Scalable Relational Analysis via Relational Bound Propagation

Clay Stevens
cdsteven@iastate.edu
Iowa State University
Department of Computer Science
Ames, Iowa, USA

ABSTRACT

Bounded formal analysis techniques (such as bounded model check-
ing) are incredibly powerful tools for today’s software engineers.
However, such techniques often suffer from scalability challenges
when applied to large-scale, real-world systems. It can be very diffi-
cult to ensure the bounds are set properly, which can have a pro-
found impact on the performance and scalability of any bounded for-
mal analysis. In this paper, we propose a novel approach—relational
bound propagation—which leverages the semantics of the underly-
ing relational logic formula encoded by the specification to auto-
matically tighten the bounds for any relational specification. Our
approach applies two sets of semantic rules to propagate the bounds
on the relations via the abstract syntax tree of the formula, first
upward to higher-level expressions on those relations then down-
ward from those higher-level expressions to the relations. Thus,
relational bound propagation can reduce the number of variables
examined by the analysis and decrease the cost of performing the
analysis. This paper presents formal definitions of these rules, all
of which have been rigorously proven. We realize our approach in
an accompanying tool, PROPTER, and present experimental results
using PROPTER that test the efficacy of relational bound propaga-
tion to decrease the cost of relational bounded model checking.
Our results demonstrate that relational bound propagation reduces
the number of primary variables in 63.58% of tested specifications
by an average of 30.68% (N=519) and decreases the analysis time
for the subject specifications by an average of 49.30%. For large-
scale, real-world specifications, PROPTER was able to reduce total
analysis time by an average of 68.14% (N=25) while introducing
comparatively little overhead (6.14% baseline analysis time).

KEYWORDS
formal methods, bounded model checking, bound tightening

ACM Reference Format:

Clay Stevens and Hamid Bagheri. 2024. Scalable Relational Analysis via Re-
lational Bound Propagation. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE °24), April 14-20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639171

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639171

Hamid Bagheri
bagheri@unl.edu
University of Nebraska-Lincoln
School of Computing
Lincoln, Nebraska, USA

1 INTRODUCTION

Formal analysis of software systems has long helped software en-
gineers develop more secure, dependable, and efficient software.
Using formal techniques, engineers first create a formal specifica-
tion of their system, then analyze the specification to find models of
the system that either satisfy or violate formal, logical properties of
interest. This allows developers to (e.g.) prove that their systems are
safe from threats [1, 2, 5, 32, 35]; synthesize and compare different
system designs [6-9, 14, 17]; ensure dependability in safety-critical
cyber-physical systems [3, 25]; and develop efficient self-adaptive
systems [27, 36]. While advances in the state-of-the-art in recent
years have lead to wider adoption in the industry [15, 28, 31, 39],
formal analysis techniques still come with a steep cost; as the size
of a software system (and its specification) grows, the processing
required to analyze the system grows exponentially along with it.
Many large-scale, real-world applications which would otherwise
benefit from these techniques are thus rendered intractable for for-
mal analysis, as the time required to perform the analysis outweighs
the benefit. Recent advances in the underlying solvers coupled with
bounded formal analysis techniques (such as bounded model check-
ing) have greatly increased the scope of problems that can be solved
with formal analysis. By placing a limit (or bound) on the scope of
the analysis, these techniques sacrifice the global completeness of
their analysis in exchange for greatly improved scalability. Even so,
scalability remains a challenge for these improved techniques.

In particular, bounded techniques such as bounded model check-
ing are sound and complete up to the specified bounds. Thus, it is
in the interest of the analyzer to ensure that the bounds for the
analysis are properly set. This can be particularly difficult for rela-
tional model checking (e.g., with Alloy), where the bounds must be
specified for each relation in the specification. Correctly defining
the bounds can be an arduous and arcane task, requiring a great
deal of expertise in both the domain described and in the speci-
fication language itself. If the bounds are too tight (representing
an under-approximation), the analysis may be faster, but relevant
models or counterexamples of the specification may be missed. If
the bounds are too loose (over-approximation), spurious models
may be found and the analyzer will do unnecessary work.

Researchers have recently proposed a variety of techniques to
use bound tightening to improve bounded relational model check-
ing. These techniques have shown great promise in improving the
scalability of formal analysis, but are limited in their applicability.
In general, these state-of-the-art techniques leverage information
gleaned from the domain of the system under analysis to tighten
the bounds in very specific ways that either apply only to that do-
main [10, 16], require expensive processing [4], or require analysis-
specific modifications [37].


http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639171&domain=pdf&date_stamp=2024-04-12

ICSE °24, April 14-20, 2024, Lisbon, Portugal

This paper proposes a new approach to the problem of bound
tightening that is not contingent upon the domain of the system.
Our approach—relational bound propagation—leverages the seman-
tics of the underlying relational logic formula encoded by the speci-
fication itself. By traversing the abstract syntax tree of the formula,
our approach first applies a set of semantic rules to propagate the
bounds on the relations of a relational model checking specification
to the higher-level expressions applied to those relations. We then
compare the bounds of those higher-level expressions in light of
the logical constraints expressed in the formula, and use the re-
sult of those comparisons to tighten the bounds on the relations
without sacrificing the completeness of the original bounds. Thus,
relational bound propagation can exponentially reduce the size of
the search space examined by the analysis for any relational speci-
fication and improve the scalability of bounded relational model
checking. We realize our approach in a custom Java tool called
PROPTER, which implements all the algorithms and propagation
rules described in Section 4. We then used this tool to conduct an ex-
perimental evaluation of relational bound propagation. Our results
show that PROPTER reduces both the size of the relational bounded
model checking problem and the total analysis time for our subject
specifications, by an average of 30.68% and 49.30%, respectively.

In summary, our contributions in this paper include:

o A novel approach, relational bound propagation, to automati-
cally and validly tighten relational bounds;

e Formal definitions and proofs of the upward and downward
propagation rules which drive our approach;

e PROPTER, an implementation of our approach which we
make available to the community [38]; and

e Experimental results demonstrating PROPTER’s ability to
reduce both the size of the problems solved by relational
bounded model checking and the analysis time required.

2 JLLUSTRATIVE EXAMPLE

The benefits of relational bound propagation can be described with
a simple example, drawn from the domain of software architecture.
Software architects must design complex software systems that
satisfy a variety of constraints to ensure their system (a) meets
its functional requirements and (b) maintains an appropriate level
of security, performance, etc. Such constraints can be difficult to
analyze manually, leading many software architects to use formal
methods to prove their designs meet the constraints. Relational
model checkers are especially valuable, as software architectures
can be easily modeled with relational specifications [13, 18, 20, 22].

