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A B S T R A C T 

In this paper, we present an optimized version of the detection pipeline for the ASKAP Variables and Slow Transients (VAST) 

surv e y, offering significant performance impro v ement. The ke y to this optimization is the replacement of the original w-projection 

algorithm integrated in the Common Astronomy Software Applications package with the w-stacking algorithm implemented in 

the WSClean software. Our experiments demonstrate that this optimization improves the overall processing efficiency of the 

pipeline by approximately a factor of 3. Moreo v er, the residual images generated by the optimized pipeline exhibit lower noise 

levels and fewer artefact sources, suggesting that our optimized pipeline not only enhances detection accuracy but also improves 

imaging fidelity. This optimized VAST detection pipeline is integrated into the Data Acti v ated Liu Graph Engine ( DALiuGE ) 

e x ecution framework, specifically designed for SKA-scale big data processing. Experimental results show that the performance 

and scalability advantages of the pipeline using DALiuGE o v er traditional MPI or BASH techniques increase with the data 

size. In summary, the optimized transient detection pipeline significantly reduces runtime, increases operational efficiency, and 

decreases implementation costs, offering a practical optimization solution for other ASKAP imaging pipelines as well. 

Key words: techniques: image processing – surv e ys – radio continuum: transients. 

1  I N T RO D U C T I O N  

The Universe is replete with highly variable objects that are of- 

ten associated with extreme high-energy astrophysical phenomena. 

These objects provide a unique opportunity to study the high- 

energy universe in depth from both observational and theoretical 

perspectiv es. Man y classes of transient sources have been disco v ered 

at different cosmological distances, including gamma-ray bursts and 

fast radio bursts, making them probes of the Universe all the way 

up to the epoch of cosmic reionization (e.g. Wijers et al. 1998 ; 

Gao, Li & Zhang 2014 ). Wide-field, high temporal resolution, and 

high sensitivity surv e ys span the entire electromagnetic spectrum 

from radio to TeV bands. Recent disco v eries of gravitational waves 

(Abbott et al. 2016 , 2017 ), extragalactic neutrinos (IceCube Collabo- 

ration 2018a , b ), and high-energy cosmic rays (Cao et al. 2021 ) have 

opened new multimessenger windows, enriching our understanding 

of the Universe. 

Two primary methods are typically used to disco v er and search 

for transient sources: the time series method and the image-domain 

� E-mail: antao@shao.ac.cn (TA); xuthus@shao.ac.cn (ZX) 

method. A typical application of the time series method is to search 

for pulsars by observing periodic radio pulse signals. The image- 

domain method is used to identify suddenly brightening objects or 

pre viously unkno wn transient sources by comparing the difference 

between images taken at adjacent times or by subtracting from a 

reference image (e.g. Bond et al. 2001 ; Hurley-Walker et al. 2022 ). 

Numerous large advanced telescopes at multiple wavelengths are 

conducting large field of view (FoV), high-sensitivity sky surveys 

to search for transient sources. These include the large-field high- 

cadence optical surv e ys such as the Zwick y Transient F acility (ZTF; 

Bellm et al. 2019 ) and the Large Synoptic Surv e y Telescope (LSST; 

Ivezi ́c et al. 2019 ), as well as high angular resolution radio surv e ys 

conducted with the Very Large Array (VLA; Lacy et al. 2020 ), 

Australian SKA Pathfinder (ASKAP; Murphy et al. 2021 ), and 

MeerKAT (Fender et al. 2016 ). By cataloguing a large sample 

of celestial objects, these surv e ys will significantly contribute to 

disco v ering transient sources. 

Rapid follo w-up observ ations of ne wly disco v ered transient 

sources in images demand fast imaging capabilities, which require 

substantial data processing. Detecting transients from an image 

data base obtained from long-term observations involves processing 

massive amounts of data (e.g. Law et al. 2015 ). On the other hand, 
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a comprehensive search for variable sources o v er a large sky area 

requires imaging, identifying, locating, and cataloguing all detectable 

objects within the FoV. When the first phase of the Square Kilometre 

Array (SKA) radio telescope (Dewdney et al. 2009 ) is completed, its 

sk y surv e y will be about 50 times faster than the current largest radio 

telescope array . Consequently , the development of highly automated, 

highly reliable and fast imaging pipelines for detecting transient 

sources, based on the SKA precursor telescopes, has become crucial 

to meet the enormous challenge of the unprecedented amount of data 

(An 2019 ; Bonaldi et al. 2021 ) that the SKA will generate in the 

future. 

The ASKAP (Hotan et al. 2021 ) is a new-generation surv e y radio 

telescope built in Western Australia at the same site as the SKA 

low-frequency array. ASKAP employs advanced technologies such 

as phased-array feeds (PAFs) to provide fast survey speeds and a 

wide FoV, making it the ideal instrument for untargeted searches for 

transient phenomena. The ASKAP Variables and Slow Transients 

(VAST; Murphy et al. 2013 ) is one of the key survey science projects 

of the ASKAP 
1 , and the scientific goals include the disco v ery and 

characterization of a wide range of transient and variable objects 

on time-scales from 10 s to 5 yr, including flaring stars, gamma- 

ray burst afterglows, intermittent pulsars, magnetars and extreme 

scattering events etc. 

The VAST Collaboration has developed a pipeline for detecting 

transients and variables by analysing images obtained from the 

ASKAP imaging pipeline (Pintaldi et al. 2022 ). The transient 

detection pipeline of the VAST project extracts and measures 

information about the objects from the images, constructs light 

curves, and generates detection notification for subsequent analysis 

(Wang et al. 2023 ). The VAST Pilot Surv e y used all 36 antennas 

and was conducted between 2019 August and 2020 August, with a 

total of 162 h of observations and a total pilot surv e y area of 5131 

square degrees (Murphy et al. 2021 ). The ongoing full VAST survey 

will focus more on performing faster imaging and transient source 

detection, requiring a more robust and automatic pipeline. 

In this paper, we introduce the optimization of the VAST detection 

pipeline described in Wang et al. ( 2021 ), including replacing the 

w-projection imaging algorithm in the original pipeline with the w- 

stacking imaging algorithm, and integrating the optimized imaging 

software into the Data Acti v ated Liu Graph Engine ( DALiuGE ), an 

intelligent e x ecution framework designed for processing large astro- 

nomical data sets (Wu et al. 2017 ). These modifications are aimed at 

impro ving the e x ecution efficienc y of the pipeline. F or ease of de- 

scription, we refer to the original VAST transient detection pipeline as 

the’original pipeline’ and the optimized transient detection pipeline 

as the ‘optimized pipeline’ in this paper. Section 2 describes the 

optimization method. Section 3 describes the integration of the VAST 

imaging pipeline into DALiuGE . Section 4 presents the summary. 

