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The best known solutions for k-message broadcast in dynamic networks of size n require Ω(nk) rounds.
In this article, we see if these bounds can be improved by smoothed analysis. To do so, we study perhaps

the most natural randomized algorithm for disseminating tokens in this setting: at every timestep, choose

a token to broadcast randomly from the set of tokens you know. We show that with even a small amount

of smoothing (i.e., one random edge added per round), this natural strategy solves k-message broadcast in

Õ(n + k3) rounds, with high probability, beating the best known bounds for k = o(
√
n) and matching the

Ω(n+k) lower bound for static networks fork = O(n1/3) (ignoring logarithmic factors). In fact, themain result

we show is even stronger and more general: Given �-smoothing (i.e., � random edges added per round), this

simple strategy terminates inO(kn2/3 log1/3(n)�−1/3) rounds. We then prove this analysis close to tight with

an almost-matching lower bound. To better understand the impact of smoothing on information spreading,

we next turn our attention to static networks, proving a tight bound of Õ(k
√
n) rounds to solve k-message

broadcast, which is better than what our strategy can achieve in the dynamic setting. This conorms the

intuition that although smoothed analysis reduces the dioculties induced by changing graph structures, it

does not eliminate them altogether. Finally, we apply tools developed to support our smoothed analysis to

prove an optimal result fork-message broadcast in so-calledwell-mixed networks in the absence of smoothing.

By comparing this result to an existing lower bound forwell-mixed networks, we establish a formal separation

between oblivious and strongly adaptive adversaries with respect to well-mixed token spreading, partially

resolving an open question on the impact of adversary strength on the k-message broadcast problem.
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1 INTRODUCTION

In this article, we apply smoothed analysis to the study of k-message broadcast in dynamic net-
works. We prove that even with a small amount of smoothing, a simple distributed random broad-
cast strategy can signiocantly outperform the existing worst-case lower bounds. We then prove
that in static networks the complexity of this strategy further improves, establishing that even in
the context of smoothing, changing topologies remain more diocult to move information through
than their static counterparts. Finally, we apply the tools developed for these analyses to improve
the best-known bounds for k-message broadcast, without smoothing, in the well-mixed dynamic
network setting. This result is signiocant in part because when combined with an existing lower
bound on well-mixed networks [8], it provides a formal separation between strongly adaptive and
oblivious adversaries for k-message broadcast.

1.1 Background

In studying distributed network algorithms, it is common to represent the underlying topology
with a graph, where nodes correspond to processes and edges to communication links. In the
dynamic network setting, these graphs can change from round to round as determined by an ad-
versary. An upper bound proved in a dynamic network is considered strong as it can tolerate the
many sources of interference, failure or congestion that alter link availability in real world net-
works (see [13] for a good review).

Kuhn et al. [11] sparked recent interest in the study of the k-message broadcast problem, in which
nodes in a network of size n must spread k messages (also called tokens) to the whole network.
In [11], the results assume the Broadcast CONGEST model in which in each round, each node
can broadcast a single bounded-size message, containing at most 1 token. A primary result in the
article is a deterministic algorithm that solves k-message broadcast in O(nk) rounds. For larger
values of k , this is notably slower than the O(n + k) rounds required to solve this problem in a
static network, underscoring the dioculty of dynamic topologies.
Follow-up work by Dutta et al. [8] proved this result close to optimal with a lower bound that

establishes Ω(nk/logn+n) rounds are necessary to solve k-message broadcast in this setting. This
result is strong in that it holds even for randomized algorithms (with a strongly adaptive adver-
sary), and under the well-mixed token assumption in which each token has independent constant
probability of starting at each node.

1.2 Key uestion: Is Ω̃(nk) Fundamental?

Given the importance of information dissemination, an Ω̃(nk) lower bound onk-message broadcast
is unfortunately strong, especially for large networks attempting to disseminate large amounts
of information in a setting with limited bandwidth. Following the approach of Dinitz et al. [6],
however, we can investigate whether this bound is fundamental.

Inmore detail, there are two useful possibilities to consider here. First, this Ω̃(nk) boundmight be
robust in the sense that something like nk rounds to broadcast k messages is a natural consequence
of network topologies that change. This would be renected, for example, in the existence of large
classes of graphs in which this bound is unavoidable. The second possibility is that the bound is
instead fragile in the sense that it requires carefully-crafted pathological topologies to induce a
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complexity of this magnitude, and even small changes to these worst-case graphs enable much

more eocient solutions. These distinctions are important because if the Ω̃(nk) lower bound due
to [8] can be shown to be fragile, this provides hope that more eocient information dissemination
can be expected in most real world settings. By contrast, if the bound is robust, this indicates that
eocient communication should not be expected in practice.
One approach to distinguishing between robustness and fragility is to apply smoothed analy-

sis. In more detail, in the study of sequential algorithms, Spielman and Teng introduced smoothed

analysis to help explainwhy the simplex algorithmworkswell in practice despite pessimisticworst-
case lower bounds [18, 19]. They proved that the introduction of small randomperturbations to oth-
erwise worst-case inputs enabled stronger bounds, indicating the existing lower bound was fragile.
Dinitz et al. [6] subsequently adapted smoothed analysis to the study of distributed algorithms

in dynamic networks. In this framework, as in the worst-case setting, an adversary generates an
arbitrary dynamic graph to describe the changing network. The individual graphs, however, are
then each augmented with � additional random edges, for some smoothing parameter �, before
the distributed algorithm in question is run.
For � = 0, this reduces to the standard worst-case setting where existing lower bounds ap-

ply. For � =
(n
2

)

, this reduces (more or less) to a random graph setting, in which much stronger
upper bounds results are typically possible. As argued in [6], if a worst case lower bound is signio-
cantly diminished by smoothed analysis for small � values, then this hints that the original bound
is fragile.
The processes and problems studied in [6] were nooding, random walks, and token aggrega-

tion. (Follow-up work applied smoothed analysis to the study of the minimum spanning tree [3]
and leader election [16] in static graphs.) The k-message broadcast problem features arguably the
best-known pessimistic lower bound in the dynamic network setting, but its examination using
smoothed analysis was left in [6] as an open problem.

1.3 Our Results

We focus in this article on random broadcast, one of the simplest possible algorithms for dissemi-
nating tokens: In each round, each node broadcasts a token chosen uniformly at random from its
current token set. This simple strategy will enable us to prove a variety of interesting results on
k-message broadcast.

Smoothed analysis of random broadcast in dynamic networks. Applying smoothed analysis as
our key tool, we prove that even a small amount of smoothing (i.e., one random edge added per
round) is suocient to enable random broadcast to outperform the worst-case lower bound. This
implies both that the existing bound is fragile, and that random broadcast is, in some sense, the
right strategy for spreading tokens through a dynamic network.
We orst establish in Section 5 the baseline result that with no smoothing random broadcast

solves the problem in O(nk) rounds, with high probability in n. This matches the deterministic
bound from [11].1 We then investigate the impact of smoothing. In Section 6.1, we show that even

with a small amount of smoothing (i.e., � = 1), random broadcast now terminates in Õ(n + k3)
rounds, with high probability in n, improving on the best-known O(nk) bound for any k = õ(

√
n),

and matching the static network lower bound of Ω(n + k) for k = Õ(n1/3).
We emphasize that 1-smoothing adds at most one new edge to the network in each round,

which enables at most one extra token dissemination. This smoothing therefore changes the

1Note that [11] gave a deterministic algorithm for the problem, and also explored the problem of termination detection,

which further complicates the problem.
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overall bandwidth or connectivity of the graph by only a very small amount.2 Given that Θ(nk)
rounds might be necessary to solve k-message broadcast, our speed-up in time complexity in
this context does not come simply from adding large amounts of extra capacity to a worst-case
network: Most of the work of token dissemination must still occur over the adversarially specioed
edges in the network. The smoothing accomplishes something more subtle: As we elaborate in
our below discussion of predecessor paths, these extra edges are not eliminating bottlenecks in
the underlying dynamic network, but instead providing just enough random noise to allow us to
bypass their corresponding potential for congestion.
In reality, our result for � = 1 is a special case of our more general result, showing that ran-

dom broadcast solves k-message broadcast in O(kn
2/3 log1/3 n
�1/3

) rounds, which for � = 1 is upper

bounded by the Õ(n+k3) bound claimed above for all n and k . Notice that in this general form, for
k = o(n1/3), random broadcast actually beats the Ω(n + k) lower bound for static networks. This
is possible because even a small number of additional random edges enables tokens to not only
bypass bottlenecks, but also skip ahead in temporal paths, reducing the efective dynamic diameter
of the network. As we increase �, we get further improvements. For � = k3, for example, we get
a sub-linear result, as the increased smoothing both speeds up the rate at which tokens initially
spread, and the rate at which they subsequently jump over smoothed edges to locations near their
destinations in time and space (see below for elaboration).
A key technique in our analysis, presented in Section 4, is the use of graph structures that

we call predecessor paths, which capture paths that exist over time. They are represented as a
sequence of node/round pairs, (u1, r1), (u2, r2), . . . , (ux , rx ), where for each (ui , ri ) it is guaranteed
that ui is connected to ui+1 during round ri . We further customize these paths for a given token
t , strengthening the guarantee for each (ui , ri ) such that not only will ui be connected to ui+1 in
round ri , but it will broadcast token t in this round, if it knows it.
For each given destination ux and token t , therefore, we can reduce the problem of delivering t

