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Keywords: Using a mixed methods approach, we report results from the evaluation and validation stages of a
Mathematical reasoning fully online Measure of Graph Selection and Reasoning for Dynamic Situations, implemented with
Graphs

undergraduate college algebra students across three U.S universities. The measure contains six
items; each includes a video animation of a dynamic situation (e.g., a fishbowl filling with water),
a declaration of understanding, four Cartesian graphs from which to select, and a text box for
explanation. In the evaluation stage, we demonstrate usability and content validity, drawing on
individual cognitive interviews (n = 31 students). In the validation stage (n = 673 students), we
use Rasch modeling to evidence reliability and internal structure, establishing a continuum of
item difficulty and confirming the viability of a partial credit scoring approach for graph selec-
tion. Rasch results provide statistical support that the theorized graph reasoning framework
(Iconic, Motion, Variation, Covariation) from Johnson et al. (2020) forms a hierarchical scale.
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1. Introduction

A growing number of mathematics education researchers have been working to create measures to assess students’ mathematical
reasoning and to test theoretical hypotheses (e.g., Kosko, 2019; Norton & Wilkins, 2009; Tzur et al., 2022). Via Rasch modeling (Rasch,
1980), mathematics education researchers have gathered statistical evidence to support theoretical progressions in multiplicative
reasoning (Callingham & Siemon, 2021; Kosko, 2019; Tzur et al., 2022). With our study, we expand these efforts to include a Measure
of Graph Selection and Reasoning for Dynamic Situations (MGSRDS). For decades, mathematics education researchers have theorized
and studied students’ reasoning about Cartesian graphs that represent relationships between attributes of objects in dynamic situations
(e.g., Bell & Janvier, 1981; Carlson et al., 2002; Clement, 1989; Johnson et al., 2020; Kerslake, 1977; Leinhardt et al., 1990; Lee et al.,
2020; Moore et al., 2019a; Thompson & Carlson, 2017). Our study extends this body of work by using Rasch modeling to test a
theorized framework of students’ graph reasoning from Johnson et al. (2020). Following Benson and Clark’s (1982) classic instrument
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construction stages, we report on the evaluation and validation stages of the MGSRDS. For the evaluation stage, we report on cognitive
interviews (n = 31), to examine usability and content validity. For the validation stage, we report results from two Rasch models, one
for each of the constructs of graph selection and graph reasoning, collecting data from 673 undergraduate students enrolled in a college
algebra course across three universities.

To begin, we provide our perspective on dynamic situations, graph selection, and graph reasoning. By “dynamic situation” we mean
a situation that involves change and variation, such as a balloon being inflated with helium or a ball being tossed into the air. By “graph
selection” we mean the process by which students choose a graph given a set of options to represent the dynamic situation. By “graph
reasoning” we mean students’ reasoning when they sketch, interpret, and/or select graphs, focusing on Cartesian graphs in particular.
To theorize students’ graph reasoning, we draw on the framework from Johnson et al. (2020), which puts forward four different forms
of graph reasoning: Iconic, Motion, Variation, and Covariation. The Variation and Covariation constructs are rooted in Thompson’s
theory of quantitative reasoning (Thompson, 1994, 2011, 2022; Thompson & Carlson, 2017), which explains how people understand
situations in terms of attributes that are possible to measure. The Iconic and Motion constructs are rooted in earlier research identifying
students’ challenges with Cartesian graphs (Clement, 1989; Kerslake, 1977; Leinhardt et al., 1990). To illustrate, consider a person,
Nat, walking from a starting point to a large tree, then turning around and coming back. Now consider a Cartesian graph depicting
Nat’s total distance traveled on one axis and Nat’s distance from the tree on the other axis. A student may expect a graph to look like the
path Nat walked (Iconic), or to move back and forth, because Nat walked back and forth (Motion). Alternatively, a student may
conceive of a graph representing only one of the distances (Variation), or a relationship between both distances (Covariation).

To assess students’ graph selection and graph reasoning, we use the MGSRDS—a fully online tool housed in the Qualtrics platform
that is accessible on mobile phones, tablets, or computers (Johnson, Olson et al., 2018, 2021). The multimedia MGSRDS contains six
items, each spanning two screens. On the first screen there is a video of a dynamic situation, such as a toy car moving along a square
track, and a question asking students whether they understand the situation. On the second screen, the video appears again, followed
by four graphs from which to select, and a text box to explain the graph choice. We draw on students’ graph choices and text responses
on the MGSRDS as sources of data to evidence their graph selection and graph reasoning, respectively.

To evaluate the MGSRDS, we examine the tool’s usability and content validity. Usability testing comes from the field of technology
and design, as a means of examining the functionality of assessment items for the intended users (Riihiaho, 2018). We intend for the
MGSRDS to be usable for college algebra students across devices (i.e., mobile phones, tablets, and computers). Content validity refers
to evidence that assessment actually measures the intended constructs (DeVellis, 2003). For the MGSRDS, those constructs are graph
reasoning and graph selection. To operationalize graph reasoning, we appeal to the Johnson et al. (2020) framework (Iconic, Motion,
Variation, Covariation). For graph selection, we use a partial credit scoring approach (Incorrect, Partially Correct, Correct).

To validate the MGSRDS, we use Rasch models (Rasch, 1980). Rasch models are measurement models used for analyzing, cali-
brating, and creating measurements from categorical or ordinal data; they create a continuous scale from ordinal data using logits and
confirm the hierarchical nature of the scale points (Wright, 1993). For example, with an agreement scale, it is typical to assume that the
categories of strongly disagree, disagree, agree and strongly agree would appear in a certain order. By providing quantitative
corroboration for the intended order of categories, a Rasch modeling approach can legitimize measures, such as the MGSRDS, by
examining support for internal structure and scale validity (Bond & Fox, 2007).

In the evaluation stage, we examined usability and content validity for the MGSRDS, drawing on individual cognitive interviews (n
= 31 students) and expert reviews. In the validation stage (n = 673 students), we investigated reliability and internal structure,

Fig. 1. Fishbowl dynamic situation.
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examining whether the MGSRDS items provided a difficulty continuum for each of the constructs of graph reasoning and graph se-
lection. Four research questions (RQs) guided our study:

. Does the MGSRDS evidence usability and content validity?

. Does the MGSRDS evidence reliability and internal structure for the constructs of graph reasoning and graph selection?

. Do MGSRDS items provide a continuum for each construct (graph reasoning and graph selection), from most to least difficult?

. Is there empirical evidence to support that the graph reasoning framework from Johnson et al. (2020) forms a hierarchical scale
(Iconic, Motion, Variation, Covariation)?

A WN R

To organize this paper, we begin by providing theoretical and conceptual background for students’ graph reasoning. Then, we
discuss details about the creation of the MGSRDS. In our methods and results, we separate the evaluation stage (RQ1) from the
validation stage (RQ2-4). We conclude with contributions to research and practice.

2. Students’ graph reasoning: Theoretical and conceptual background

The construct of quantity is a fundamental element of Thompson’s (1994, 2011, 2022) theory of quantitative reasoning. Per
Thompson’s theory, a quantity is something more than a unit, such as feet, used as a label for a number (e.g., 5 feet). It is a person’s
conception of a measurable attribute of an object. For example, consider the dynamic situation of a fishbowl being filled with water at a
constant rate (Fig. 1). Two attributes of the situation are the diameter of the water’s surface and the height of the water. A student
conceives of these attributes as quantities when they can think of them as measurable, which does not mean that they need to actually
measure either attribute or assign numerical values to them.

In dynamic situations, attributes of objects undergo (or have the potential to undergo) change and variation. When a student
conceives of some attribute as possible to measure and capable of varying, they are engaging in variational reasoning (Thompson &
Carlson, 2017). For example, a student can conceive of the height of the water as a quantity that can vary as the fishbowl fills with
water. Gross variation is an early level of variational reasoning; at this level, students conceive of the direction of change in an
attribute. For example, in the fishbowl situation, the height of the water increases as the fishbowl fills with water. When a student
conceives of change in two attributes varying simultaneously, they are engaging in covariational reasoning (Thompson & Carlson,
2017). For example, a student can conceive of the height of the water and the diameter of the water surface as varying together while
the fishbowl fills with water. Gross coordination is an early level of covariational reasoning; at this level, students conceive of a loose
connection between the direction of change in attributes. For example, the height of the water continues to increase while the diameter
of the water surface increases, then decreases. With gross variation, students conceive of variation in individual attributes, and with
gross coordination, students conceive of relationships between those attributes.