2  OPTIMIZATION  O F  T H E  VA ST  IMAG ING  

PIPELINE  

ASKAP consists of 36 telescopes, each equipped with a phased array 

feed of 36 beams, capable of generating a substantial amount of raw 

data at an approximate rate of 100 Tb s −1 ). These raw data are first 

correlated and integrated at the ASKAP observatory. The correlated 

visibility data are then exported at a rate of up to 2.4 GB s −1 and 

transferred to the P a wse y Supercomputing Centre in Perth, Western 

Australia, for subsequent data processing and storage (Hotan et al. 

1 ht tps://www.at nf.csiro.au/projects/askap/ssps.ht ml 

2021 ). The ASKAP VAST Pilot Surv e y was carried out during 2019–

2020, accumulating 162 h of observations in total (Murphy et al. 

2021 ). The full surv e y operation of the ASKAP started in late 2022. 

The VAST Pilot Surv e y has v alidated the observ ation strategies, data 

processing capabilities, and scientific analysis methodologies for the 

VAST project, paving the way for the full-scale sky surveys. 

2.1 Transient detection pipeline used in the VAST pilot sur v ey 

The transient detection pipeline used in this work was originally 

developed by the VAST Collaboration (Wang et al. 2021 ). Data from 

each of the 36 ASKAP beams are processed independently. The 

original pipeline consists of sev eral ke y steps: ingesting calibrated 

visibility data, fixing the observation phase centre, making deep 

sky models, subtracting the models from visibility data, generating 

snapshot images, estimating background and noise levels, producing 

deep image cutouts, detecting sources, creating light curves, and 

identifying candidates of variables or transients etc. The flow chart 

of the whole pipeline is shown in Fig. 1 (see also fig. 3 in Wang et al. 

2023 ). Wang et al. ( 2023 ) aim to present the VAST transient detection 

pipeline and the scientific results of the pilot surv e y, so their flowchart 

details the procedure from the online processing of the raw ASKAP 

visibility, then to the data processing using the transient detection 

pipeline deployed at the China SKA Regional Centre to generate 

transient candidates, and finally to produce a transient catalogue 

after manual checks. Our research, on the other hand, focuses on the 

optimization of the detection pipeline in the middle phase, which 

does not include the initial online processing and the final manual 

checks, as seen in Fig. 1 . The main steps are outlined below. 

2.1.1 Ingesting calibrated visibility data 

The input data to the VAST imaging pipeline come from the CSIRO 

ASKAP Science Data Archive (CASDA; Chapman et al. 2017 ) and 

have been pre-calibrated using the ASKAP pipeline (Guzman et al. 

2019 ) at the Australian Supercomputing Centre (P a wse y). The pre- 

calibration includes the calibration of phase errors introduced in the 

signal by the observing equipment and the atmosphere, the removal 

of radio frequency interference (RFI), and the calibration of each 

antenna bandpass. 

2.1.2 Fixing the observation phase centre 

ASKAP maintains a phase centre for each beam (Hotan et al. 

2021 ), which means that it has 36 phase tracking systems. To 

ensure astrometric performance, ASKAP records the offset of each 

beam’s phase centre during the observation in an MS-format file 

from which the imaging pipeline can obtain the corresponding beam 

offset information and correct the phase centre prior to the imaging 

procedure. 

2.1.3 Making a deep CLEAN model and subtracting the model 

from visibility data 

This step is mainly done using the tclean task in the Common Astron- 

omy Software Applications ( CASA ) software package (McMullin 

et al. 2007 ). 

ASKAP has a large FoV of 30 square degrees, so the wide-field 

effect must be calibrated. The original pipeline uses the w-projection 

imaging algorithm (Cornwell, Golap & Bhatnagar 2005 ) to handle 
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Figure 1. Flowchart of our optimized transient detection pipeline, specifically designed for processing and analysing VAST data. While Wang et al. ( 2021 ) 

described the entire process from the online processing of the ASKAP raw visibility to the transient detection pipeline and finally to the final transient catalogue, 

our flowchart concentrates on the central stage of the data processing and analysis that are the focus of our optimization efforts. 

the bias caused by the antenna baseline being projected on different 

planes during imaging. 

The large FoV of the ASKAP contains radio sources of multiple 

sizes, including compact point-like sources and large-scale extended 

radio galaxies and galaxy clusters. Ho we ver, the traditional CLEAN 

algorithm, which decomposes the sky image into a collection of point 

sources or scaled delta functions, is no longer adequate for imaging 

objects with complex structures. Therefore, the pipeline employs the 

Multi-Scale CLEAN approach (Cornwell 2008 ) during the iterative 

CLEAN process. When the tclean task is finished, the final CLEAN 

model will be stored with an MS file. Next, the CLEAN model is 

subtracted from the MS data by using the CASA task uvsub to obtain 

the residual data. 

In our optimized pipeline, the WSClean program is used instead 

of the CASA package to perform the imaging operation, and we found 

that WSClean based on the w-stacking algorithm is faster than CASA 

with the w-projection algorithm in this transient detection pipeline, 

a result that is consistent with the general expectation in wide-field 

radio imaging (see Offringa et al. 2014 ). More discussion is given in 

Section 2.2. 

2.1.4 Snapshot ima g e creation 

Imaging the entire continuous hours of data is a huge challenge 

for the current computing system. A practical operation is to slice 

the residual visibility data generated in the previous step in a time 

sequence in order to meet the need for fast imaging and fast scientific 

output. F or e xample, 7-h observ ational data are di vided into 28 

segments of 15 min of residual data and imaged separately. The sliced 

data segments can be imaged independently and run in parallel on 

a multinode, multicore supercomputing system, where processing is 

much faster. 

2.1.5 Background and rms noise estimation 

This is performed on the residual snapshot images using Aegean 

software (Hancock, Trott & Hurley-Walker 2018 ), and the results 

will be used in subsequent steps for variable source identification 

and light-curve construction. 

