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ABSTRACT

In this paper, we present an optimized version of the detection pipeline for the ASKAP Variables and Slow Transients (VAST)
survey, offering significant performance improvement. The key to this optimization is the replacement of the original w-projection
algorithm integrated in the Common Astronomy Software Applications package with the w-stacking algorithm implemented in
the WSClean software. Our experiments demonstrate that this optimization improves the overall processing efficiency of the
pipeline by approximately a factor of 3. Moreover, the residual images generated by the optimized pipeline exhibit lower noise
levels and fewer artefact sources, suggesting that our optimized pipeline not only enhances detection accuracy but also improves
imaging fidelity. This optimized VAST detection pipeline is integrated into the Data Activated Liu Graph Engine (DALiuGE)
execution framework, specifically designed for SKA-scale big data processing. Experimental results show that the performance
and scalability advantages of the pipeline using DALiuGE over traditional MPI or BASH techniques increase with the data
size. In summary, the optimized transient detection pipeline significantly reduces runtime, increases operational efficiency, and

decreases implementation costs, offering a practical optimization solution for other ASKAP imaging pipelines as well.

Key words: techniques: image processing —surveys —radio continuum: transients.

1 INTRODUCTION

The Universe is replete with highly variable objects that are of-
ten associated with extreme high-energy astrophysical phenomena.
These objects provide a unique opportunity to study the high-
energy universe in depth from both observational and theoretical
perspectives. Many classes of transient sources have been discovered
at different cosmological distances, including gamma-ray bursts and
fast radio bursts, making them probes of the Universe all the way
up to the epoch of cosmic reionization (e.g. Wijers et al. 1998;
Gao, Li & Zhang 2014). Wide-field, high temporal resolution, and
high sensitivity surveys span the entire electromagnetic spectrum
from radio to TeV bands. Recent discoveries of gravitational waves
(Abbottet al. 2016, 2017), extragalactic neutrinos (IceCube Collabo-
ration 2018a, b), and high-energy cosmic rays (Cao et al. 2021) have
opened new multimessenger windows, enriching our understanding
of the Universe.

Two primary methods are typically used to discover and search
for transient sources: the time series method and the image-domain
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method. A typical application of the time series method is to search
for pulsars by observing periodic radio pulse signals. The image-
domain method is used to identify suddenly brightening objects or
previously unknown transient sources by comparing the difference
between images taken at adjacent times or by subtracting from a
reference image (e.g. Bond et al. 2001; Hurley-Walker et al. 2022).

Numerous large advanced telescopes at multiple wavelengths are
conducting large field of view (FoV), high-sensitivity sky surveys
to search for transient sources. These include the large-field high-
cadence optical surveys such as the Zwicky Transient Facility (ZTF;
Bellm et al. 2019) and the Large Synoptic Survey Telescope (LSST;
Ivezi¢ et al. 2019), as well as high angular resolution radio surveys
conducted with the Very Large Array (VLA; Lacy et al. 2020),
Australian SKA Pathfinder (ASKAP; Murphy et al. 2021), and
MeerKAT (Fender et al. 2016). By cataloguing a large sample
of celestial objects, these surveys will significantly contribute to
discovering transient sources.

Rapid follow-up observations of newly discovered transient
sources in images demand fast imaging capabilities, which require
substantial data processing. Detecting transients from an image
data base obtained from long-term observations involves processing
massive amounts of data (e.g. Law et al. 2015). On the other hand,
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a comprehensive search for variable sources over a large sky area
requires imaging, identifying, locating, and cataloguing all detectable
objects within the FoV. When the first phase of the Square Kilometre
Array (SKA) radio telescope (Dewdney et al. 2009) is completed, its
sky survey will be about 50 times faster than the current largest radio
telescope array. Consequently, the development of highly automated,
highly reliable and fast imaging pipelines for detecting transient
sources, based on the SKA precursor telescopes, has become crucial
to meet the enormous challenge of the unprecedented amount of data
(An 2019; Bonaldi et al. 2021) that the SKA will generate in the
future.

The ASKAP (Hotan et al. 2021) is a new-generation survey radio
telescope built in Western Australia at the same site as the SKA
low-frequency array. ASKAP employs advanced technologies such
as phased-array feeds (PAFs) to provide fast survey speeds and a
wide FoV, making it the ideal instrument for untargeted searches for
transient phenomena. The ASKAP Variables and Slow Transients
(VAST; Murphy et al. 2013) is one of the key survey science projects
of the ASKAP', and the scientific goals include the discovery and
characterization of a wide range of transient and variable objects
on time-scales from 10 s to 5 yr, including flaring stars, gamma-
ray burst afterglows, intermittent pulsars, magnetars and extreme
scattering events etc.

The VAST Collaboration has developed a pipeline for detecting
transients and variables by analysing images obtained from the
ASKAP imaging pipeline (Pintaldi et al. 2022). The transient
detection pipeline of the VAST project extracts and measures
information about the objects from the images, constructs light
curves, and generates detection notification for subsequent analysis
(Wang et al. 2023). The VAST Pilot Survey used all 36 antennas
and was conducted between 2019 August and 2020 August, with a
total of 162 h of observations and a total pilot survey area of 5131
square degrees (Murphy et al. 2021). The ongoing full VAST survey
will focus more on performing faster imaging and transient source
detection, requiring a more robust and automatic pipeline.

In this paper, we introduce the optimization of the VAST detection
pipeline described in Wang et al. (2021), including replacing the
w-projection imaging algorithm in the original pipeline with the w-
stacking imaging algorithm, and integrating the optimized imaging
software into the Data Activated Liu Graph Engine (DALiuGE), an
intelligent execution framework designed for processing large astro-
nomical data sets (Wu et al. 2017). These modifications are aimed at
improving the execution efficiency of the pipeline. For ease of de-
scription, we refer to the original VAST transient detection pipeline as
the’original pipeline’ and the optimized transient detection pipeline
as the ‘optimized pipeline’ in this paper. Section 2 describes the
optimization method. Section 3 describes the integration of the VAST
imaging pipeline into DAL1uGE. Section 4 presents the summary.

