minology will be revealed later in this section. Nevertheless, the

reader may wish to refer to this psuedocode to see how steps �t

together. Each of the main steps is marked with the corresponding

sections that explain them. For expository reasons, these steps are

presented out of order in this overview section (but in order later

in the paper). The algorithm produces a sequence of price functions

through several steps. Each step computes the next price function

relative to the current weighting of the graph. Thus, the actual

weight is obtained by composing (adding) all of the price functions.

6

Single-Source Shortest Paths with Negative Real Weights in ċ̃ (ģĤ8/9) Time STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Roughly speaking, there are two main components in the algo-

rithm. The �rst component is an e�cient algorithm to either �nd a

large A -remote set (also with large A) or, failing that, to �nd a large

1-hop independent set. Unfortunately, neither may exist with the

original weight function of the graph—it is not hard to construct

graphs where (1) every pair of negative vertices is negatively 1-hop

related, and (2) every negative vertex has large 1-hop reach, i.e.,
�

�'1 ({D})
�

� = ¬(=). The �rst component of the algorithm thus entails

not simply �nding such a set, but also adjusting the weight function

to ensure that such a set exists. This component spans all but the

last numbered step in the pseudocode.

The second component is an e�cient algorithm that eliminates

all of outgoing edges from the A -remote or 1-hop-independent set.

The second problem is easier, and it also helps to motivate why

A -remote sets are useful. Thus, this section addresses the second

component �rst. (E�ciently eliminating a 1-hop independent set is

almost trivial, so that is deferred to Section 3.5.)

3.1 Hop Reduction: Eliminate Remote Vertices

Recall that Johnson’s strategy [16] for eliminating negative vertices

entails solving SSSP. If there are :̂ negative vertices, then the run-

ning time is $̃ (<:̂) using BFD. The goal is to accelerate this SSSP

computation for the case that the negative vertices are remote.

To illustrate the approach, consider �rst a graph � = (+ , �+ ∪

#,F), where - is the set of negative vertices, but - is not known

to be remote. (Notationally, the use of # and :̂ = |- | here serve to

emphasize that this step is applied to a subgraph; however, because

this entire section concerns the same subgraph and not the original

graph, we write � instead of �Ĕ to simplify the notation.)

The goal is to produce a new auxiliary graph � = (+Ą , �Ą ,FĄ)

such that (1) + ¦ +Ą , and (2) for all hop counts ℎ g 0 and D, E ∈ + ,

dist
ℎ
ă (D, E) g dist

+ℎ/Ĩ ,
Ą

(D, E) g distă (D, E). That is to say, all ℎ-hop

paths in � correspond to +ℎ/A,-hop paths in � . We say that � is

an Ĩ-hop reduction of ă . If there are no negative-weight cycles in

� , then shortest paths are simple and have at most :̂ hops where :̂

is the number of negative vertices. Thus, we can compute SSSP for

� by instead computing SSSP in � with a cost of $̃ ((:̂/A) ·<Ą),

where <Ą = |�Ą | is the size of � . As we shall see next, there

is a fairly straightforward construction of an $ (A<)-size A -hop

reduction of � . Unfortunately, the running time of SSSP remains

$̃ ((:̂/A) · (A<)) = $̃ (:̂<). But given an A -remote set, it is possible

to improve this construction and running time.

The construction of� is roughly as follows. First, for each vertex

E ∈ + , add A + 1 copies E = E0, E1, . . . , EĨ to+Ą . Add the nonnegative

edges to each layer of the graph, i.e., for each edge (D, E) ∈ �+ and

each 0 f 8 f A , add the edge (Dğ , Eğ) to �Ą . As for the negative

edges (D, E) ∈ # , create the edges (Dğ , Eğ+1) for 0 f 8 < A to �Ą .

Each copy of the negative edge thus moves from the 8-th layer of

the graph to the (8 + 1)th layer. Finally, add edges (Eğ , E0) for all E

and 8 to allow a way to get back to the 0th layer.

It remains to specify the weight function FĄ . The goal is to

ensure that only the edges (Eğ , E0) have negative weight, and thus

an A -hop subpath in � can be simulated by a 1-hop path in � that

moves through copies 0, 1, 2, . . . A , 0. This goal can be accomplished

by roughly running Johnson’s reweighting limited to A hops, i.e.,

computing 8-hop SSSP from+ for all 8 f A , and settingFĄ (Dğ , E Ġ) =

F (D, E) + distğă (+ ,D) − dist
Ġ
ă
(+ , E). For each (D, E) ∈ # , it follows

thatFĄ (Dğ , Eğ+1) g 0 because distğ+1ă (+ , E) f dist
ğ
ă (+ ,D) +F (D, E).

The graph � has size<Ą = $ (A<) by construction. Moreover,

from Lemma 2.3 the SSSP distances and hence weightsFĄ can be

calculated in $̃ (A<) time.

Now let us improve the construction if - is an A -remote set.

Consider a vertex D ∈ + that falls outside the A -remote subgraph.

Then A -remoteness implies that distğă (+ ,D) = 0 for all 8 f A as

there is no negative-weight path and there is a 0-weight path (the

empty path from D). There is thus no reason to include multiple

copies of this vertex in � as each copy’s incident edges would

be weighted identically—it su�ces to keep the single copy D =

D0, or equivalently to contract all copies into D and remove any

redundant edges. In summary, when given an A -remote subgraph,

� comprises A copies of the remote subgraph plus a single copy of

the original graph. Applying the assumption that the maximum

degree is $ (</=), the total size of � now becomes <Ą = $ (A ·

(=/A) · (</=) +<) = $ (<). Moreover, � still constitutes an A -hop

reduction of � . We are thus left with the following lemma; (the

second term in the runtime is the cost of constructingFĄ).

Lemma 3.3. Consider a (sub)graph � = (+ , �+ ∪ #,F). Let - be

the set of negative vertices,< =
�

��+
�

�, and :̂ = |- |. If - is A -remote,

then there exists an $̃ ((:̂/A)< + A<)-time deterministic algorithm

that either (1) correctly determines that� contains a negative-weight

cycle, or (2) computes a valid reweighting that eliminates - .

3.2 Betweenness Reduction

We are left with the more di�cult problem of uncovering an A -

remote set or 1-hop independent set, which as previously noted

entails some reweighting. But it is not clear how to attack this

problem directly. Roughly speaking, one of the challenges is that

even though the classi�cation as negative edges is invariant across

reweighting, changing the price of a vertex a�ects distances. In

particular, if q (D) j q (E), it is possible that distℎă (D, E) g 0 and

dist
ℎ
ăč
(D, E) < 0, i.e., new negativeℎ-hop relationshipsmay be intro-

duced. It thus seems di�cult to argue that a particular reweighting

causes the number of ℎ-hop relationships to decrease.

The key insight here is to think in terms of “betweenness” instead

of direct distances. We can then later translate to an A -remote set,

but that transformation is more restricted so easier to reason about.

De�nition 3.4. For the following, consider a graph � , vertices D,

G , and E , and integer V g 0.

The Ā-distance from ī to Ĭ through Į is de�ned as

thru
ă
ă
(D, G, E) = dist

ă
ă
(D, G) + dist

ă
ă
(G, E) .