2.1.6 Generating cutout deep ima g e 

To ensure that subsequent analyses are performed within an ef fecti ve 

central FoV, a central image of 3000 pixel × 3000 pixel is cropped 

around the centre of the original deep image of 10 000 pixel ×

10 000 pixel. The current sky model derived from the shallow 

ASKAP-RACS surv e y (Hale et al. 2021 ; Duchesne et al. 2023 ) is 

not yet sufficient for accurate calibration of the data and use as a 

reference image. It is therefore necessary to carry out deep imaging 

in the current VAST pipeline. In the future, when full-sky deep 

ASKAP surv e ys such as Evolutionary Map of the Universe (EMU; 
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Norris et al. 2021 ) and Magnetic Polarisation Surv e y of the Universe 

(POSSUM; Anderson et al. 2021 ) are completed, it will be possible 

to build a sufficiently accurate sky model to use as a reference image. 

This will allow us to perform transient detection by subtracting the 

reference image directly from the VAST snapshot images, without 

the need for deep imaging. The latter approach can greatly impro v e 

the efficiency of the transient detection, but it is dependent on the 

accuracy of the sky model. Direct subtraction of the reference image 

can introduce errors that affect the accuracy of transient detection if 

the sky model is not accurate enough. 

2.1.7 Source detection 

The search for radio sources in the generated deep images is 

performed using the Aegean software. A deep image catalogue is 

generated. 

2.1.8 Light curve creation 

The light curve of each source is extracted from the deep image 

catalogue following three steps (Wang et al. 2021 , 2023 ). First, the 

peak flux density S deep and fitted source position are obtained from 

the deep image catalogue. The flux density S deep at the i th pixel is 

obtained by forcing the measurement of the flux density at the peak 

position of the source in the deep sky image, rather than as a result 

of a free-fit, which a v oids the bias of the measured flux density due 

to positional deviations. Secondly, the peak flux density S i ,diff and 

rms noise σ i in the i th residual image at the corresponding fitted 

position are measured. Thirdly, the final peak flux density S i for each 

data point used to construct the light curve is given by S i = S deep 

+ S i ,diff . Each beam data will generate N s light curves, where N s 

denotes the number of detected sources. Next, all light curve results 

are used as inputs for variability analysis. The modulation index 

m = σs / ̄S is used to describe the magnitude of variability of radio 

sources quantitatively (Murphy et al. 2021 ), where σ s is the standard 

deviation of flux density of the light curve, and S̄ is the weighted 

mean flux density. The chi-squared value χ2 
lc is used to measure the 

significance of the random variance for light curves, calculated as 

follows: 

χ2 
lc = 

N t ∑ 

i= 1 

( S i − S̄ ) 2 

σ 2 
i 

. (1) 

Under the null hypothesis, χ2 
lc follows the theoretical chi-squared 

distribution with N t − 1 degrees of freedom, i.e. ˜ χ2 
lc = 

χ2 
lc 

N t −1 . The 

variation probability P ( χ2 
lc ) for each light curve is calculated by 

cumulative distribution function (CDF) of theoretical chi-squared 

distribution (Bell et al. 2014 ; Wang et al. 2021 ). 

2.1.9 Creating transient candidates catalogue and cutout images 

The final transient candidates are identified based on the following 

four conditions: the value of ˜ χ2 
lc is higher than 3 σ ; the mod- 

ulation index m exceeds 3 per cent; the astrometric position of 

source is less than 0.8 deg from the beam centre; the compactness 

S int flux /S peak flux < 1 . 5, where S int flux and S peak flux are the integrated 

flux density and the peak flux density of candidate, respectively. The 

last condition ensures that the variable sources are compact and not 

caused by image artefacts or sidelobes of bright sources. Finally, 

the information on the final candidates is saved in a CSV file and 

the light curves are plotted. The residual 8-arcmin snapshot images 

are cropped and combined in time sequence into a’.gif’ file. The 

abo v e conditions do not fully and automatically exclude all false 

detections, such as misidentified candidates in the sidelobes of a 

bright source. These spurious candidates must be verified by further 

visual inspection. 

2.2 Impro v ement of the pipeline 

Wide FoV imaging of radio interferometric observations is a compu- 

tationally intensive task, especially for the large amounts of data that 

are generated by modern non-coplanar arrays. Offringa et al. ( 2014 ) 

developed a fast wide-field imaging and deconvolution algorithm, 

w-stacking Clean ( WSClean ). In their imaging experiments using 

the Murchison Widefield Array (MWA) data, the WSClean was 

an order of magnitude faster than the tclean with w-projection 

algorithm integrated in CASA (Offringa et al. 2014 ). The image 

quality derived from w-stacking is comparable to that w-projection, 

and in some cases slightly better. These differences are due to 

the differences between the two algorithms themselves. The w- 

projection algorithm in tclean involves first convolving the visibility 

data in the uv plane with a function that depends on the w term 

and then performing an inverse Fourier transform. This convolution 

operation is computationally e xpensiv e, especially when the number 

of w-planes is large. In contrast, w-stacking algorithm divides the 

visibility data into different layers based on the w terms and then 

the inv erse F ourier transform is applied to each layer separately. The 

results are then summed to produce the final image. This process 

is more computationally efficient because the convolution operation 

associated with w-projection is replaced by the simpler stacking 

operation. Therefore, as long as the number of w-planes (and the 

computational complexity of the convolution operation) is large, 

WSClean can be expected to be faster than algorithms based on 

w-projection. 

It is important to note that the two techniques have different 

advantages and trade-offs. w-stacking algorithm is faster and more 

memory efficient, but it can only correct the w terms within a given 

FoV. Although w-projection is more computationally expensive, it 

corrects w terms in the entire FoV. Furthermore, from a workflow 

e x ecution point of view, w-stacking is faster when visibility gridding 

is the main cost of the algorithm. On the other hand, the w-projection 

algorithm is faster when the inverse FFT is the main cost of the 

workflow. The exact performance difference depends on the specifics 

of the data set and the imaging requirements. Therefore, when 

choosing between these two methods, practical considerations (e.g. 

computational resources) and specific scientific goals of the imaging 

task should be taken into account. Furthermore, in our experiments, 

we found that the CASA software needs to load a large number of 

startup items before e x ecution. In this case, if multiple nodes are 

running in parallel, individual nodes may get stuck at startup, which 

limits the operational speed of the CASA pipeline when processing 

large amounts of data. 