2 OPTIMIZATION OF THE VAST IMAGING
PIPELINE

ASKAP consists of 36 telescopes, each equipped with a phased array
feed of 36 beams, capable of generating a substantial amount of raw
data at an approximate rate of 100 Tb s~!). These raw data are first
correlated and integrated at the ASKAP observatory. The correlated
visibility data are then exported at a rate of up to 2.4 GB s~! and
transferred to the Pawsey Supercomputing Centre in Perth, Western
Australia, for subsequent data processing and storage (Hotan et al.

Uhttps://www.atnf.csiro.au/projects/askap/ssps.html

MNRAS 526, 1809-1821 (2023)

2021). The ASKAP VAST Pilot Survey was carried out during 2019—
2020, accumulating 162 h of observations in total (Murphy et al.
2021). The full survey operation of the ASKAP started in late 2022.
The VAST Pilot Survey has validated the observation strategies, data
processing capabilities, and scientific analysis methodologies for the
VAST project, paving the way for the full-scale sky surveys.

2.1 Transient detection pipeline used in the VAST pilot survey

The transient detection pipeline used in this work was originally
developed by the VAST Collaboration (Wang et al. 2021). Data from
each of the 36 ASKAP beams are processed independently. The
original pipeline consists of several key steps: ingesting calibrated
visibility data, fixing the observation phase centre, making deep
sky models, subtracting the models from visibility data, generating
snapshot images, estimating background and noise levels, producing
deep image cutouts, detecting sources, creating light curves, and
identifying candidates of variables or transients etc. The flow chart
of the whole pipeline is shown in Fig. 1 (see also fig. 3 in Wang et al.
2023). Wang et al. (2023) aim to present the VAST transient detection
pipeline and the scientific results of the pilot survey, so their flowchart
details the procedure from the online processing of the raw ASKAP
visibility, then to the data processing using the transient detection
pipeline deployed at the China SKA Regional Centre to generate
transient candidates, and finally to produce a transient catalogue
after manual checks. Our research, on the other hand, focuses on the
optimization of the detection pipeline in the middle phase, which
does not include the initial online processing and the final manual
checks, as seen in Fig. 1. The main steps are outlined below.

2.1.1 Ingesting calibrated visibility data

The input data to the VAST imaging pipeline come from the CSIRO
ASKAP Science Data Archive (CASDA; Chapman et al. 2017) and
have been pre-calibrated using the ASKAP pipeline (Guzman et al.
2019) at the Australian Supercomputing Centre (Pawsey). The pre-
calibration includes the calibration of phase errors introduced in the
signal by the observing equipment and the atmosphere, the removal
of radio frequency interference (RFI), and the calibration of each
antenna bandpass.

2.1.2 Fixing the observation phase centre

ASKAP maintains a phase centre for each beam (Hotan et al.
2021), which means that it has 36 phase tracking systems. To
ensure astrometric performance, ASKAP records the offset of each
beam’s phase centre during the observation in an MS-format file
from which the imaging pipeline can obtain the corresponding beam
offset information and correct the phase centre prior to the imaging
procedure.

2.1.3 Making a deep CLEAN model and subtracting the model
from visibility data

This step is mainly done using the fclean task in the Common Astron-
omy Software Applications (CASA) software package (McMullin
et al. 2007).

ASKAP has a large FoV of 30 square degrees, so the wide-field
effect must be calibrated. The original pipeline uses the w-projection
imaging algorithm (Cornwell, Golap & Bhatnagar 2005) to handle
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Figure 1. Flowchart of our optimized transient detection pipeline, specifically designed for processing and analysing VAST data. While Wang et al. (2021)
described the entire process from the online processing of the ASKAP raw visibility to the transient detection pipeline and finally to the final transient catalogue,
our flowchart concentrates on the central stage of the data processing and analysis that are the focus of our optimization efforts.

the bias caused by the antenna baseline being projected on different
planes during imaging.

The large FoV of the ASKAP contains radio sources of multiple
sizes, including compact point-like sources and large-scale extended
radio galaxies and galaxy clusters. However, the traditional CLEAN
algorithm, which decomposes the sky image into a collection of point
sources or scaled delta functions, is no longer adequate for imaging
objects with complex structures. Therefore, the pipeline employs the
Multi-Scale CLEAN approach (Cornwell 2008) during the iterative
CLEAN process. When the tclean task is finished, the final CLEAN
model will be stored with an MS file. Next, the CLEAN model is
subtracted from the MS data by using the CASA task uvsub to obtain
the residual data.

In our optimized pipeline, the WSClean program is used instead
of the CASA package to perform the imaging operation, and we found
that WSClean based on the w-stacking algorithm is faster than CASA
with the w-projection algorithm in this transient detection pipeline,
a result that is consistent with the general expectation in wide-field
radio imaging (see Offringa et al. 2014). More discussion is given in
Section 2.2.

2.1.4 Snapshot image creation

Imaging the entire continuous hours of data is a huge challenge
for the current computing system. A practical operation is to slice
the residual visibility data generated in the previous step in a time

sequence in order to meet the need for fast imaging and fast scientific
output. For example, 7-h observational data are divided into 28
segments of 15 min of residual data and imaged separately. The sliced
data segments can be imaged independently and run in parallel on
a multinode, multicore supercomputing system, where processing is
much faster.

2.1.5 Background and rms noise estimation

This is performed on the residual snapshot images using Aegean
software (Hancock, Trott & Hurley-Walker 2018), and the results
will be used in subsequent steps for variable source identification
and light-curve construction.