We say that G is Ā-between D and E if thru
ă
ă
(D, G, E) < 0. The Ā-

betweenness of D and E is the number of vertices V-between D and

E , denoted BW
ă
ă
(D, E) =

�

�

�

{

G ∈ + |thru
ă
ă
(D, G, E) < 0

}�

�

�.

For all of these notations, the � may be dropped if clear from

context, and q is used as shorthand for �č .

The goal is to �nd a price functionq so that for given parameter g ,

all pairs D, E ∈ + have BW
ă

č
(D, E) f =/g . (We will use g = V − 1 = A ,

but the algorithm is described with parameters V and g .) The algo-

rithm is fairly simple. Sample a size-Θ(g log=) subset of vertices.

7

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Jeremy T. Fineman

Then �nd any reweighting for which all V-hop distances to or from

the sampled vertices are nonnegative, or determine that the graph

contains a negative-weight cycle. Roughly speaking, the reweight-

ing entails computing Θ(Vg log=)-limited SSSP (because we want

Θ(V)-hop subpaths between each of the Θ(g log=) samples). There

are many relatively straightforward ways to achieve the desired

reweighting, and the details are deferred to Section 4.

We are left with a question: does reweighting in this way en-

sure that BW
ă

č
(D, E) f =/g? Consider the distance from D to E

through a vertex G . It follows from Lemma 2.2 that thru
ă

č
(D, G, E) =

thru
ă (D, G, E) + q (D) − q (E), which importantly does not depend

on q (G). The D-to-E distances through other vertices thus compare

in the same way before and after reweighting. Therefore, if any

sampled vertex ~ has thruă (D,~, E) f thru
ă (D, G, E), then it follows

that G is not V-between D and E in �č because ~ is not either. With

high probability, there is a sample ~ taken from the smallest 1/g-

fraction of through distances, and hence at most a 1/g fraction of

vertices is V-between D and E in �č . Thus, we obtain the following,

with proof in Section 4:

Lemma 3.5. Consider input graph � = (+ , �+ ∪ �−,F) and let

< =
�

��+
�

�. Then there exists an $̃ (Vg< + g2=)-time (Monte Carlo)

randomized algorithm that always satis�es one of the following three

cases, and it falls in one of the �rst two with high probability: (1)

it correctly determines the graph contains a negative-weight cycle,

(2) it �nds valid price function q such that BW
ă

č
(D, E) f =/g for all

D, E ∈ + , or (3) it returns a valid price function, but the betweenness

goal is not achieved.

3.3 From Sandwiches to A -Remoteness

Consider a graph � = (+ , �+ ∪ �−,F). The goal is to argue that if

� has low betweenness, then it is not too hard to reweight � so

that there is an A -remote subset. To do so, we apply a new object

called a negative sandwich.

De�nition 3.6. A negative sandwich is a triple (G,* ,~) with

the following properties.

• * is a subset of negative vertices,

• G ∈ + and dist
1 (G,D) < 0 for all D ∈ * , and

• ~ ∈ + and dist
1 (D,~) < 0 for all D ∈ * .

The size of the sandwich is the cardinality of* .

For now, let us ignore the task of �nding such a sandwich. The

goal here is only to argue that a negative sandwich is useful.

Given a negative sandwich (G,* ,~) and hop count V , consider

the price function q (E) = min(0,max(distă (G, E),−distă (E,~))).

Roughly speaking, there are two main goals of this price func-

tion: (1) for all D ∈ * , q (D) = 0, and (2) for most other vertices E ,

q (E) f 0 and q (E) f dist
ă (G, E). Because the 1-hop distance from

G to D is negative (by de�nition of a negative sandwich), these to-

gether would imply that the (V − 1)-hop distance from D to E in the

reweighted graph becomes positive. In general, however, ensuring

(1) in a way that also gives a valid reweighting somewhat interferes

with (2). This is why the price function here uses distă (E,~) to limit

how negativeq (E) can get. It is not hard to see that (1) is ensured be-

cause in a negative sandwich distă (D,~) < 0 for allD ∈ * . The price

function also ensures (2) because when E is not V-between G and ~,

dist
ă (G, E) + distă (E,~) g 0 or distă (G, E) g −distă (E,~); the impli-

cation is thatmax(distă (G, E),−distă (E,~)) = dist
ă (G, E) as desired.

That is to say, the only vertices that remain in the (V −1)-hop reach

of* in�č are (a subset of) those vertices that are V-between G and

~ in � . It follows that if G and ~ have V-betweenness at most =/g ,

then* becomes min(g, V − 1)-remote.

The following lemma formalizes these ideas and also proves that

the reweighting is valid. That the reweighting is valid may not be

obvious, but the proof (in Section 6) essentially amounts to applying

the triangle inequality.

Lemma 3.7. Consider a graph � = (+ , �+ ∪ �−,F), a negative

sandwich (G,* ,~), and an integer V > 1. Let q be the price function

q (E) = min(0,max(dist
ă
ă
(G, E),−dist

ă
ă
(E,~))) .

Then we have the following:

(1) q is a valid reweighting, i.e.,Fč (4) g 0 for all 4 ∈ �+.

(2) For every E ∈ + : if thru
ă
ă
(G, E,~) g 0 (i.e., E is not V-between

G and ~), then E ∉ '
ă−1
ăč
(*).

Choosing V = A + 1 and g = A as parameters in the betweenness

reduction (i.e., Lemma 3.5), we obtain the following corollary:

Corollary 3.8. Suppose we are given a negative sandwich (G,* ,~)

and that BW Ĩ+1 (G,~) f =/A for integer A g 1. Then there is an

$ (A< log=)-time deterministic algorithm that �nds a valid price

function q such that* is A -remote in �č .

Proof. Lemma 3.7 gives the following properties of q : (1) q is

valid, and (2)
�

�

�'
(Ĩ+1)−1
ăč

(*)
�

�

� f BW
Ĩ+1 (G,~) f =/A . Thus, * ’s A -hop

reach has size at most =/A , which means that * is A -remote. The

price function q can be computed by solving (A + 1)-limited SSSP

from G and (A + 1)-limited STSP to ~. Applying the running time

for BFD (Lemma 2.3) completes the proof. □

This step may fail to make* become A -remote only if the Monte

Carlo betweenness reduction failed to ensure that G and ~ have low

betweenness; in this case, the entire algorithm must be restarted.

3.4 Finding a Sandwich or Independent Set

The �nal problem is that of �nding a negative sandwich or 1-hop

independent set. The main tool is given by the following lemma,

proved in Section 5.

Lemma 3.9. Consider an input graph � = (+ , �+ ∪ �−,F); let

= = |+ | and< =
�

��+
�

�. Let *0 be any subset of negative vertices in � ,

let :̂ = |*0 |, and let d be an integer parameter with 1 f d f :̂ .

There exists a (Las Vegas) randomized algorithm whose running

time is $ (< log2 =), with high probability, that takes as input � ,*0,

and d and always does one of the following:

(1) correctly determines that � contains a negative-weight cycle,

(2) returns a subset* ¦ *0 of negative vertices and vertex ~ such

that |* | = ¬(:̂/d) and for all D ∈ * , dist1 (D,~) < 0 , or

(3) returns a 1-hop independent set � ¦ *0 with |� | = ¬(d).