Students’ reasoning intertwines with their conceptions of what graphs represent (Johnson et al., 2020). When engaging in cova-
riational reasoning, students can conceive of graphs as representing relationships between varying quantities, such as the height and
diameter in the fishbowl situation. When engaging in variational reasoning, students can conceive of graphs as representing a quantity
varying along with experiential time (Thompson & Carlson, 2017). Students can use a single attribute, such as “diameter” to describe
such a graph, or they may even wonder how it is possible to have a single graph that represents both height and diameter at the same
time (see also Johnson et al., 2020). Per Thompson’s (1994, 2011, 2022) theory both of these conceptions entail quantitative
reasoning.

In contrast, students also can conceive of graphs in ways that are yet to evidence quantitative reasoning. Two such ways include
iconic and motion conceptions of graphs. Students can conceive of graphs iconically, as resembling the characteristics of physical
objects in a situation (Clement, 1989; Leinhardt et al., 1990). Students also may conceive of a graph in terms of the physical motion of
objects in a dynamic situation (Bell & Janvier, 1981; Kerslake, 1977). For example, consider a graph representing a relationship
between distance and time for a person’s (Kim’s) walk from home to school and back, up and down a large hill. Students with iconic
conceptions expect such graphs to look like the hill depicted on Kim’s walk (see also Kontorovich et al., 2019). Students with motion
conceptions expect such graphs to show Kim’s back and forth movement on the walk. Furthermore, it can be challenging for students to
shift their motion conceptions of graphs, to form and interpret relationships between attributes represented in dynamic situations
(Johnson et al., 2020).

Johnson et al. (2020) developed a framework categorizing students’ graph reasoning into one of four forms: Iconic, Motion,
Variation, and Covariation. The first two forms, Iconic and Motion, referred to students’ graph reasoning in terms of physical features
or observable movement in dynamic situations (Bell & Janvier, 1981; Clement, 1989; Kerslake, 1977; Leinhardt et al., 1990). The
second two forms, Variation and Covariation, referred to students’ graph reasoning that is at least at the levels of Gross Coordination or
Gross Variation, per Thompson and Carlson’s (2017) framework. Together, these four forms of graph reasoning described a range of
students’ conceptions of what graphs represent.

When sketching graphs, students’ interpretations of the coordinate system itself can impact their graph reasoning (Paoletti et al.,
2022b). Two such interpretations are spatial and quantitative (Lee et al., 2020). In a spatial interpretation, students conceive of a
coordinate plane as representing a physical space either real or imagined, much like a map. In a quantitative interpretation, students
conceive of a coordinate plane as a new space, disesmbedded from a physical situation, in which they can represent relationships
between quantities. When students engage in iconic or motion reasoning, it suggests they are employing a spatial interpretation of a
coordinate system (see also Paoletti et al., 2022b). In contrast, students’ variational or covariational reasoning suggests a quantitative
interpretation of a coordinate system.



Table 1

MGSRDS assessment items.

Assessment Item

Directions

Graph Choices

Ferris Wheel

Select the graph that best represents a relationship
between the Ferris wheel cart's height from the ground
and the distance traveled, for one revolution of the
Ferris wheel. Each graph shows the height from the
ground on the horizontal axis and the distance traveled
on the vertical axis. Explain why you chose the graph
that you did.

Graph A

Distance Traveled

Height from Ground

Partially Correct

Graph B

Distance Traveled

Height from Ground

Graph C

Distance Traveled

Height from Ground

Correct

Graph D

Distance Traveled

Height from Ground

Nat & Tree

Select the graph that best represents a relationship
between Nat's distance from the tree and Nat's total
distance traveled. Each graph shows Nat's distance from
the tree on the horizontal axis and Nat's total distance
traveled on the vertical axis. Explain why you chose the
graph that you did.

Correct

Graph A

Distance from Tree

Graph B

Total Distance Traveled

Distance from Tree

Partially Correct

Graph C

Total Distance Traveled

Distance from Tree

o
o

Total Distance Traveled

Distance from Tree

Fishbowl

4

Select the graph that best represents a relationship
between the height of the water and the diameter of
the water surface. Each graph shows the height of the
water on the horizontal axis and the diameter of the
water surface on the vertical axis. Explain why you chose
the graph that you did.

Partially Correct

Graph A

Diameter

Height of Water

e
@

Diameter of Water Surface

Height of Water

Correct

2
g
E

Diameter of Water Surface

Height of Water

Graph D

Diameter of Water Surface

" Height of Water

Toy Car

Distance| from Center

Toy Car

Select the graph that best represents a relationship
between the toy car's distance traveled around the
track and the toy car's distance from the center of the
track. Each graph shows the toy car's distance traveled
on the horizontal axis and toy car's distance from the
center on the vertical axis. Explain why you chose the
graph that you did.

Partially Correct

Graph A

Graph B

Correct

Graph G

Distance Traveled

Graph D

Changing Cone
DIAMETER

HEIGHT

Select the graph that best represents a relationship
between the cone's diameter and height. Each graph
shows the cone's diameter on the horizontal axis and
cone's height on the vertical axis. Explain why you chose
the graph that you did.

Graph A

Height

Diameter

Partially Correct

Graph B

Height

Diameter

Graph C

Height

Diameter

Correct

Graph D

Height

Ant & Ladybug

Select the graph that best represents a relationship
between the ant's distance from home and the
ladybug's distance from home. Each graph shows the
ant's distance from home on the horizontal axis and the
ladybug's distance from home on the vertical axis.
Explain why you chose the graph that you did.

Graph A

TAnts distance from home

Correct

Graph B

s distance from home

Graph C

Diameter

Graph D

e distance from home

Note. From Johnson et al. (2024)
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The framework from Johnson et al. (2020) makes a conceptual distinction compatible with the constructs of static and emergent
shape thinking, put forward by Moore and Thompson (2015). Static shape thinking entails students conceiving of graphs as malleable,
manipulable shapes. For example, students can think of a graph of a parabola as a physical object that can be moved up and down, left
and right, or even stretched on a coordinate plane. Emergent shape thinking, on the other hand, entails students conceiving of graphs
as in-progress traces created by covarying quantities, represented on each axis. For example, in the fishbowl situation, a student can
conceive of a graph as representing an emerging trace of a relationship between the height of the water and the diameter of the water
surface. Like static and emergent shape thinking, the Johnson et al. (2020) framework distinguishes between physical (Iconic, Motion)
and quantitative (Variation, Covariation) forms of graph reasoning. Yet, students engaging in motion reasoning can think of a graph as
an in-progress trace without conceiving of that graph as representing a relationship between covarying quantities. This suggests that it
can be useful to distinguish students’ conceptions of graphs as emergent traces from their conceptions of graphs as representing re-
lationships between quantities (see also Paoletti et al., 2022b).

Employing a lens of quantitative and covariational reasoning, researchers have conducted interview-based, teaching experiment
(Steffe & Thompson, 2000) studies investigating graph reasoning of middle and secondary students (e.g., Ellis & Grinstead, 2008;
Johnson, 2012; Johnson et al., 2020; Tasova, 2022) and prospective mathematics teachers (e.g., Moore et al., 2013; Moore et al.,
2019a, 2019b; Paoletti et al., 2018). An affordance of such studies, with participants rarely exceeding a few dozen, is the potential for
detailed analysis to draw out nuanced claims related to students’ reasoning. Yet, a challenge is to scale up studies, to make claims for
larger sample sizes. One way to scale up is via online instruments such as graphing tasks. This has been useful for researchers
investigating practicing teachers’ graph reasoning (Moore et al., 2019a; Thompson & Carlson, 2017).