to ux to the problem of seeding token t into the appropriate predecessor path. (Intuitively, we are
establishing here a net over time and space that can capture a token and then inexorably guide
it to the center of the trap.) At a high-level, we can therefore break our smoothed analysis of
random broadcast into three phases. During the orst phase, we ignore the smoothed edges, and
allow the natural dynamics of information spread in these networks spread out each token to a
larger set. During the second phase, we allow the smoothed edges to seed these tokens onto the
appropriate predecessor paths. During the onal phase, the tokens can then traverse these paths
to their onal destinations.
The lengths of these phases are inter-dependent. Increasing the initial spreading phase, for ex-

ample, decreases the second phase as now each smoothed edge has a higher probability of selecting
a node with a useful token. Similarly, relying on long predecessor paths also reduces the second
phase, as now each smoothed edge hasmore targets towhich to deliver a token. Longer predecessor
paths, however, necessitate a longer third phase to give tokens time to traverse to their destina-
tions. Our onal result balances these dependencies by optimizing the time complexity when we
ox all three phases to be the same length.
In Section 6.3, we complement our upper bound analysis of random broadcast with a nearly-

matching lower bound. In more detail, we describe and analyze a dynamic star topology in which
the network graph forms a star in each round, but the identity of the center node rotates over
time. In this setting, we prove random broadcast’s expected time to solve k-message broadcast

2Notice, for example, that to signiocantly increase the conductance or vertex expansion of the graph, you would need to

add many more edges.
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is in Ω̃(min( kn2/3

(�(k+�))1/3 ,
kn
k+�

)). This result is approximately a factor of (k + �)1/3 below our upper

bound analysis, conorming that signiocantly more eocient analyses are not possible. Notably,
this bound establishes the fundamental nature of the drop from n to n2/3 in the presence of even a
small amount of smoothing.

Smoothed analysis of random broadcast in static networks. A possible interpretation of our upper
bounds is the following: <with a small amount of smoothing, dynamic networks behave like static
networks=. In other words, it might be the case that smoothing removes the diferences between
dynamic and static networks. In Section 7, we investigate this issue by studying the behavior of
random broadcast in the network topologies that do not change from round to round. We prove
that in the presence of minimum smoothing (i.e., � = 1), random broadcast completes in static
networks a polynomial factor of n faster than what is possible in dynamic networks. Formally,

we prove that in any static network with 1-smoothing, random broadcast completes in Õ(k
√
n)

rounds, with high probability. (Recall, the relevant upper bound result in dynamic networks for

1-smoothing is Õ(kn2/3) rounds.) We then prove this analysis is tight (within logarithmic terms)
with a matching lower bound.

At the core of our analysis is a decomposition of an arbitrary static network into at mostO(
√
n)

components each with diameter at most O(
√
n). We demonstrate that given a collection of t com-

ponents that know the token, in a single spreading interval of Õ(k
√
n) rounds, each of the t com-

ponents is likely to send a given target token over a smoothed edge to a unique new component,
efectively doubling the number that now know it. We leverage this doubling behavior to spread
a token to a large fraction of the network in only a logarithmic number of spreading intervals.

Well-mixed networks. In [8], the authors introduced the notion of a well-mixed network in the
context of studying k-message broadcast. They call a network well-mixed if for every node u and
token t , node u starts with token t with some independent constant probability. Surprisingly, they
observe that their Ω(nk) lower bound holds even for well-mixed networks. It turns out that even
starting with a very uniform token distribution does not make the problem easy.
Accordingly, they replace the broadcast communication model with the much more powerful

Symmetric-Dif CONGEST model in which each node can not only send a diferent token on each
outgoing edge, but also perform a set-diference with each of their neighbors before deciding what
tokens to send. Given this extra power, they show that it is possible to solve k-message broadcast

in a well-mixed network in Õ(n + k) rounds, with high probability.
Leveraging our predecessor path constructions introduced for our smoothed analysis results,

we prove, perhaps surprisingly, that our simple random broadcast algorithm solves k-message
broadcast inO((k/p) logn) rounds, with high probability, wherep is the probability that each nodes
starts with each token. For the p = Θ(1) case considered in [8], we strictly improve on the bound
they achieved in their more powerful communication model. Indeed, for constant p, our bound is
within a single log factor of matching a trivial Ω(k) lower bound for all algorithms in the broadcast
communication model.
The key follow-up question, of course, is why our result does not violate the Ω(nk) lower bound

from [8]. The diference is found in the adversary assumptions. The existing lower bound requires
a strongly adaptive adversary that knows the nodes’ random choices in advance and can construct
the network topology for a given round based on the knowledge of the tokens nodes are broad-
casting in that round. We assume, by contrast, an oblivious adversary that designs the network
without advance knowledge of these random bits.

Our well-mixed network result, therefore, opens a clear gap between the strongly adaptive
and oblivious adversaries in the context of k-message broadcast. This partially resolves the
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open question presented in [8] as to whether or not the Ω(nk) lower bound applies to oblivious
adversaries as well.

2 RELATEDWORK

Many problems have been studied in various dynamic network models; e.g., [1, 4, 5, 8–10, 14, 17]
(see [13] for a good survey). Interest in k-message broadcast in a dynamic network with broadcast
communication was sparked by Kuhn et al. [12], who established the originalO(nk) upper bound
that provides the baseline for the smoothed analysis deployed in this article. The relevant matching
lower bounds for arbitrary and well-mixed token distributions were subsequently proved by Dutta
et al. [8].
Dinitz et al. [6] adapted the smoothed analysis technique, originally introduced by Spielman and

Teng [18, 19] in the context of sequential algorithms, to dynamic networks. They studied nooding,
randomwalks and aggregation, and identioed k-message broadcast as an important open question.
Subsequent work applied this smoothed analysis framework to various other graph problems, in-
cluding minimum spanning tree construction [3] and leader election [16]. Recently, Meir et al. [15]
proposed a variation of graph smoothing, suitable for long-lived processes, in which the smoothing
parameter � can be fractional. As noted in [6], smoothed analysis is not the only technique deployed
in the literature for sidestepping fragile dynamic network lower bounds. Denysyuk et al. [5], for
example, circumvent an exponential lower bound for random walks in dynamic graphs due to [2]
by requiring the dynamic graph to include a certain number of static graphs from a well-deoned
set. In the context of the dynamic radio network model, Ghafari et al. [9] studied the impact of
adversary strength, similarly onding a noticeable gap between oblivious and strongly adaptive
adversaries in the context of broadcast.

3 PRELIMINARIES

Here we deone the dynamic network models we study and the k-message problem we solve. We
also formalize �-smoothing and establish some useful notation and probability results that we will
leverage throughout the article to follow.

Model. We study a dynamic network model in which an execution begins with an oblivious
adversary that chooses a dynamic graph,, deoned as a sequence G = G1,G2, . . ., where each Gi

is a connected graph over a common node set V of size n = |V |. Time proceeds in synchronous
rounds. At the beginning of each round r ≥ 1, each node u ∈ V can reliably broadcast a message
to its neighbors in Gr . A key dioculty of these models is that u does not know its neighbors in
advance.

k-Message Broadcast. Thek-message broadcast problem assumes a setT containingk ≥ 1 unique
messages that are also commonly called tokens or rumors. Each rumor inT starts the execution at
one or more nodes. The problem is solved once all nodes have received all k rumors inT . Following
the standard convention [11], we assume each node can broadcast at most 1 rumor per round.

�-Smoothing. Fix a dynamic graph G = G1,G2, . . .. Fix a smoothing parameter � ≥ 1. Our goal is
to deone a smoothing process that adds � random edges to eachGi in G. In an efort to maximize
generality, the original deonition of �-smoothing from [6] assumed that each Gi was replaced

by a graph Ĝi sampled uniformly from the set of graphs that are both <allowable= and within
edit distance k of Gi . This was meant to allow both additions and deletions while avoiding illegal
topologies (e.g., disconnected graphs).
The results for the Broadcast CONGEST model in [6], however, largely avoided much of

this generality, instead applying results (Lemmas 4.1 and 4.2) that establish that this model
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approximates a simpler model in which edges are randomly added from the set of all edges. For
the sake of clarity, in this article, we directly deploy this simpler deonition of smoothing.
Formally, after the adversary generates G, we smooth eachGi as follows: (1) randomly generate

� edges (with replacement); (2) for each such edge, if it is not already in the smoothed graph we
are generating, add it to the graph.

Notation. In the following, we use Õ , Θ̃, and Ω̃ to suppress logarithmic factors with respect to
n. When we specify a result holds with high probability, we mean with failure probability upper
bounded by n−x for some suociently large constant x ≥ 1. We also use [x], for integer x ≥ 1, to
indicate the set {1, 2, . . . ,x}.
Fix an execution of a k-message broadcast algorithm for some token setT of size k and node set

V . For each nodeu ∈ V and round r ≥ 1, letTu (r ) be the set of tokensu started with or received by
the beginning of round r . We say u knows the tokens in Tu (r ) at the beginning of round r . Finally,
for a given token t ∈ T , let nt (r ) = |{u | t ∈ Tu (r )}| be the number of nodes that know token t at
the beginning of r .