2.1.6 Generating cutout deep image

To ensure that subsequent analyses are performed within an effective
central FoV, a central image of 3000 pixel x 3000 pixel is cropped
around the centre of the original deep image of 10000 pixel x
10000 pixel. The current sky model derived from the shallow
ASKAP-RACS survey (Hale et al. 2021; Duchesne et al. 2023) is
not yet sufficient for accurate calibration of the data and use as a
reference image. It is therefore necessary to carry out deep imaging
in the current VAST pipeline. In the future, when full-sky deep
ASKAP surveys such as Evolutionary Map of the Universe (EMU;
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Norris et al. 2021) and Magnetic Polarisation Survey of the Universe
(POSSUM; Anderson et al. 2021) are completed, it will be possible
to build a sufficiently accurate sky model to use as a reference image.
This will allow us to perform transient detection by subtracting the
reference image directly from the VAST snapshot images, without
the need for deep imaging. The latter approach can greatly improve
the efficiency of the transient detection, but it is dependent on the
accuracy of the sky model. Direct subtraction of the reference image
can introduce errors that affect the accuracy of transient detection if
the sky model is not accurate enough.

2.1.7 Source detection

The search for radio sources in the generated deep images is
performed using the Aegean software. A deep image catalogue is
generated.

2.1.8 Light curve creation

The light curve of each source is extracted from the deep image
catalogue following three steps (Wang et al. 2021, 2023). First, the
peak flux density Sqep and fitted source position are obtained from
the deep image catalogue. The flux density Sqep at the ith pixel is
obtained by forcing the measurement of the flux density at the peak
position of the source in the deep sky image, rather than as a result
of a free-fit, which avoids the bias of the measured flux density due
to positional deviations. Secondly, the peak flux density S;qi and
rms noise o; in the ith residual image at the corresponding fitted
position are measured. Thirdly, the final peak flux density S; for each
data point used to construct the light curve is given by S; = Suecp
+ Siair. Each beam data will generate N, light curves, where N
denotes the number of detected sources. Next, all light curve results
are used as inputs for variability analysis. The modulation index
m = o,/ is used to describe the magnitude of variability of radio
sources quantitatively (Murphy et al. 2021), where o is the standard
deviation of flux density of the light curve, and S is the weighted
mean flux density. The chi-squared value x{ is used to measure the
significance of the random variance for light curves, calculated as
follows:

N -
S (Si =8

Xe=D (M

- (e

i=1 !
Under the null hypothesis, x2 follows the theoretical chi-squared

2

distribution with N, — 1 degrees of freedom, i.e. 72 = N)fljl. The

variation probability P(x2) for each light curve is calculated by
cumulative distribution function (CDF) of theoretical chi-squared
distribution (Bell et al. 2014; Wang et al. 2021).

2.1.9 Creating transient candidates catalogue and cutout images

The final transient candidates are identified based on the following
four conditions: the value of ¥Z is higher than 3c0; the mod-
ulation index m exceeds 3 percent; the astrometric position of
source is less than 0.8 deg from the beam centre; the compactness
Sint_flux/ Speak flux < 1.5, where Sine_fux and Speak_qux are the integrated
flux density and the peak flux density of candidate, respectively. The
last condition ensures that the variable sources are compact and not
caused by image artefacts or sidelobes of bright sources. Finally,
the information on the final candidates is saved in a CSV file and
the light curves are plotted. The residual 8-arcmin snapshot images
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are cropped and combined in time sequence into a’.gif” file. The
above conditions do not fully and automatically exclude all false
detections, such as misidentified candidates in the sidelobes of a
bright source. These spurious candidates must be verified by further
visual inspection.

2.2 Improvement of the pipeline

Wide FoV imaging of radio interferometric observations is a compu-
tationally intensive task, especially for the large amounts of data that
are generated by modern non-coplanar arrays. Offringa et al. (2014)
developed a fast wide-field imaging and deconvolution algorithm,
w-stacking Clean (WSClean). In their imaging experiments using
the Murchison Widefield Array (MWA) data, the WSClean was
an order of magnitude faster than the zclean with w-projection
algorithm integrated in CASA (Offringa et al. 2014). The image
quality derived from w-stacking is comparable to that w-projection,
and in some cases slightly better. These differences are due to
the differences between the two algorithms themselves. The w-
projection algorithm in fclean involves first convolving the visibility
data in the uv plane with a function that depends on the w term
and then performing an inverse Fourier transform. This convolution
operation is computationally expensive, especially when the number
of w-planes is large. In contrast, w-stacking algorithm divides the
visibility data into different layers based on the w terms and then
the inverse Fourier transform is applied to each layer separately. The
results are then summed to produce the final image. This process
is more computationally efficient because the convolution operation
associated with w-projection is replaced by the simpler stacking
operation. Therefore, as long as the number of w-planes (and the
computational complexity of the convolution operation) is large,
WSClean can be expected to be faster than algorithms based on
w-projection.

It is important to note that the two techniques have different
advantages and trade-offs. w-stacking algorithm is faster and more
memory efficient, but it can only correct the w terms within a given
FoV. Although w-projection is more computationally expensive, it
corrects w terms in the entire FoV. Furthermore, from a workflow
execution point of view, w-stacking is faster when visibility gridding
is the main cost of the algorithm. On the other hand, the w-projection
algorithm is faster when the inverse FFT is the main cost of the
workflow. The exact performance difference depends on the specifics
of the data set and the imaging requirements. Therefore, when
choosing between these two methods, practical considerations (e.g.
computational resources) and specific scientific goals of the imaging
task should be taken into account. Furthermore, in our experiments,
we found that the CASA software needs to load a large number of
startup items before execution. In this case, if multiple nodes are
running in parallel, individual nodes may get stuck at startup, which
limits the operational speed of the CASA pipeline when processing
large amounts of data.