We first examine the runtime for each step of the original pipeline 

(shown in Fig. 2 ). The most time-consuming step is making a deep 

CLEAN model and subtracting it from the visibility data (the ‘model’ 

step), accounting for 93.98 per cent of the total runtime. In particular, 

almost all of the time is spent on the tclean task. The w-projection 

algorithm in the tclean task first performs imaging by convolving 

visibilities with different discrete w-kernels and then performs an 

FFT on the results. The size of the w-kernel directly affects the speed 

of the algorithm, as most of the running time of the w-projection is 

consumed by the convolution operation. Since the ASKAP data have 

large w-values ( > 20 000 λ), the w-projection algorithm will use very 
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Figure 2. A demonstration of typical runtimes for each step of the orig- 

inal VAST transient detection pipeline. The labels ‘fix’, ‘model’, ‘cutout’, 

‘finding’, ‘snapshot’, ‘noise’, ‘light curve’, and ‘candidate’ represent the 

steps of fixing the observation phase centre, making a deep CLEAN 

model, subtracting the model from visibility data, snapshot image creation, 

generating cutout deep image, source detection, background and rms noise 

estimation, light-curve creation, and identifying candidate variable sources, 

respectively. 

large w-kernels (e.g. > 688 pixels), making it very slow. In contrast, 

the w-stacking algorithm in WSClean first obtains images of each 

w-layer by e x ecuting an FFT on the gridded visibilities, then each 

image is multiplied by the w-projection term and the results are added 

together to obtain the final image. Since the convolution operation 

is replaced by multiplication, w-stacking is generally faster than w- 

projection, especially for large w values in this experiment. Hence, 

we use WSClean instead of the tclean task in CASA for imaging and 

deconvolution in our optimized pipeline. Furthermore, WSClean 

implements and optimizes multi-scale CLEAN and multifrequency 

deconvolution, allowing for mapping both the compact and diffuse 

emission sources (Offringa & Smirnov 2017 ). Specifically, for the 

wide-band imaging in this work, the minor loop of the w-stacking 

method is 2–3 orders of magnitude faster than multi-scale CLEAN 

and multifrequency w-projection CLEAN in tclean . 

Table 1 lists the parameter settings of one of the experiments in 

this paper, including output image size, pixel size, weighting mode, 

and the data column parameters. We used multiscale CLEAN (see 

discussion abo v e) by setting a parameter ‘-multiscale’ with scales of 

‘0, 5, 10, 15, 25’. The gain of the major CLEAN iterations is set to 

0.85. During multiscale CLEAN, an automatic mask with 3 σ allows 

structures below the noise to be CLEANed. The joined-channel 

CLEAN was enabled by setting ‘-channels-out’ to 4, and combined 

with ‘-join-channels’ to generate the multifrequency synthesis image. 

To get the deep images, the maximum number of CLEAN iterations 

is set to a large value, i.e. 100 000. When the ‘-auto-threshold’ option 

is enabled, CLEAN stop threshold uses the automatic σ method and 

automatically sets the CLEAN threshold for each major cycle based 

on the noise level in the residual image. 

The second most time-consuming step is the generation of snap- 

shot images (3.76 per cent of the total runtime). It is responsible 

for imaging each snapshot residual data based on the start and 

end indices. In this step, there is a loop operation for sequentially 

processing N t residual snapshot data. As each snapshot is imaged 

independently, this process can be optimized in parallel using 

Python multiprocessing technique. To optimize, we rewrote the code 

involving tclean steps using WSClean and PYTHON Casacore (van 

Diepen 2015 ), as well as performing parallel optimization of the 

generating snapshot images and noise estimation steps using PYTHON 

multiprocessing module. We also use the same approach to optimize 

the parallel steps for background and rms noise estimation. Specially, 

the residual snapshot data are equally divided into N p portions and 

N p CPU processes are set to e x ecute the imaging in parallel. 

We have also improved the generality of the deep imaging step. 

Signals entering the sidelobes of the primary beam, with an FoV 

of 30 square degrees at 800 MHz, can affect the signal detected 

in the primary beam. This sidelobe effect is most severe when a 

bright extended source ( ≥50 Jy) falls into the sidelobes (e.g. Wang 

et al. 2021 ) and may greatly affect the accuracy of the transient 

source search. Ho we v er, in man y of the sk y re gions inv estigated, 

the sidelobes of the primary beam do not detect a bright source or 

the flux density of the detected bright source is not significant, so 

there is no need to set the output image with a very large pixel 

size for these data. To impro v e the generality of the pipeline and 

reduce unnecessary calculation time, we proposed two solutions: (1) 

uniformly set a smaller image size of 3000 pixel × 3000 pixel and 

determine whether there is a source brighter than 50 Jy outside the 

FoV before deep imaging. Then, the Peeling algorithm (Williams 

et al. 2019 ) is used to remo v e this bright source from the calibration 

data model before imaging. (2) Before deep imaging, check whether 

there is a bright source ≥50 Jy within the larger pixel size (i.e. 

10 000 pixel) range of the data phase centre using the catalogue of the 

ASKAP continuum surv e y. Otherwise, a smaller pix el size is used. 

After comparing the operational efficiency of these two methods, we 

chose the latter. 

2.3 Validation experiments and analysis 

The follo wing v alidation experiments were performed on an X86 

compute node of the China SKA Regional Centre Prototype (CSRC- 

P; An, Wu & Hong 2019 ; An et al. 2022 ), which has two Intel Xeon 

Gold 5218 2.3-GHz processor with 32 CPU cores, 768 GB RAM 

memory and 1.2-TB local hard disc. Our test data were selected from 

the 29th beam data of the observation ID # 9602 (SB9602 beam29) 

in the ASKAP Pilot Surv e y for Gra vitational Wa ve Counterparts 

(Wang et al. 2023 ). This observation started at UT 14:11:22 on 2019 

August 16 and lasted 10.5 h. 

Fig. 3 compares the runtimes of the original and the optimized 

pipelines on the X86 compute node. From the experiments running 

deep imaging and model building of SB9602 beam29 data (step 

#2 ‘model’), the original pipeline took about 22.1 h, while the 

optimized pipeline took about 8.3 h, which is about 2.7 times faster 

than the former. Moreo v er, the runtimes of the optimized pipeline in 

step #5 (‘snapshot’ image creation) and step #6 (‘noise’ estimation) 

are ∼1/11 of those of the original pipeline. The other steps of the 

optimized pipeline are slightly faster than the original pipeline. The 

total runtimes of the optimized pipeline and original pipeline are 

31 320 and 84 318 s, respectively. Therefore, we can reduce the 

runtime by a factor of 2.7 using the optimized pipeline compared 

to the original pipeline. 