Figure 1 depicts a portion of the logical view of the software
architecture for a service-oriented ecommerce system. The overall
architecture is a closed four-tier architecture, meaning that each
component may only invoke functionality from services in the
layer directly below its own layer (e.g., client-layer services may
only invoke logic-layer services). The system includes two client
services—an app used by consumers to make orders and a website
(viewed via a browser) which can be used to place orders as well as
to manage vendor inventories. The logical view of this architecture
can be easily represented in Alloy, as shown in Figure 2.

To analyze the properties of the architecture, the Alloy Analyzer
would first translate the specification into a relational bounded

Clay Stevens and Hamid Bagheri

Client App Browser

Logic

Data Access

Resources OrderDB

Figure 1: Example system architecture for a service-oriented
ecommerce system (logical view).

// abstract sigs to represent the layers

abstract sig Component
{ calls: set Component }

abstract sig Client, Logic, Data, Resource
extends Component {3}

// client layer

one sig App extends Client {}

8 { calls = Auth + Store }

9 one sig Browser extends Client {}

10 { calls = Auth + Store + Inventory }

u // logic layer

12 one sig Auth extends Logic {}

13 { calls = UserAccess }

14 //... more service definitions ...

15 // data storage resources

16 one sig UserDB, OrderDB, ItemDB

17 extends Resource {}

18 // closed architecture constraint

19 fact { (no calls.Client)

20 and (Client.calls in Logic)

N

w

IS

@

N

<

21 and (Logic.calls in Data)

22 and (Data.calls in Resource)
23 and (no Resource.calls) }
24 // ... other constraints ...

Figure 2: Excerpt of Alloy specification for the example ar-
chitecture (logical view).

model checking problem (U, R, B, ¥) where U is a set of undif-
ferentiated atoms representing the universe; R is a set of relations
defined over the atoms in U; B is a set of lower and upper bounds
defining which tuples must be assigned to each relation and which
may be assigned, respectively; and ¥ is a first-order logical formula
in which the relations in R appear as free variables. Each top-level
signature (denoted by “sig”) in the Alloy specification corresponds
to a unary relation in R, the bounds of which are determined based



Scalable Relational Analysis via Relational Bound Propagation

on the scopes in the specification; the upper bounds of these unary
relations collectively partition U. Each field of those signatures
corresponds to an n-ary relation in R, the domains of which are
typically drawn from the unary relations corresponding to the sig-
natures. For most relations, the model finder defaults the lower
bound to the empty set, and the upper bound to the Cartesian
product of the upper bound of the domains of the relation. For
example, for relation “calls” the default upper bound would include
all possible pairs of atoms from the upper bound of “Component”.

In the case of “calls” and other similarly defined relations, the
default upper bound is much looser than would be required; as
shown in Figure 1 and Figure 2, the assignments to those relations
are already explicitly defined as part of the specification. The key
insight for this approach is that those definitions can be discovered
before running the analysis by examining the relational formula,
¥, with respect to the bounds specified in B. For example, Line 7
in Figure 2 can be translated to the following relational formula,
where . signifies a relational join operation and U is union:

App.calls = Auth U Store (1)

Figure 3 provides an overview of how the relational bounds might
propagate for the upper bounds of this subformula (a similar pro-
cess is simultaneously applied for lower bounds). First, Figure 3a
depicts upward propagation, where bounds are computed for each
relational expression (e.g., U) based on the bounds of their child ex-
pressions. The upper bounds for App, Auth, and Store are all tightly
specified (due to the “one” qualifier on the signature), each com-
prising exactly one atom. The initial upper bound for calls is the
default upper bound described above (i.e., Component X Component).
Those relation bounds are propagated up the tree by applying the
upward propagation rules defined in Section 4.1.1, defining upper
bounds for the nodes representing the results of applying each
relational operator. Once the process encounters a logical operator
(i-e., =), the bounds then can be propagated downward, expanding
the lower bound and shrinking the upper bound as defined by the
downward propagation rules in Section 4.1.2. Figure 3b depicts
the downward propagation step, where the equality comparison
at the top of the tree propagates the intersection of the bounds of
its child nodes to each child. This results in removing tuples from
the upper bound of the calls relation based on the relational join
with App; any tuple in the upper bound of calls that begins with
App but ends with an atom other than Auth or Store can safely be
removed. Once the downward propagation reaches the leaves of
the formula (i.e., the relations themselves), the possible changes to
each relation’s bounds are resolved based on the logical operators
joining each clause and the bounds of the relations are updated.
The process—both upward and downward—is repeated until no
more changes are made to the bounds of any of the relations. In the
example shown in Figure 3, the end result is that the upper bound
of calls can be tightened, exponentially decreasing the size of the
search space for the solver.

3 BACKGROUND: RELATIONAL BOUNDED
MODEL CHECKING

Bounded model checking—as a general approach—has long been
a key method of formally analyzing software systems. In general,

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

the approach starts with some formal specification of a system or a
problem (often a finite state machine), a set of formally-defined prop-
erties to check against that specification, and a bound—classically,
an integer value that limits the number of transitions explored by
the state machine. As the bound ensures the state space is finite,
these can collectively be represented as a propositional satisfiability
problem and solved using a SAT or SMT solver.

In a relational bounded model checking problem £, the problem
is specified as: (a) a universe U of undifferentiated atoms; (b) a
set of relations R defined over those atoms; (c) a set of bounds B
defining the tuples which can be assigned to those relations; and
(d) a relational or first-order logic (RL) formula # in which the
relations in R appear as free variables. The solver attempts to find
an assignment of tuples to each relation in R which satisfies both
¥ and the bounds defined in 8. Any such satisfying assignment m
is a model of the problem, denoted m = P.