We first examine the runtime for each step of the original pipeline
(shown in Fig. 2). The most time-consuming step is making a deep
CLEAN model and subtracting it from the visibility data (the ‘model’
step), accounting for 93.98 per cent of the total runtime. In particular,
almost all of the time is spent on the fclean task. The w-projection
algorithm in the fclean task first performs imaging by convolving
visibilities with different discrete w-kernels and then performs an
FFT on the results. The size of the w-kernel directly affects the speed
of the algorithm, as most of the running time of the w-projection is
consumed by the convolution operation. Since the ASKAP data have
large w-values (>20 000A), the w-projection algorithm will use very
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Figure 2. A demonstration of typical runtimes for each step of the orig-
inal VAST transient detection pipeline. The labels ‘fix’, ‘model’, ‘cutout’,
‘finding’, ‘snapshot’, ‘noise’, ‘light curve’, and ‘candidate’ represent the
steps of fixing the observation phase centre, making a deep CLEAN
model, subtracting the model from visibility data, snapshot image creation,
generating cutout deep image, source detection, background and rms noise
estimation, light-curve creation, and identifying candidate variable sources,
respectively.

large w-kernels (e.g. >688 pixels), making it very slow. In contrast,
the w-stacking algorithm in WSClean first obtains images of each
w-layer by executing an FFT on the gridded visibilities, then each
image is multiplied by the w-projection term and the results are added
together to obtain the final image. Since the convolution operation
is replaced by multiplication, w-stacking is generally faster than w-
projection, especially for large w values in this experiment. Hence,
we use WSClean instead of the fclean task in CASA for imaging and
deconvolution in our optimized pipeline. Furthermore, WSClean
implements and optimizes multi-scale CLEAN and multifrequency
deconvolution, allowing for mapping both the compact and diffuse
emission sources (Offringa & Smirnov 2017). Specifically, for the
wide-band imaging in this work, the minor loop of the w-stacking
method is 2-3 orders of magnitude faster than multi-scale CLEAN
and multifrequency w-projection CLEAN in fclean.

Table 1 lists the parameter settings of one of the experiments in
this paper, including output image size, pixel size, weighting mode,
and the data column parameters. We used multiscale CLEAN (see
discussion above) by setting a parameter ‘-multiscale’ with scales of
‘0, 5, 10, 15, 25°. The gain of the major CLEAN iterations is set to
0.85. During multiscale CLEAN, an automatic mask with 3o allows
structures below the noise to be CLEANed. The joined-channel
CLEAN was enabled by setting ‘-channels-out’ to 4, and combined
with ‘-join-channels’ to generate the multifrequency synthesis image.
To get the deep images, the maximum number of CLEAN iterations
is set to a large value, i.e. 100 000. When the ‘-auto-threshold’ option
is enabled, CLEAN stop threshold uses the automatic o method and
automatically sets the CLEAN threshold for each major cycle based
on the noise level in the residual image.

The second most time-consuming step is the generation of snap-
shot images (3.76 percent of the total runtime). It is responsible
for imaging each snapshot residual data based on the start and
end indices. In this step, there is a loop operation for sequentially
processing N, residual snapshot data. As each snapshot is imaged
independently, this process can be optimized in parallel using
Python multiprocessing technique. To optimize, we rewrote the code
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involving fclean steps using WSClean and PYTHON Casacore (van
Diepen 2015), as well as performing parallel optimization of the
generating snapshot images and noise estimation steps using PYTHON
multiprocessing module. We also use the same approach to optimize
the parallel steps for background and rms noise estimation. Specially,
the residual snapshot data are equally divided into N, portions and
N, CPU processes are set to execute the imaging in parallel.

We have also improved the generality of the deep imaging step.
Signals entering the sidelobes of the primary beam, with an FoV
of 30 square degrees at 800 MHz, can affect the signal detected
in the primary beam. This sidelobe effect is most severe when a
bright extended source (=50 Jy) falls into the sidelobes (e.g. Wang
et al. 2021) and may greatly affect the accuracy of the transient
source search. However, in many of the sky regions investigated,
the sidelobes of the primary beam do not detect a bright source or
the flux density of the detected bright source is not significant, so
there is no need to set the output image with a very large pixel
size for these data. To improve the generality of the pipeline and
reduce unnecessary calculation time, we proposed two solutions: (1)
uniformly set a smaller image size of 3000 pixel x 3000 pixel and
determine whether there is a source brighter than 50 Jy outside the
FoV before deep imaging. Then, the Peeling algorithm (Williams
et al. 2019) is used to remove this bright source from the calibration
data model before imaging. (2) Before deep imaging, check whether
there is a bright source >50 Jy within the larger pixel size (i.e.
10000 pixel) range of the data phase centre using the catalogue of the
ASKAP continuum survey. Otherwise, a smaller pixel size is used.
After comparing the operational efficiency of these two methods, we
chose the latter.

2.3 Validation experiments and analysis

The following validation experiments were performed on an X86
compute node of the China SKA Regional Centre Prototype (CSRC-
P; An, Wu & Hong 2019; An et al. 2022), which has two Intel Xeon
Gold 5218 2.3-GHz processor with 32 CPU cores, 768 GB RAM
memory and 1.2-TB local hard disc. Our test data were selected from
the 29th beam data of the observation ID # 9602 (SB9602_beam29)
in the ASKAP Pilot Survey for Gravitational Wave Counterparts
(Wang et al. 2023). This observation started at UT 14:11:22 on 2019
August 16 and lasted 10.5 h.

Fig. 3 compares the runtimes of the original and the optimized
pipelines on the X86 compute node. From the experiments running
deep imaging and model building of SB9602_beam29 data (step
#2 ‘model’), the original pipeline took about 22.1 h, while the
optimized pipeline took about 8.3 h, which is about 2.7 times faster
than the former. Moreover, the runtimes of the optimized pipeline in
step #5 (‘snapshot’ image creation) and step #6 (‘noise’ estimation)
are ~1/11 of those of the original pipeline. The other steps of the
optimized pipeline are slightly faster than the original pipeline. The
total runtimes of the optimized pipeline and original pipeline are
31320 and 84318 s, respectively. Therefore, we can reduce the
runtime by a factor of 2.7 using the optimized pipeline compared
to the original pipeline.