Useful Probability Results. Many of our high probability results that follow leverage the following
useful form of a Chernof Bound:

Theorem 3.1. Let X1, . . . ,X j be a series of independent random variables such that Xi ∈ [0, 1]
where X =

∑j
i=1Xi has expectation E[X ] = μ. For ε ∈ [0, 1], Pr[X ≤ (1 − ε) · μ] ≤ exp(−(1/2) · ε2μ).

In several places in our analysis, we tame correlated random variables by applying the follow-
ing stochastic dominance result, which generalizes the above concentration bound. It says that if
the probability that the i’th variable is 1 is at least p no matter how the orst i − 1 variables are
realized, then we can assume that we have independent Bernoulli variables with parameter p. We
note that stochastic domination results of this form are a standard tool when analyzing random-
ized algorithms. For example, lemmas essentially the same as Lemma 3.2 appeared in [7] (see, for
example [7, Lemma 1.8.7]). We include a proof here for completeness, and since the bounds are
written in a form that will be particularly useful for us.

Lemma 3.2. Let X1, . . . ,X j be j random variables (not necessarily independent), each of which

is distributed over {0, 1}. Suppose there is some p ∈ [0, 1] such that for all i ∈ [j] and for all

x1,x2, . . . ,xi−1 ∈ {0, 1},

Pr [Xi = 1 | Xk = xk ∀1 ≤ k < i] ≥ p.

Then

Pr

[

j
∑

i=1

Xi ≤ (1 − ε)pj
]

≤ exp(−(1/2) · ε2pj)

Proof. Consider the following process for sampling random variables X̂1, . . . , X̂ j . For i = 1 to

j, do the following. Let x1, . . . ,xi−1 ∈ {0, 1} be the values of X̂1, . . . , X̂i−1 , respectively, and let
qi = Pr[Xi = 1 | Xk = xk ∀1 ≤ k < i]. Note that by the assumption of the lemma, qi ≥ p. Sample
an independent Bernoulli random variable Yi which is 1 with probability p and is 0 otherwise. If

Yi = 1 then set X̂i = 1. If Yi = 0, then set X̂i = 1 with probability (qi −p)/(1−p) and otherwise set
X̂i = 0.
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It is easy to see that X̂1, . . . , X̂ j and X1, . . . ,X j have identical joint distributions. More formally,
let xi ∈ {0, 1} for all i ∈ [j]. Then

Pr[X̂i = xi ∀i ∈ [j]] =
j

∏

i=1

Pr[X̂i = xi | X̂k = xk ∀k < i]

=

j
∏

i=1

{

p + (1 − p) Pr[Xi=1 |Xk=xk ∀1≤k<i]−p
1−p if xi = 1

(1 − p) 1−Pr[Xi=1 |Xk=xk ∀1≤k<i]
1−p if xi = 0

=

j
∏

i=1

Pr[Xi = xi | Xk = xk ∀1 ≤ k < i]

= Pr[Xi = xi ∀i ∈ [j]]

By the deonition of X̂i , we also have the property that Yi ≤ X̂i for all i . Hence Theorem 3.1
implies that

Pr

[

j
∑

i=1

Xi ≤ (1 − ε)pj
]

= Pr

[

j
∑

i=1

X̂i ≤ (1 − ε)pj
]

≤ Pr

[

j
∑

i=1

Yi ≤ (1 − ε)pj
]

≤ exp(−(1/2) · ε2pj)

as claimed. �

4 RANDOM BROADCAST PREDECESSOR PATHS

Several of the results that follow are built on a structure that we call predecessor paths, which
are deoned with respect to both a given dynamic graph G and the collection of random bits that
determine the choices during a given execution of the random broadcast algorithm. We deone and
analyze these structures in a general way here. We will later deploy these results to prove specioc
bounds on random broadcast.
To formally deone a predecessor path, we orst introduce the notion of a bit assignment B to be

a function B : V ×Z>0 → {0, 1}∗, where B(u, r ) are the random bits nodeu uses to make its choice
of which token to broadcast in round r of running random broadcast. Notice, the combination of
a dynamic graph G and bit assignment B does not by itself fully specify an execution of random
broadcast, as knowledge of the initial token assignment is also required. This information, however,
is suocient for our formal deonition.3

Deonition 4.1. Fix a dynamic graph G deoned over node set V , token set T , target node u ∈ V ,
target token t ∈ T , round pair r ,r ′, with 1 ≤ r < r ′, and bit assignment B. A predecessor path

Pu,t (r , r ′) for these parameters is a node/round sequence (u1, r1), (u2, r2), . . . , (uh , rh), where r ≤
r1 < r2 < . . . < rh ≤ r ′, and ui � uj for i, j ∈ [h], i � j, that satisoes the following with respect to
the execution of random broadcast in G according to bit assignment B:

(1) For each i ∈ [h − 1]: if t ∈ Tui (ri ), then ui will broadcast t in round r and it will be received
by at least one node uj , for j > i .

(2) If t ∈ Tuh (rh), then uh will broadcast t during round rh and it will be received by node u.

A natural corollary of this deonition is that if any nodeui in a predecessor path Pu,t (r , r ′) learns
t by ri , then u will learn t by r ′.

3A brief aside is that although we call these objects paths, the deonition actually captures a more general in-tree structure

in the time expansion graph.
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Our goal is to describe and analyze a procedure for generating a predecessor path for a given
set of parameters. We will then analyze the expected length of the paths created. Roughly speak-
ing, when studying random broadcast, the longer a predecessor path the better, as it gives more
opportunities for a given token to arrive at a node that can then send it on its way to the desired
destination.

Preliminaries. As discussed, we will be analyzing the simple algorithm in which every node
broadcasts a token that it knows uniformly at random. To ease the analysis, though, we assume
without loss of generality that (1) the tokens are labeled from 1 to k and that nodes know k ; and (2)
that a node randomly selects a token to send in a given round by randomly permuting the values
from 1 to k and then broadcasting the orst token from this sequence that it possesses. Clearly
this gives the exact same process as the randomized algorithm we care about, which is why this
is without loss of generality. It allows us, however, to ox the random process for how a token is
chosen even when the available set of tokens to send is unknown.
For a given node setV , token setT , bit assignment B, and round r ≥ 1, let the primary token for

u in r , indicated δu (r ), be the orst token id inu’s random permutation for this round as determined
by B. In the practical setting whereu permutes all values from 1 to k , the primary token is the orst
value in this permutation that correspond to an actual token inT . The important property of a pri-
mary token is that, if δu (r ) = t , then we know that if t ∈ Tu (r ), nodeu will broadcast t in this round.
Given a dynamic graph G = G1,G2, . . ., a non-empty node subset S ⊂ V , and a round r ≥ 1,

we further deone the predecessor cut c(S, r ) to be the set of nodes in V \ S that are neighbors of
nodes in S in Gr . Notice, because each graph is connected and S is a proper subset of V , these cut
partitions are always non-empty.

Predecessor Path Construction. We now describe how to construct a predecessor path for a given
set of parameters. This construction process works backwards in time from the end of the desired
interval to the beginning. While we describe this process algorithmically, we emphasize that this
algorithmic construction is used only in the analysis of our algorithms.

In the following, we assume a oxed dynamic network G = G1,G2, . . ., deoned over some node
set V of size at least 2, a token set T of size k ≥ 1, and a oxed bit assignment B for the nodes in V
to run random broadcast. We then parameterize the construction process with a nodeu ∈ V , token
t ∈ T , and round range 1 ≤ r < r ′. It returns a predecessor path Pu,t (r , r ′) for these parameters.

ALGORITHM 1: Path-Construction(u, t , r , r ′)
Pu,t (r , r ′) ← ϵ ;

i ← r ′;
S ← {u};
while i > r do

Si−1 ← c(S, (i − 1));
S
(t )
i−1 ← {v | v ∈ Si−1 ∧ δv (i − 1) = t};
if |S(t )i−1 | > 0 then

ox any v in S
(t )
i−1;

S ← S ∪ {v};
append (v, i − 1) to the front of Pu,t (r , r ′);

end

i ← i − 1;

end

return Pu,t (r , r ′)
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We now analyze the paths constructed by this procedure, establishing the relationship between
interval length (r ′ − r ) and path length.

Theorem 4.2. Fix a dynamic graph G deoned over node set V of size n > 1, token set T of size

k ≥ 1, random bit assignment B forV , and error exponent integer x > 0. For every u ∈ V , t ∈ T , and

rounds r , r ′ where r ′ − r ≥ 8xk lnn:

(1) The sequence Pu,t (r , r ′) produced by Path-Construction is a predecessor path.

(2) With probability at least 1 − n−x : |Pu,t (r , r ′)| > r ′−r
2k .