In order to verify the validity of our improved method, the deep 

images obtained by both pipelines and their final detection results 

are compared and analysed below. The image quality information of 

cutout deep images by both pipelines is shown in Table 2 . The mean 

rms noise obtained by the optimized pipeline is 26.0 μJy beam 
−1 , 

while the original pipeline obtained an rms noise of 28.4 μJy beam 
−1 , 

with the former showing a 9 per cent impro v ement o v er the latter. A 

slightly larger beam was obtained by WSClean due to the different 
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Table 1. WSClean imaging parameters. 

Parameters Settings 

Image size 10 000 pixel × 10 000 pixel 

Pixel size 2.5 arcsec 

Maximum CLEAN iterations 100 000 

Automatic threshold σ

Automatic mask 3 σ

Gain for major CLEAN loop 0.85 

Imaging weighting ‘Briggs’ mode (robust parameter = 0.53) 

‘-Channels-out’ Four sub-channels jointly cleaned 

Deconvolution mode Multiple scales of ‘0, 5, 10, 15, 25’ 

Figure 3. Comparison of the runtimes between the original pipeline and the optimized pipeline on the X86 compute node. The runtime of each step is shown in 

the left-hand panel, and the labels of ‘fix’, ‘model’, ‘cutout’, ‘finding’, ‘snapshot’, ‘noise’, ‘light curve’, and ‘candidate’ represent the steps fixing the observation 

phase centre, making a deep CLEAN model and subtracting the model from visibility data, generating snapshot images, cutout deep image, source finding, 

background and rms noise estimation, extracting light curves, and candidates selection and plots, respectively. 

Table 2. Comparison of cutout deep image quality between the original and optimized pipelines on SB9602 beam29. 

Methods Mean rms noise ( μJy beam −1 ) Beam (maj × min, PA) No. of detected sources 

Original pipeline 28.44 17.15 arcsec × 13.65 arcsec, 80.59 deg 1695 

Optimised pipeline 25.98 18.53 arcsec × 16.01 arcsec, 95.08 deg 1686 

Briggs weighting parameters used in the two pipelines. The obtained 

cutout deep images were searched separately for radio sources using 

Aeg ean softw are, and the catalogues were exported. Other source- 

finding software and method can also be used, for example, deep 

learning-based HeTu (Lao et al. 2021 ). In the CASA image, 1695 

radio sources are detected, and in the WSClean image, 1686 radio 

sources are detected. 

Fig. 4 shows an example comparing the residual deep images ob- 

tained by the two pipelines. The images show the central 200 pixel ×

200 pix el re gion. The residual deep image of the optimized pipeline 

has a much smoother noise distribution than the residual image 

obtained by the original pipeline. Some residual emission from the 

model-extracted radio sources is obviously visible in the original 

pipeline’s output image, but not in the optimized pipeline’s output 

image, indicating that the optimized pipeline produces higher quality 

images, deeper CLEANing and more accurate source extraction. 

The choice between WSClean ( w-stacking) and tclean ( w- 

projection) depends on the specific requirements of the data and the 

scientific objectives. If the data have significant wide-field effects, 

w-stacking may be preferred due to its greater ability to handle w 

terms. Ho we ver, if the data require more sophisticated deconvolution 

techniques, or if there are other factors at play, then w-projection may 

be preferred. Ho we ver, ho w much better WSClean ( w-stacking) can 

be than tclean ( w-projection) needs to be quantified in the context 

of the specific application, as it depends on a number of factors such 

as field of view, array configuration, signal-to-noise ratio, dynamic 

range and specific scientific objectives. The effectiveness of these 

calibration and imaging techniques varies depending on the specific 
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Figure 4. Residual deep image comparison between the optimized (left) and original pipelines (right). The residual map in the left-hand panel sho ws lo wer rms 

noise and less artefacts than the right-hand panel map. 

observing conditions and science objectives. To better understand 

their relative performance, it would be desirable to systematically 

compare these techniques under a variety of conditions (e.g. different 

combinations of parameter settings), not only to greatly impro v e our 

understanding of the techniques, but also to gain insight into their 

applicability to different types of data and science cases, but this 

would require a large number of experiments. 

For further analysis, the catalogues obtained from the two pipelines 

were cross-matched and compared using the Tool for OPerations on 

Catalogues And Tables (TOPCAT; Taylor 2005 ). Within 10 arcsec, 

there are 1513 matched sources, accounting for 90 per cent of the total 

number of sources detected. We plotted histograms of � RA, � Dec., 

and the peak flux density of the matched sources and then fitted 

the histograms with Gaussian functions in Fig. 5 . The differential 

RA and Dec. distributions of the cross-matched objects are close to 

zero: the peak distribution of � RA is at + 0.025 arcsec and the peak 

distribution of � Dec. is at + 0.0085 arcsec. The standard deviations 

are very small, 0.27 arcsec for � RA and 0.19 arcsec for � Dec., 

respectively, indicating that the catalogue obtained by the optimized 

pipeline generally agrees with that obtained by the original pipeline. 

The mean value of the peak flux density ratio distribution is close to 

1 (with a peak at 1.01), and the standard deviation is 0.049. 

After candidate selection, we found six variable source candidates 

from the optimized pipeline and nine from the original pipeline, 

five of which have matched locations. The information of the 

matched candidates is shown in Table 3 . Four variable sources 

have been identified as transients in the previous study by Wang 

et al. ( 2021 ): J005800.93 −235449.08, J005806.74 −234744.51, 

J005808.98 −233453.97, and J005812.02 −233735.64 (i.e. the first 

4 rows in Table 3 ). The cutout deep images and light curves of 

true transients by the optimized pipeline are shown in Figs 6 

and 7 , respectively. Upon visual inspection, other candidates 

are determined to be false transient detections (Wang et al. 

2023 ). 

Fig. 9 displays images obtained using the original pipeline from 

the test data of B9602 beam29, showing strong sidelobes around the 

bright central sources. The level and shape of sidelobes changed at 

different observing times due to differences in ( u , v ) co v erage, and 

the original pipeline identified one of the sidelobes (the red-coloured 

cross) as a variable source candidate. In contrast, the optimized 

pipeline obtained lower and more uniformly distributed noise in 

the deep images as well as deeper CLEAN models (Table 2 and Fig. 

4 ), which not only enables the detection of weak sources but also 

prevents to some extent the sidelobes from being misidentified as 

variable source candidates. 