Two online instruments to investigate practicing teachers’ graph reasoning included survey items (Moore et al., 2019a) and online
animations (Thompson et al., 2017). Moore et al. (2019a) provided teachers (n = 45) with a static image of an unconventional graph
(i.e., a graph of a “function” in which certain x values corresponded to multiple y values), along with a hypothetical student response to
the graph (i.e., if x were a function of y, the graph could represent a “function”). Teachers then were to explain how they would respond
to the student. By incorporating unconventional graphs, the researchers learned more about how teachers viewed the viability of
student responses that broke from conventions. In a study of 487 practicing secondary mathematics teachers in the U.S. and Korea,
Thompson et al. (2017) analyzed teachers’ responses to a graphing task. First, teachers viewed an online animation in which the two
variables’ values changed concurrently. Each variable was represented by a dynamic segment varying along the axis of a Cartesian
coordinate plane. One variable’s direction of change remained constant (i.e., always increased), while the other variable’s direction of
change varied. Thompson et al. (2017) did find evidence of teachers’ covariational reasoning, with higher levels of covariational
reasoning per the framework from Thompson and Carlson (2017), being more prevalent among high school teachers from Korea than
from the U.S. While these researchers implemented online instruments with practicing teachers, such instruments also could be viable
for other populations, including undergraduate students.

3. MGSRDS: Background and description

To ground the design and development of MGSRDS items, we drew on results from qualitative studies led by Johnson, investigating
secondary students’ quantitative and covariational reasoning related to functions and graphs (e.g., Johnson, 2012, 2015; Johnson &
McClintock, 2018; Johnson et al., 2020). In addition, we consulted empirical research exploring preservice and practicing teachers’
conceptions of graphing conventions (e.g., Moore et al., 2014; Moore et al., 2019a), as well as theorized interpretations of students’
conceptions of the coordinate plane (e.g., Lee et al., 2020; Paoletti et al., 2022b). Furthermore, we examined how other researchers
developed and refined a multiple choice graphing item, based on the well-known bottle problem, to assess precalculus students’
covariational reasoning (Carlson et al., 2010).

Play the video. Watch the fishbow!

Play the video. Watch the fishbowl filling with water.
filling with water.

In this situation, we will focus on the height of the water and the diameter of the
water surface.

In this situation, we will focus on the
height of the water and
the diameter of the water surface.

Do you understand this situation?

Yes
No Do you understand this situation?
Yes

No

Fig. 2. Fishbowl item, optimized for computers/tablets (left) and mobile phones (right).
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The MGSRDS has six items; each contains a different dynamic situation: a car moving around a Ferris wheel (Ferris Wheel), a person
walking back and forth from a stationary object (Nat & Tree), a fishbowl filling with water (Fishbowl), a toy car moving along a square
track (Toy Car), a cone expanding and contracting (Changing Cone) and two insects crawling back and forth along a path (Ant &
Ladybug). Each assessment item has two consecutive screens. Screen 1 includes a video animation of the situation and a question
asking students whether they understand the situation. Screen 2 includes the same video animation, written directions for graph
selection, four graphs from which to select, and a text box for explanation. Table 1 shows an image of the situation, directions for graph
selection, and graph choices for the six MGSRDS items. In Table 1, we have marked the correct and partially correct graph choices.

To optimize for access across mobile phones, tablets, and computers, as shown in Fig. 2., we developed the MGSRDS in Qualtrics
(https://www.qualtrics.com). We followed principles for effective educational multimedia, including user manipulation, cueing, and
pacing (Plass et al., 2009). Students could manipulate the videos by dragging the timeline below the video (Fig. 2). Boldface type
helped to cue students to the attributes on which to focus. To control pacing, students could click an arrow in the lower right corner,
but students were forced to make a selection before proceeding to the next screen (e.g., select yes or no). Furthermore, Qualtrics
allowed for assessment items to appear in random order. Hence, we eliminated the placement of an item as a potential variable
impacting the item’s difficulty level.

We conducted expert reviews in an ongoing process as the MGSRDS was being developed; this included item demonstrations,
experts taking the assessment individually, and group discussions. We consulted four experts, one with measurement expertise, one
with technology expertise, and two with covariational reasoning expertise. One covariational reasoning expert recommended that we
consider tasks in which both attributes varied in their direction of change (e.g., both increased and decreased). Furthermore, our
measurement expert recommended that we incorporate items that would lead to a spread of difficulty; hence we developed the Ant &
Ladybug item, to address both recommendations. In addition, our technology expert questioned whether open-ended text responses
might be more challenging on mobile phones, but also felt that students’ facility with phones could make this a nonissue. Hence, we
added a question about the device students were using, so we could examine if there were any differences across devices.

Across the items, there are correct, partially correct, and incorrect graph choices. Five of the items in Table 1 (Ferris Wheel, Nat &
Tree, Fishbowl, Toy Car, Changing Cone) contain correct and partially correct graph choices. For each of these items, the direction of
change in one attribute remains constant (increasing), while the direction of change in the other attribute varies. The partially correct
graph represents the same gross covariation (Thompson & Carlson, 2017) in attributes as does the correct graph, but it does not
represent an accurate relationship between values of each attribute. For example, for the Fishbowl item both the correct graph (C) and
partially correct graph (A) represent the height continuing to increase while the diameter increases, then decreases. However, graph A
does not represent an accurate relationship between the values for height and diameter as the fishbowl fills with water. At the widest
part of the fishbowl, small changes in the height are associated with greater amounts of change in diameter than near the top or bottom
of the bowl. For the Ant & Ladybug item, both attributes vary in their direction of change, as each insect’s distance increases and
decreases as it moves to (or from) home and back. This item has no partially correct graph choice.

Across the MGSRDS items, graph choices come in related pairs, and none of the graph choices includes numerical amounts, similar
to the covariation item developed by Carlson et al. (2010). For five items (Ferris Wheel, Nat & Tree, Fishbowl, Toy Car, Changing
Cone), graph choices A and B are piecewise linear, and choices C and D are nonlinear. For the Ant & Ladybug item, graph choices A and
B are linear, and choices C and D are piecewise linear. Three items (Ferris Wheel, Nat & Tree, Fishbowl) include unconventional
graphs, for which the variable with a constant direction of change is represented on the vertical axis (see also Moore et al., 2014; Moore
et al., 2019a). For each of these items, physical features of the correct graph choices resemble physical features of the situation (e.g.,
The Ferris wheel is curved and the correct graph is curved). For the other three items (Toy Car, Changing Cone, Ant & Ladybug),
physical features of the correct graph choices do not resemble physical features of the situation (e.g., The toy car’s track has straight
edges and the correct graph has curved portions.), and the graph choices are more conventional.

Throughout the items, we have accounted for ways in which motion or iconic reasoning may lead to incorrect graph choices. For
motion reasoning, there are distractors that resemble the movement of objects in the animation. For example, on the Nat & Tree item,
Nat walks towards the tree, going left to right, then back again. Starting at the x-intercept, the incorrect graphs C and D extend to the
right and then the left. On the Ant & Ladybug item, the incorrect graphs C and D represent one insect moving from and to home, and to
and from home, respectively. On the Ferris wheel item, the cart moves at a constant speed, which students may associate with linear
graphs, and the incorrect graphs A and B are piecewise linear. For iconic reasoning, there are distractors that resemble the images in
the animation. For example, on the Fishbowl item, the incorrect graph D looks like the right hand side of the bowl. On the Changing
Cone item, the incorrect graph A looks like the image of the cone. On the Toy Car item, the incorrect graphs A and B are piecewise
linear, with corners that resemble corners on the track.

In our considerations for motion and iconic reasoning, we have conjectured that students may expect physical aspects of the an-
imation to have actual locations on the coordinate plane. For example, on the Nat & Tree item, students may expect the tree to appear
in the right hand portion of the coordinate plane, similar to where it appears in the animation; incorrect graphs C and D reflect this. In
our view, these considerations share some interconnections with students’ spatial conceptions of the coordinate plane (see also Lee
etal., 2020; Paoletti et al., 2022b). Furthermore, while we have associated particular graphs with motion or iconic reasoning, we view
these not to be the only form of reasoning that may lead to the graph choice (see also Paoletti et al., 2022b). For further discussion of
theoretical considerations underlying graph choices, see Johnson et al. (2024).