For each relation r € R, 8 contains a lower and a upper bound,
expressed as the set the tuples that must be assigned to r in any
satisfying model and the set of tuples that may be assigned to r in
any satisfying model, respectively. This can be concisely expressed
by borrowing some expressions from modal logics (such as the weak
logic K [12]), taking O¢ to mean the proposition ¢ is “necessary”
(ie., true in all satisfying models) and ¢ ¢ to mean ¢ is “possible” in
any satisfying model (i.e., =O-¢, or it is true in at least one satisfying
model). More formally, the notions of necessity and possibility can
be defined as follows (where ¢, indicates ¢ is true under tuple
assignment m):

Definition 1 (RL Necessity). RL formula ¢ is said to be necessary
if it is true under all tuple assignments m that model problem P:

Op=Vm(mEP = ¢m)

Definition 2 (RL Possibility). RL formula ¢ is said to be possible if
it is true for at least one assignment m that models problem P :

Sp=Tm(mEPAdm)

Using this notation, the upper bound and lower bound of a
relation r are defined as follows (where x is a tuple of atoms from
the same universe and with the same arity as relation r):

Definition 3 (Lower Bound). Thelower bound of relation r contains
all tuples that must be assigned to r in any satisfying model of P:

\Ls{x||:|(x€r)}

Definition 4 (Upper Bound). The upper bound of relation r contains
all tuples that may be assigned tor in a satisfying model of P:

FE{x|<>(x€r)}

The relational formula 7 can be specified using the standard
language of first-order logic with quantifiers combined with the
language of set theory—i.e., union and intersection of sets, con-
tainment of tuples within sets, etc. The approach described here
focuses on such formulas as can be expressed in Alloy [20]. These
formulas generally comprise two types of statements—expressions,
which define a set of tuples; and formulas which are Boolean-valued
constraints on one or more sub-expressions or sub-formulas. Those
formulas that compare or constrain expressions are termed elemen-
tary formulas, and those that constrain other formulas are composite



ICSE °24, April 14-20, 2024, Lisbon, Portugal

V Wore )

{ App,Auth
{App} . { (App,App),(App,Auth),... }
{Auth} {Store }
[ App ][ calls ] [ Auth ][ Store ]

(a) Upward propagation.

Clay Stevens and Hamid Bagheri

Wore)
[ App J[ calls J [ Auth J[ Store J

(b) Downward propagation.

Figure 3: Relational Bound Propagation Overview. Shows propagation of upper bounds in a portion of a specification describing
alogical architecture. In (a), bounds from B are propagated up the AST of formula 7 from the relations in R according to the
rules in Section 4.1.1 until the traversal encounters a set containment operator (=). In (b), the bounds on the operator node’s
children are tightened and propagated down the tree to the relations, possibly tightening bounds of one or more relations.

formulas (following the terminology in Fig. 1 of [40]). Our approach
considers the usual set-theoretic operators (union, intersection, etc.)
along with closure and relational joins.

Once specified, the relational bounded model checking problem
% is converted into a purely propositional formula by computing
the set of possible tuples that can be assigned to each relation r—
given by F \ M—and creating a Boolean variable representing
whether each such tuple is a member of the corresponding relation.
These variables are called primary variables, and the assignment of
truth values to the primary variables defines each possible model
of . Satisfying models can therefore be found by translating the
formula ¥ into a format which can be interpreted by (e.g.) a SAT
solver and having the solver compute satisfying assignments (if
any) of truth values to the primary variables. Consequently, the
solution space searched by the solver scales exponentially in the
number of primary variables, so a reduction in that number will
have a great impact on the size of the search space.

4 APPROACH

This paper introduces relational bound propagation, which leverages
information encoded in the formula of a relational bounded model
checking problem to decrease the size of the problem passed to the

underlying solver by reducing the number of primary variables.

We do so by extracting information encoded in the constraints in
¥ —particularly in some of the elementary formulas which can be
included therein—to tighten the bounds on the relations prior to
translating the problem for the underlying solver. Any elementary
formula that can be represented as a set containment (i.e., subset)
constraint contains information about the upper and lower bounds
of the expressions upon which the constraint is defined. More
formally, assume there is an elementary formula defining a subset
constraint over expressions ¢ and p in the language of ¥ which is
true Vm(m |= P). Using the definitions in Section 3,

o(g Cp)

Given such a formula, our approach relies on the insights that
(a) any element which must be assigned to ¢ must also appear in
p and (b) any element which could be assigned to ¢ must also be
possible to assign to p. That statement is formalized by:

THEOREM 1 (BOUNDING BY SUBSET). For RL expressions ¢ and p,

o6 = (|8 <lo A7 <[7)

We prove Theorem 1 by proving two related lemmas, one each for
the lower bounds and the upper bounds':

Lemma 1 (Lower Bound Subset). For expressions ¢ and p,

o(gcp = EQB

Proor. The proof starts by assuming that ¢ is necessarily a
subset of p. Using the rules of modal logic, we can derive the impli-
cation that, for some tuple s, if it is necessary that s is a member of
¢, it is also necessarily a member of p. As that is the definition of a
subset relationship, we prove that the lower bound of ¢ must be a
subset of the lower bound of p. O

Lemma 2 (Upper Bound Subset). For expressions ¢ and p,

o(gcp) = Wgﬁ

Proor. The proof for Lemma 2 is by contradiction, assuming
that ¢ is necessarily a subset of p, but that the upper bound of
¢ is not a subset of the upper bound of p. From the latter (and
Definition 4), it then follows that there is some tuple, t, which could
be assigned to ¢ but can never be assigned to p. By definition, then
there is some model in which that tuple is assigned to ¢ but is not
assigned to p. That model, then, would violate the first half of our
original assumption, leading to a contradiction. It follows, then,
that the upper bound of ¢ must be a subset of the upper bound of
p if ¢ is a subset of p, proving the lemma. O

Theorem 1 allows us to define rules that tighten the bounds
which must also satisfy two additional constraints: (a) lower bounds
can only grow and (b) upper bounds can only shrink. The relational
bound propagation approach applies those rules by performing a
depth-first, post-order traversal of the abstract syntax tree of the
formula 7 starting at the root—the complete formula represented
by the specification—and terminating when it encounters any el-
ementary formula (i.e., a comparison of one or more expressions)

'We include a sketch of each proof here, with a complete Fitch-style proof
for Theorem 1 provided as supplementary material on the project website:
https://sites.google.com/view/relational-bound-propagation/home [38]



Scalable Relational Analysis via Relational Bound Propagation

or a negation. For each node in the AST, it performs a different
operation depending on the type of node:

e Propagation: If the node is a set-containment comparison
formula (=, in, or none), the expressions defining the bounds
within that subtree can be computed and tightened via bound
propagation (described in Section 4.1).

e Resolution: If the node is or can be represented as a con-
junction (e.g., universal quantification) or a disjunction (e.g.,
implication), the bound expressions computed for each sub-
tree must be combined either by union (for conjunctions)
or intersection (for disjunctions) of the bound expressions
from either of the subtrees. Bound resolution is discussed in
greater detail in Section 4.2.

o For other operations (e.g., non-set-containment formulas,
negations) there is no information to be gained about the
bounds, so the traversal is stopped and the provided bound
expressions (in B) are used for that subtree.

Algorithm 3 details the overall algorithm used to propagate rela-
tional bounds for the top-level formula. When this top-level reso-
lution algorithm encounters a “containment” (e.g., equal, subset)
formula, it propagates the bounds for each child expression of the
formula then resolves the results of that propagation to compute
the new, tightened bounds for the root formula. The tighter bounds
can then be used to complete the desired analysis.