Given Lemma 3.9, we immediately obtain the following corol-

lary by running the algorithm twice with d = Θ(:1/3). The �rst

8

Single-Source Shortest Paths with Negative Real Weights in ċ̃ (ģĤ8/9) Time STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

execution is on the original graph with*0 being all negative ver-

tices, which �nds ~ but reduces the number of negative vertices to

¬(:2/3). The second execution uses the transpose graph, �nding G

and reducing the number of negative vertices to ¬(:1/3).

Corollary 3.10. Consider an input graph � = (+ , �+ ∪ �−,F);

let = = |+ |,< =
�

��+
�

�, and let : be the number of negative vertices.

There exists a (Las Vegas) randomized algorithm whose running

time is $ (< log2 =), with high probability, that always does one of

the following:

(1) correctly determines that � contains a negative-weight cycle,

(2) returns negative sandwich (G,* ,~) with |* | = ¬(:1/3), or

(3) returns a 1-hop independent set � with |� | = ¬(:1/3).

Weare left with the problem of constructively proving Lemma 3.9.

Let� (*0, E) =
�

�

{

D ∈ *0 |dist
1
ă (D, E) < 0

}�

� denote the number of ver-

tices in*0 that can reach E with a negative-weight 1-hop path.

The algorithm for Lemma 3.9 is roughly as follows, with details

in Section 5. The �rst task is to estimate� (*0, E) for all E ∈ + . More

precisely, the goal is to partition*0 into two subsets � and ! (for

heavy and light, respectively), such that ∀E ∈ �,� (*0, E) = ¬(:̂/d)

and ∀E ∈ !,� (*0, E) = $ (:̂/d). This task can be accomplished by

randomly sampling each vertex D ∈ *0 with probability d/:̂ into

a subset * ′, then computing '1 (* ′). If � (*0, E) k :̂/d , then it is

reasonably likely that E ∈ '1 (* ′). Conversely, if � (*0, E) j :̂/d ,

then it is likely that E ∉ '1 (* ′). Repeating this process Θ(log=)

times and applying a Cherno� bound allows us to correctly partition

the vertices, with high probability.

If� is nonempty, then select any~ in� and run STSP to compute

* =
{

D ∈ *0 |dist
1 (D,~) < 0

}

. Finally, verify that |* | = ¬(:̂/d) just

in case the estimation procedure failed.

If instead � is empty, then ! = *0, and all vertices E ∈ *0 should

have � (*0, E) = $ (:̂/d). Then it is straightforward to construct a

large random independent set. Select a uniformly random subset

� ′ ¦ *0 with |�
′ | = Θ(d). Then, set � = � ′ − '1 (� ′), where “−” here

denotes set subtraction, which ensures that the set � is independent.

For each vertex in E ∈ � ′, there is only a constant probability that

there is another vertex D ∈ � ′, D ≠ E such that dist1 (D, E) < 0.

Thus, as long as there no negative-weight cycles, there is at least

a constant probability that |� | = ¬(d). Repeating Θ(log=) times

gives high probability of successfully �nding an independent set.

3.5 The Full Algorithm

Assuming the lemmas stated in this section, we have almost all the

components necessary to prove Theorem 1.2. The only remaining

pieces are eliminating an independent set and determining the

appropriate value for A .

Eliminating an independent set. Let � be a 1-hop independent

set of negative vertices in the graph � = (+ , �+ ∪ �−,F). Con-

sider the subgraph �ą . Then simply use the price function q (E) =

dist
1
ă ą (+ , E), which can be computed by running 1-hop BFD in

$ (< log=) time. It is not too hard to see that this price function

accomplishes the task. (Proof is in the full paper.)

Lemma 3.11. Consider the input graph� and let � be any 1-hop

independent set of negative vertices. Then the price function given

Algorithm 2: Algorithm for betweenness reduction

input :A graph � = (+ , �+ ∪ �−,F)

input :Parameters g and V and constant 2 > 1, with V g 1

and 1 f g f |+ |

1 let = = |+ |

2 let) ¦ + be a uniformly random subset of 2g +ln=, vertices

3 foreach G ∈) do

4 run V-hop SSSP and STSP, computing V-hop distances

from and to G , respectively

5 construct a new graph � = (+ , �Ą ,FĄ) as follows:

�Ą = () ×+) ∪ (+ ×))

FĄ (D, E) = dist
ă
ă
(D, E) using precomputed distances to/from

vertices in)

6 let ℓ = 2 |) | (which equals 22g +ln=,)

7 compute super-source distances 3 (E) = dist
ℓ
Ą (+ , E) and

3 ′(E) = dist
ℓ+1
Ą (+ , E) for all E ∈ +

8 if ∃E such that 3 ′(E) < 3 (E) then terminate algorithm and

report “cycle”

9 else return price function q = 3

by q (E) = dist
1
ă ą (+ , E) is a valid price function that eliminates all

negative vertices from �ą .

Choosing A to minimize runtime. Fixing V − 1 = g = A , there

are two components that dominate the running time of the algo-

rithm: the betweenness reduction, with a running time of $̃ (A2<)

(Lemma 3.5), and eliminating the A -remote subset using hop reduc-

tion, with a running time of $̃ ((:1/3/A)< + A<) (Lemma 3.3). The

total running time is thus $̃ (< · (A2 + :1/3/A)), which is minimized

by setting A = Θ(:1/9), yielding $̃ (:2/9<), as per Theorem 1.2.

Proving Theorem 1.2. The proof of Theorem 1.2 is not interesting—

it primarily entails tracing through the steps of Algorithm 1 and

applying the appropriate lemmas. Speci�cally, use Lemma 3.5 for

Step 1, Corollary 3.10 and Lemma 3.11 for Step 2, Lemma 3.5 and

Corollary 3.8 for Step 3, and Lemma 3.3 for Step 4. Due to space

constraints, the full proof is deferred to the full version of the paper.

The one potentially interesting point is that Lemma 3.5 gives a

Monte Carlo algorithm, and a failure is not observed until Step 3.

4 BETWEENNESS REDUCTION

This section expands on the betweenness reduction introduced

in Section 3.2, with the goal of proving Lemma 3.5. Throughout,

let � = (+ , �+ ∪ �−,F) denote the input graph and let = = |+ |

and < =
�

��+
�

�. The variables V and g denote the parameters for

betweenness reduction, with V g 1 and 1 f g f |+ |. Recall that

the goal is to �nd a price function q such that for all vertices D, E ,

we have BW
ă

č
(D, E) f =/g . The algorithm is parameterized by a

constant 2 g 3 used to adjust the probability of success.

Algorithm 2 presents the algorithm for betweenness reduction.

The algorithm begins by sampling a subset) of vertices with |) | =

2g +ln=, vertices. The remainder of the algorithm is devoted to

reweighting the graph so that all V-hop distances to or from vertices

in) become nonnegative.

9

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Jeremy T. Fineman

There are many straightforward ways to accomplish the goal

of nonnegative V-hop distances to/from) ; Algorithm 2 is just one

concrete example. Algorithm 2 proceeds by computing all V-hop

distances from each vertex in) and all V-hop distances to each

vertex in) , using SSSP and STSP, respectively. Then, an auxiliary

graph � is constructed. The graph � contains all edges of the form

(G, E) and (E, G) where G ∈) and E ∈ + . Thus, all edges in� are, by

construction, incident on a vertex in) . The weights of these edges

are the corresponding V-hop distances in � that have already been

computed. The �nal step of the algorithm is to apply Johnson’s

strategy [16] to � . That is, compute distances to each vertex using

super-source shortest paths. Because all edges are incident on a

vertex in) , the computation stops at 2 |) | + 1 hops, at which point

either the algorithm has discovered a negative-weight cycle, or

the 2 |) |-hop distances are the actual shortest path distances in � .