4. Methods

To develop the MGSRDS, we follow Benson and Clark’s (1982) classic instrument construction stages: planning, construction,
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evaluation, and validation. In the planning stage, researchers establish purposes for the measure, define constructs, and identify a
target group, in conjunction with an extensive review of the literature. In the construction stage, researchers identify indicators of the
constructs and decide how to write items, or build assessments, establishing scales for items, based on each construct. In the evaluation
stage, researchers conduct expert reviews and cognitive interviews to establish usability and content validity. In the validation stage,
researchers gather evidence of reliability, internal structure, item difficulty, and scale hierarchy. We report on the evaluation and
validation stages, yielding a mixed methods approach integrating qualitative and quantitative analysis (Tashakkori & Creswell, 2007).

This study is part of a larger, National Science Foundation funded project spanning three U.S. universities. Our target population is
early undergraduate students enrolled in college algebra, an early undergraduate mathematics course with a history of challenges.
These include large percentages of adjunct faculty and graduate students who teach the course (Tunstall, 2018), copious amounts of
content for instructors to cover (Gordon, 2008), and textbooks focused on skills and procedures (Mesa et al., 2012). Furthermore, large
percentages of first generation to college students, students of color, and low income students enroll in courses such as college algebra
(Chen, 2016). Functions and graphs are central to the content of college algebra. Course topics emphasize properties of different types
of functions, including piecewise, linear, quadratic, polynomial, rational, exponential, and logarithmic (Sullivan, 2020). Students are
to graph these functions, explore relationships between different types of functions (e.g., inverse, composition), and use these functions
to model different phenomena. With our study, we work to uncover the graph reasoning of this population.

4.1. Evaluation stage

In this section, we describe our methods for data collection, qualitative analysis, and quantitative analysis for the individual
cognitive interviews (n = 31). Through these methods, we address usability and content validity for the MGSRDS (RQ1).

4.1.1. Cognitive interviews: Data collection and qualitative analysis

We conducted the individual cognitive interviews over a period of one year. Students were invited to participate via an
announcement in their college algebra course, with a link for students to schedule a time convenient for them. Students received a $15
gift card for their participation. Interviews were held via videoconference, with Johnson serving as the interviewer and a graduate
research assistant (GRA) observing. Students used a variety of devices, allowing us to examine usability and consistency of responses
across computer, tablet, and phone. At the start of each interview, Johnson told students that we were testing out an assessment to
learn more about students’ mathematical reasoning. During the interview, Johnson asked students to read directions out loud and to
explain their thinking. She invited students to explain their thinking either as they went along or after they made a graph selection. To
mimic the actual assessment experience as much as possible, Johnson asked minimal follow-up questions. In general, these were
clarifying questions to ensure that we accurately represented students’ graph selections and reasoning. At the end of the interview,
Johnson asked students to share what the experience was like for them.

To analyze students’ graph selection, we used a spreadsheet to code responses as Correct, Partially Correct, or Incorrect. To analyze
students’ graph reasoning, we used codes based on the framework from Johnson et al. (2020). The codes were: Covariation (COV),
Variation (VAR), Motion (MO), Iconic (IC), and Limited Evidence (LE). We added the LE code to account for student responses that
provided insufficient evidence for one of the other four codes.

We used a consensus coding process (Olson et al., 2016) for students’ graph reasoning. To begin, each interview was transcribed by
a GRA. GRAs familiarized themselves with the codes and descriptions shown in Table 2, along with sample responses illustrating each
code. Then two GRAs coded independently. They examined students’ work item by item, in the order completed on the assessment,
identifying evidence of any of the forms of graph reasoning for each item. For each item, GRAs recorded a single code for students’
graph reasoning, using the highest level of reasoning that a student evidenced. For instance, if a student showed evidence of iconic,
motion, and variational reasoning on a particular item, only VAR was used as the final code for the item. Separately, Johnson coded all
31 transcripts, meaning that each transcript had three coders. Then, Johnson looked at her codes against the GRAs’ codes. For 12
students, there were at least two coded items on which Johnson and the GRAs disagreed. Without telling the GRAs the specific dis-
agreements by code or item, Johnson asked the GRAs to go back and take another look at those transcripts, feeling free to change codes
or keep them the same. This resulted in five remaining codes (3% disagreement) needing to be discussed between Johnson and the

Table 2
Graph reasoning codes (adapted from Johnson et al., 2020).

Code  Description Example of Student Answers

cov Students coordinate amounts and/or directions of change in one quantity with direction(s) ~ The diameter keeps increasing while the height increases

of change in another quantity. and then decreases.
VAR Students conceive of variation in the direction of change and/or amounts of change in a Because the diameter kept getting bigger.
single quantity.
MO Students conceive of a graph as a close approximation (or literal representation) of the She goes and returns like in the graph I picked.
motion of a physical object.
IC Students conceive of a graph as a close approximation (or literal representation) of the shape It is a square and will have edges in the graph not curves.
of a physical object.
LE Students state that they don’t know, or that they chose the best graph, or they provide an off I guessed.
task response. Made the most sense.
n/a
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GRAs, who met to finalize those codes. This process yielded 100% interrater agreement for the set of 186 responses to each item (31
students * 6 responses/student).

4.1.2. Quantitative analysis: Usability and content validity

To examine if differences occurred across devices, two one-way analyses of variance (ANOVA) were conducted. The dependent
variables were graph reasoning scores and graph selection scores. To get these scores, we quantitized (Sandelowski et al., 2009)
qualitative codes. For graph selection, we used: Correct-2, Partially Correct-1, and Incorrect-0. For graph reasoning, we used: COV-4,
VAR-3, MO-2, IC-1, and LE-0 (see Table 2 for descriptions of these codes). The independent variable was technology, used with three
categories: computer, tablet, and phone. Assumptions of normality and homogeneity of variance were tested and met (Leech et al.,
2015).

To examine if response patterns in the interviewed sample (n = 31) matched responses patterns in the broader sample (n = 673),
we conducted several correlations (Leech et al., 2015). For graph selection, we used the total number of items correct. For graph
reasoning, we used responses with COV, VAR, and MO codes for each of the six items. The numbers of IC and LE codes in the
interviewed sample were insufficient to conduct correlations (see Section 5.1.2 for further description on this). We then correlated
frequencies of responses for each sample, setting all confidence levels at 95%.

4.2. Validation stage

In this section, we begin with a description of Rasch modeling, to situate our work in the validation stage. Then we describe our data
collection, preparation, and analysis. Through these methods, we address reliability and internal structure for the MGSRDS (RQ2),
create scales of item difficulty for graph reasoning and graph selection (RQ3), and provide quantitative corroboration that the graph
reasoning framework from Johnson et al. (2020) (Iconic, Motion, Variation, Covariation) forms a hierarchical scale (RQ4).

4.2.1. Rasch modeling

Rasch models are ideal for establishing measures in educational settings because they follow a rigorous set of measurement rules
that Rasch (1980) created to examine practical problems in real world settings where smaller sample sizes are typical. Linacre (2023)
notes the goal of the Rasch model is not to fit the model to the data as other item response theory (IRT) models do. Instead, the goal is to
examine how the data fits the established Rasch model, a theoretically and mathematically supported measurement model. Like the
one-parameter IRT model, two independent parameters are estimated in Rasch models: person ability and item difficulty.

The Rasch model establishes a relationship between individual item properties on a particular instrument and the individuals that
are responding to the instrument, while confirming a single underlying latent trait being measured (Boone et al., 2014; Glynn, 2012;
Rasch, 1980). Rasch models assume that the latent trait is organized on a continuum and can determine a person’s position on that
continuum. Thus, the probability of a correct response or of endorsing any specific item is determined by both the item’s difficulty and
the respondent’s ability (Boone et al., 2014; Glynn, 2012). For example, we would expect those with higher abilities to respond more
positively to more difficult items. Rasch models are stricter measurement models than classical test theory models (e.g., confirmatory
factor analysis) because they have established what model parameters should be for a measure to be considered “good.” Therefore, the
data must meet these model expectations.