4.1 Bound Propagation

The core of the relational bound propagation approach is (a) the
propagation of the relation bounds in B to expressions in formula F
and (b) the propagation of the tightened bounds for each subtree of
any set-containment formulas to the relation bounds. The first step
is called upward propagation and the second downward propagation.

4.1.1  Upward Propagation. Algorithm 1 shows the algorithm used
for upward propagation. Upward propagation starts with a depth-
first (post-order) traversal of the child expressions of the given
expression, expr. There are two base cases which stop the traver-
sal: (a) relations (Lines 3-4), which are assumed to be leaves of the
tree and return the bounds defined in the passed map (via the LowER
and UpPER methods which return the lower/upper bounds from the
passed bound map, respectively); and (b) expressions which do not
match one of the propagation rules and are not propagated. In the
latter case (Lines 12-13), the algorithm returns the widest bounds,
with an empty lower bound and every possible tuple of the desired
arity for the upper bound. For every other case, the upward prop-
agation algorithm computes the relational expression representing
the bounds for the passed expression based on the bounds of the
passed expression’s child expressions and according to the upward
propagation rules defined in Table 1. Rule selection is represented
in Algorithm 1 via calls to MATCHESUNARYRULE or MATCHESBI-
NARYRULE; these functions select the matching rule from Table 1
based on the operator used in the current expression. Similarly,
AprpLYUPWARDRULE finds the applicable rule from Table 1 and ap-
plies the rule, computing (and returning) the lower/upper bound
for the composite expression. Each rule defines the expression of
the bounds for the corresponding operation when applied to child
expressions « and (for binary operations) f.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 1: Upward propagation rules for relational bound prop-
agation. These sequent-style rules define the bounds for ex-
pressions of each relational operator in terms of the bounds
of their child expressions (¢ and/or f). | or T denote variables
representing a lower or upper bound, respectively.

Operator Lower Bound Upper Bound

Ap=la
\i=(A1)T
Ap=la
[t = (ap*
A=l Ar=la
A=le Bi=|p ar=[a  Bi=[p

Ay =[a
Ay =[a
[ =(ap*

Transpose

Trans. Closure

Reflex. Closure

Union

aUp :AlUBl auUp :ATUBT

Aj=la Bl:m Ar=[a BT:W
Intersection

anp :Al”Bl anp :ATOBT

A=la Bi=[p A=[a Bi=[p
Difference

a\p =A\B; a\p =A;\B|

Ay=le Bi=|p ay=[a  Bi=[p
Product

axf =A; xXB| axp =Ay x By

A=la Bi=|B ar=[a B=[p
Join

aoff =A| 0B aoff =ApoBg

Most of the rules are straightforward; the bounds for the parent
expression can be computed by applying the operation to the cor-
responding bounds of its children. The justification for each rule
follows the same argument. First, by definition, the lower bound of
any relation comprises the set of tuples that must be assigned to
that relation in any satisfying model. It is therefore the minimal sat-
isfying assignment for any given relation—if any satisfying model
assigned a smaller tuple set, then that set would be the lower bound.
Hence, for each of these rules, \i and m represent the minimal
tuple sets to which the operations can be applied—any valid assign-
ment of tuples must be a superset of the lower bounds. The minimal
valid assignment for each of the operations can be computed by
applying the operation to the minimal valid assignment for each of
its operands, so the lower bound for each expression can be com-
puted from the lower bounds of its children. The same argument
can be applied in terms of the upper bounds, replacing the smallest
or minimal set with the largest or maximal set; the upper bound
of each expression can be computed from the upper bounds of its



ICSE °24, April 14-20, 2024, Lisbon, Portugal

Algorithm 1 Upward bound propagation algorithm. Bounds for
expressions are computed based on the rules defined in Section 4.1.1.
Expressions with no matching rule are assigned the widest possible
bounds to ensure no solutions are lost.

Input: expr: a relational expression, b: a map of relations in R to upper
and lower bounds, R: a set of relations
Output: (lower,upper): a pair of lower and upper bounds
1: function UPWARDPROPAGATE(expr, b, R)
2: t « typeof expr
3 if ¢ = relation then
4 return (Lower(b, expr), UppER(b, expr) )
5 else if MATCHESUNARYRULE (expr) then
6: (\i’ ’7) < UPWARDPROPAGATE(CHILD (expr), b, R)
7 return AppLYUPWARDRULE (expr, \L ’7)
8 else if MATCHESBINARYRULE (expr) then
9

( R V ) < UPWARDPROPAGATE (LEFTCHILD (expr), b, R)

10: ( \L, ’7 ) < UPWARDPROPAGATE (RIGHTCHILD (expr), b, R)
11: return APPLYUPWARDRULE (expr, u, U, \L’ ’T)

12: else

13: return (0, UNIVERSE(ARITY (expr)) )

Algorithm 2 Downward bound propagation algorithm. Applies
the rules defined in Section 4.1.2 based on expression type.

Input: expr: a relational expression, b: a map of relations in R to upper
and lower bound expressions, R: a set of relations, lo: a set of lower
bound expressions, up: a set of upper bound expressions

1: function DOWNWARDPROPAGATE(expr, b, R, lo, up)

2 if expr is relation then

3 SETBOUNDS (b, 1, lo, up)

4 else if expr is unary then

5: ¢ « CHILD(expr)

6 (lo',up’) «— AppLYUNARYRULE(expr, lo, up, \L ’T)

7 DowNWARDPROPAGATE(c, b, R, lo”, up’)

8

9

else
| «— LErFTCHILD (expr)
10: r < RIGHTCHILD (expr)
11: (lo;, up;) «— AppLYLEFTRULE (expr, lo, up, u V \L’T)
12: (lo).,up).) « APPLYRIGHTRULE (expr, lo, up, u ﬁ \L ’T)
13: DowNWARDPROPAGATE(, b, R, lo}, up;)
14: DowWNWARDPROPAGATE(r, b, R, lo)., up).)

children. The sole exception is the difference operator. In that case,
the minimal set for the expression can be computed by subtracting
the maximal set for the right child from the minimal set for the
left child, @. The maximal set can be computed by subtracting the
minimal set for the right from the maximal set for the left.

By applying these rules as described in Algorithm 1, the relational
bounds propagate up the AST of the formula from the leaves (i.e.,
the relations) to the set containment formula. The bounds for each
expression are then passed back down the tree.