In order to verify the validity of our improved method, the deep
images obtained by both pipelines and their final detection results
are compared and analysed below. The image quality information of
cutout deep images by both pipelines is shown in Table 2. The mean

rms noise obtained by the optimized pipeline is 26.0 uJy beam™!,

while the original pipeline obtained an rms noise of 28.4 Jy beam™!,
with the former showing a 9 per cent improvement over the latter. A

slightly larger beam was obtained by WSC1lean due to the different
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Table 1. WSClean imaging parameters.
Parameters Settings
Image size 10000 pixel x 10000 pixel
Pixel size 2.5 arcsec
Maximum CLEAN iterations 100000
Automatic threshold o
Automatic mask 30
Gain for major CLEAN loop 0.85
Imaging weighting ‘Briggs’ mode (robust parameter = 0.53)
‘-Channels-out’ Four sub-channels jointly cleaned
Deconvolution mode Multiple scales of ‘0, 5, 10, 15, 25’
fix
model 79452
cutout
finding
snapshot
noise
lightcurve
Il original
candidate I optimised

10 101 102

103 10* 105 106

Runtime (s)

Figure 3. Comparison of the runtimes between the original pipeline and the optimized pipeline on the X86 compute node. The runtime of each step is shown in
the left-hand panel, and the labels of ‘fix’, ‘model’, ‘cutout’, ‘finding’, ‘snapshot’, ‘noise’, ‘light curve’, and ‘candidate’ represent the steps fixing the observation
phase centre, making a deep CLEAN model and subtracting the model from visibility data, generating snapshot images, cutout deep image, source finding,
background and rms noise estimation, extracting light curves, and candidates selection and plots, respectively.

Table 2. Comparison of cutout deep image quality between the original and optimized pipelines on SB9602_beam?29.

Methods Mean rms noise (uJy beam™!) Beam (maj x min, PA) No. of detected sources
Original pipeline 28.44 17.15 arcsec x 13.65 arcsec, 80.59 deg 1695
Optimised pipeline 25.98 18.53 arcsec x 16.01 arcsec, 95.08 deg 1686

Briggs weighting parameters used in the two pipelines. The obtained
cutout deep images were searched separately for radio sources using
Aegean software, and the catalogues were exported. Other source-
finding software and method can also be used, for example, deep
learning-based HeTu (Lao et al. 2021). In the CASA image, 1695
radio sources are detected, and in the WSClean image, 1686 radio
sources are detected.

Fig. 4 shows an example comparing the residual deep images ob-
tained by the two pipelines. The images show the central 200 pixel x
200 pixel region. The residual deep image of the optimized pipeline
has a much smoother noise distribution than the residual image
obtained by the original pipeline. Some residual emission from the
model-extracted radio sources is obviously visible in the original
pipeline’s output image, but not in the optimized pipeline’s output
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image, indicating that the optimized pipeline produces higher quality
images, deeper CLEANing and more accurate source extraction.
The choice between WSClean (w-stacking) and fclean (w-
projection) depends on the specific requirements of the data and the
scientific objectives. If the data have significant wide-field effects,
w-stacking may be preferred due to its greater ability to handle w
terms. However, if the data require more sophisticated deconvolution
techniques, or if there are other factors at play, then w-projection may
be preferred. However, how much better WSClean (w-stacking) can
be than fclean (w-projection) needs to be quantified in the context
of the specific application, as it depends on a number of factors such
as field of view, array configuration, signal-to-noise ratio, dynamic
range and specific scientific objectives. The effectiveness of these
calibration and imaging techniques varies depending on the specific
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Figure 4. Residual deep image comparison between the optimized (left) and original pipelines (right). The residual map in the left-hand panel shows lower rms

noise and less artefacts than the right-hand panel map.

observing conditions and science objectives. To better understand
their relative performance, it would be desirable to systematically
compare these techniques under a variety of conditions (e.g. different
combinations of parameter settings), not only to greatly improve our
understanding of the techniques, but also to gain insight into their
applicability to different types of data and science cases, but this
would require a large number of experiments.

For further analysis, the catalogues obtained from the two pipelines
were cross-matched and compared using the Tool for OPerations on
Catalogues And Tables (TOPCAT; Taylor 2005). Within 10 arcsec,
there are 1513 matched sources, accounting for 90 per cent of the total
number of sources detected. We plotted histograms of ARA, ADec.,
and the peak flux density of the matched sources and then fitted
the histograms with Gaussian functions in Fig. 5. The differential
RA and Dec. distributions of the cross-matched objects are close to
zero: the peak distribution of ARA is at +0.025 arcsec and the peak
distribution of ADec. is at +-0.0085 arcsec. The standard deviations
are very small, 0.27 arcsec for ARA and 0.19 arcsec for ADec.,
respectively, indicating that the catalogue obtained by the optimized
pipeline generally agrees with that obtained by the original pipeline.
The mean value of the peak flux density ratio distribution is close to
1 (with a peak at 1.01), and the standard deviation is 0.049.

After candidate selection, we found six variable source candidates
from the optimized pipeline and nine from the original pipeline,
five of which have matched locations. The information of the
matched candidates is shown in Table 3. Four variable sources
have been identified as transients in the previous study by Wang
et al. (2021): J005800.93—235449.08, J005806.74—234744.51,
J005808.98—233453.97, and J005812.02—233735.64 (i.e. the first
4 rows in Table 3). The cutout deep images and light curves of
true transients by the optimized pipeline are shown in Figs 6
and 7, respectively. Upon visual inspection, other candidates
are determined to be false transient detections (Wang et al.
2023).