Finally, these distances are returned as a price function for � .

There are two main aspects of correctness to prove. (1) The

algorithm �nds a price function q such that all V-hop distances

to/from G ∈) in �č are nonnegative. The idea here is that from

Johnson’s strategy [16], the shortest-path distances in � constitute

a valid price function q that eliminates all negative edges in � .

These edges in � correspond to V-hop paths in � to/from vertices

in) . Thus, applying q to � ensures that these V-hop paths have

nonnegative weight. (2) The algorithm reduces the betweenness

of all pairs to at most =/g , as discussed in Section 3.2. The claims,

along with running time, are proved next.

Lemma 4.1. Consider an execution of Algorithm 2 on input graph

� (+ , �+∪�−,F) starting from line 3 with any arbitrary subset) ¦ + .

(That is, this claim does not rely on any randomness of the sample.)

Then we have the following:

• If the algorithm reports a negative-weight cycle, then � con-

tains a negative-weight cycle.

• Otherwise, the algorithm returns a price function q such that

for all E ∈ + and G ∈) : dist
ă
ăč
(G, E) g 0 and dist

ă
ăč
(E, G) g 0.

Moreover, if the initial weight satis�esF (4) g 0 for all 4 ∈ �+,

then the price function is valid.

Proof. Let us start with the following observation: all simple

paths in � have size at most 2 |) |, which follows from the fact that

all edges in� are incident on vertices in) . (If the path is larger, some

vertex in) has at least 2 incoming or outgoing edges, and hence the

path is not simple.) Simple paths therefore also have at most 2 |) |

negative-weight edges. Thus, � has a negative-weight cycle if and

only if there exists a vertex E such that distℓ+1Ą (+ , E) < dist
ℓ
Ą (+ , E),

where ℓ = 2 |) |. We have thus established that a cycle is reported if

and only if � has a negative-weight cycle. Moreover, if no cycle is

reported, then 3 (E) is the actual super-source distance in � , so the

standard (not hop-limited) triangle inequality applies to 3 .

Next, suppose that � has a negative-weight cycle � . Then it is

easy to see that � does as well: replace each edge in � with the

correspondingℎ-hop path in� , which by construction has the same

weight. Therefore, when the algorithm reports a negative-weight

cycle, that result is correct.

For the remainder, suppose that there is no negative-weight cycle

in � , so a price function is returned. Here we prove the claim that

the distance to/from each sample is nonnegative. By the standard

triangle inequality, for all G ∈) and E ∈ + (and hence (G, E) ∈ �Ą),

we have3 (E) f 3 (G)+FĄ (G, E) = 3 (G)+dist
ă
ă
(G, E), or dist

ă
ă
(G, E)+

3 (G) − 3 (E) g 0. Setting q = 3 and using Lemma 2.2, we thus have

dist
ă
ăč
(G, E) = dist

ă
ă
(G, E)+q (G)−q (E) = dist

ă
ă
(G, E)+3 (G)−3 (E) g

0. Similarly, by the symmetric argument now considering the edge

(E, G) ∈ �Ą , we have 3 (G) f 3 (E) +FĄ (E, G) = 3 (E) + dist
ă
ă
(E, G),

or dist
ă
ă
(E, G) + 3 (E) − 3 (G) g 0. Thus dist

ă
ăč
(E, G) = dist

ă
ă
(E, G) +

q (E) − q (G) g 0.

Finally, let us address the validity of the price function q = 3 . We

shall again prove this using the triangle inequality. The only issue

here is that� does not include all edges in �+, so we cannot directly

apply the triangle inequality on computed distances to these edges.

Start by noting that 3 (E) f 0 for all E ∈ + from the empty path.

Now consider any edge (D, E) ∈ �+ and suppose F (D, E) g 0. If

3 (D) = 0 then trivially Fč (D, E) = F (D, E) − 3 (E) g F (D, E) g 0.

Suppose instead that 3 (D) < 0. Then a shortest path to D in � is

nonempty and must end with a last edge (G,D) ∈ �Ą for some

G ∈) ; that is, 3 (D) = 3 (G) + FĄ (G,D). By Lemma 2.1 on � , for

(D, E) ∈ �+ we have dist
ă
ă
(G, E) f dist

ă
ă
(G,D) +F (D, E), and hence

FĄ (G, E) f FĄ (G,D) +F (D, E). Thus, using the triangle inequality

in� we have 3 (E) f 3 (G) +FĄ (G, E) f 3 (G) +FĄ (G,D) +F (D, E) =

3 (D) +F (D, E), orFč (D, E) = F (D, E) + 3 (D) − 3 (E) g 0. □

Applying Lemma 2.3 for the hop-limited SSSP computations, it is

not hard to prove the following bound on the running time. (Proof

is deferred to the full paper.)

Lemma 4.2. Consider input graph � = (+ , �+ ∪ �−,F) and let

< =
�

��+
�

� and = = |+ |. Then there is a realization of Algorithm 2 that

runs in $ (Vg log=(< + = log=) + g2= log2 =) time.

When V − 1 = g = Θ(A), this bound simpli�es to $̃ (A2<).

Lemma 4.3. Consider an execution of Algorithm 2 on input graph

� = (+ , �+ ∪ �−,F) and let = = |+ |. Then with probability at least

1 − 1/=ę−2, the algorithm either

• correctly reports a negative-weight cycle, or
• returns a p.f. q such that for all D, E ∈ + , BW

ă

č
f =/g .

Proof. Fix any pair D, E ∈ + . The proof shows the claim holds

with high probability for this pair. Then taking a union bound

across all =2 pairs proves the lemma. All distances in this proof are

distance in � or �č , so the subscript � is omitted.

Number and order all the vertices in + as G1, G2, . . . , GĤ such

that thruă (D, G1, E) f thru
ă (D, G2, E) f · · · f thru

ă (D, GĤ, E). Now

let ~ = G Ġ be the sampled vertex with lowest index/rank in the

numbering. If the algorithm reports a cycle, then by Lemma 4.1 this

reporting is correct. For the remainder, suppose instead that the

algorithm returns a price function q .

By Lemma 4.1, q is such that dist
ă

č
(D,~) g 0 and dist

ă

č
(~, E) g

0 and hence thru
ă

č
(D,~, E) g 0. From Lemma 2.2, for all G ∈ + ,

we have thru
ă

č
(D, G, E) = dist

ă (D, G) + q (D) − q (G) + distă (G, E) +

q (G) − q (E) = thru
ă (D, G, E) + q (D) − q (E). Moreover, for all Gğ

with 8 g 9 , we have thru
ă (D, Gğ , E) g thru

ă (D,~, E), and hence

thru
ă

č
(D, Gğ , E) = thru

ă (D, Gğ , E) + q (D) − q (E) g thru
ă (D,~, E) +

10

Single-Source Shortest Paths with Negative Real Weights in ċ̃ (ģĤ8/9) Time STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 3: Algorithm for heavy/light partition

input :A graph � = (+ , �+ ∪ �−,F)

input :Subset*0 of negative vertices and integer d with

1 f d f |*0 |

output :A partition ï�, ! = *0 − � ð of*0

HL-Partition(� = (+ , �+ ∪ �−,F),*0, d)

1 let :̂ = |*0 |

2 foreach E ∈ + do count (E) ← 0

3 for 2 +ln=, times do

4 generate set* ′ by sampling each vertex in*0 with

probability d/:̂

5 compute ' = '1
ă
(* ′)

6 foreach E ∈ ' do count (E) ← count (E) + 1

7 � ← {D ∈ *0 |count (D) g (2/2) +ln=,}

8 ! ← *0 − �

9 return ï�, !ð

q (D) − q (E) = thru
ă

č
(D,~, E) g 0. Thus, BW

ă

č
(D, E) f 9 − 1, where

G Ġ is the lowest-rank sampled vertex. As long as 9 f +=/g,, we

have 9 − 1 < =/g and hence BW
ă

č
(D, E) < =/g .