The “ability” of a person is the probability they will endorse a specific item, so ability is really a function of the underlying latent
trait and not necessarily a person’s proficiency. For example, if an instrument is measuring a person’s attitude, those with a higher
ability, in Rasch terms, are those with a more positive attitude and thus more likely to endorse items that reflect a more positive
attitude (Boone et al., 2014; Linacre, 2023). In the context of this study, higher ability for the graph selection construct translates to
more correct graph choices, and higher ability for the graph reasoning construct translates to greater evidence of variational or
covariational reasoning.

4.2.2. Data collection

Data collection took place during four consecutive semesters: Fall 2020, Spring 2021, Fall 2021, and Spring 2022. To facilitate data
collection, instructors included an online module in their course learning management system, which described the study and gave
students the option to opt out if they chose. Near the end of each semester, students (n = 673) completed the MGSRDS as part of their
course, either during class or asynchronously, via a link that instructors shared in the course learning management system. Instructors
did not know which students completed the MGSRDS, and there was no impact on students’ course grades. At the start of the study, all
three universities were classified as Hispanic Serving Institutions meaning that at least 25% of the undergraduate students identified as
Hispanic or Latino. However, no student demographic information was collected.

4.2.3. Data preparation: Quantitizing qualitative codes

For graph selection and graph reasoning, we used the same codes and scores as the cognitive interview analysis (see Section 4.1.2).
Similar to the qualitative analysis of the cognitive interviews (see Section 4.1.1), we used consensus coding (Olson et al., 2016) for
graph reasoning, analyzing students’ text responses explaining their reason for their graph selection. Again, GRAs led the coding
process. GRAs coded individually, then met to calibrate their codes. As calibration decisions were made, we modified the coding rubric
to add detail and examples that informed the qualitative coding. The qualitative analysis occurred in four rounds after each semester
with three GRAs splitting the data so each response was coded by two GRAs. After individual coding, two GRAs met to discuss any
disagreements. Eleven percent of the time they disagreed and had to bring a third GRA. This process necessarily resulted in 100%
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interrater agreement for the set of 4038 responses (673 students * 6 responses/student).

While there was no missing data in this sample, data cleaning and considerations were needed. Six students (1% of the dataset) got
all items correct, and another six students got all items incorrect. Because Rasch models account for floor and ceiling effects, and this
was only 2% of the dataset, we did not remove these responses.

4.2.4. Data analysis

Because we examine two constructs, graph selection and graph reasoning, we created two Rasch models. The major assumption of
Rasch models is that the data must be unidimensional (Linacre, 2023). Hence, we begin data analysis with principal components
analysis of residuals to establish unidimensionality of each construct. If a measure explains 40% or more of the total raw variance, with
the first contrast (which is equivalent to a second factor) having an eigenvalue of 2.0 or less, with less than 5% variance due to the first
contrast, then there is sufficient evidence that the item set can be considered unidimensional (Linacre, 2023).

Using Winsteps software (Linacre, 2023), we examine two Rasch models, one for each of the constructs of graph selection and graph
reasoning. We assess overall model fit with the standardized mean statistics (ZSTD), using both the infit (weighted fit statistic to
control for extreme responses) and outfit (unweighted fit statistic), with values close to 0.0 indicating good fit. Item and person fit
statistics are assessed with mean square (MNSQ) values. MNSQ is a statistic to test model fit that removes extreme observations, with
MNSQ values between 0.5-1.5 being productive of measurement. While the model considers persons and items in the same manner
mathematically, we expect items to “behave” more than persons. Persons (and items) with low MNSQ values overfit the model,
meaning they are overly predictable. Persons with high MNSQ values underfit the model, meaning they create off-variable noise which
degrades the measurement model and are more concerning. For the graph reasoning model, we have removed five students with MNSQ
values over 2.0 and ZSTD values over 3.0. All students fit the graph selection model; hence, we have kept all students in that model.

Reliability refers to how consistently a student is responding, with Cronbach’s alphas above 0.70 indicating a reliable scale
(Tavakol & Dennick, 2011). Unique to IRT models is an added consideration of reliability looking at the separation of persons and
items. Person separation explores the ability of items to identify levels of the measure across persons on a less-to-more continuum.
Conversely, item separation explores the ability of persons to identify levels of the measure across the items on a less-to-more con-
tinuum (Bond & Fox, 2007). Practically speaking, we are looking for persons and items to be spread fairly evenly through the construct,
so person and item separation values greater than 2.0 would indicate acceptable reliability (Linacre, 2023). Finally, we examine the
invariance of items using differential item functioning (DIF). This statistic examines if items differ by groups. At 95% confidence, p
values greater than 0.05 indicate no DIF, which means the item functions the same across groups. In this study, we have examined DIF
across the three university sites to ensure items were functioning the same across student groups.

Rasch models present items and persons on the same scale to examine scale targeting and item difficulty using Wright maps
(Linacre, 2023). In these maps, persons are represented as “#” on the left hand side of the vertical center line and items are represented
on the right hand side of the vertical center line. Persons near the top of the left hand side demonstrate greater ability for each construct
(and persons near the bottom demonstrate lower ability). Items near the top of the right hand side are “harder” (and items near the
bottom are “easier”). Hence the Wright map provides a continuum of “easiest” to “hardest,” thus creating a ruler for a construct. For
graph selection, persons near the top demonstrate greater ability to select correct graphs, and items at the top are harder to get correct.
For graph reasoning, persons near the top demonstrate greater ability to evidence covariational reasoning, and items at the top are
those that were least likely for students to provide evidence of covariational reasoning (i.e., “harder”).

Scale validation was vital, because we coded students’ written responses based on the framework from Johnson et al. (2020), which
prior to this study had not been quantitatively supported as a hierarchical scale of graph reasoning. The Rasch model tested if the order
of the theorized categorical scale (Iconic, Motion, Variation, Covariation) was supported when changed into continuous logit values. If
the theoretical ordering matched the mathematical model, we would expect to see category probability curves that indicated an even
distribution of “hills” with clearly advancing steps in the theorized order with no evidence of misfit with category MNSQ infit values
less than 2.0 (Linacre, 2023).

For scale validation, category probability curves depict the probability of a response in each scale category against the difficulty
continuum shown in the corresponding Wright map. For example, if students are positioned with lower graph selection or graph
reasoning ability as measured by the Wright map, it is expected that they would have a greater probability of providing incorrect
responses or demonstrating iconic reasoning, respectively. If the category probability curves provide evidence that the constructs
represent a hierarchical scale, they will follow observable patterns. The category probability curve representing the “lowest” construct
on the scale will be monotonically decreasing, and consequently the “highest” will be monotonically increasing. The middle categories
will increase, then decrease, with maxima falling between the lowest and highest category probability curves, ordered from left to right
according to the theorized scale. When this pattern is not consistent, it provides evidence that the empirical ordering of categories is
not consistent with the theorized ordering. In addition, Andrich Thresholds, which represent the probability of moving from one
category to the next, should be ordered based on the theorized scale (Linacre, 2023).

5. Results
We begin by reporting on the evaluation stage, in which we address usability and content validity for the MGSRDS (RQ1). Then, we

report on the validation stage, separating into three sections: Internal Structure and Reliability (RQ2), Item Difficulty (RQ3), and Scale
Hierarchy (RQ4). Within each section, we report on both the graph reasoning and graph selection constructs.
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5.1. Evaluation stage: Establishing usability and content validity for the MGSRDS

5.1.1. Usability of the MGSRDS

Students demonstrated that they understood the MGSRDS items. Across devices, students were able to view videos, select graphs,
and enter text. Using analysis of variance at 95% confidence, we found no significant difference by device on students’ reasoning and
graph selection responses. Students spoke positively about the items and the overall assessment experience. The four responses shown
in Table 3, in which students described what the experience was like for them, were representative of the broader set of student re-
sponses (all names are pseudonyms). Even when students experienced challenges, they described how they worked to make meaning,
demonstrating the usability of the MGSRDS.