Proof. Fix values for the parameters specioed and constrained in the theorem statement. Con-
sider the sequence Pu,r (r , r ′) produced by the Path-Construction algorithm for these parameters.
By the deonition of this algorithm, Pu,t (r , r ′) is a valid predecessor path. We turn our attention to
bounding its size.
At each iteration of the main loop in the procedure, if |S | < n, then Si−1 is non-empty, as V \ S

is non-empty and Gi−1 is connected. Fix some v ∈ Si−1. This node is included into S
(t )
i−1 only if

δv (i − 1) = t , which occurs with probability exactly 1/k . Therefore, the probability that our path
expands in this iteration in the case that |S | < n is at least 1/k (it could be larger if there are
multiple nodes in Si−1).

For each round i ∈ [r , r ′] in the interval, let Xi be the random indicator variable that evaluates
to 1 if one of the following conditions holds: (1) |S | = n; or (2) |S | < n and Pu,t (r , r ′) grows during
the iteration corresponding to round i . Let Y =

∑

i ∈[r,r ′]Xi . Clearly, Y is an upper bound on the
size of Pu,t (r , r ′) returned by the path construction procedure. As we argued that Pr(Xi = 1) ≥
1/k for each i , we can apply Lemma 3.2 for these z random variables, p = 1/k , and ε = 1/2, to
derive Pr[Y ≤ (1/2) r ′−r

k
] ≤ exp(− r ′−r

8k ). Given our assumption that r ′ − r ≥ 8xk lnn, this failure
probability is upper bounded by exp(−x lnn) = n−x , as needed. �

5 RANDOM BROADCAST IN WORST-CASE NETWORKS

Webegin by showing that in the absence of any additional assumptions, random broadcastmatches
the best known bound of O(nk) rounds for solving k-message broadcast. The sections that follow
will then improve on this baseline. The intuition for this result is straightforward: if token t is not
fully spread by round r there is at least one edge over which it could spread with probability at
least 1/k . A union bound and stochastic dominance argument are deployed in the following proof
to dispatch dependency and varying token set size issues, respectively.

Theorem 5.1. Fix a dynamic network G of size n. Fix a rumor set T of size k ≤ n. With high

probability: random broadcast solves k-message broadcast in O(nk) rounds in G.
Proof. Fix a token t and round r . If nt (r ) < n then there is at least one edge in the network

crossing the cut between nodes that do and nodes that do not know t . Token t is selected for broad-
cast across this edge with probability at least 1/k . Let Xr be the random variable that evaluates to
1 under the following two conditions: (1) nt (r ) = n; or (2) nt (r ) < n and at least one new node
learns t .

Clearly, regardless of the execution, for every r , Pr(Xr = 1) ≥ 1/k . Let Y = ∑αnk
r=1 Xr , for a

constant α ≥ 1 that we will ox later. We can apply Lemma 3.2 for p = 1/k , j = αnk , and ε = 1/2 to
derive that Pr[Y ≤ (1/2) · (1/k) · (αnk)] ≤ exp (−(1/8) · αn).
Notice, due to the large size of the expectation, forα ≥ 8, this bound gives us a failure probability

exponentially small in n. Clearly then, for any constant c there is a suociently large constant α
such that this failure probability is less than or equal n−c , allowing us to apply a union bound
over all k ≤ n tokens to establish that with high probability: every token spreads to all nodes in
αnk rounds. �
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6 RANDOM BROADCAST IN SMOOTHED NETWORKS

We now consider the random broadcast algorithm when the initial token distributions and
network topologies are arbitrary. In this worst-case setting, as mentioned, the best known
k-message broadcast solutions require O(nk) rounds, a bound which is known to be tight within
log-factors under certain adversary assumptions. In the previous section, we showed that random
broadcast matched this bound as well. The goal of this section is to analyze random broadcast
under smoothed analysis.
We show here that if we run the simple random broadcast algorithm on an �-smoothed dy-

namic network (with � > 0) then with high probability it solves k-message broadcast after only

O(kn
2/3 log1/3 n
�1/3

) rounds. Note that even in the case of little smoothing, e.g., � = 1, this bound rep-

resents nearly an n1/3-factor improvement to the round complexity captured by the worst-case
bound. To simplify comparison to existing k-message broadcast results, as well as the onine re-
sult proved later in this article, we also prove that for � = 1, this complexity is upper bounded by
O(n + k3 logn).

Finally, we note that following the approach of [6], we study only integer � values. As recently
demonstrated in [15], fractional smoothing parameters, 0 < � < 1, can also be studied to cap-
ture behavior in long-lived networks with slow changes. Our results naturally extend to this case,
though we omit this analysis for the sake of clarity.

6.1 Random Broadcast with �-Smoothing

In this section, we look at the case where there are � smoothed edges added per round. Even when
� = 1, we get signiocant improvements, despite the fact that one edge only enables at most one
additional token be transferred per round; thus any non-trivial advantage conveyed by smoothing
does not come from directly increasing the capacity of the underlying network. Our goal is to
prove the following:

Theorem 6.1. Fix any dynamic network G of sizen. Fix any rumor set size k ≤ n. With high proba-

bility, random broadcast solves k-message broadcast inO(kn
2/3 log1/3 n
�1/3

) rounds in G with �-smoothing.

Our proof proceeds in phases. Note that the algorithm is the same throughout, but our analysis
focuses on diferent quality guarantees in each phase. For the lemmas that follow, assume we have
oxed a dynamic graph G, size n, and rumor set T of size k , as specioed in the theorem.

6.1.1 Phase #1: Spread. The initial distribution of tokens is arbitrary, and tokens may be located
at very few nodes initially. The goal of this orst phase is to argue that after enough time tokens
are spread out suociently across the network, speciocally spreading to a δ fraction of nodes. The
parameter δ is a function of n and k that we shall set later to balance the length of all phases. We
show here that Θ(kδn) rounds suoce to spread all tokens to δn nodes. Notice that if δ = 1, this
follows from Theorem 5.1.

Lemma 6.2. For any constant x ≥ 1 and fraction δ with (1/n) lnn ≤ δ ≤ 1, there exists a constant
c1 ≥ 1 such that with probability at least 1 − n−x : for all t ∈ T , nt (R) ≥ δn, where R = c1kδn is the

duration of the phase.

Proof. Fix a given token t ∈ T and round r ≤ R. Let Xr be the indicator random variable that
evaluates to 1 under two conditions: (1) nt (r ) ≥ δn (recall that nt (r ) is the number of nodes that
know token t at the beginning of round r ); or (2) a node learns t for the orst time during round
r . If the orst condition does not hold then not all nodes know t at round r , and hence there is at
least one edge connecting a node u that knows t to a node v that does not because the network
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is assumed to be connected. By the deonition of random broadcast, u selects t to broadcast with
probability 1/|Tu (r )| ≥ 1/k . It follows that regardless of the execution through the orst r−1 rounds:
Pr(Xr = 1) ≥ 1/k .
Let Y =

∑R
r=1Xr . We can apply our stochastic dominance result (Lemma 3.2) to p = 1/k , j = R,

and ε = 1/2 to derive the following:

Pr[Y ≤ (1/2) · (1/k) · R] ≤ exp

(

−(1/8) · R
k

)

= exp (−(1/8) · c1δn)

≤ exp (−(1/8) · c1 ln(n)) = n−c1/8.
It is not hard to see that as long as c1 ≥ 2, then Y ≥ (1/2) · (1/k) · R implies that nt (R) ≥ δn.

This is because otherwise, it must be the case that every Xr which is equal to 1 is because
a new node learned token t at round r (not because nt (r ) ≥ δn). But this implies that
nt (R) ≥ Y ≥ (c1/2)δn ≥ δn.

So if we set c1 = 8(x + 1), we get that the probability that nt (R) < δn is at most n−(x+1). A union
bound over all k ≤ n tokens provides that nt (R) ≥ δn for every t ∈ T with probability at least
1 − n−x , proving the lemma. �

6.1.2 Phase #2: Seed. Now that we have spread each token to Ω(δn) nodes, we next rely on the
edges added by smoothing to help sparsely seed these tokens to new random nodes in the network.
In the third and onal phase, we will show that this seeding is likely to have foiled the adversary’s
attempts to keep certain nodes isolated from certain tokens, and will have instead planted seeds
suociently close on a temporal path to arrive at their destinations.
In more detail, our goal is to show that, for some parameter γ , any suociently large set S of size

at least lnn/γ will have at least one node in the set receive a given token with high probability
during the seed phase. This phase will last for Θ((γ/δ )kn) rounds following the conclusion of the
spread phase.
For example, consider δ = 1/k and γ = 1/k2. Then the length of both the spread phase and

the seed phase are Θ(n) rounds. During the seed phase with these parameters, each node has
probability of at least 1/k2 of receiving a specioc token under consideration. Thus any set of size
k2 lnn will receive the token with high probability. Note that these are not the best choices of δ
and γ . (With these choices, the total number of rounds including the sink phase is O(n + k3 logn)
by Lemma 6.4.)
Our analysis of the seed phase focuses almost entirely on the smoothed edges added to the

network topology graph in each round.

Lemma 6.3. Consider any constant x ≥ 1 and positive fractions δ and γ . Fix any token t ∈ T ,

node set S ⊆ V with |S | ≥ (1/γ ) lnn, and round r0 ≥ 1 such that nt (r0) ≥ δn. Then S ∩ {u | t ∈
Tu (r0 + 2xR)} � ∅, where R = (γ/δ )kn/� > k lnn and 2xR is the length of the phase, with probability

at least 1 − n−x .