A failure event (the algorithm neither reports a cycle nor hits the

betweenness guarantee) can thus only occur if 9 > +=/g,. The last

step of the proof is to bound this probability. For 9 to be this large,

each sample must be drawn from the 1 = = − +=/g, other vertices.

If 1 < |) |, then there is never a failure. Otherwise, the failure

probability is given by
(

Ę
Ĥ

) (

Ę−1
Ĥ−1

) (

Ę−2
Ĥ−2

)

· · ·
(

Ę−|Đ |+1
Ĥ−|Đ |+1

)

f
(

Ę
Ĥ

) |Đ |
=

(

1 −
+Ĥ/ă ,
Ĥ

) |Đ |
f

(

1 − 1
ă

) |Đ |
f (1 − 1/g)ęă lnĤ f (1/=)ę . □

Proof of Lemma 3.5. Since F (4) g 0 for all 4 ∈ �+, Lemma 4.2

can be applied, and the algorithm always meets the promised run-

ning time. Moreover, by Lemma 4.1, the algorithm always either

correctly reports a cycle or returns a valid price function. Finally,

Lemma 4.3 states that algorithm is successful with high probability,

in which case it reports a cycle or a price function with the desired

V-betweenness guarantee. □

5 FINDING A NEGATIVE SANDWICH

This section expands on the problem of �nding a negative sandwich

or independent set, as introduced in Section 3.4. The bulk of this

section is devoted to proving Lemma 3.9. Recall that the input

comprises the graph � = (+ , �+ ∪ �−,F), a subset*0 of negative

vertices with :̂ = |*0 |, and integer parameter d with 1 f d f :̂ .

As outlined in Section 3.4, the �rst task of Lemma 3.9 is to parti-

tion the negative vertices in*0 into a heavy and light set.

The partitioning algorithm is given by Algorithm 3. The algo-

rithm is parameterized by a constant 2 g 6 that controls the prob-

ability of failure. The algorithm is straightforward. Sample each

vertex in *0 independently with probability d/:̂ to get a random

subset * ′. For each vertex in the 1-hop reach of *0, increment a

counter. Repeat this process 2 +ln=, times. Finally, the set � is the

set of vertices in*0 with counts at least (2/2) +ln=,.

Algorithm 4: Algorithm to �nd a random 1-hop indepen-

dent set

input :A graph � = (+ , �+ ∪ �−,F)

input :Subset*0 of negative vertices and integer d with

1 f d f |*0 |

output :A 1-hop independent set � ¦ *0

RandIS(� = (+ , �+ ∪ �−,F),*0, d)

1 let � ′ be a uniformly random size-+d/4, subset of*0

2 solve the super-source problem to compute

3 (E) = dist
1
ă (�
′, E) and also a corresponding starting

vertex B (E) ∈ � ′ such that 3 (E) = dist
1
ă (B (E), E)

3 foreach D ∈ � ′ do

4 if 3 (D) < 0 and B (D) = D then terminate algorithm

and report “cycle”

5 ' ← {E |3 (E) < 0}

6 � ← � ′ − '

7 return �

To prove the algorithm works, recall the notation � (*0, E) =
�

�

{

D ∈ *0 |dist
1 (D, E) < 0

}�

�. Vertex E is heavy if � (*0, E) g 2:̂/d

and light if � (*0, E) f (1/8):̂/d . (Some vertices are neither.)

Lemma 5.1. Consider an execution of Algorithm 3 with input � ,

*0, d . Then with probability at least 1 − 1/=ę/3−1, the partition is

such that all heavy vertices in * are in � and all light vertices are in

!. Equivalently, with high probability: ∀E ∈ �,� (*0, E) > (1/8):̂/d

and ∀E ∈ !,� (*0, E) < 2:̂/d .

Proof. Consider heavy vertex E ∈ *0. Let -ğ indicate whether

count (E) increases in the 8th iteration of the loop, and let - =

count (E) =
∑ę +lnĤ,
ğ=1 -ğ . In each loop iteration, -ğ = 0 is the event

that none of the vertices that can reach E are sampled. This gives

Pr(-ğ = 0) f (1 − d/:̂)ÿ (đ0,Ĭ) f (1 − d/:̂)2ġ̂/Ā f 1/42. Let ? =

� [-ğ]. Then ? = Pr(-ğ = 1) g (1 − 1/42) > 6/7. Because the

-ğ ’s are independent identically distributed indicators, a Cherno�-

Hoe�ding bound applies, giving Pr(- f (1/2)2 +ln=,). Let n =

?−1/2 or 1/2 = ?−n . Thenwe have Pr(- f (1/2)2 +ln=,) = Pr(- f

(? − n)2 +ln=,) f

(

(

Ħ
1/2

)1/2 (1−Ħ
1/2

)1/2
)ę +lnĤ,

f (1/4) (1/3)ę lnĤ =

1/=ę/3 when ? g 6/7.

The case of a light vertex, which is similar, appears in the full ver-

sion. Taking the union bound across all vertices in*0, the probabil-

ity that any heavy or light vertex is misclassi�ed is at most 1/=ę/3−1.

This bound is only meaningful if 2 is strictly larger than 3. □

Now let us turn to �nding an independent set in the event that the

returned partition has� = ∅. The algorithm is given by Algorithm 4.

The algorithm is simple: sample a uniformly random size-+d/4,

subset � ′ of*0, and then remove from � ′ any vertices than can be

reached by negative-weight 1-hop paths from any other vertex in

� ′. It is easy to see that this set is now a 1-hop independent set.

The argument that � is likely to be large is roughly as follows.

Suppose that *0 has no heavy vertices. Consider a vertex E ∈ � ′.

11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Jeremy T. Fineman

There are only � (*0, E) < 2:̂/d other vertices that can “knock out”

E from � ′, each of which is only included in � ′ with probability

roughly (d/4)/:̂ = d/(4:̂). Thus, E is not too likely to be knocked

out by other sampled vertices. Applying Markov’s inequality allows

us to conclude that � has a reasonable chance of being large.

There is one issue: if there is a negative-weight 1-hop cycle

from E to itself, then E is never included in � . Thus, the algorithm

also checks whether any of the shortest paths computed by the

black-box subroutine correspond to negative-weight cycles. In par-

ticular, recall that for the super-source version of the problem,

Lemma 2.3 states that BFD (and indeed any relaxation-based SSSP

algorithms) can be augmented to return some vertex B (E) ∈ � ′ such

that dist1ă (�
′, E) = dist

1
ă (B (E), E). If B (E) = E and the distance to E is

negative, then a negative-weight cycle is reported. Once a cycle is

reported, the entire algorithm terminates.