5.1.2. Content validity of the MGSRDS: Graph selection and graph reasoning

The interviews demonstrated that the graph choices were viable. Across the interviews, students selected all but three graph
choices. For the graph choices that were not selected (Ferris Wheel Graph A, Nat & Tree Graph D, Toy Car Graph C), students
considered them as potential options. For example, on the Ferris Wheel item, at first Darren said that he thought the answer could be
Graph A or B, because “the cart is moving at a constant speed.” However, he chose Graph D, because he experienced a similar situation
during his algebra class, and the correct answer was nonlinear, like Graph D. On the Nat & Tree item, Jerry looked at the graph options
and said “I really like D but at the same time I like B better.” However, Jerry chose Graph A, saying “I realized when he walked further,
the further he walked he got closer to the tree.” On the Toy Car item, Emma eliminated graphs B and D, saying “it’s going to start by
decreasing and then increasing.” To distinguish between Graphs A and C, Emma said “I’'m going to pick graph A, because to me, it just
makes more sense to move on a straight line when we’re talking about a square and how it’s going around the square track, as opposed
to graph C, where it’s curved lines.” Because students’ descriptions of their thinking demonstrated the viability of the three unselected
options, we chose to keep all graph choices.

Students had a range of incorrect, partially correct, and correct graph choices. At one end of the spectrum, two students got all items
either correct or partially correct (5 correct, 1 partially correct and 4 correct, 2 partially correct, respectively). At the other end of the
spectrum, one student got zero items correct but four partially correct, and another student got one item correct and one item partially
correct. For graph selection, the response patterns of interviewed students (n = 31) matched response patterns in the broader sample
(n = 673). The correlation between interviewed and surveyed students’ total items correct was 0.48, with most interviewed students
getting 2-3 items correct and most surveyed students getting 1-2 correct.

The interviews demonstrated that the graph reasoning codes were viable. All 31 students completed all 6 items. With one code per
item, there were 186 possible graph reasoning codes. Interestingly, COV had the greatest number of codes (103), followed by VAR (41)
and MO (35), with IC (3) and LE (4) having only a few instances. We attribute the lower number of IC and LE codes to the fact that
interviewed students could talk about their thinking, and thus had more opportunities to show evidence of their graph reasoning.
Table 4 shows the response of a representative student, Sophia, on the Fishbowl item, in which she demonstrated evidence of iconic
reasoning, along with other forms of graph reasoning, and hence received a code of a higher level of graph reasoning, per the Johnson
et al. (2020) framework. Sophia demonstrated evidence of iconic reasoning (‘“because the bowl is a curved shape, the graph should not
have any sharp corners™), variational reasoning (“one of two graphs where the height of the water does not decrease™), and cova-
riational reasoning (“As the height of the water rises the diameter does increase and then gets small again at the top of the bowl”).
Hence we coded Sophia’s response as COV.

For graph reasoning, response patterns of interviewed students (n = 31) demonstrated consistency with the broader sample
(n = 673). We were able to analyze correlations across the COV, VAR, and MO codes. The correlation across the COV code between the
two samples was r= 0.91 and the MO code correlation was r=0.95. The VAR code correlation was r= 0.40 with most interviewed
students coded for VAR on the Toy Car item while most surveyed students were coded VAR evenly across Toy Car, Ferris Wheel, and
Nat & Tree items. The interviewed students generally chose more correct graphs and demonstrated greater evidence of covariational
and variational reasoning than the broader sample, which we attribute to their confidence to take part in an optional interview along
with their verbal statements providing more evidence for coders than most written responses from the broader sample.

5.2. Validation stage: Internal structure validity and reliability

5.2.1. Graph reasoning: Internal structure validity and reliability
Graph reasoning was unidimensional with an eigenvalue of the first contrast being 1.41 and the raw variance of the measure

Table 3
Four student responses describing what the experience was like for them.

Student  Response

Sierra This one was nice. [ know that the one with the ant and the ladybug, I feel like I took a lot of time on that trying to understand like where I was going. I
was trying to measure only one of the, I think, the bugs. But I have to take into account both of them.
Maya Okay. Especially concerning the like, differentiating between the wavy graphs and the straight graphs. That was a bit challenging for me and I'm not

quite sure that the reasons I gave for distinguishing them were correct, but I just felt that those reasons made sense.

Xander It was nice. I got to think about what the graph was, how the situation and the graph were connected with each other.

Karly Pretty challenging. I have trouble reading graphs a lot. I'm not a good graph reader. Um, usually have to look at the video a few times to understand at
first which is why I would look at the video like twice or maybe three times to get a better understanding.

10
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Table 4
Interviewed student response to the Fishbowl item.
Item Student  Response
Fishbowl  Sophia Verbal response to interviewer: “I'm guessing a curved one. As the height of the water rises the diameter does increase and then gets small

again at the top of the bowl. And the height of the water doesn’t go back down, so I would say this one.”

[Chooses Graph C]

Written response in text box: “This graph one of two graphs where the height of the water does not decrease. Also, because the bowl is a
curved shape, the graph should not have any sharp corners.”

explaining 55.3% (Table 5). Overall fit was further supported with ZSTD infit value of 0.16 and outfit value of 0.13. All items fit the
model well with MNSQ values between 0.80-1.17 (Table 6). All items contributed to the construct with point-measure correlations
ranging from 0.56- 0.77. At 95% confidence, no significant differential item functioning was found between the three universities.
Person reliability was lower than expected at 0.67 with 1.44 separation (Table 5). This showed that most college algebra students
grouped closely together with their graph reasoning ability, in Rasch (1980) modeling terms. It also indicated that students received a
range of reasoning codes across the MGSRDS items. Item separation was excellent at 12.01 with high reliability (Table 5). Hence, we
confirmed reliability and internal structure for the graph reasoning construct.

5.2.2. Graph selection: Reliability and internal structure

Graph selection was unidimensional with an eigenvalue of the first contrast at 1.36 and the raw variance of the measure explaining
34.3% (Table 5). Overall fit was supported with ZSTD infit value of 0.03 and outfit value of 0.06 (Table 5). Items fit well between
0.75-1.33 and loaded onto the construct well with point-measure correlations between 0.46-0.55 (Table 6). At 95% confidence, no
significant differential item functioning was found between the three universities. Person reliability was lower than expected at 0.44
with only 0.98 separation (Table 5). This showed most students were grouped closely together on graph selection ability, in Rasch
terms (Rasch, 1980). It also indicated that students selected a range of correct, incorrect, and partially correct graphs across the
MGSRDS items. Item separation was excellent at 11.25 with a reliability of 0.99 (Table 5). Hence, we confirmed reliability and internal
structure for the graph selection construct.

5.3. Validation stage: Item difficulty

5.3.1. Graph reasoning: Item difficulty

The Graph Reasoning Wright map (Fig. 3) shows that items were spread well, creating a continuum of graph reasoning difficulty.
The Ant & Ladybug and Toy Car items, positioned near the top of the Wright map, were the least likely to elicit responses demon-
strating evidence of covariational reasoning, hence the “hardest.” The Fishbowl and Changing Cone, positioned near the bottom, were
the most likely to elicit responses demonstrating evidence of covariational reasoning, hence the “easiest.” Items were well targeted
with most students spread along the upper range of 0-2 logits (see Table 6). Therefore, items demonstrated a range of graph reasoning
difficulty, aligned with the Johnson et al. (2020) framework.