Proof. By assumption there are at least δn nodes that know t by the start of this phase (round
r0). If any node in S already knows t at the beginning of this phase, then we are already done.
So moving forward, assume no node in S knows t at the start of this phase. Consider the set
of potential edges that are useful, denoted Euseful , that would connect a node from the initial set

that knows t to a node in S . It follows |Euseful | ≥ (δn)|S | ≥ (δn)(lnn/γ ) = kn2 ln(n)/(R�). We
now calculate, for a given round of phase 2, the probability that a smoothed edge selected is from
Euseful . To do so we leverage the specioc deonition of smoothing established in Section 3 that treats
this as a purely additive process: select a random edge from all possible edges; if it is not already

J. ACM, Vol. 71, No. 3, Article 17. Publication date: June 2024.



Smoothed Analysis of Information Spreading in Dynamic Networks 17:13

present in the graph, add it to the graph; otherwise leave the graph the same. Therefore, this
probability is

|Euseful |
(n
2

) >
|Euseful |
n2

≥ (k lnn)/(R�).

As there are � smoothed edges in a round, the probability that none of them are useful is at most
(1 − k lnn/(R�))� ≤ e−k lnn/R ≤ 1 − k lnn/(2R).

We call a round in phase 2 good if an edge from Euseful is selected and the endpoint that knows t
selects t to broadcast. Because this latter selection event happens with probability at least 1/k , we
can lower bound the probability of a round being good as pgood ≥ lnn/(2R). If a round is not good
we call it bad. Assume phase 2 runs for 2xR rounds for constant x > 0. Then the probability that
every round is bad is bounded by

(1 − pдood )2xR ≤
(

1 − lnn

2R

)2xR

< exp(−x lnn) = n−x ,

as required by the lemma statement. �

6.1.3 Phase #3: Sink. In the second phase, we leveraged smoothed edges to sparsely seed each
token throughout the network in a manner that is independent of the adversary’s construction of
the dynamic graph. In this onal phase, we deploy our predecessor path constructions to show it is
likely for each token t and destination nodeu, that t arrived at an appropriate location in both time
and topology to subsequently make its way tou like a now heading toward a sink (hence the phase
name). In particular, we simply need the onal phase to be long enough to achieve a predecessor
path of size Ω(lnn/γ ). Putting this piece together with the previous phases allows us to prove the
following lemma, which almost immediately implies Theorem 6.1.

Lemma 6.4. Fix any dynamic network G of size n. Let δ and γ be any values satisfying (1/n) lnn ≤
δ ≤ 1 and 0 < γ ≤ 1. Then with high probability, random broadcast completes k message broadcast

with �-smoothing in O(kδn + (γ/δ )kn/� + k lnn/γ ) rounds.

Proof. Our analysis below makes use of a constant x ≥ 1 that we will ox later. Lemma 6.2
tells us that there exists a constant c1 ≥ 1, such that with probability least 1 − n−x , for each token
t ∈ T , at least δn nodes know t by round c1kδn, for some integer c1 > 0. Let us call this the spread
condition.

Before we apply the seed phase to each token, we need to orst identify the sets we are attempting
to seed. To do so, we look ahead to the sink phase. Let rS indicate the orst round of the sink phase,
which we will calculate later based on the duration of the other two phases. We run this phase
for z = �8xk lnn/γ � rounds. That is, it runs between rounds r = rS and r ′ = rS + z. Theorem 4.2
tells us that with probability at least 1 − n−x : for every node u ∈ V and token t ∈ T , the resulting
predecessor path Pu,t (r , r ′) is of size greater than z

2k > lnn/γ .
This allows to apply our seed phase (Lemma 6.3) analysis to each such predecessor path. This

tells us that as long as the spread condition holds, for each such S = Pu,t (r , r ′), the probability that
some node in S receives t during the seed phase is at least 1−n−x . The duration of the seed phase
is 2x(γ/δ )kn/� rounds.
Finally, we note that by the deonition of a predecessor path, if a node in Pu,t (r , r ′) receives a

token t by round rS , then u receives t by round at most rS + z. We are left to pull together the
pieces. To do so, we note that success in solving k-message broadcast by the end of the sink phase
requires the following events to occur:
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(1) The spread condition holds. Call this Espread
(2) For every u ∈ V and t ∈ T , the predecessor path Pu,t (r , r ′) is suocient long. Call this:

Epred (u, t).
(3) For each destination node u ∈ V and token t ∈ T , at least one node in Pu,t (r , r ′) receives t

during the seed phase. Call this Eseed (u, t).
By our above analysis the probability Espread fails is at most n−x , and the probability Epred (u, t)

fails for anyu and t , is also upper bounded byn−x . For Eseed (u, t), the probability of failure for each
specioc pair u and t , conditioned on Espread and Epred (u, t), is upper bounded by n−x . Therefore,

by a union bound, the probability that Eseed fails for any such pair is less thann
−(x+2). A onal union

bound then provides that the probability any of these events fail is less than n−x +n−x +n−(x+2) <
1/n for a suociently large constant x .

Plugging this constant value of x into our above round complexity bounds, and we get that
random broadcast succeeds with high probability in c1δkn+2x(γ/δ )kn/�+ �8xk lnn/γ � = O(δkn+
(γ/δ )kn/� + k lnn/γ ) total rounds, as claimed in the theorem. �

Proof (of Theorem 6.1). Choose δ = (logn/(n�))1/3 andγ = (�1/3)(logn/n)2/3. It followsγ/δ =
(�2/3)(logn/n)1/3. Then by Lemma 6.4 we get that broadcast completes in:

O((logn/(n�))1/3kn + (logn/n)1/3kn/�1/3 + k logn(n/logn)2/3/�1/3) = O((kn2/3 log1/3 n)/�1/3)
rounds, as claimed. �

6.2 1-Smoothing

The following result for 1-smoothing is a simple corollary, which allows us to more easily compare
to existing results.

Corollary 6.5. Fix any dynamic network G of size n. Fix any rumor set size k ≤ n. With high

probability, random broadcast solves k-message broadcast in O(n + k3 logn) rounds in G with 1-
smoothing.

Proof. Theorem 6.1 implies that random broadcast takes at most O(kn2/3 log1/3 n) rounds. It is
easy to see that kn2/3 log1/3 n is at most n + k3 logn for all values of k . Alternatively, we can set
δ = 1/k and γ = 1/k2, and apply Lemma 6.4 with � = 1. �

6.3 Lower Bound for Random Broadcast in Smoothed Networks

In this section, we prove the following theorem.

Theorem 6.6. For all n,k, � ≥ 1, there are dynamic networks on n nodes and a starting token

distribution of k tokens such that random broadcast with �-smoothing has expected completion time

of at least Ω̃(min( kn2/3

(�(k+�))1/3 ,
kn
k+�

)).

In most <reasonable= regimes (k and � not overwhelmingly large) the minimum in the above

lower bound will be achieved by kn2/3

(�(k+�))1/3 . Note that this almost matches the upper bound of

Theorem 6.1: It is of by just a (k + �)1/3 factor. In addition, we also note that when � is large the
upper bound cannot be tight, while our lower bound can be. To see this, consider the case where
� = n and k = o(n). For these parameters, essentially every node is the endpoint of an edge added
by smoothing in every round, and for each token the probability of broadcasting it is at least 1/k ,
and hence for every token the number of nodes who know it will double in at most O(k) rounds.
Thus random broadcast will complete after onlyO(k logn) rounds. For this case, where � = n and

k = o(n), our lower bound from Theorem 6.6 correctly reduces to Ω̃(k), while the upper bound
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from Theorem 6.1 remains at Õ(kn1/3). This hints that the modest gap between our upper and
lower bounds might ultimately be resolved to be closer to the latter result.

6.3.1 Proof of Theorem 6.6. Our lower bound instance will be the dynamic star. The vertices
are v0, . . . ,vn−1, and at time i ∈ {1, 2, . . . ,n − 1} the graph will be a star with vi at the center.
Initially node v0 knows all of the tokens, while nodes v1, . . . ,vn−1 know all of the tokens except
for token 1. So random broadcast is complete once all nodes know token 1. Note that this graph is
not deoned beyond n − 1 rounds, but the lower bound that we are trying to prove is at most n due
to the second term in the min, so we will not need to consider rounds past n − 1.

Let t = min( kn2/3

(�(k+�))1/3 ,
kn
k+�

)/(2000 logn) (we have not optimized the constant or log factors). We

will argue that with constant probability, random broadcast has not completed by time t .
Let A = {vi : 1 ≤ i ≤ t}. For vi ∈ A, we say that vi is a good node if, conditioned on vi knowing

token 1 in round i , vi will broadcast token 1 in round i (the round where vi is the center). Let B
denote the set of good nodes. LetCi denote the set of nodes who know token 1 at the beginning of
round i . Without smoothing we would have that Ci ⊆ {v0,v1, . . . ,vi−1}, but with smoothing this
is not necessarily true. We begin by analyzing Ci under a condition on the good nodes.

Lemma 6.7. Suppose that for every i ≤ t , either vi is not a good node or vi does not know token 1

at the beginning of round i . Then |Ci | ≤ 100i(k+�
k
) logn for all i ≤ t with high probability.