The following lemma states that there is a constant probability

that either � is large or a negative-weight cycle is discovered. The

proof, deferred to the full version, formalizes the preceding ideas.

Lemma 5.2. Consider an execution of Algorithm 4 with input � ,

*0, d . The algorithm correctly reports a negative-weight cycle (i.e.,

only if � has one) or returns a 1-hop independent set � ¦ *0.

Suppose that there are no heavy vertices in*0. Then the probability

that the algorithm returns an independent set with |� | < d/16 is at

most 5/6. Conversely, with probability at least 1/6: the algorithm

correctly reports a cycle or returns an independent set with |� | g d/16.

With all the tools in place, we are ready to complete the algorithm

for Lemma 3.9, which is described in Algorithm 5. This algorithm

is parameterized by a constant 2 ′ g 4, which controls the failure

probability. The process matches the outline in Section 3.4. First par-

tition the negative vertices*0 into subsets� and !, where� should

contain the heavy vertices and ! should contain the light vertices,

using Algorithm 3. If � is nonempty, then choose any vertex ~ and

identify the set of negative vertices* =
{

D ∈ *0 |dist
1
ă (D,~) < 0

}

.

This can be accomplished by computing 1-hop STSP to ~ using BFD.

As this is supposed to be a Las Vegas algorithm, the next step is to

verify that* is large enough. If so, return ~ and* . If not (some ver-

tex was misclassi�ed), restart the algorithm. If instead � is empty,

then the algorithm instead searches for a large independent set

� ¦ *0 by calling Algorithm 4 a total of 2 ′+lg=, times, stopping

when either a cycle is reported or a large independent set is found.

This step may also fail either because we are unlucky or because

some heavy vertices were misclassi�ed in !. Thus, after 2 ′+lg=,

failed attempts, the algorithm is restarted.

Proof of Lemma 3.9. First, we consider the return values. By

Lemma 5.2, if Algorithm 4 reports a cycle, then that reporting is

always correct. Also by Lemma 5.2, the set � is always a 1-hop

independent set. Thus, if Algorithm 5 returns � , then � is a 1-hop

independent set with |� | g d/16. Finally, by construction, * =
{

D ∈ *0 |dist
1
ă (D,~) < 0

}

, and the algorithm only returns * and ~

if |* | g (1/8):̂/d .

We next consider the running time. HL-Partition (Algorithm 3)

is dominated by Θ(log=) iterations of 1-hop SSSP, or $ (< log2 =)

time by Lemma 2.3. There is the potential for a partition failure

event: that some vertex is misclassi�ed in ! or � , but Lemma 5.1

indicates the failure probability is at most 1/=ę/3−1.

Algorithm 5: Algorithm of Lemma 3.9: �nd a sandwich

crust or independent set

input :A graph � = (+ , �+ ∪ �−,F)

input :Subset*0 of negative vertices and integer d with

1 f d f |*0 |

output :A 1-hop independent set � ¦ *0 or a vertex ~ and

set* ¦ *0 such that dist1ă (D,~) < 0 for all D ∈ * .

A negative-weight cycle may be reported inside a

call to RandIS, terminating the full algorithm.

1 let :̂ = |*0 |

2 ï�, !ð ← HL-Partition(�,*0, d)

3 if � ≠ ∅ then

4 choose arbitrary ~ ∈ �

5 run STSP with target ~ to compute

* =
{

D ∈ *0 |dist
1
ă (D,~) < 0

}

6 if |* | < (1/8):̂/d then restart Algorithm 5

7 else return ~ and*

/* we now have � = ∅ and ! = *0 */

8 for 2 ′+lg=, attempts do

9 � ← RandIS(�,*0, d)

10 if |� | g d/16 then return �

/* no large independent set found */

11 restart Algorithm 5

Suppose that there is no partition failure. If � is not empty, then

the algorithm veri�es � (*0, ~) with one 1-hop STSP. If � = ∅, the

algorithm instead proceeds to �nding an independent set. Each

call to RandIS (Algorithm 4) entails computing 1-hop SSSP and

scanning through the vertices once, so $ (< log=) time. There are

2 ′+lg=, such calls, so the running time is again $ (< log2 =). By

Lemma 5.2, each call to RandIS leads to a probability of 5/6 that Al-

gorithm 5 completes, either �nding a large-enough independent set

or reporting a cycle and terminating. Thus, conditioned on no parti-

tion failure, the probability that the algorithm does not complete by

the end of the loop is at most (5/6)ę
′ +lgĤ,

= 1/=ę
′ lg(6/5)

< 1/=ę
′/4.

To conclude, the Algorithm 5 completes in $ (< log2 =) time

unless there is a partition failure or there is an unlucky outcome

with independent sets, either of which may result in the algorithm

restarting. Adding up the failure probabilities gives a failure proba-

bility of at most 1/=ę
′/4 + 1/=ę/3−1. Choosing, for example, 2 = 9

and 2 ′ = 8 gives a failure probability of at most 2/=2. □

6 REWEIGHTING A NEGATIVE SANDWICH

This section proves Lemma 3.7. Recall that the lemma states that

given input graph� and negative sandwich (G,* ,~), (1) the speci�c

reweighting q is valid, and (2) the only vertices in '
ă−1

č
(*) after

reweighting are those E for which thru
ă (G, E,~) < 0 before.

Proof of Lemma 3.7. Throughout the proof, we use dist for the

distance in� , i.e., with weight functionF , and distč for the distance

in �č , i.e., with weight functionFč . The latter only occurs at one

point in the proof of (2).

12

Single-Source Shortest Paths with Negative Real Weights in ċ̃ (ģĤ8/9) Time STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

To prove (1), consider any nonnegative edge (D, E) ∈ �+. We

then have three cases.

Case 1: q (D) = 0. We always have q (E) f 0. SoFč (D, E) = F (D, E) +

q (D) − q (E) = F (D, E) + 0 − q (E) g F (D, E) g 0.

For the remaining two cases, observe �rst the following

max(distă (G, E),−distă (E,~)) g q (E) (1)

(q (D) ≠ 0) =⇒ ((q (D) g dist
ă (G,D)) ' (q (D) g −distă (D,~)))

(2)

Case 2: q (D) ≠ 0 and max(distă (G, E),−distă (E,~)) = dist
ă (G, E).

By the triangle inequality (Lemma 2.1), distă (G, E) f dist
ă (G,D) +

F (D, E) or equivalently dist
ă (G,D) g dist

ă (G, E) −F (D, E). Putting

everything together

q (D) g dist
ă (G,D) Equation 2

g dist
ă (G, E) −F (D, E) triangle inequality

g q (E) −F (D, E) Equation 1

6 F (D, E) + q (D) − q (E) g 0 .

Case 3: q (D) ≠ 0 and max(distă (G, E),−distă (E,~)) = −distă (E,~).