4.1.2 Downward Propagation. Having determined the expressions
for the lower and upper bounds for each child expression of a set-
containment formula, the bounds can be propagated back down
the subtree to tighten the bounds on each relation; only the relation
bounds are passed to the solver. Algorithm 2 details the process
followed for downward propagation of bound expressions, again

Clay Stevens and Hamid Bagheri

by performing a depth-first traversal of the AST for each relational
expression. For each expression x = « op f3, the bound expressions
are propagated from x to both a and f according to the downward
propagation rules defined in Table 2; this action is represented in
Algorithm 2 by invocations of the AppLY*RULE methods (lines 6, 11,
and 12). If the expression is a relation, the bounds for that relation
are updated in the passed bound map (Line 3). For unary (e.g.,
transpose) or commutative (e.g., union, intersection) operations,
the rule is presented for one child (i.e., @). As each rule must satisfy
the conditions that lower bounds only grow and upper bounds
only shrink, the the rules assign the result of a set union and a set
intersection/difference to the lower/upper bound, respectively 2.

e Transpose: The transpose operation is applied to the bounds
of the parent and the result is propagated down to the corre-
sponding bound for the child.

o Closure: For transitive and reflexive closure, no information
can be gained about the lower bound, and the upper bound
of the child is constrained by that of the parent.

e Union: For union, any tuple in the lower bound of the union
that cannot appear in one child can be safely added to the
lower bound of the other (as it must appear there in order to
guarantee its presence in the parent). Any tuple that does
not appear in the upper bound of the parent can be removed
from the upper bounds of either child.

¢ Intersection: The intersection contains all tuples in both
children, so the tuples in the lower bound of the intersection
can be added to the lower bounds of each child. Further, any
tuple that appears in the lower bound of one child but does
not appear in the upper bound of the parent can be safely
removed from the upper bound of the other child.

¢ Difference: For set difference, the expression contains any
tuple from the left child that does not appear in the right child.
Thus, any tuple that is in the lower bound of the difference
expression can be added to the lower bound of the left child.
Furthermore, any child that does not appear in the upper
bound of the parent and does not appear in the upper bound
of the right child can be removed from the upper bound of
the left child. For the right child, any child that must appear
in the left child but must not appear in the parent can be
added to the lower bound, as it must appear in the right child
in order to remove it from the result. Similarly, any tuple that
must appear in the result can be removed from the upper
bound of the right child.

The downward propagation rules for the product of two relations
rely on some additional transformations to extract the prefix and
suffix from the tuples in the expression’s bounds.

Definition 5 (n-prefix Relation). The n-prefix relation of a given
relation ¢ of arity m greater than or equal to some positive integer
n—denoted PR(n, ¢) —comprises the set of all n-tuples defining a prefix
of a tuple in ¢. Formally, the n-prefix relation is defined as follows:

PR(n, ¢)

(1) By (€S A [\ yi =)}
i=1

2The proofs for each downward propagation rule are included in the supplementary
material available on the project website: https:/sites.google.com/view/relational-
bound-propagation/home [38].



Scalable Relational Analysis via Relational Bound Propagation

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 2: Downward propagation rules for relational bound propagation. These sequent style rules adjust the bounds for children
of relational expressions using each operator (for expression y, y’ indicates the adjusted value after applying bound propagation).
For unary/commutative operators, only one rule is provided, covering both upper/lower bound. For others, one rule is for the
left child and one for the right. Helper predicates (e.g., PR) are defined in Section 4. | / T denote lower/upper bound, respectively.

Operator Lower Bound

Upper Bound

Ap=la R=|a”

la =AU R)T

A=le R=|a”
[ =4,

A=le R=[a
[ =4,

Transpose

Trans. Closure

Reflex. Closure

Al:\i BT:W Rl: aUp

Union
’
la =AU (R \By)
Al =|la Rl =lanp
Intersection L \;

\i/:AlURl

Al:\i R =|a\p

Difference (Left)

Ar=[@ Ri=|a”
[@" =410 (RDT

Ar=[a Ri=[a"

[a" =4y nRy
ar=[a  Ry=|a"
[a" =4y nRy
Ar=[a  Rp=|aup
[@ =4 nRy

.
AT:W Bl:m RT: anp

W’:ATO(RTU(BL)C)
ar=[a  Bi=[g Ri=[a\p

\i/:AlURl W/:ATO(RTUBT)
A=|le Bi=[ Ri=|a\p Bi=[p R=|a\p
Difference (Right) - y
m =B, U (A} \Ry) W =B n(R)C
A = R =|ax Ay = Ry =|a X +0
Product (left) ! \i ! M ! ’7 1=|exh B
\i’ = A] UPR(arITY(@),R)) ’7’ = Ay NPR(aRITY(@), Ry)
duct (sight Bl:m R = axp BT:W Ry = axp \ii@
Product (right S "
m = B, USR(aRITY(f), R)) W = B; N SR(ARITY(B), Ry)
. A=la  Ar=[a BFW R =|aop Ar=[a BFM Ry=[aop
o1n (le
|a =Ajuf{al3r[reR AOP(a,Ap,Bpr) ]} [a =Ap\{alac A A3dr[JP(a,B,r) Ar¢Ry]}
ar=[a Bi=[p  Bi=[p R=|aop A=l By=[p  Ry=[acp
Join (right)

m,:BLU{b|3r[reRl/\OS(b,AT,BT,r)]}

Definition 6 (n-suffix Relation). The n-suffix relation of a given
relation ¢ of arity m greater than or equal to some positive integer
n—denoted SR(n, ¢) —comprises the set of all n-tuples defining a suffix
of a tuple in ¢. Formally, the n-suffix relation is defined as follows:

n-1
SR(n,$) = (1, x0) By (y € $ A /\ Ymmi = xn-1}
i=0

Similarly, the downward propagation rules for the join operator
rely on additional predicates to determine whether a given tuple

Wl:BT\{b|bEBTAEIr[JS(b,Ai,r)/\reRT]}

from the upper bound of @ should be included in its lower bound
based on the tuples in the lower bound of the join expression. In
this case, the lower bound of « (the left child of the expression)
expands to include any tuple from the upper bound of « which is
the only tuple that would be a valid prefix for a tuple appearing
the lower bound of the join expression, assuming it is joined to the
upper bound of f (similarly for § and suffixes). The definition of a
“prefix” and a “suffix” is slightly different for the relational join as
well, as the join operation drops both the last atom from the tuples



ICSE °24, April 14-20, 2024, Lisbon, Portugal

in the left expression and the first atom from the tuples in the right
expression. Those additional prefix/suffix predicates are defined as:

Definition 7 (Join Prefix). The predicate join-prefix determines
whether a given tuple a of arity n can be joined with any tuple from
relation B with arity m such that the result is equal to the tuple given
byr (of arity m + n — 2). Formally:

n-1 m
PP pr)= N\ (i=a) AFbbe A N (rmajoz = b))

i=1 j=2
Definition 8 (Only Prefix). The predicate only-prefix determines
whether a given tuple a drawn from relation a of arity n is the only
tuple in a that can be joined with a tuple from relation f of arity m
such that the result is equal to the tuple given by r. Formally:

OP(a,a, f,r) = ac a A JP(a, f,1)
A-Tx(xeaAx#aAJP(x pr))

Definition 9 (Join Suffix). The predicate join-suffix determines
whether a given tupleb of arity m can be joined (as the suffix) to any
tuple from relation a with arity n such that the result is equal to the
tuple given by r (of arity m + n — 2). Formally:

m n-1
S(b, a, 1) = /\ (rjan—2 =bj) AJda(a € a A /\ (ri = a;))
j=2 i=1

Definition 10 (Only Suffix). The predicate only-suffix determines
whether a given tuple b drawn from relation § of arity m is the only
tuple in f3 that can be joined (as the suffix) to a tuple from relation o of
arity n such that the result is equal to the tuple given by r. Formally:

OS(b,a, f,r) = b e A JS(b, e, 1)
A=Ty(ye Ay #bAJS(y,ar))

4.2 Bound Resolution

After applying the downward propagation rules to adjust the bounds
of the relations in each subtree, the bounds for each subtree must
be merged with the bounds propagated through sibling subtrees
via bound resolution. Algorithm 3 describes the resolution pro-
cess, which applies a simple rule to combine the bounds from each
subtree based on whether the sibling subtrees are children of a con-
junctive or disjunctive formula. For the purposes of our algorithm,
conjunctive formulas can be equivalently expressed as a conjunction
(e.g., biconditionals, universal quantifiers); disjunctive formulas can
be expressed as a disjunction (e.g., if); and containment formulas
represent a set containment comparison (e.g., subset, equals). In the
case of a conjunctive formula (lines 6-12), the bounds can be tight-
ened by taking the union of the lower bound for each relation and
the intersection of the upper bound for each relation. As each child
statement must be true, the bounds computed for each must hold
in the other. For disjunctive formulas (lines 13-19), the bounds are
“loosened”, taking the most permissive bound from the two subtrees.
This is done by taking the intersection of the lower bounds and
the union of the upper bounds, such that only those bounds that
apply in both subtrees are preserved. The resolved bounds are then
passed back up the AST to the ancestors of the resolved subtrees
for further resolution, all the way to the root. Once the algorithm

Clay Stevens and Hamid Bagheri

Algorithm 3 Bound resolution algorithm. Performs a recursive
depth-first (post-order) traversal of the AST of f and resolves the
upper and lower bounds for every relation in R.

Input:  f:relational formula, b: map of relations in R to upper and lower
bound expressions, R: set of relations
Output: b’: map of relations to adjusted upper/lower bound expressions
1: function REsoLvE(f, b, R)
2: b —b

3: | « LEFTCHILD(f)
4 r < RIGHTCHILD(f)
5: switch typeof f do
6: case conjunctive
7: by < ResoLve(l,b’, R)
8: by « Resowve(r, b’, R)
9: forr € R do
10: lo « Lower(by,r) ULower(by, r)
11: up « UPPER(by, r) N UPPER(by, )
12: SeTBounps (', 1, lo, up)
13: case disjunctive
14: by « Resowve(l,b’, R)
15: by < RESOLVE(r,b’, R)
16: forr € Rdo
17: lo « Lower(by,r) N LoweR(by, r)
18: up < UPPER(by,r) U UPPER(by, 1)
19: SETBouNDs (', r, lo, up)
20: case containment
21: (u, F) «— UpwARDPROPAGATE([, b’, R)
22: ( \L’ ’T ) « UPwWARDPROPAGATE(r, b’, R)
23: b’ «— DOWNWARDPROPAGATE([, b’, R, u, W al ’T )
24: b’ «— DOWNWARDPROPAGATE(r, b’, R, u U \L ’T)
25: else
26: break
27: return b’

reaches the root, the bounds that have been thus computed are used
as the bounds for the original relational bounded model checking
problem.

5 EVALUATION

The experimental evaluation conducted for relational bound propa-
gation seeks the answers to three research questions using PROPTER,
our realization of relational bound propagation:

RQ1. Does PROPTER reduce the problem size for relational bounded
model checking problems?

RQ2. Does PROPTER reduce analysis time for large-scale real-world
relational bounded model checking problems?

RQ3. How much overhead does relational bound propagation add?

Experimental setup. The experiments were conducted using
PROPTER, a custom Java 19 tool implementing relational bound
propagation as described in Section 4 and comprising over 4,500
lines of code. PROPTER is available on the project’s website for free
use in the academic community [38]. The specifications used in the
experiments were developed in Alloy [20] and executed using the
Java API of Alloy 5.1, the Kodkod model finder [40] which drives
that version of the Alloy Analyzer, and the MiniSAT [34] SAT solver.
All experiments were run on an OpenStack Ubuntu 20.04 instance



Scalable Relational Analysis via Relational Bound Propagation

10° T
& .
5| |
E 10 1 [
2 10° 4] ‘
g ) '
3l Rt . |
10 Eia 2 SKE
© oo oS &S .
E 102 % '.P_j?é ;:v“jg'-.’ ""‘53.5:;3-'-'
A= 30 S L
il -z P 2 ]
10 :' 8pd ,-:':-.ql-
£ e
Alloy Propter

Figure 4: # primary variables (log scale). PROPTER reduced
primary variables by an average of 30.68% (N=519).

with 16 2.3GHz VCPUs and 100GB RAM inside a Docker 20.10.17
container extending Eclipse Temurin Java 19.

Subject systems. As subjects, our experiments were run on
a collection of 401 Alloy specifications drawn or adapted from
prior studies [1, 5, 8, 19, 21, 23, 29] covering a variety of real-world
problem domains: IoT and Android app security analysis [1, 5, 8];
database design [29]; and role-based access control policy verifica-
tion [19, 21]. We also included a set of example Alloy specifications
curated by the Alloy Tools team [23]. These specifications included
519 analyzable commands (i.e., formal analysis problems), 401 satis-
fiable and 118 unsatisfiable. Each command was analyzed five times
with the default bounds generated by Alloy 5.1 and five times with
bounds tightened using relational bound propagation.