5.3.2. Graph selection: Item difficulty

The Graph Selection Wright map (Fig. 4) shows that items were spread well to create a continuum of the graph selection construct.
The Ant & Ladybug, much closer to the top than any of the other items, was considerably harder to get correct. The Toy Car and
Changing Cone items, positioned closer together, were the next most difficult, followed by the Fishbowl and Nat & Tree items. The

Table 5

Dimensionality, fit, and separation.
Index Graph Selection Graph Reasoning
Dimensionality — eigenvalue for 1st contrast 1.36 1.41
Mean ZSTD Infit 0.03 -0.16
SD ZSTD Infit 1.04 1.17
Mean ZSTD Outfit 0.06 -0.13
SD ZSTD Outfit 0.99 1.10
Model Person Separation 0.89 1.44
Model Person Root Mean Square Error 0.65 0.76
Model Reliability of Person Separation 0.44 0.67
Cronbach’s Alpha 0.44 0.84
Model Item Separation 11.25 12.01
Model Reliability of Item Separation 0.99 0.99

Note: Values are for the graph selection scale with partial credit and the graph reasoning scale without the 0 (no evidence) code.
ZSTD Infit is a t statistic testing model fit with sensitivity to midrange observations. ZSTD Outfit is a t statistic testing model fit with
sensitivity to extreme responses. Person/Item Separation is the ratio of the true standard deviation to the error standard deviation.
Person Root Mean Square Error is standard error of the measure inflated for misfit. Reliability of Person/Item Separation
= Separation2 /1 + Separationz).

11



C. Donovan et al. Journal of Mathematical Behavior 73 (2024) 101137

Table 6

Item fit statistics.
Item# Mean (SD) Logit Position SE Infit MNSQ Pt-Measure Correlation
Graph Selection
Ant & Lady Bug 0.35 (.76) 1.24 0.07 1.33 0.50
Toy Car 0.79 (.73) 0.20 0.05 0.75 0.52
Changing Cone 0.87 (.78) 0.05 0.05 0.81 0.52
Fishbowl 1.10 (.88) -0.36 0.05 0.93 0.55
Nat & Tree 1.14 (.93) -0.43 0.05 1.20 0.46
Ferris Wheel 1.28 (.91) -0.69 0.05 1.16 0.50
Graph Reasoning
Toy Car 1.58 (1.26) 0.94 0.07 0.88 0.66
Ant & Lady Bug 1.58 (1.26) 0.89 0.07 1.10 0.56
Nat & Tree 1.90 (1.36) 0.25 0.06 0.80 0.70
Ferris Wheel 1.84 (1.51) 0.08 0.07 0.98 0.73
Changing Cone 2.17 (1.70) -1.02 0.07 1.17 0.75
Fishbowl 2.29 (1.68) -1.14 0.07 0.87 0.77

Note. Item logit position is the value seen in the Wright map which creates the construct’s continuum. SE is standard error of the logit position. MNSQ
is a statistic testing model fit that removes extreme observations with values between 0.5-1.5 being productive of measurement (Linacre, 202.3).
Pt-Measure correlation is the relationship between the individual item and the total measure.

Ferris Wheel item was the easiest for students to get correct. Items were well targeted to the students, with most students grouped on
the lower end of the construct at 0-1 logit positions (see Table 6). Hence, most students were getting a few items correct but rarely got
all six correct. This fit our design intentions, to create a measure that was neither too easy (most students get all items correct) nor too
difficult (most students get no items correct).

5.4. Validation stage: Scale hierarchy

5.4.1. Graph reasoning: Scale hierarchy

First, we conducted Rasch modeling, using quantitized (Sandelowski et al., 2009) graph reasoning codes for the five-code scale
shown in Table 2 (LE-0, IC-1, MO-2, VAR-3, COV-4). However, there were major problems. While categories were used fairly evenly
ranging from 10%— 29% observed (Table 7), the categories were disordered, as shown by the category probability curves (Fig. 5) and
Andrich Thresholds (Table 7). Even though the LE and COV curves followed expected patterns (monotonically decreasing and
increasing, respectively), there are no distinct maxima moving from left to right for the middle categories. Furthermore, the point of
equal probability between the IC and MO categories, the Andrich Threshold for the MO category, was less than the threshold for the IC
category. This also happened for the COV and VAR categories, with the COV threshold being less than the VAR. We tried multiple
category versions with collapsing categories but removing the LE code worked best. This decision also had strong conceptual
grounding because the LE code was meant to capture all written responses that lacked evidence of one of the forms of reasoning in the
Johnson et al. (2020) graph reasoning framework.

We conducted Rasch modeling again, this time with a four-code scale (IC-1, MO-2, VAR-3, COV-4). Removing responses receiving
an LE code, we based this model only on those responses coded IC, MO, VAR, or COV. All categories demonstrated good fit and were
used fairly evenly ranging from 14%— 35% observed (Table 7). While the VAR category was slightly muted as it did not peak as
strongly (Fig. 6), the category probability curves showed that its ordering was distinct. Furthermore, the Andrich Thresholds
demonstrated steps from one category to the next, according to the theorized scale (Table 7). Hence, we provided quantitative
corroboration to support that the graph reasoning framework (Iconic, Motion, Variation, Covariation) from Johnson et al. (2020)
forms a hierarchical scale.

5.4.2. Graph selection: Scale hierarchy

The graph selection scale (Incorrect-0, Partially Correct-1, Correct-2) worked well as a hierarchical scale. All categories
demonstrated good fit and were used fairly evenly ranging from 21%— 44% observed (Table 7). Although the Partially Correct
category was more muted than others (Fig. 7), the ordering was distinct. Because the Ant & Ladybug item did not have a Partially
Correct option (see Table 1), we attempted a model with a dichotomous scale (Incorrect-0, Correct-1). All item ordering and model
statistics were consistent with a dichotomous scale, but person reliability became extremely poor. This pointed to the need for a three-
point scale, including Partially Correct, to differentiate students’ graph selection abilities.

Because the Ant & Ladybug was the only item without a Partially Correct option, one might expect it to be a problematic item. A
potential challenge could be that the limited graph selection options (Correct and Incorrect only) would contribute to less variance and
therefore greater difficulty. However, the Ant & Ladybug item had a similar standard deviation to Toy Car and Changing Cone items
(see Table 6). Furthermore, when we explored the dichotomous scale (Correct/Incorrect), we saw that the Ant & Ladybug item was the
most difficult, regardless of the model. Theoretically, this made sense because the Ant & Ladybug item was designed to be the most
difficult (see Section 3), and our modeling provided quantitative support for this.

12
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Fig. 3. Graph Reasoning Wright map.
6. Discussion and conclusion
We set out to examine the evaluation and validation stages of the MSGRDS. For the evaluation stage, we demonstrated that the

MGSRDS evidences usability and content validity, via analysis of cognitive interviews and expert review (RQ1). For the validation
stage, we used Rasch analysis to create models for students’ graph selection and reasoning. We found that the MGSRDS evidences
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Fig. 4. Graph Selection Wright map.

reliability and internal structure for graph selection and graph reasoning (RQ2), with MGSRDS items providing a continuum for each
construct, from most to least difficult (RQ3). Finally, we found empirical evidence to support that the theorized graph reasoning
framework (Iconic, Motion, Variation, Covariation) from Johnson et al. (2020) forms a hierarchical scale (RQ4).
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Table 7

Self-system process scale step structure.
Category Observed Percentage Observed Average Infit MNSQ Andrich Threshold
Graph Selection
0 — Incorrect 44 -0.77 1.02 None
1 — Partially Correct 21 -0.09 0.88 -0.30
2 — Correct 36 0.55 1.02 0.30
Graph Reasoning - original 5 point scale
0 — Limited Evidence 29 -0.93 1.19 None
1 —Iconic 10 -0.56 0.84 0.02
2 — Motion 25 -0.10 0.98 -1.15
3 — Variation 15 0.45 0.97 0.74
4 — Covariation 21 1.03 0.91 0.40
Graph Reasoning - modified 4 point scale
1 - Iconic 14 -1.17 1.36 None
2 — Motion 35 -0.38 0.81 -1.95
3 - Variation 21 0.86 0.95 0.85
4 — Covariation 30 1.99 0.87 1.10

Note. Observed percentage is the percent of all responses for that category. Observed average is the average of the measure to produce the responses
observed in the category. Infit MNSQ is the average of the infit MNSQs associated with responses in that category. Step Structure is the logit position

where the conditional probability of being in either category is equal.
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Fig. 5. Graph reasoning category probability curves with 5 point scale.