As depicted in Figs 8 and 9 , J010021.98 −232630.86 and 

J010117.82–234312.78 represent two false sources centred on the 

bright source but not true detection. Given their relative distance 

from the centre of beam #29 and closer to beam #35, neither source 

appeared in the detection of beam #35. This indicates that false 

detection can also occur when sources are located far from the centre 

of the beam. As an example, the three pseudo sources shown in 

Fig. 4 were not identified in the optimized pipeline. Moreo v er, the 

optimized pipeline obtained higher ˜ χ2 
lc and m values of the true 

transients than for the original pipeline. Therefore the confidence 

level of the variable candidates detected by the optimized pipeline is 

higher than that of the original under the same metrics. 

In this experiment, the fraction of pseudo-sources in the direct 

output of the optimized pipeline in this experiment is 1/3, whereas 

in the results from the original pipeline, this fraction is higher (more 

than 50 per cent). The reason for fewer false transient detection of 

the optimized pipeline can be attributed to its use of more advanced 

wide-field imaging and CLEAN algorithms which produce lower 

level and smoother image noise. As a result, spurious sources in the 

images, particularly those located in the sidelobes of bright sources, 

are substantially suppressed. Ho we ver, it is important to note that 

the number or proportion of spurious sources in the direct output of 

the imaging pipeline is affected by a variety of observational and 

data-processing factors, including the treatment of w terms (e.g. the 

selection of different wide-field imaging algorithms in this study), 

CLEAN threshold settings, imaging weights, calibration errors, and 

unflagged RFI. Only by analysing these factors together can a more 

quantitative understanding of the proportion of pseudo sources in the 

pipeline output be obtained, and the pipeline needs to be run with 

different parameter configurations on different data sets. 

3  I N T E G R AT I O N  O F  T H E  TR ANSIE NT  

DETECTION  PIPELINE  O N  DA L I U G E  

Traditionally, radio astronomy data are acquired from a telescope 

and post-processed on personal computers. The next-generation large 

radio telescopes, represented by the SKA, will generate enormous 

amounts of data and require high-performance software running on 

supercomputers to process them properly (An 2019 ). Processing 

pipelines on large supercomputers must run in near real time 

and be managed by an e x ecution framework (Ban yer, Murphy & 
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Figure 5. Comparison of the sources detected from the optimized and original pipelines: (a) difference of right ascension � RA ; (b) difference of declination 

� Dec. ; (c) flux density ratio. 

Table 3. Comparison of the matched candidates between optimized and original pipelines. 

Methods Source name RA Dec. S peak flux S int flux ˜ χ2 
lc m 

(deg) (deg) (mJy beam −1 ) (mJy) (per cent) 

Optimized pipeline J005800.93 −235449.08 14.503895 −23.913633 10.46 ± 0.034 10.45 ± 0.034 172 .5 21 .1 

Original pipeline J005800.93 −235449.02 14.503886 −23.913618 10.50 ± 0.043 10.53 ± 0.044 126 .5 20 .9 

Optimized pipeline J005806.74 −234744.51 14.528084 −23.795696 8.47 ± 0.033 8.42 ± 0.032 4 .6 4 .0 

Original pipeline J005806.74 −234744.48 14.528072 −23.795689 8.44 ± 0.042 8.53 ± 0.042 3 .6 3 .8 

Optimized pipeline J005808.98 −233453.97 14.537424 −23.581660 1.47 ± 0.028 1.50 ± 0.029 5 .0 20 .6 

Original pipeline J005808.97 −233453.92 14.537392 −23.581645 1.44 ± 0.035 1.64 ± 0.040 3 .6 14 .0 

Optimized pipeline J005812.02 −233735.64 14.550077 −23.626566 5.13 ± 0.029 4.96 ± 0.029 65 .9 22 .9 

Original pipeline J005812.01 −233735.56 14.550052 −23.626545 5.03 ± 0.037 4.92 ± 0.036 51 .9 21 .0 

Optimized pipeline J010130.80 −235205.62 15.378351 −23.868228 0.35 ± 0.035 0.25 ± 0.025 5 .8 107 .8 

Original pipeline J010131.02–235205.77 15.379248 −23.868269 0.36 ± 0.048 0.32 ± 0.043 6 .7 81 .5 

Figure 6. Cutout deep images of true variable sources detected by the optimized pipeline on SB9602 beam29. The red cross markers denote the peak positions 

of the variable sources. 
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Figure 7. Light curves of true variable sources generated by the optimized pipeline on the SB9602 beam29 data. 

Figure 8. Two examples of false detections. The left-hand panel shows a candidate variable source (marked by a red cross) matched between the output images 

of two pipelines, but is a false detection due to the sidelobe contamination. The right-hand panel shows a candidate variable source detected by the optimized 

pipeline but not by the original pipeline. This is also a false detection because it is located further away from the centre of beam #29 and closer to beam #35. 

Ho we ver, it did not appear in the catalogue of beam #35. 

VAST Collaboration 2012 ). DALiuGE , a data-driven execution 

framework (Wu et al. 2017 ), was developed as a key component 

of the Data Flow Management System prototype for the SKA 

Science Data Processor (SDP; Broekema, van Nieuwpoort & Bal 

2015 ). 

DALiuGE has demonstrated the power and scalability of near real- 

time data processing for large-scale surv e ys (Dodson et al. 2022 ; 

Ouyang, Lu & Lin 2022 ). The ASKAP data reduction software 

ASKAPSoft (Guzman et al. 2019 ) has been successfully run on 

DALiuGE (Guzman & Wicenec 2020 ). In order to implement a 

highly scalable automated VAST detection pipeline for the ongoing 

VAST full surv e y, we inte grated the optimized pipeline on DALiuGE 

to accommodate massively parallel computing and large-scale data 

management. 

The implementation of the VAST detection pipeline on DALiuGE 

involves the following three stages: AppDrop development, Logical 

Graph creation, and graph deployment. These are described below. 

3.1 AppDrop development 

Drop is the nomenclature for the basic components in DALiuGE , 

which represents the data or an application in pipelines, referred 

to as Data Drop (DataDrop) and Application Drop (AppDrop), 

respectively. DALiuGE is designed to provide a distributed data 

management platform and a scalable pipeline e x ecution environment 

specifically to support exascale graph processing. 