Fig. 9 displays images obtained using the original pipeline from
the test data of B9602_beam29, showing strong sidelobes around the
bright central sources. The level and shape of sidelobes changed at
different observing times due to differences in (u, v) coverage, and
the original pipeline identified one of the sidelobes (the red-coloured
cross) as a variable source candidate. In contrast, the optimized
pipeline obtained lower and more uniformly distributed noise in
the deep images as well as deeper CLEAN models (Table 2 and Fig.
4), which not only enables the detection of weak sources but also

prevents to some extent the sidelobes from being misidentified as
variable source candidates.

As depicted in Figs 8 and 9, J010021.98—232630.86 and
JO10117.82-234312.78 represent two false sources centred on the
bright source but not true detection. Given their relative distance
from the centre of beam #29 and closer to beam #35, neither source
appeared in the detection of beam #35. This indicates that false
detection can also occur when sources are located far from the centre
of the beam. As an example, the three pseudo sources shown in
Fig. 4 were not identified in the optimized pipeline. Moreover, the
optimized pipeline obtained higher %2 and m values of the true
transients than for the original pipeline. Therefore the confidence
level of the variable candidates detected by the optimized pipeline is
higher than that of the original under the same metrics.

In this experiment, the fraction of pseudo-sources in the direct
output of the optimized pipeline in this experiment is 1/3, whereas
in the results from the original pipeline, this fraction is higher (more
than 50 per cent). The reason for fewer false transient detection of
the optimized pipeline can be attributed to its use of more advanced
wide-field imaging and CLEAN algorithms which produce lower
level and smoother image noise. As a result, spurious sources in the
images, particularly those located in the sidelobes of bright sources,
are substantially suppressed. However, it is important to note that
the number or proportion of spurious sources in the direct output of
the imaging pipeline is affected by a variety of observational and
data-processing factors, including the treatment of w terms (e.g. the
selection of different wide-field imaging algorithms in this study),
CLEAN threshold settings, imaging weights, calibration errors, and
unflagged RFI. Only by analysing these factors together can a more
quantitative understanding of the proportion of pseudo sources in the
pipeline output be obtained, and the pipeline needs to be run with
different parameter configurations on different data sets.

3 INTEGRATION OF THE TRANSIENT
DETECTION PIPELINE ON DALIUGE

Traditionally, radio astronomy data are acquired from a telescope
and post-processed on personal computers. The next-generation large
radio telescopes, represented by the SKA, will generate enormous
amounts of data and require high-performance software running on
supercomputers to process them properly (An 2019). Processing
pipelines on large supercomputers must run in near real time
and be managed by an execution framework (Banyer, Murphy &
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Figure 5. Comparison of the sources detected from the optimized and original pipelines: (a) difference of right ascension Aga; (b) difference of declination
Apec.; (c) flux density ratio.

Table 3. Comparison of the matched candidates between optimized and original pipelines.

Methods Source name RA Dec. Speak_flux Sint_flux )”(12C m
(deg) (deg) (mJy beam™!) (mly) (per cent)
Optimized pipeline J005800.93—-235449.08 14.503895 —23.913633 10.46 £ 0.034 10.45 £ 0.034 172.5 21.1
Original pipeline J005800.93—235449.02 14.503886 —23.913618 10.50 £ 0.043 10.53 £ 0.044 126.5 20.9
Optimized pipeline J005806.74—234744.51 14.528084 —23.795696 8.47 £0.033 8.42 £0.032 4.6 4.0
Original pipeline J005806.74—234744.48 14.528072 —23.795689 8.44 +0.042 8.53 +£0.042 3.6 3.8
Optimized pipeline J005808.98—233453.97 14.537424 —23.581660 1.47 £ 0.028 1.50 £+ 0.029 5.0 20.6
Original pipeline J005808.97—233453.92 14.537392 —23.581645 1.44 4+ 0.035 1.64 £+ 0.040 3.6 14.0
Optimized pipeline J005812.02—233735.64 14.550077 —23.626566 5.13 £ 0.029 4.96 £ 0.029 65.9 229
Original pipeline J005812.01—-233735.56 14.550052 —23.626545 5.03 +0.037 4.92 + 0.036 51.9 21.0
Optimized pipeline J010130.80—235205.62 15.378351 —23.868228 0.35 +0.035 0.25 +£0.025 5.8 107.8
Original pipeline J010131.02-235205.77 15.379248 —23.868269 0.36 + 0.048 0.32 +£0.043 6.7 81.5
J005800.93-235449.08 J005806.74-234744.51
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Figure 6. Cutout deep images of true variable sources detected by the optimized pipeline on SB9602_beam29. The red cross markers denote the peak positions
of the variable sources.
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Figure 8. Two examples of false detections. The left-hand panel shows a candidate variable source (marked by a red cross) matched between the output images
of two pipelines, but is a false detection due to the sidelobe contamination. The right-hand panel shows a candidate variable source detected by the optimized
pipeline but not by the original pipeline. This is also a false detection because it is located further away from the centre of beam #29 and closer to beam #35.

However, it did not appear in the catalogue of beam #35.

VAST Collaboration 2012). DALiuGE, a data-driven execution
framework (Wu et al. 2017), was developed as a key component
of the Data Flow Management System prototype for the SKA
Science Data Processor (SDP; Broekema, van Nieuwpoort & Bal
2015).

DALiuGEhas demonstrated the power and scalability of near real-
time data processing for large-scale surveys (Dodson et al. 2022;
Ouyang, Lu & Lin 2022). The ASKAP data reduction software
ASKAPSoft (Guzman et al. 2019) has been successfully run on
DALiuGE (Guzman & Wicenec 2020). In order to implement a
highly scalable automated VAST detection pipeline for the ongoing
VAST full survey, we integrated the optimized pipeline on DALiuGE
to accommodate massively parallel computing and large-scale data
management.

The implementation of the VAST detection pipeline on DAL1uGE
involves the following three stages: AppDrop development, Logical
Graph creation, and graph deployment. These are described below.