By the triangle ineq. (Lemma 2.1), distă (D,~) f F (D, E) +distă (E,~)

or equivalently −distă (D,~) g −F (D, E) − distă (E,~). Thus,

q (D) g −distă (D,~) Equation 2

g −F (D, E) − distă (E,~) triangle inquality

g −F (D, E) + q (E) Equation 1

6 F (D, E) + q (D) − q (E) g 0 .

Finally, let us prove (2). Consider any D ∈ * and E that is not

V-between G and ~. The goal is to argue that dist
ă−1

č
(D, E) g 0. We

proceed by breaking the proof into two smaller claims, namely (i)

q (D) = 0 and (ii) −q (E) > −distă−1 (D, E). Assuming these claims

hold, Lemma 2.2 gives us that dist
ă−1

č
(D, E) = dist

ă−1 (D, E) +q (D) −

q (E) > dist
ă−1 (D, E) + 0 − distă−1 (D, E) = 0 as desired.

Claim (i) follows from de�nition of a negative sandwich and q .

That is, distă (D,~) f dist
1 (D,~) < 0. Therefore, we have that

max(distă (G,D),−distă (D,~)) g −distă (D,~) > 0, and q (D) = 0.

For claim (ii), start with the de�nition of V-betweenness. By as-

sumption, E is not V-between G and~, so distă (G, E)+distă (E,~) g 0.

Therefore, q (E) = min(0, distă (G, E)) f dist
ă (G, E). By the trian-

gle inequality (Lemma 2.1), q (E) f dist
ă (G, E) f dist

1 (G,D) +

dist
ă−1 (D, E). Because of the negative sandwich dist1 (G,D) < 0, and

hence q (E) < dist
ă−1 (D, E), which completes the proof of (ii). □

7 HOP REDUCTION

This section proves Lemma 3.3, expanding on the hop-reduction

technique of Section 3.1. We use the notation � = (+ , �+ ∪ #,F)

to refer to the subgraph being considered, where - is the set of

negative vertices in the subgraph. Algorithm 6 provides pseudocode.

Recall that the crux of the algorithm is building a new graph � =

(+Ą , �Ą ,FĄ) so that ℎ-hop paths in � correspond to f +ℎ/A,-hop

paths in � . Hence the SSSP distances can be computed e�ciently

by instead computing distances in � .

Aside from the graph construction, the algorithm is straight-

forward. First, compute distances X Ġ (E) = dist
Ġ
ă
(+ , E) in � for

Algorithm 6: Algorithm of Lemma 3.3: eliminate a remote

subset by hop reduction

input : Integer A g 1

input :A (sub)graph � = (+ , �+ ∪ #,F). Let - be the set

of negative vertices.

output :A valid price function q that eliminates - . The

algorithm may instead terminate by reporting a

negative-weight cycle.

1 let :̂ = |- |

2 compute super-source distances X Ġ (E) = dist
Ġ
ă
(+ , E) for all

vertices E and all 9 , 0 f 9 f A

3 ' ← {E |XĨ (E) < 0}

4 construct a new graph � = (+Ą , �Ą ,FĄ) (see text)

5 let ^ = +:̂/A,

6 compute super-source distances 3 (E) = dist
ċ
Ą (+ , E) and

3 ′(E) = dist
ċ+1
Ą (+ , E) for all E ∈ +Ą

7 if ∃E ∈ +Ą such that 3 ′(E) < 3 (E) then terminate algorithm

and report “cycle”

8 else return price function q : + → R with q (E) = 3 (E)

0 f 9 f A , which by Lemma 2.3 corresponds to one A -limited

SSSP computation. Next, use these distances to construct the graph

� , discussed more below. Finally, compute +:̂/A, and (+:̂/A, + 1)-

hop distances in � . If these are di�erent, the algorithm terminates

by reporting a cycle. If these are the same, then the price function

for E ∈ + is given by q (E) = dist
+ġ̂/Ĩ ,
Ą

(+ , E).

Vertices+Ą . For all of the following, let ' = {E |XĨ (E) < 0}. All of

the vertices in + are also in +Ą ; de�ne E0 = E , so when referring to

a vertex E ∈ + in the context of the graph � , we may use either E0
or E .4 In addition, for each vertex E ∈ ', +Ą contains A additional

copies E1, E2, . . . , EĨ of the vertex. The subscript ℓ in Eℓ is called the

layer of the vertex. Layer 0 is the original vertices.

Edges �Ą . For the edges, there are several cases depending on

whether the endpoints are in ' or not, i.e., whether the endpoints

occur in more than one layer. Let us consider the nonnegative

edges (D, E) ∈ �+ �rst. The number of corresponding edges in

� is determined by whether D ∈ ', and the target of the edges

depends on whether E ∈ '. If D, E ∈ ', then there are A + 1

copies of each endpoint, and there are A + 1 corresponding copies

(D0, E0), (D1, E1), · · · , (DĨ , EĨ) of the edge included in�Ą . These edges

are each within a single layer. If D ∈ ' but E ∉ ', then there are still

A + 1 copies of the edge, but they are all directed at E0 in layer 0,

i.e., the edges have the form (D Ġ , E0) for 0 f 9 f A . If instead D ∉ '

then D only occurs in layer 0, and hence there is only a single copy

of the edge (D0, E0) in �Ą . Notice that for all edges (D, E) ∈ �+, the

corresponding edges in �Ą have the form (D Ġ , E Ġ) or (D Ġ , E0)—these

edges are never directed toward a higher layer. Moreover, for each

(D, E) ∈ �+, each Dğ ∈ +Ą has exactly one such outgoing edge.

Now consider the negative edges (D, E) ∈ # . Again, the number

of edges is dictated by whether D ∈ ', and the target depends

on whether E ∈ '. If D, E ∈ ', then there are A corresponding

4The notation Ĭ0 is generally used when considering distances or weights of edges in
Ą , and the notation Ĭ is generally used when relating the distances back toă .

13

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Jeremy T. Fineman

copies (D0, E1), (D1, E2), . . . , (DĨ−1, EĨ) of the edge in �Ą ; here, each

(D Ġ , E Ġ+1) progresses from layer 9 to layer 9 + 1, which is the key

di�erence in the construction for negative edges and nonnegative

edges. If D ∈ ' but E ∉ ', then there are still A copies of the edge,

but they all directed at layer-0 vertex E0, i.e., the edges have the

form (D Ġ , E0) for 0 f 9 < A . If instead D ∉ ', then there is only one

copy of the edge in �Ą : if E ∈ ', then the edge is (D0, E1); if E ∉ ',

then the edge is (D0, E0). Unlike the nonnegative case, these edges

may be directed toward a higher layer, but it is always at most

one higher. Speci�cally, for (D, E) ∈ # , the corresponding edges

all have the form (D Ġ , E Ġ+1) or (D Ġ , E0). Moreover, for (D, E) ∈ # ,

each Dğ ∈ +Ą with 8 < A has exactly one outgoing edge of the form

(Dğ , E Ġ) (and moreover 9 ∈ {0, 8 + 1}). The copy of DĨ in the A -th

layer has no corresponding outgoing edge as there is no layer A + 1.

ForD ∈ ', �Ą also includes the self edges (D Ġ , D Ġ+1) for 0 f 9 < A

and (DĨ , D0). These edges form a cycle on copies of D, and the

weights will be set so that this is a 0-weight cycle. These edges

serve two purposes. First, the edges (DĨ , D0) provide routes from

layer-A to layer-0. Second, the other edges in the cycle simplify the

reasoning about distances in � .

Weights FĄ . For each edge (Dğ , E Ġ) ∈ �Ą , the weight is simply

FĄ = F (D, E) +Xğ (D) −X Ġ (E), where for notational convenience we

de�neF (D,D) = 0 for all D ∈ + .