AppDrop development is to wrap the tasks of the pipeline into 

the form of Application Drops. Our development was based on the 
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Figure 9. Candidate variable sources (marked by red crosses) detected by the original pipeline but not by the optimized pipeline. The top-left panel is regarded 

as a false detection as it is located further away from the centre of beam #29 and closer to beam #35. Ho we ver, it did not appear in the results of beam #35. The 

other three are false detections appearing in sidelobes. 

DALiuGE component project template 2 , which provides a PYTHON 

AppDrop template as a starting point. We developed 10 AppDrops 

corresponding to the main tasks in the pipeline in Fig. 1 . 

3.2 Logical graph creation 

We used the graph editor EAGLE 
3 to connect the developed Ap- 

pDrops into a scientific workflow called Logical Graph. Fig. 10 

shows the Logical Graph created based on the workflo w sho wn in 

Fig. 1 . EAGLE uses JSON schemes to describe the components or 

Drops, with the description files called palette . For each AppDrop, 

the PYTHON script xml2palette.py from the DALiuGE repository 4 

generates the EAGLE palette. In EAGLE, the output port of one 

Drop can connect to the input port of another Drop via an edge 

(arrows in the graph indicate connections between them). Edge s 

represent events triggered by Drop s, which in turn trigger processing 

in connected Drop s. 

In Fig. 10 , we use two Scatter components to parallelize the 

whole pipeline and steps like generating snapshot images from beam 

data segmentation ( Scatter1 ) and estimating background and rms 

noise levels ( Scatter2 ). Scatter handles parallel data processing. 

Drop group inside Scatter will be split to process different data 

segmentation. The input and output ports of each AppDrop connect 

to file or data Drops . These file Drops specify input and output data 

file paths and filenames for each AppDrop, automatically updated 

during graph e x ecution. This embodies the data-driven concept. 

2 ht tps://github.com/ICRAR/daliuge-component -t emplat e 
3 EAGLE is a visual paradigm-based web application that supports workflow 

integration for a variety of applications: https://github.com/ICRAR/EAGLE 
4 https://github.com/ICRAR/daliuge 

3.3 Graph deployment 

The Logical Graph in the previous section depicts the logical 

relationships of AppDrops. The first task in the graph deployment 

is for the DALiuGE translation engine to use the METIS algorithm 

(Karypis & Kumar 1998 ) to translate the logical graph into a physical 

graph template. The Physical Graph Template is the unfolding result 

of each complex component of the Logical Graph, and is a detailed 

description of each individual processing step of the final workflow. 

Taking Fig. 10 as an example, if the number of copies of Scatter1 and 

Scatter2 are both 1, the generated Physical Graph Template will have 

a total of 22 Drops . If the number of copies of Scatter1 and Scatter2 

are 3 and 28, respectively, it will generate 3 × (4 × 28 + 18) = 390 

Drops in total. 

Next, the Physical Graph Template is mapped on to specific 

computing resources (e.g. computer nodes) to generate the so-called 

Physical Graph. In the Physical Graph, each partition is mapped to 

a set of allocated resources, and each Drop is assigned a physical 

resource ID (e.g. IP address, hostname) using an optimal load- 

balancing approach. 

Finally, the Physical Graph is submitted to the Drop Manager 

in DALiuGE for instantiating and deploying the Drops specified 

in the Physical Graph on its managed resources. The Drop Manager 

acquires the real-time resources of the compute clusters (i.e. CSRC-P 

in our experiments) and deploys the Drops to the computing resources 

via the graph partitioning algorithm (i.e. METIS) to maximize 

resource utilization and pipeline efficiency. After the manager sends 

a trigger event to initiate Drops , the Physical Graph can e x ecute 

itself. During e x ecution, the Drop manager monitors the e x ecution 

progress by listening to Drop events. 

DALiuGE is a powerful e x ecution framework designed to handle 

large-scale astronomical data. Its e x ecution involv es a series of disc 
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Figure 10. Logical graph of optimized pipeline running on the DALiuGE e x ecution framework. The logical graph is a projection of the workflow shown in Fig. 

1 . The ten application drops are in sequence: Do wnloadApp (do wnloading calibrated ASKAP data from the CASDA), FixDirectionApp (fixing the observation 

phase centre), PreMakeModelApp (making a deep CLEAN model and subtracting the model from the visibility data), DeepFitsCutoutApp (cropping deep 

images into cutout images), SourceFindingDeepApp (source finding and detection), ImageAll15minApp (generating snapshot images), NoiseEstimationApp 

(generating residual images and estimating rms noise), ExtractLightCurveApp (extracting light curves), SelectCandidatesApp (identifying candidate variable 

sources), PlotAllApp (plotting light curves, cutout deep images and residual snapshot images containing identified variable candidates). 

read/write operations. Ho we ver, at the time of design, DALiuGE 

takes into account the bottlenecks that can be caused by disc 

input/output (I/O), and it does not necessarily require that each 

task writes data to and from the disc at all times (Wu et al. 

2017 ). DALiuGE adopts a data-driven execution mechanism. Data- 

acti v ated tasks are e x ecuted only when the input data is ready. This 

helps to mitigate potential performance issues associated with disc 

I/O operations. 

In addition, DALiuGE uses a distributed design that can scale 

to handle larger data rates or computational problems. A typical 

application of DALiuGE is the completion of workflow simulations 

at the scale of the SKA phase I (SKA1). Wang et al. ( 2020b ) 

successfully simulated and processed SKA1-scale data on the Summit 

supercomputer using DALiuGE , generating 2.6 Peta Byte (PB) of 

raw data in a workflow at a peak computing rate of 130 Peta Flops 

(PFlops). This is the first time that petabytes of radio astronomical 

data have been processed at a hundred PFlops in a workflow manner 

(Wang, Wicenec & An 2020a ; Wang et al. 2020b ). The results show 

that the DALiuGE workflow is capable of handling critical SKA 

science cases. In the current work, we successfully ran the VAST 

detection pipeline in parallel using DALiuGE . 

3.4 Performance test and result analysis 

The optimized VAST detection pipeline and the data obtained from 

the VAST pilot surv e y are used in this performance verification 

experiment. The observation ID is SB32039, and the phase centre of 

the observation is at RA = 19 h 07 m 58 . s 6, Dec. = −64 ◦30 % 37 %% , with a 

central frequency of 944 MHz, 1 MHz frequency resolution and 10 s 

integrations. The 7-h observation from 2021-09-10 UT 12:09 to UT 

19:09.10 yields 36 beams of visibility data, ∼15 GB for each beam, 

resulting in a total data size of ∼540 GB. 16 of these beam data were 

used in our experiments, with the number of the beams chosen by 

the number of compute nodes used. 