Baselines and measures. Our experiments measured five prop-
erties related to our three research questions. First, we measured
(a) the number of primary variables and (b) the total number of
variables in the CNF problem presented to the underlying SAT
solver when performing the analysis for each specification to an-
swer RQ1. We also tracked the time required to (c) translate each
Alloy specification into a CNF problem and (d) perform the analysis
with the SAT solver (both in milliseconds). Finally, we recorded (e)
the time taken (in milliseconds) to propagate the bound expressions
for each specification as a measure of the overhead (for RQ3). We
compare PROPTER (our custom implementation of relational bound
propagation) against an unmodified distribution of Alloy 5.1 using
the MiniSAT SAT solver [34].

5.1 RQ1: Reduction in Problem Size

To answer RQ1, we examined the reduction in the scope of each
bounded relational model checking problem in terms of the num-
ber of primary variables in the relational bounded model checking
problem. These variables provide an indication of the total size
of the problem; each variable represents a tuple assignment to a
specific relation that is either present or not present in given model
of the specification. We recorded the number of primary variables
both before and after relational bound propagation. Figure 4 sum-
marizes the number of primary variables in each subject before
and after relational bound propagation. The median number of
primary variables before and after were 151 and 114, respectively.
PROPTER reduced the number of primary variables in 330 of the
519 subjects (63.58%), 164 of them (31.60%) by 50% or more. The

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

$ t
} 1
6. 1 1
« 10 ¢
%105 4
£ 10 t
= 103
%’ 10° 1
=2
S 10° WV . 3
<101t ' 1
L
Alloy Propter

Figure 5: Translate + solve time (log ms). PROPTER reduced
translate + solve time by 49.30% on average (N=519).

mean reduction in the number of primary variables was 30.68%.
For 19 of the commands (3.80%), PROPTER was able to provide tight
bounds for the problem, solving the problem without using the SAT
solver; the largest such case was assigned 478,400 primary variables
by default, reduced to 0 by PROPTER. To demonstrate the practical
impact of relational bound propagation, we also measured the time
taken to translate and solve each formal analysis problem with
Alloy and with PROPTER. The reduction in the primary variables
reduced the size of each problem, so we would expect to see a simi-
lar reduction in the analysis time due to the reduced problem size.
Figure 5 summarizes the translation and solving time for each of
the 519 commands before and after performing bound propagation
with PROPTER, excluding overhead. PROPTER was able to reduce
the translation and solve time for 466 of the subject commands
(89.79%), with a mean reduction of 49.30%. These results demon-
strate that relational bound propagation effectively reduces
the size of formal analysis problems for bounded relational
logic specifications.

5.2 RQ2: Large-scale Real-world Specifications

To answer RQ2, we conducted a more detailed analysis of the timing
results for large-scale specifications resulting in CNF representa-
tions with more than 100,000 variables (25 of 519 commands). These
25 commands came from the specifications drawn from real-world
systems [1, 5, 8, 19, 33]. The results of applying PROPTER to these
25 commands are summarized in Figure 6. The figure shows box
plots summarizing the total time—including both the analysis and
overhead—required to execute each command, grouped by the base-
10 log of the total number of variables in each command’s CNF
translation. The group labeled 10°, for example, contains all com-
mands with more than 100,000 variables but fewer than one million,
and so on. PROPTER reduced the total analysis time for each group
taken individually and across all 25 commands, PROPTER reduced
the total analysis time by an average of 68.14%, from (on aver-
age) 775.355 seconds with Alloy Analyzer to 226.543 seconds with
PRrOPTER. For the largest specifications (with more than 100 million
CNF variables) PROPTER reduced the average total analysis time by
99.51%, from just over 2 hours (7,378.4s) to 36.4s. In total, across
all 125 analyses of large-scale, real-world specifications (5 each for
each of the 25 commands), PROPTER saved 65,627.117 seconds (18.23



ICSE °24, April 14-20, 2024, Lisbon, Portugal

107 ¢ g
@ [ JAlloy
13 10° [ IPropter
p 3
£ @
" 10° -
2 =
L i
©
gz 104 J_
©
o 10%;
= >
10° 10° 107 10°

Real-world Specifications
(grouped by # CNF variables)

Figure 6: Total analysis times (in log ms, including overhead)
for 25 large-scale, real-world analysis commands, grouped
by log total # variables in each command’s CNF translation.
Each command was analyzed 5 times with Alloy (left box,
blue) and 5 times with PROPTER (right box, orange). PROPTER
outperforms Alloy in each group, most significantly so for
the largest commands (with > 10® variables).

—10°¢ e
()]

10° : :
10" 10° 108

10* 10° 10% 10" 108
# CNF Variables

Figure 7: Overhead of relational bound propagation (in ms,
log scale) vs. total # variables (log scale) in the resulting CNF
for 519 analysis commands. Solid line indicates the power
curve fitted to the scatter data (y = 12.79x%4°%%),

hours) of total analysis time compared to Alloy Analyzer. We in-
terpret these results to show that relational bound propagation
can effectively reduce the time required to perform formal
analysis of real-world system specifications such as those
used in our experiments.

5.3 RQ3: Overhead

Relational bound propagation introduces additional computational
overhead compared to the baseline. We computed the overhead
by calculating the total time taken to analyze each subject formal
analysis command with PROPTER and subtracting the time taken to
(a) translate the command into CNF and (b) to solve the command

Clay Stevens and Hamid Bagheri

with the underlying SAT solver. The remaining time is considered
to be the overhead introduced by relational bound propagation.
Figure 7 shows the overhead (in log milliseconds) compared to the
total number of variables in the baseline translation to CNF (i.e.,
without relational bound propagation). Overall, PROPTER introduces
very little overhead, with the vast majority of the commands (499
of 519, or 96.15%) requiring less than one second to propagate the
bounds. The solid line on the graph shows the fitted power series
describing the growth of the overhead, y = 12.79x%46%, For the 25
large-scale, real-world specifications used to answer RQ2, PROPTER
added little overhead compared to its benefits. For one command,
relational bound propagation took a significant amount of time
with respect to the baseline analysis time (51.745s of overhead
vs. 22.420s of baseline analysis time). For the other 24, overhead
was on average 6.14% of the baseline analysis time (14.318s), vs.
an average time savings of 68.14% (54.881s). We interpret these
results to show that, for large-scale specifications, the overhead
required for relational bound propagation is small compared
to the savings in analysis time.