Analysis Overview. Proof of Lemma 3.3, which is deferred to the

full version, uses the tools outlined below. The goal is to show that

^-hop paths in � are enough to realize Johnson’s strategy [16] on

� . The running time follows from the fact that - is A -remote, and

hence |' | = =/A , so |+Ą | = $ (=) and |�Ą | = $ (</=) · |+Ą | = $ (<).

The �rst observation is that most edges in � have nonnegative

weight. In particular, the negative edges in � are limited to the

self edges (DĨ , D0) from layer A to layer 0. The proof amounts to

applying the triangle inequality (Lemma 2.1) to several cases.

Lemma 7.1. Consider the graph� = (+ , �+ ∪#,F) and auxiliary

graph � = (+Ą , �Ą ,FĄ) as constucted by Algorithm 6. The only

edges 4 ∈ �Ą withFĄ (4) < 0 are the edges 4 ∈ {(DĨ , D0)}

The next lemmas show a correspondence between paths in� and

paths in � . The �rst, which is simpler, shows that paths between

vertices in+ in the graph� can be simulated by in� , and moreover

those paths have the same weight. The second roughly shows the

converse, but it also bounds the number of hops. Together, these

imply that the distances computed in � can be used to compute

distances in� . The proofs of these claims appear in the full version

of the paper. All of these proofs proceed by induction on the length

of the path, showing constructively how to simulate the path in the

other graph, but there are several cases depending edge type.

Lemma 7.2. Consider any Bğ , E Ġ ∈ +Ą . Let ?Ą be any Bğ -to-E Ġ path

in � . Then there is an B-to-E path ? in � with F (?) = FĄ (?Ą) −

Xğ (B) + X Ġ (E).

Lemma 7.3. Let ? be any ℎ-hop B-to-E path in � , for any B, E ∈

+ . Then there is an ℎĄ -hop B0-to-E Ġ path ?Ą in � , for some layer

0 f 9 f A , with the following two properties: (1)FĄ (?Ą) = F (?) +

X0 (B) − X Ġ (E), and (2) AℎĄ + 9 f ℎ.

Corollary 7.4. Let ? be any ℎ-hop B-to-E path in � , for any

B, E ∈ + . Then for all layers 8 with Eğ ∈ +Ą , there is an +ℎ/A,-hop

Bĥ -to-Eğ path ?Ą in � with weightFĄ (?Ą) = F (?) + X0 (B) − Xğ (E).

ACKNOWLEDGMENTS

This research is supported in part by NSF grants CCF-2106759 and

CCF-1918989.

REFERENCES
[1] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. 2020. Circulation Control

for Faster Minimum Cost Flow in Unit-Capacity Graphs. In 61st IEEE Annual
Symposium on Foundations of Computer Science. 93–104. https://doi.org/10.1109/
FOCS46700.2020.00018

[2] Richard Bellman. 1958. On a Routing Problem. Quart. Appl. Math. 16, 1 (1958).
[3] Aaron Bernstein, Danupon Nanongkai, and Christian Wul�-Nilsen. 2022.

Negative-Weight Single-Source Shortest Paths in Near-linear Time. In 63rd
IEEE Annual Symposium on Foundations of Computer Science. 600–611. https:
//doi.org/10.1109/FOCS54457.2022.00063

[4] Karl Bringmann, Alejandro Cassis, and Nick Fischer. 2023. Negative-Weight
Single-Source Shortest Paths in Near-Linear Time: Now Faster!. In 64th IEEE
Annual Symposium on Foundations of Computer Science. 515–538. https://doi.org/
10.1109/FOCS57990.2023.00038

[5] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum Flow and Minimum-Cost Flow in Almost-
Linear Time. In 63rd IEEE Annual Symposium on Foundations of Computer Science.
612–623. https://doi.org/10.1109/FOCS54457.2022.00064

[6] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. 2017.
Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in

ċ (ģ10/7 logē) time. In Proceedings of the 28th ACM-SIAM Symposium on Dis-
crete Algorithms. 752–771. https://doi.org/10.1137/1.9781611974782.48

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms, 3rd Edition. MIT Press.

[8] Ye�m Dinitz and Rotem Itzhak. 2017. Hybrid Bellman-Ford-Dijkstra Algorithm.
J. of Discrete Algorithms 42, C (jan 2017), 35–44.

[9] Ran Duan, Jiayi Mao, Xinkai Shu, and Longhui Yin. 2023. A Randomized Algo-
rithm for Single-Source Shortest Path on Undirected Real-Weighted Graphs. In
64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
Santa Cruz, CA, USA, November 6-9, 2023. 484–492. https://doi.org/10.1109/
FOCS57990.2023.00035

[10] Je� Erickson, Ivor van der Hoog, and Tillmann Miltzow. 2020. Smoothing the gap
between NP and ER. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy Irani (Ed.).
1022–1033. https://doi.org/10.1109/FOCS46700.2020.00099

[11] Lester R. Ford. 1956. Paper P-923. Network Flow Theory (1956).
[12] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their

uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596–615.
https://doi.org/10.1145/28869.28874

[13] Harold N. Gabow. 1983. Scaling Algorithms for Network Problems. In 24th Annual
Symposium on Foundations of Computer Science. 248–257. https://doi.org/10.1109/
SFCS.1983.68

[14] Harold N. Gabow and Robert Endre Tarjan. 1989. Faster Scaling Algorithms for
Network Problems. SIAM J. Comput. 18, 5 (1989), 1013–1036.

[15] Andrew V. Goldberg. 1995. Scaling Algorithms for the Shortest Path Problem.
SIAM J. Comput. 24, 3 (1995), 494–504.

[16] Donald B. Johnson. 1977. E�cient Algorithms for Shortest Paths in Sparse
Networks. J. ACM 24, 1 (jan 1977), 1–13.

[17] Adam Karczmarz, Wojciech Nadara, and Marek Sokołowski. 2024. Exact Shortest
Paths with Rational Weights on the Word RAM. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms. 2597–2608. https://doi.org/10.
1137/1.9781611977912.92

[18] Edward F. Moore. 1959. The Shortest Path Through a Maze. In Proceedings of the
International Symposium on the Theory of Switching. 285–292.

[19] Seth Pettie and Vijaya Ramachandran. 2005. A Shortest Path Algorithm for
Real-Weighted Undirected Graphs. SIAM J. Comput. 34, 6 (2005), 1398–1431.
https://doi.org/10.1137/S0097539702419650

[20] Alfonso Shimbel. 1955. Structure in Communication Nets. In Proceedings of the
Symposium on Information Networks. 199–203.

[21] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. 2020. Bipartite Matching in
Nearly-linear Time on Moderately Dense Graphs. In 61st IEEE Annual Symposium
on Foundations of Computer Science. 919–930. https://doi.org/10.1109/FOCS46700.
2020.00090

Received 07-NOV-2023; accepted 2024-02-11

14

	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Main Result

	2 Preliminaries
	3 Algorithm Overview
	3.1 Hop Reduction: Eliminate Remote Vertices
	3.2 Betweenness Reduction
	3.3 From Sandwiches to r-Remoteness
	3.4 Finding a Sandwich or Independent Set
	3.5 The Full Algorithm

	4 Betweenness Reduction
	5 Finding a Negative Sandwich
	6 Reweighting a Negative Sandwich
	7 Hop reduction
	Acknowledgments
	References