Proof. By assumption, for all i ≤ t the center node of the star does not broadcast token 1. Hence
in round i , the nodes who learn token 1 consist of at most the center node and some other nodes
who learn token 1 via smoothed edges. Even if all of the � smoothed edges had an endpoint in Ci ,
the expected number of themwho transmit token 1 is at most �/k . Hence a Chernof bound implies

that |Ci | ≤ |Ci−1 | + 100 logn · (1+ �
k
) with high probability. This high probability allows us to do a

union bound over the orst t rounds, implying that |Ci | ≤ 100i(k+�
k
) logn with high probability. �

We say that round i has productive smoothing if some node in B learns token 1 via an edge added
by smoothing. It is easy to see that if after t rounds there has not been any round with productive

smoothing, then the assumption in Lemma 6.7 holds, and hence |Ci | ≤ 100i(k+�
k
) logn for all i ≤ t

with high probability. Since t < nk
100(k+�) logn this means that not all nodes know token 1 at time t ,

and so random broadcast has not onished. So we just need to argue that with constant probability,
there have been no rounds with productive smoothing before round t .
To see this, orst note that by the deonition of random broadcast, each node inA is good indepen-

dently with probability 1/k . Hence the expected number of good nodes is |A|/k = t/k . A standard
Chernof bound then implies that |B | ≤ (10t/k) logn with high probability, so from now on we
will condition on this being true.

In order for round i to have productive smoothing, at least one of the � edges added by smoothing
must have one endpoint inCi , one endpoint in B, and the endpoint inCi must choose to broadcast

token 1. The probability of this for a single random edge is |Ci |
n

· |B |
n

· 1
k
, and hence a union bound

over all � random edges added in rounded i implies that the probability of productive smoothing
in round i is at most

|Ci |
n

· |B |
n

· �
k
≤ |Ct |

n
· 10t logn

kn
· �
k
= |Ct | ·

10t� logn

(kn)2 .

If there has been no productive smoothing before round i , then Lemma 6.7 implies that with

high probability |Ci | ≤ 100i(k+�
k
) logn. Combining high probabilities with a union bound, we will

assume that with high probability, if there has been no productive smoothing before round i then

|Ci | ≤ 100i(k+�
k
) logn.
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Let Xi be an indicator random variable for the event that round i has productive smoothing.
Then

Pr[∃i ∈ [t] : Xi = 1] ≤
t
∑

i=1

Pr

[

Xi = 1 |
i−1
∑

j=1

X j = 0

]

≤
t
∑

i=1

(

100t

(

k + �

k

)

logn

) (

10t� logn

(kn)2

)

=

1000t3� (k + �) log2 n
k3n2

Since t ≤ kn2/3

(2000�(k+�) log2 n)1/3 , this probability is at most 1/2, which (as discussed) implies

Theorem 6.6.

7 RANDOM BROADCAST IN SMOOTHED STATIC NETWORKS

As previously argued, a minimum amount of smoothing (i.e., � = 1) improves the performance of

random broadcast in dynamic networks fromO(kn) to Õ(kn2/3). To better understand how smooth-
ing supports information spreading, a natural follow-up question is to investigate its impact on
random broadcast in static networks. If smoothed analysis provides the same bounds for both the
dynamic and static settings, this would imply that smoothing essentially bypasses the dioculties
induced by changing graph edges. Here we show this is not the case. In more detail, we prove that

in static networks, 1-smoothing improves the complexity of random broadcast down to Θ̃(k
√
n)

rounds, beating what we can guarantee in the dynamic setting. This establishes a gap between
static and dynamic networks with respect to random broadcast, conorming the intuition that net-
work dynamism introduces unique dioculties for information dissemination that smoothing alone
cannot fully overcome.

7.1 Upper Bound

We begin by upper bounding the performance of random broadcast when solvingk-message broad-
cast in a static graph of size n. We prove that in this setting random broadcast solves the problem
in O(k

√
n log2 n) rounds, with high probability. Critical to our analysis is the following graph de-

composition result:

Lemma 7.1. Fix a connected static graph G = (V ,E) of size n. There exists a partition of V into

components C1,C2, . . . ,Cx , such that for each i , 1 ≤ i ≤ x : (1) |Ci | ≥
√
n; (2) the subgraph of G

induced by Ci is connected and has diameter at most 6
√
n.

Proof. We prove the lemma constructively. Given a static connected graphG = (V ,E) of size n,
we describe and analyze a two-stage iterative procedure that constructs components that satisfy
the desired properties.

During the orst stage, we partitionV into preliminary components, Ĉ1, Ĉ2, . . ., and provide each

Ĉi a color ci from {red, blue}. To do so, we begin by orst labeling each node in V as free. We then
proceed in construction phases, labeled 1, 2, . . ., until no free nodes remain. In more detail, for each
phase i:

(1) Select an arbitrary free node u.
(2) In the subgraph of G induced by nodes that remain free, conduct a breadth-orst search,

starting from u, that terminates when either: (1) the search has encountered at least
√
n free

nodes; or (2) the search gets stuck with no further free nodes to explore.

(3) Deone Ĉi to contain every node reached in the search.
(4) If the search from step 2 ended due to criteria (1), set ci = red; else if the search ended due

to criteria (2), set ci = blue .
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By deonition, the resulting preliminary components partition the nodes inV . We will use these
preliminary components to construct the onal components that satisfy the lemma statement. To do
so, we orst note that each blue preliminary component must neighbor at least one red preliminary

component. To see why, assume for contradiction that some blue component Ĉi neighbors only

other blue components. Fix one such neighboring component Ĉj . Because they are neighboring,

we can ox some u and v such that u ∈ Ĉi , v ∈ Ĉj , and {u,v} is in G. Assume without loss of

generality that i < j. When the construction of Ĉi terminates, v is still free, as it is included in the

construction of a later component. By assumption, ci = blue, meaning that the construction of Ĉi

terminated because it could ond no further free nodes to explore. We just established, however,

that v was still free and connected to Ĉi during the round when it terminates—a contradiction.
Given this observation, we can iterate through the blue preliminary components, combining the

nodes in each with a neighboring red preliminary component. Let C1,C2, . . . ,Cx , be the compo-
nents that result after we onish these merges. Since each Ci begins with a red preliminary com-
ponent, we get that |Ci | ≥

√
n as required. We next turn our attention to the diameters of these

components. We orst note every preliminary component has a diameter bounded by 2
√
n, as in

both cases the breadth-orst search tree deoning the component has a height bounded by
√
n. Next,

ox some componentCi , and two unique nodes u,v ∈ Ci . If they are in the preliminary component,
then they arewithin 2

√
n hops. If they are in two diferent preliminary components, then they are at

most 6
√
n hops from each other, as 2

√
n hops gets you to the preliminary red component at the core

of Ci , an additional 2
√
n hops gets you across the red core to any other neighboring preliminary

component, and a onal 2
√
n hops gets you to any node in this new preliminary component. �

We are now ready to prove our upper bound. The key intuition in the following argument is that
we can analyze the spread of a given target token within the components provided by Lemma 7.1.
We will show, roughly speaking, that when the target token is orst spreading, if A is the set of

components that know the target, it is likely that within Õ(k
√
n) rounds, each component inA will

succeed in seeding the target over a smoothed edge to a unique component not in A, efectively
doubling the number of components that have learned the token. A logarithmic number of such
doublings are suocient to spread the target to at least half the network, at which point the analysis

shifts to the perspective of the remaining components, and argues thatwithin an additional Õ(k
√
n)

rounds, each is likely to connect to an already informed component by a smoothed edge and receive
the token. Care is needed in the formal argument to deal with both uneven-sized components
and dependencies between the smoothed edge behavior in diferent components during the same
spreading interval.

Theorem 7.2. Fix some connected static graphG of size n. Fix any set size k ≥ 1. With high proba-

bility, random broadcast solves k-message broadcast inO(k
√
n log2 n) rounds inG with 1-smoothing.

Proof. Fix a graph G = (V ,E) of size n and a rumor set of size k , as specioed by the theorem
statement. Fix an arbitrary target token from the rumor set. We argue that this target token will
spread to the full network with the stated complexity.
To do so, we orst apply Lemma 7.1 to partitionG into componentsC1,C2, . . . ,Cx with the speci-

oed properties. Moving forward, in a given round, we call a component seeded if at least one node
in the component knows the target token, and call it completed if every node knows the target. It
is straightforward to establish that once a component is seeded, it will be completed, with high
probability, in an additional O(k

√
n logn) rounds. One approach to making this argument is to ox

a breadth-orst search tree in the component rooted at a node that knows the target token. This
root will broadcast the target in each round with probability at least 1/k . Because each broadcast
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decision is independent, we can apply a Chernof bound to establish that inO(k logn) rounds, the
root will broadcast the target at least once, with high probability.
We can then repeat this analysis to show that within an additionalO(k logn) rounds, every node

at level 1 in the tree will have sent the target token, informing every node at level 2, applying union
bounds to ensure that every node at level 1 succeeds with suocient probability. An additional
O(k logn) rounds moves the token to level 3, and so on. By the guarantees of Lemma 7.1, the tree
hasO(

√
n) levels, meaning thatO(k

√
n logn) rounds are suocient to spread a target token through

the whole component with high probability.
Returning to our main argument, ox a round r . Let Ar be the subset of components that are

seeded at the beginning of round r . Let nr be the number of nodes in components in Ar . We orst
consider the case where nr < n/2. To do so, let Br be all the components not inAr . Our goal is to
show that in an additional O(k

√
n logn) rounds, the target token will be delivered over smoothed

edges to a collection of components in Br , where they will then spread to a total number of new
nodes that is at least a constant fraction of nr—increasing the number of nodes that know the
target token by a constant factor.
To make this argument, we divide this period of O(k

√
n logn) rounds starting at round r into

three parts. During the orst part, we wait for the target token to spread suociently to complete
every component in Ar . As argued above, with high probability, this takes O(k

√
n logn) rounds.