3.1 AppDrop development

Drop is the nomenclature for the basic components in DALiuGE,
which represents the data or an application in pipelines, referred
to as Data Drop (DataDrop) and Application Drop (AppDrop),
respectively. DAL1uGE is designed to provide a distributed data
management platform and a scalable pipeline execution environment
specifically to support exascale graph processing.

AppDrop development is to wrap the tasks of the pipeline into
the form of Application Drops. Our development was based on the
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Figure 9. Candidate variable sources (marked by red crosses) detected by the original pipeline but not by the optimized pipeline. The top-left panel is regarded
as a false detection as it is located further away from the centre of beam #29 and closer to beam #35. However, it did not appear in the results of beam #35. The

other three are false detections appearing in sidelobes.

DALiuGE component project template”, which provides a PYTHON
AppDrop template as a starting point. We developed 10 AppDrops
corresponding to the main tasks in the pipeline in Fig. 1.

3.2 Logical graph creation

We used the graph editor EAGLE? to connect the developed Ap-
pDrops into a scientific workflow called Logical Graph. Fig. 10
shows the Logical Graph created based on the workflow shown in
Fig. 1. EAGLE uses JSON schemes to describe the components or
Drops, with the description files called palette. For each AppDrop,
the PYTHON script xml2palette.py from the DALiuGE repository*
generates the EAGLE palette. In EAGLE, the output port of one
Drop can connect to the input port of another Drop via an edge
(arrows in the graph indicate connections between them). Edges
represent events triggered by Drops, which in turn trigger processing
in connected Drops.

In Fig. 10, we use two Scatter components to parallelize the
whole pipeline and steps like generating snapshot images from beam
data segmentation (Scatterl) and estimating background and rms
noise levels (Scatter2). Scatter handles parallel data processing.
Drop group inside Scatter will be split to process different data
segmentation. The input and output ports of each AppDrop connect
to file or data Drops. These file Drops specify input and output data
file paths and filenames for each AppDrop, automatically updated
during graph execution. This embodies the data-driven concept.

Zhttps://github.com/ICR AR/daliuge-component-template

3EAGLE is a visual paradigm-based web application that supports workflow
integration for a variety of applications: https://github.com/ICRAR/EAGLE
“https://github.com/ICRAR/daliuge
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3.3 Graph deployment

The Logical Graph in the previous section depicts the logical
relationships of AppDrops. The first task in the graph deployment
is for the DALiuGE translation engine to use the METIS algorithm
(Karypis & Kumar 1998) to translate the logical graph into a physical
graph template. The Physical Graph Template is the unfolding result
of each complex component of the Logical Graph, and is a detailed
description of each individual processing step of the final workflow.
Taking Fig. 10 as an example, if the number of copies of Scatter! and
Scatter2 are both 1, the generated Physical Graph Template will have
a total of 22 Drops. If the number of copies of Scatterl and Scatter2
are 3 and 28, respectively, it will generate 3 x (4 x 28 + 18) =390
Drops in total.

Next, the Physical Graph Template is mapped on to specific
computing resources (e.g. computer nodes) to generate the so-called
Physical Graph. In the Physical Graph, each partition is mapped to
a set of allocated resources, and each Drop is assigned a physical
resource ID (e.g. IP address, hostname) using an optimal load-
balancing approach.

Finally, the Physical Graph is submitted to the Drop Manager
in DALiuGE for instantiating and deploying the Drops specified
in the Physical Graph on its managed resources. The Drop Manager
acquires the real-time resources of the compute clusters (i.e. CSRC-P
in our experiments) and deploys the Drops to the computing resources
via the graph partitioning algorithm (i.e. METIS) to maximize
resource utilization and pipeline efficiency. After the manager sends
a trigger event to initiate Drops, the Physical Graph can execute
itself. During execution, the Drop manager monitors the execution
progress by listening to Drop events.

DALiuGE is a powerful execution framework designed to handle
large-scale astronomical data. Its execution involves a series of disc
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Figure 10. Logical graph of optimized pipeline running on the DAL1uGE execution framework. The logical graph is a projection of the workflow shown in Fig.
1. The ten application drops are in sequence: DownloadApp (downloading calibrated ASKAP data from the CASDA), FixDirectionApp (fixing the observation
phase centre), PreMakeModelApp (making a deep CLEAN model and subtracting the model from the visibility data), DeepFitsCutoutApp (cropping deep
images into cutout images), SourceFindingDeepApp (source finding and detection), ImageAll15minApp (generating snapshot images), NoiseEstimationApp
(generating residual images and estimating rms noise), ExtractLightCurve App (extracting light curves), SelectCandidatesApp (identifying candidate variable
sources), PlotAllApp (plotting light curves, cutout deep images and residual snapshot images containing identified variable candidates).

read/write operations. However, at the time of design, DALiuGE
takes into account the bottlenecks that can be caused by disc
input/output (I/O), and it does not necessarily require that each
task writes data to and from the disc at all times (Wu et al.
2017). DALiuGE adopts a data-driven execution mechanism. Data-
activated tasks are executed only when the input data is ready. This
helps to mitigate potential performance issues associated with disc
I/O operations.

In addition, DALiuGE uses a distributed design that can scale
to handle larger data rates or computational problems. A typical
application of DALiuGE is the completion of workflow simulations
at the scale of the SKA phase I (SKA1l). Wang et al. (2020b)
successfully simulated and processed SKA 1-scale data on the Summit
supercomputer using DAL1uGE, generating 2.6 Peta Byte (PB) of
raw data in a workflow at a peak computing rate of 130 Peta Flops
(PFlops). This is the first time that petabytes of radio astronomical
data have been processed at a hundred PFlops in a workflow manner
(Wang, Wicenec & An 2020a; Wang et al. 2020b). The results show
that the DAL1uGE workflow is capable of handling critical SKA
science cases. In the current work, we successfully ran the VAST
detection pipeline in parallel using DALiuGE.