6.1. Item difficulty for the MGSRDS: Graph reasoning and graph selection

For graph reasoning, the item difficulty scale was: Fishbowl, Changing Cone, Ferris Wheel, Nat & Tree, Ant & Ladybug, Toy Car.
This meant the Fishbowl item was the most likely to elicit evidence of students’ covariational reasoning, while the Toy Car and Ant &
Ladybug items were the least likely to do so (see Fig. 3). In our view, the nature of the movement in each of the animations was one
aspect that could account for differences in item difficulty (see also Johnson et al., 2024). Both the Toy Car and the Ant & Ladybug
items had an actor, represented by a single point, which “drove” the motion in the animations. As the toy car moved along the track and
the insects walked along the paths, the distance attributes accrued with their movement. In contrast, the Fishbowl and the Changing
Cone items did not have such an actor. The height and diameter varied as the fishbowl filled with water, and the height and diameter
varied as the cone expanded and contracted. The Ferris Wheel and Nat & Tree items also had an actor in the animation, and they fell
between the other two pairs of items on the Graph Reasoning Wright map (see Fig. 3).
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For graph selection, the item difficulty scale was: Ferris Wheel, Nat & Tree, Fishbowl, Changing Cone, Toy Car, Ant & Ladybug. This
meant the Ferris Wheel item was the easiest for students to select the correct graph, while the Ant & Ladybug item was considerably
harder than all others (see Fig. 4). The difficulty of the Ant & Ladybug item aligned with our theorizing; it was the only item in which
both attributes varied in their direction of change. The three items that students were most likely to get correct (Ferris Wheel, Nat &
Tree, Fishbowl) were also the three items that incorporated unconventional graphs (see Table 1). These graphs were unconventional
because multiple values of the variable represented on the vertical axis mapped to the same value of the variable represented on the
horizontal axis. Hence, they did not pass the “vertical line test,” a standard technique in U.S. classrooms for determining whether a
graph represented a function, with the assumption that “a function” meant that the variable on the vertical axis (typically y) was a
function of the variable represented on the horizontal axis (typically x). Moore et al. (2014) advocated that breaking conventions could
promote students’ quantitative reasoning. The positioning of the items on the Graph Selection Wright map (see Fig. 4) indicated that
unconventional graphs were viable for including as part of assessment items.

6.2. Limitations of the current study

The graph reasoning scale had a Cronbach’s alpha of 0.84 indicating strong reliability, but the graph selection scale had a lower
Cronbach’s alpha at 0.44. Furthermore, the person separation for graph reasoning (alpha = 0.67 with 1.44 separation) and graph
selection (alpha = 0.44 with 0.98 separation) were lower than we expected. However, the graph reasoning items separated students
better than the graph selection items. When we tried a dichotomous graph selection scale (Incorrect-0, Correct-1), this lowered person
separation even more, which meant that a partial credit category helped to differentiate student ability. In our view, the person
separation values for graph selection and graph reasoning were lower due to inconsistent patterns across responses, because it was
more likely for students to have a mix of graph selection and graph reasoning codes across their responses (i.e., only 2% of students got
all items correct or all incorrect). Although higher reliability would be considered ideal for measurement statistics, in this situation it
was not problematic for students to have a mix of codes across graph selection and graph reasoning. In future studies, researchers could
examine effects on person separation values by extending to a broader student population (e.g., include secondary students and/or
undergraduates at advanced stages of their studies).

Another limitation of our study was our use of students’ text responses as a source of data for their graph reasoning. Namely,
students might engage in graph reasoning not evidenced in their text responses, and their text responses may capture only a portion of
their reasoning. As one might expect, students’ verbal responses (n = 31) in the evaluation stage provided a richer source of data than
students’ text responses (n = 673) in the validation stage. We view this as a tension in the work to scale up smaller-scale studies of
students’ mathematical reasoning. By including space for students to explain their reasoning and by analyzing those text responses
along with their graph selections, we problematize the notion that a particular graph choice will align solely with a particular form of
reasoning. Put another way, we do not assume that there are items for which covariational reasoning is the only means by which
students could select the correct graph, or in turn, that iconic reasoning is the only means by which students could select the incorrect
graph. While students’ engagement in covariational reasoning increases the likelihood of their correct graph selection (see Johnson
et al., 2024), we recognize that students may select correct graphs for other reasons. By making our assumptions explicit, we work to
communicate how we navigate the tensions in scaling up from smaller qualitative studies.

6.3. Contributions to research and practice

This study contributes to the work of mathematics education researchers using Rasch modeling to corroborate theoretical pro-
gressions in multiplicative reasoning (Callingham & Siemon, 2021; Kosko, 2019; Tzur et al., 2022), by extending to a new construct,
graph reasoning. Our study design and method can offer a blueprint for researchers interested in quantitizing (Sandelowski et al.,
2009) qualitative data to form a continuous scale. In future studies, research can test theoretical progressions for other forms of
students’ mathematical reasoning.

Our Rasch modeling clearly delineates iconic reasoning from motion reasoning along a graph reasoning scale. While Moore and
Thompson’s (2015) constructs of static and emergent shape thinking distinguish physical and quantitative forms of graph reasoning,
respectively, there has been less attention to progressions in physical forms of graph reasoning, such as iconic and motion reasoning. To
address this, we also consider Lee et al.’s (2020) distinction between students’ spatial and quantitative conceptions of coordinate
systems. Unlike iconic reasoning, motion reasoning resembles the “in progress” nature of emergent shape thinking. Yet, students
engaging in motion reasoning seem to be operating with a spatial, rather than a quantitative, conception of a coordinate system. This
description of motion reasoning shares similarities with one of the theoretical cases put forward by Paoletti et al. (2022b), in which
they illustrate how a student may engage in emergent thinking within a spatial coordinate system. When students are engaging in
motion reasoning, it is a promising time for teachers and researchers to foster their shifts to quantitative conceptions of coordinate
systems. Yet, more needs to be known regarding how such shifts may occur. Extending from our study, researchers may explore
conceptual mechanisms by which students advance along the graph reasoning framework (Iconic, Motion, Variation, Covariation)
from Johnson et al. (2020). Furthermore, researchers can investigate connections between this graph reasoning framework and related
theoretical constructs of static and emergent shape thinking, and spatial and quantitative interpretations of coordinate systems. In our
view, a key question to investigate is the learning conditions under which students can shift from physical to quantitative forms of
graph reasoning (see also Moore et al., 2019b).

An enduring challenge has been to scale up the results of interview-based studies of students’ reasoning, to make claims for larger
sample sizes (e.g., Norton & Wilkins, 2009; Tzur et al., 2022). Qualitative analysis of such interview studies is a time-intensive

17



C. Donovan et al. Journal of Mathematical Behavior 73 (2024) 101137

endeavor. The MGSRDS is a useful assessment for teachers and researchers to use to diagnose students’ graph reasoning and selection
for dynamic situations. While we have used the MGSRDS to learn about the reasoning of the college algebra student population,
researchers can use it to investigate the reasoning of other student populations. Such studies can provide an opportunity to corroborate
findings we have reported, including whether the person separation for graph reasoning and graph selection would continue to be
lower within and/or across different student populations. Furthermore, our study corroborates the results of a growing corpus of
qualitative studies demonstrating that students can engage in covariational reasoning well before enrolling in advanced college math
courses (e.g., Ellis et al., 2020; Johnson, 2012; Paoletti et al., 2022a).

In conclusion, we report a novel finding: we provide statistical evidence to support that a theorized graph reasoning framework
from Johnson et al. (2020) forms a hierarchical scale. Educators can use this framework (Iconic, Motion, Variation, Covariation) to
diagnose students’ graph reasoning, in conjunction with the MGSRDS or with other tasks/assessments. This can support educators’
knowledge regarding how students are drawing on their own sensibilities to make sense of relationships between attributes in dynamic
situations. Future work can include the development of instructional materials to foster students’ development in their graph
reasoning.
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