Next we consider a stretch of an additionalO(k
√
n logn) rounds that we call the seeding interval.

We will show that during this interval, smoothed edges between components in Ar and Br will
seed the target token into a collection ofBr components whose collective size is a constant fraction
of nr . The onalO(k

√
n logn) rounds will be dedicated to allowing these seeded Br components to

complete. (Of course, it is possible that in the time we spent completing components in Ar , the
target token might have already made its way to components in Br and started spreading, but this
only speeds up our eforts.)
We are left then to study closely the behavior of the smoothed edges during the smoothing

interval of this period. Our attempts to analyze smoothed edges from Ar to Br during this in-
terval will be complicated by the fact that the components in Ar can be of variable size. Though
Lemma 7.1 guarantees that each contains at least

√
n nodes, it is possible that some might be much

larger than this lower limit. It is useful for our purposes to temporarily reorganize these already
informed nodes into more uniform-sized groups. With this in mind, let A ′

r be a partition of the
nodes in components in Ar into groups that are all of size Θ(

√
n). For our purposes, it does not

matter how this partition is deoned. The nodes in each S ∈ A ′
r , for example, do not need to be

connected. In the next step of our analysis, we will only concern ourselves with the probability
that a node in a given group is selected as an endpoint of a smoothed edge.
Next, ox some arbitrary group S1 ∈ A ′

r to consider orst. Let n̂r be the number of nodes in
Br . Because we are still considering the high-level case where nr < n/2, we know n̂r ≥ n/2. We
now analyze the rounds of the seeding interval in order, stopping at the orst round in which: (1)
a smoothed edge connects a node u ∈ S1 to a node in a component in Br ; and (2) u broadcasts the
target token. It is straightforward to see that in any given round, a productive connection of this
type occurs with probability at least:

|S1 |
n

· n̂r
n

· 1
k
≥ 1

2k
√
n
.

With high probability, therefore, we will ond such a productive connection in a seeding interval
of length O(k

√
n logn). Where this argument gets more subtle is that we now want to consider

the other groups in A ′
r , and argue that they too will succeed in forming a productive connection

during this same seeding interval. This will require care to deal properly with dependencies.
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The orst thing we do is take the component in Br at the other end of the productive connection
from S1, and add it to a set C of successfully seeded components. Before proceeding in our analysis
of this seeding interval, we make two checks to see if we are already done. Let n′ be the number
of nodes in components in C at this point. If nr +n

′ ≥ n/2, then we can simply wait an additional
O(k

√
n logn) rounds to complete the component in C, and be done with the high-level case we

are considering in which less than half of the nodes know the target token. Similarly, if n′ ≥ nr /2,
then we can onish our analysis of this particular seeding interval as we have accomplished our
proximate goal of increasing the number of nodes that know the target token by a constant factor.

If we fail both checks, we must then continue with analyzing our same seeding interval in the
hopes of seedingmore tokens intoBr \C. Fix a new group S2 ∈ A ′

r \S1. As before, consider rounds
in the seeding interval one by one, starting from the orst round of the interval, until we arrive at
a productive connection from S2 to a not yet seeded component in Br \ C. In each such round,
we argue that the probability of a productive connection is still in Ω( 1

k
√
n
). The main diference

as compared to prior groups considered is that the number of nodes that can receive a productive
smooth edge decreases as we add more components to C. By our above check, however, we know
that the number of nodes in C is less than nr /2 < n/4. Because we similarly assume that Br has at
least n/2 nodes, then Br \ C must still have at least n/4 total nodes. The probability of selecting an
endpoint inBr \Cwill therefore always be at least 1/4, reducing the original productive connection
probability calculated for S1 by only a constant factor for later groups.
As previewed, however, we must also consider dependencies. When considering a given round

r ′ in the seeding interval when considering group S2, there are two relevant possibilities: (1) r ′ was
the productive connection from our analysis of S1; (2) r

′ was not the productive connection for S1.
The orst case introduces a problematic dependency, as being productive for one group prevents you
from being productive for another. To deal with this dependency, we simply ignore in our analysis
any round that was part of a productive connection for a previously studied group. The second
case, by contrast, introduces a useful dependency: knowing that r ′ was not productive for S1 only
increases the probability that it is productive for S2. A standard negative correlation argument tells
us that when lower bounding the probability of a productive connectionwith respect to S2, it is one
to treat each round in the second case as succeeding with an independent probability in Ω( 1

k
√
n
).

It follows that with high probability, S2 will also have a productive connection in our seeding
interval. At this point, we can repeat the above analysis. Add the newly seeded component to C.
Check if we are done. If not, select a new set S3 ∈ A ′

r \ {S1, S2} and study the same interval again,
round by round, ignoring now only the two rounds in which S1 and S2 succeeded in forming
productive connections, and so on, until we onally match the criteria for stopping our analysis.
(Notice that removing productive rounds from consideration in the seeding interval is not a
problem as there are at most O(

√
n) such productive rounds possible given that |A ′

r | = O(
√
n),

and our interval length can be made suociently long to still provide us the needed high probability
of success even with up to O(

√
n) rounds omitted from consideration.)

Moving on with our argument, recall that for our oxed round r , there are two diferent criteria
that might terminate the above seeding analysis. The orst is that at least half the nodes in the
network learn the target token, at which point we are ready to move on to the second half of our
overall analysis, which we will discuss shortly. The second termination criteria is that the number
of nodes in components in Br that learn the target token is at least a constant factor of nr . In this
case, we ox a new round r ′ after the seeding interval in question is done, and after all components
in C complete. We then reapply our above analysis starting from r ′, increasing the number of
nodes that know the target node by another constant factor. We can repeat this at most O(logn)
times before at least half the nodes know the target token.

J. ACM, Vol. 71, No. 3, Article 17. Publication date: June 2024.



17:20 M. Dinitz et al.

We now consider what happens once we succeed in spreading the target token to at least
half the nodes in the network. We can now redeploy pieces of our above spreading argument to
show that target token will make it to all remaining nodes in just one more additional spreading
interval of length O(k

√
n logn) rounds.

We orst dispense with the sub-case in which less than
√
n nodes do not have the token; i.e.,

we are almost done. If this is true, each uninformed node u is within
√
n of at least one informed

node, meaning a straightforward spreading analysis will deliver the token to each such u with
high probability within O(k

√
n logn) rounds—completing the rumor spreading.

We are left with the sub-case in which somewhere between
√
n and n/2 nodes remain that do

not have the target token. Let A be the set of components that contain at least one node from the
set of nodes that do not know the target token. Some of these components are seeded (i.e., at least
one node in them knows the target) and some are not (i.e., no node knows the token).
Let A ′ be the subset of A that contains only the non-seeded components. Spend O(k

√
n logn)

time to complete the seeded components from A. We now turn our attention exclusively to the
components from A ′, as these are the only components at this point which can possibly contain
any nodes that do not know the target token. We know each such component is of size at least√
n, and that at least half the total nodes in the network are not in these components. We can

therefore apply our above spreading analysis to the components in A ′, which establishes that in
a single additional spreading interval, every component in A ′ will have a productive connection
with a completed component, thus seeding it with the target token. We can then complete these
components, and therefore complete k-message broadcast, in an additional O(k

√
n logn) rounds.

To conclude the proof, we note that all relevant growth and spreading arguments hold with
high probability, and that there are at most poly(n) such events that must succeed. This allows
us to deploy union bounds to prove that the entire problem is successful, with high probability,
after O(logn) intervals of length O(k

√
n logn), yielding the claimed overall time complexity of

O(k
√
n log2 n) rounds. �

7.2 Lower Bound

We now prove that our analysis of random broadcast in static networks is tight (within logarith-
mic factors). The argument formalized below is easy to summarize. Consider spreading a target
token through a line in which every node already knows Θ(k) other tokens. It will require Θ(k

√
n)

rounds for the target token to directly spread through the orst
√
n nodes in the line with reasonable

probability. At the same time, this interval is not suociently long for smoothed edges to have a
reasonable probability of helping to speed up this initial spread. Formally:

Theorem 7.3. Fix a network size n > 1 and rumor set size k > 1. The expected time for random

broadcast to solve k-message broadcast in networks of size n with 1-smoothing is in Ω(k
√
n).