3.4 Performance test and result analysis

The optimized VAST detection pipeline and the data obtained from
the VAST pilot survey are used in this performance verification
experiment. The observation ID is SB32039, and the phase centre of
the observation is at RA = 19"07™58%6, Dec. = —64°30'37”, with a
central frequency of 944 MHz, 1| MHz frequency resolution and 10 s
integrations. The 7-h observation from 2021-09-10 UT 12:09 to UT

19:09.10 yields 36 beams of visibility data, ~15 GB for each beam,
resulting in a total data size of ~540 GB. 16 of these beam data were
used in our experiments, with the number of the beams chosen by
the number of compute nodes used.

The experiments were conducted on the HPC in the China SKA
Regional Centre, using a total of 16 Intel X86 compute nodes
(specifications in Table 4).

To evaluate the DALiuGE performance, we parallelized the opti-
mized pipeline using traditional parallel algorithms MPI and BASH
Shell, comparing to DALiuGE. Each beam data is processed on a
single compute node, and multiple beam data run on different nodes
simultaneously using MPI, BASH Shell, and DALiuGE methods,
respectively. We have run ten tests for each method on 1, 2, 4, 8, and
16 compute nodes, respectively.

Fig. 11 shows the total runtime. The runtime is the average of the
10 tests on the corresponding number of compute nodes. The error bar
represents the standard deviation of the runtimes. It can be seen that
the DAL 1uGE is the fastest for all data of various sizes. Moreover, the
runtime of the DAL iuGE-based execution does not show a significant
increase with increasing data size (i.e. the number of beams). From 1
to 16 compute nodes, DAL1uGE’s runtime only varied 0.132 h, while
MPI and BASH have a variation of 0.173 and 0.168 h, respectively.
This indicates that DAL1uGE has better stability. Future experiments
using more nodes will further validate the scalability and stability
of DALiuGE. Finally, DALiuGE automatically distributes triggered
tasks based on heuristics like load balancing, reducing the need for
complex distributed programming.

DALiuGE uses a graph structure to facilitate the workflow, and
has the advantage over traditional parallel BASH or MPI routines in
its ability to optimize the scheduling and execution of tasks based on
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Table 4. Specifications of X86 compute nodes of the China SKA Regional Centre used for this study.

Type Quantity Specification Total
CPU 2 Intel Xeon Gold 5218 CPU@2.3GHz 32 Cores
15 nodes Memory 12 DDR4 RDIMM 2666MHz-64GB 768 GB
Hard disc 2 600 GB-SAS 12Gb/s-15000rpm—2.5 1.2 TB
CPU 2 Intel Xeon Gold 6132 CPU@2.6GHz 28 Cores
1 node Memory 16 DDR4 RDIMM 2666MHz-64GB 1 TB
Hard disc 2 SSD-2TB-NVMe 4TB
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Figure 11. Comparison of the runtimes of DALiuGE, MPI, and BASH
pipelines. The mean runtimes of the DALiuGE method are 9.42 h, 10.31 h
for the MPI method, 10.31 h for the BASH method. The standard deviation
of the runtime curve is 0.132 h for DALiuGE, 0.173 h for MPI, and 0.169 h
for BASH.

their dependencies and data locations. In DALiuGE, Drops represent
computations or data and Edges represent data dependencies between
them (see also in Section 3.2). The Drop manager monitors the
execution progress by collecting execution status via Edges. For
SKA data processing, data movement is a critical factor in the
overall execution time of a workflow. This intelligent task scheduling
structure enables DALiuGE to know which computations depend
on which other computations and schedule them to minimize data
movement.

DALiuGE provides flexibility in data storage through its Data
Drop design, supporting storage in memory, distributed object
storage, and parallel file systems. DAL1iuGE’s data-driven execu-
tion model also enables streaming pipelines to avoid unnecessary
write/read operations. However, it should be noted that while these
optimizations of data localization and movement can help mitigate
the data I/O pressure, it has limitations when workflows generate
huge intermediate data sets. Further analysis is needed on DALi -
UGE’s performance in handling very large intermediate data or poor
disc I/O performance to obtain quantitative evaluations. Addressing
I/0O bottlenecks in extreme environments requires continued integra-
tion of new storage and I/O technologies in execution framework
development, along with performance tuning tailored to specific
scientific applications.

4 SUMMARY AND PERSPECTIVE

This paper describes a method to improve and optimize the transient
detection pipeline for the SKA slow transient search project (VAST).
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We first replace the w-projection algorithm used in the original
pipeline with the w-stacking CLEAN algorithm integrated into
WSClean. This modification yielded two key improvements. First,
the optimized pipeline exhibits superior parallelism and scalability
compared to the original pipeline, resulting in a significant im-
provement in the multinode parallelism efficiency. This is most
notable in the steps of deep sky model creation and snapshot
image creation, with the overall execution efficiency of the entire
pipeline being improved by a factor of about three. Secondly,
the optimized pipeline generates residual images with lower noise
levels, more uniform residual noise distributions and fewer arte-
facts compared to the original pipeline. This implies that the
improved pipeline is not only faster but also produces higher fidelity
results.

Furthermore, we integrated the optimized pipeline into the Data
Activated Liu Graph Engine (DALiuGE) framework. This integra-
tion marks one of the first successful applications of the DALiuGE
execution framework to SKA precursor data processing, enabling
the imaging pipeline to adapt to large-scale, high-performance
distributed computing tasks. This increases the operational efficiency
of future SKA pipelines on HPC clusters and reduces data processing
time. Implementing the DAL1uGE pipeline consumes less time than
traditional parallel methods (MPI and BASH) and is also more stable
and scalable. The method presented here can be applied not only to
the VAST project, but also to other ASKAP imaging surveys, such
as the EMU and POSSUM. The aim of these improvements is to
make the most efficient use of the massive amounts of data produced
by radio astronomy surveys, thereby enabling more accurate and
detailed observations of the Universe.
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