The experiments were conducted on the HPC in the China SKA 

Regional Centre, using a total of 16 Intel X86 compute nodes 

(specifications in Table 4 ). 

To e v aluate the DALiuGE performance, we parallelized the opti- 

mized pipeline using traditional parallel algorithms MPI and BASH 

Shell, comparing to DALiuGE . Each beam data is processed on a 

single compute node, and multiple beam data run on different nodes 

simultaneously using MPI, BASH Shell, and DALiuGE methods, 

respectiv ely. We hav e run ten tests for each method on 1, 2, 4, 8, and 

16 compute nodes, respectively. 

Fig. 11 shows the total runtime. The runtime is the average of the 

10 tests on the corresponding number of compute nodes. The error bar 

represents the standard deviation of the runtimes. It can be seen that 

the DALiuGE is the fastest for all data of various sizes. Moreo v er, the 

runtime of the DALiuGE -based e x ecution does not show a significant 

increase with increasing data size (i.e. the number of beams). From 1 

to 16 compute nodes, DALiuGE ’s runtime only varied 0.132 h, while 

MPI and BASH have a variation of 0.173 and 0.168 h, respectively. 

This indicates that DALiuGE has better stability. Future experiments 

using more nodes will further validate the scalability and stability 

of DALiuGE . Finally, DALiuGE automatically distributes triggered 

tasks based on heuristics like load balancing, reducing the need for 

complex distributed programming. 

DALiuGE uses a graph structure to facilitate the workflow, and 

has the advantage o v er traditional parallel BASH or MPI routines in 

its ability to optimize the scheduling and e x ecution of tasks based on 
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Table 4. Specifications of X86 compute nodes of the China SKA Regional Centre used for this study. 

Type Quantity Specification Total 

CPU 2 Intel Xeon Gold 5218 CPU@2.3GHz 32 Cores 

15 nodes Memory 12 DDR4 RDIMM 2666MHz-64GB 768 GB 

Hard disc 2 600 GB-SAS 12Gb/s-15000rpm −2.5 1.2 TB 

CPU 2 Intel Xeon Gold 6132 CPU@2.6GHz 28 Cores 

1 node Memory 16 DDR4 RDIMM 2666MHz-64GB 1 TB 

Hard disc 2 SSD-2TB-NVMe 4 TB 

Figure 11. Comparison of the runtimes of DALiuGE, MPI, and BASH 

pipelines. The mean runtimes of the DALiuGE method are 9.42 h, 10.31 h 

for the MPI method, 10.31 h for the BASH method. The standard deviation 

of the runtime curve is 0.132 h for DALiuGE , 0.173 h for MPI, and 0.169 h 

for BASH. 

their dependencies and data locations. In DALiuGE , Drops represent 

computations or data and Edges represent data dependencies between 

them (see also in Section 3.2 ). The Drop manager monitors the 

e x ecution progress by collecting e x ecution status via Edges . For 

SKA data processing, data mo v ement is a critical factor in the 

o v erall e x ecution time of a workflow. This intelligent task scheduling 

structure enables DALiuGE to know which computations depend 

on which other computations and schedule them to minimize data 

mo v ement. 

DALiuGE pro vides fle xibility in data storage through its Data 

Drop design, supporting storage in memory, distributed object 

storage, and parallel file systems. DALiuGE ’s data-driven execu- 

tion model also enables streaming pipelines to a v oid unnecessary 

write/read operations. Ho we ver, it should be noted that while these 

optimizations of data localization and mo v ement can help mitigate 

the data I/O pressure, it has limitations when workflows generate 

huge intermediate data sets. Further analysis is needed on DALi- 

uGE ’s performance in handling very large intermediate data or poor 

disc I/O performance to obtain quantitative evaluations. Addressing 

I/O bottlenecks in extreme environments requires continued integra- 

tion of new storage and I/O technologies in e x ecution framework 

development, along with performance tuning tailored to specific 

scientific applications. 

4  SUMMARY  A N D  PERSPECTIVE  

This paper describes a method to impro v e and optimize the transient 

detection pipeline for the SKA slow transient search project (VAST). 

We first replace the w-projection algorithm used in the original 

pipeline with the w-stacking CLEAN algorithm integrated into 

WSClean . This modification yielded two ke y impro v ements. First, 

the optimized pipeline exhibits superior parallelism and scalability 

compared to the original pipeline, resulting in a significant im- 

pro v ement in the multinode parallelism efficiency. This is most 

notable in the steps of deep sky model creation and snapshot 

image creation, with the o v erall e x ecution efficienc y of the entire 

pipeline being impro v ed by a factor of about three. Secondly, 

the optimized pipeline generates residual images with lower noise 

levels, more uniform residual noise distributions and fewer arte- 

facts compared to the original pipeline. This implies that the 

impro v ed pipeline is not only faster but also produces higher fidelity 

results. 

Furthermore, we integrated the optimized pipeline into the Data 

Acti v ated Liu Graph Engine ( DALiuGE ) framework. This integra- 

tion marks one of the first successful applications of the DALiuGE 

e x ecution framework to SKA precursor data processing, enabling 

the imaging pipeline to adapt to large-scale, high-performance 

distributed computing tasks. This increases the operational efficiency 

of future SKA pipelines on HPC clusters and reduces data processing 

time. Implementing the DALiuGE pipeline consumes less time than 

traditional parallel methods (MPI and BASH) and is also more stable 

and scalable. The method presented here can be applied not only to 

the VAST project, but also to other ASKAP imaging surv e ys, such 

as the EMU and POSSUM. The aim of these impro v ements is to 

make the most efficient use of the massive amounts of data produced 

by radio astronomy surv e ys, thereby enabling more accurate and 

detailed observations of the Universe. 
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Gra vitational Wa ve Counterparts) and SB32039 in AS107 (ASKAP 

Pilot Surv e y for VAST). The softw are packages used in this w ork 

can be obtained from public websites: CASA (use version 5.0.0 in 

this work) https:// casa.nrao.edu/ ; WSClean (use version 2.9.0 in this 

work) https:// gitlab.com/aroffringa/ wsclean/ ; DALiuGE https:// gith 

ub.com/ICRAR/daliuge . Our optimized detection pipeline can be 

provided upon reasonable request. Deep images used in this study 

are available on GitLab at links: https://gitlab.com/csrc- p1/vast- fast 

- imaging/- /tree/ main/deep image/ . 
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