Proof. Fix any n and k as specioed. Assume that the tokens are labeled from 1 to k , and that
random broadcast makes its token selection at each node by choosing a random value from 1 to k ,
and then broadcasting the token with the label closest to the random value. It is straightforward to
show by a simulation relation argument that a lower bound that holds for this stronger algorithm
still holds for the standard version in which the algorithm selects a token uniformly from those
known by the node. We consider this stronger version here as it simplioes the presentation of our
lower bound argument.
Consider a graphG in whichn nodes are connected in a line, arrangedu1,u2, . . . ,un . Fix a rumor

set of k tokens. Assign every node tokens 2 through k . Start token 1 only at node u1. Let Y be the
random variable that describes the number of rounds required for token 1 to make it to all nodes
in the set {u1,u2, . . . ,u√n} using only the random broadcast mechanism (i.e., ignoring smoothed
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edges). We can deone Y = X1 + X2 + . . . + X√
n−1, where Xi is the number of rounds until ui orst

selects value 1 after token 1 orst arrives at ui via the random broadcast mechanism. Formally, let
X1 be the orst round in whichu1 selects value 1; and for i > 1, letXi be the number of rounds until
ui orst selects i after round Xi−1. By linearity of expectation, E(Y ) = Θ(k

√
n).

Next we consider smoothed edges.We call a round r useful if: (1) the smoothed edge in r includes
at least one endpoint among the orst

√
n nodes; and (2) the endpoint(s) from among the orst

√
n

nodes randomly select value 1. The probability that a given round is useful is in O(1/(k
√
n)).

To obtain our bound, let t = αk
√
n, where α > 0 is a fraction that is suociently small to ensure:

(1) the expected number of useful rounds in the orst t rounds is less than 1; and (2) t < E(Y ). It
follows that with constant probability, during the orst t rounds: (1) there are no useful smoothed
edges (which could potentially help token 1 spread faster); and (2) token 1 does not make it to
node u√n via the random broadcast mechanism. If both of these events are true, then k-message
broadcast is not solved in t rounds. It follows that when calculating the expected complexity of
k-message broadcast in this network for this initial token assignment, there is constant proba-
bility mass dedicated to complexities of magnitude at least t , meaning that the expected overall
complexity must be in Ω(t) = Ω(k

√
n), as claimed. �

8 RANDOM BROADCAST IN WELL-MIXED NETWORKS

Dutta et al. [8] introduced the notion a well-mixed network in the context of the k-message broad-
cast problem. A network satisoes this property if for each token t and node u, with some inde-

pendent constant probability: u starts with t . The main Ω̃(nk) lower bound from this article also
holds for well-mixed networks. To circumvent this bound, the authors assume a stronger commu-
nication model that allows independent interactive communication on each edge, and provide a

randomized algorithm in this setting that solves k-message broadcast in Õ(n + k) rounds.
Here we deploy our predecessor path constructions from Section 4, originally designed to sup-

port our smoothed analysis, to now explore an alternative method to circumvent the Ω̃(nk) lower
bound without smoothing: weakening the adversary. The lower bound in [8] assumes a strongly
adaptive adversary that knows all the nodes’ random bits, allowing it to generate a network graph
in each round based on the specioc tokens nodes will broadcast during that round. Another natu-
ral option is the oblivious adversary assumed in this article, in which the adversary generates the
graph without advance knowledge of the nodes’ random bits. Indeed, the question of whether an
oblivious adversary enabled better bounds was identioed as important future work in [8].

Using predecessor paths, we prove that with an oblivious adversary, our simple random broad-

cast strategy solves k-message broadcast in well-mixed networks in Õ(k) rounds. This improves

on the Ω̃(n+k) bound from [8], as it eliminates the n factor.4 It also matches the trivial Ω(k) lower
bound that holds for all k-message broadcast algorithms in a well-mixed network.5 Indeed, our re-

sult is actually more general, showing Õ(k/p) rounds are needed, when p is the token probability;
i.e., the deonition of well-mixed in [8] assumes p = Θ(1).
This result opens a clear separation between strongly adaptive and oblivious adversaries in

the context of well-mixed networks, and hints such a separation might exist for arbitrary token

4It may seem at orst odd that the bound does not include n, as even in a static line it takes at least n rounds for a single

token to make it to all nodes. In the well-mixed model, however, that token would be expected to show up every constant

number of hops on average, and therefore never be too far from any particular destination. Our analysis uses predecessor

paths to generalize this observation to dynamic networks and show that each token starts on a node that is not too far in

space and time for each given destination.
5Fix a static line. Letu be one of the endpoints. With constant probabilityu is missing Ω(k ) tokens in its initial set. Because
u can receive at most one token per round in a line topology, it requires at least Ω(k ) rounds for it to learn these missing

tokens one by one.

J. ACM, Vol. 71, No. 3, Article 17. Publication date: June 2024.



17:22 M. Dinitz et al.

distributions as well. It also provides further evidence that the simple random broadcast strategy
is a highly efective strategy for information dissemination in these settings.
Formally, we consider the following generalized version of the property concerning initial token

distributions introduced in [8]:

Deonition 8.1. Fix a probability p > 0. We say an initial token distribution is p-mixed if for each
node u ∈ V and token t ∈ T : u’s initial token set includes t with independent probability p.6

Given this deonition, we prove our main upper bound result:

Theorem 8.2. Fix a probability p > 0. Random broadcast solves k-message broadcast in

O((k/p) logn) rounds, with high probability, when run in a network with a p-mixed token

distribution.

Proof. Fix any u and t . Our orst step is to choose a large enough r ′ such that |Pu,t (1, r ′)| ≥
α(1/p) lnn, for a constant α ≥ 1 we will ox later. We want this to hold with probability at least
1 − n−4. To do so, we can apply Theorem 4.2 with x = 4, r = 1, r ′ = 32kα(1/p) lnn. (Notice, for
our parameters, the corresponding z = r ′ − r value is lower bounded by 8xk lnn = 32k lnn, as
required by the theorem statement.) This tells us that with probability at least 1−n−4, |Pu,t (1, r ′)| >
32kα (1/p) lnn

2k ≥ α(1/p) lnn, as needed. A union bound over the nk ≤ n2 possible combinations of
processes and tokens tells us that the probability that any predecessor path is less than this length
is less than n−2.
Fix some such path Pu,t (1, r ′) that is suociently long; i.e., q = |Pu,t (1, r ′)| ≥ α(1/p) lnn. We

apply the deonition of p-mixed to argue that it is likely that at least one node in this path starts the
executionwith token t . By the deonition of a predecessor path, each node in Pu,t (1, r ′) is unique. By
the deonition of p-mixed, eachui starts the execution with token t with independent probability p.
Given this independence, we can use the indicator random variable Xi to describe whether or not

ui starts with token t , and then apply our Chernof Bound form from Theorem 3.1 to X =
∑r ′

i=1Xi ,
to bound the probability that X is far from its expectation μ = pq. Formally:

Pr[Y ≤ μ/2] ≤ exp(−μ/8).
Given that μ = pq ≥ α lnn, then for α ≥ 32, it follows:

Pr[Y = 0] < n−4.

A union bound over the nk < n2 node and token pairs tells us that if at all predecessor paths are
of length at least q, the probability any path does not contain at least one node starting with the
path’s target token is less than n−2. A union bound over the failure probabilities for these two
events gives us the onal result that with high probability, for every u ∈ V and t ∈ T , at least
one node in Pu,t (1, r ′) starts with t . As argued in our previous discussion of predecessor paths, if
any node on Pu,t (1, r ′) starts with t then u receives t by round r ′. Therefore, with high probability,
random broadcast solvesk-message broadcast in ap-mixed network in r ′ = O((k/p) log(n)) rounds,
as claimed. �

9 CONCLUSION

In this article, we applied smoothed analysis to the k-message broadcast message problem in dy-
namic networks, showing as our main result that even a small amount of smoothing allows an

6A slight technicality of this deonition is that as stated it allows for certain tokens to not show up at all, making termination

impossible. A simple ox is to assume that allk tokens are distributed arbitrarily to at least one node, then the randomprocess

is deployed to further introduce more tokens into the system.
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extremely simple random broadcast strategy to perform signiocantly better than traditional worst-
case bounds (with no smoothing). The techniques we developed turn out to be useful even in a non-
smoothed context (for analyzing well-mixed networks), showing the power of studying smoothed
analysis even if traditional worst-case bounds are still the goal.
However, this article is just one step toward <beyond worst case analysis= for distributed net-

work algorithms.Worst-casemodel behavior in these settings is indeed critical, since these settings
are often unpredictable in their true behavior, so strong theoretical guarantees should account for
the unexpected. But it has also become clear that worst-case assumptions can lead to excessive
pessimism. A distributed network algorithm should be robust to an ill-timed sequence of events,
but should not necessarily be evaluated against an adversarial model with behavior that is intri-
cately constructed to persistently thwart its operation. Smoothed analysis provides a knob for dis-
tributed algorithm theorists to turn to mediate between worst-case behavior on one extreme and
well-deoned stochastic behavior on the other. The particular problem we study here—information
spreading—was chosen to highlight the potential for the smoothed analysis approach in distributed
network algorithms. Our exact bounds, or even our exact smoothed analysis framework, are less
important than our general approach. We hope that this article and the line of work it belongs to
are simply setting the foundation for a broad set of research questions where we take careful steps
back from the worst case to measure what improves.
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