6 DISCUSSION

The experiments in Section 5 demonstrate PROPTER improves the
analysis of large-scale, real-world specifications. First, relational
bound propagation exponentially reduces the size of the search
space by reducing the number of primary variables in each prob-
lem. Each primary variable represents a Boolean value passed to the
underlying solver; removing even one primary variable cuts the size
of the search space in half. This can be very important for the real-
world specifications such as those we used for our evaluation. These
are often generated from source code (e.g., Android [5], IoT [1])
or created by non-experts, resulting in specifications (and bounds)
that are poorly optimized. PROPTER reduced the number of primary
variables by an average of 30.68%, which leads to a huge reduction
in the search space for the solver. This leads to a corresponding
reduction in the analysis time, which is especially impactful for
specifications based on real-world systems. For many of the IoT and
RBAC specifications, for example, PROPTER reduced the average
total analysis time by two orders of magnitude, saving nearly two
hours of analysis time for our largest subjects. These results demon-
strate PROPTER can improve the scalability of relational bounded
model checking for real-world software systems.

Limitations: The rules as defined in Section 4 provide transla-
tions for the standard n-ary relational operators, but those rules do
not tighten the bounds for two constructs available to relational
specifications—comprehension expressions and quantified expres-
sions. For comprehensions and quantifications, PROPTER uses the
default bounds in place of the computed bounds for each expression
variable (the empty set for the lower bound and the full Cartesian
product of the universe of atoms of the desired arity for the upper
bound). This preserves the correctness of the relational bound prop-
agation, but a full treatment of comprehensions and quantifications
could benefit more complex specifications. Similarly, the bound
resolution algorithm is limited to subformulas not contained within
a negation; such subtrees are assumed to use the default, unmod-
ified bounds and are not traversed during resolution. It may be
possible to resolve the bounds even within those negated subtrees,



Scalable Relational Analysis via Relational Bound Propagation

possibly by performing some additional transformations to push
the negations lower in the tree.

Threats to Validity: The internal validity of these experiments
relies on the accuracy of our Java implementation as well as our
choice of other tools to compare against. To reduce the threat posed
by our implementation we optimized PROPTER to ensure the va-
lidity of our conclusions and tested it rigorously. Moreover, each
of the propagation rules is provably valid, which ensures that the
tightened bounds are correct. For our comparison, we chose to
compare PROPTER against the analyzer included with Alloy 5.1. We
believe this serves as a valid comparison because (a) other tools
which optimize via bound tightening require either a specific do-
main or additional inputs (as described in Section 7) and (b) no other
tool, to the best of our knowledge, employs any technique which is
theoretically similar to relational bound propagation. Therefore, a
comparison to Alloy 5.1 is the best way to test for improvements
attributable to relational bound propagation alone. To mitigate any
threats to our external validity, we have studied hundreds of Alloy
specifications derived from various sources, the majority of which
relate to real-world software systems. While we cannot claim they
are representative of all such specifications, the variety of prob-
lem domains (e.g., Android app security analysis, role-based access
control) and specification sources (e.g., the specifications from [1]
were automatically extracted from real IoT apps) help to determine
whether our results may generalize. Lastly, the measures used in the
experiments directly correspond to the qualities being evaluated
by the research questions, ensuring the validity of our construct.

7 RELATED WORK

Researchers have recently proposed a variety of techniques that also
employ bound tightening, albeit for a variety of purposes [4, 10, 16,
26]. Bagheri and Malek [4] introduced Titanium, which (as part of
its compositional analysis) enumerates all models for a specification
and stores the “observed” bounds for later use. A similar technique is
used by Flair [10, 11], which also uses the observed bounds to reduce
the search space used in its analysis. PROPTER takes a different
approach; rather than enumerating the entire model space in order to
tighten the bounds—which can be very expensive—PROPTER applies
the rules described above to tighten the bounds a priori, without
the cost of having run the analysis first. Galeotti, et al. [16] use
symmetry breaking to determine tight bounds for TACO, their tool
to analyze annotated Java code. Stevens and Bagheri [37] presented
an approach that is more general, but requires the specification of
additional elements (namely the domain-specific operations) and is
targeted to repeated analysis of changing specifications. Relational
bound propagation has no such limitation, as it can be applied to any
specification without modification or additional specification and
does not assume any particular use case surrounding the analysis.
As these other tools are limited in domain or require additional
specification, we did not include them in our experiments.

Few researchers have approached the problem by examining the
relational formula extracted from the specification. A recent study
by Wang, et al. [42] uses machine learning to choose an optimal SAT
solver for a given specification, but does not address the bounds
themselves. In another study, Wang et al. [41] present some rules
to simplify relational formulas by replacing expressions within a

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

formula with semantically equivalent expressions. In that study,
they cite the only simplification rule currently implemented in the
Alloy Analyzer—namely that a. (a X b) is semantically equivalent
to b when the cardinality of a is greater than zero. While their
work explores the semantics of relational expressions, they eval-
uate semantic equivalence in order to generate formulas that are
non-equivalent for the purposes of formula synthesis. We instead
seek to use these transformations to tighten the bounds for anal-
ysis. To the best of our knowledge, this paper is the first work to
explore applying transformation rules and propagation techniques
in the context of relational bounds. Importantly, the prior tools
mentioned here were not developed for the purpose of improving
the underlying formal analysis and as such were not included as
comparisons in our experiments.

8 CONCLUSION

This paper introduces relational bound propagation, a novel method
to automatically—and validly—tighten the bounds used for rela-
tional bounded model checking by extracting information from
the relational formula in the problem itself. Our approach applies
a set of upward- and downward-propagation rules to tighten the
default bounds and reduce the size of the search space. We per-
formed an experimental evaluation of an implementation of those
transformation rules on real-world Alloy specifications drawn from
other sources in the literature. Our results show that relational
bound propagation improves the scalability of formal analysis on
real-world specifications vs. the baseline, in many cases reducing
the problem to one with tight bounds (30.68% on average). Rela-
tional bound propagation reduced the analysis time for real-world
specifications by an average of 68.14%, all with very low overhead.
In future research, we plan to improve upon the current approach
by improving and extending the propagation rules described here.
We will seek to find ways to combine relational bound propaga-
tion with other techniques which manipulate relational bounds
(e.g., [37]). Finally, this work relies heavily on deterministic logics;
we believe there may be opportunities to explore other systems
such as fuzzy logics [24, 30].

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments. This work was completed utilizing the Holland Comput-
ing Center of the University of Nebraska, which receives support
from the Nebraska Research Initiative. This work was supported
in part by awards CCF-1755890, CCF-1618132, CCF-2139845, and
CCF-2124116 from the National Science Foundation.

REFERENCES

[1] Mohannad Alhanahnah, Clay Stevens, and Hamid Bagheri. 2020. Scalable analysis
of interaction threats in IoT systems. In ISSTA °20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 272-285. https:
//doi.org/10.1145/3395363.3397347

Mohannad Alhanahnah, Clay Stevens, Bocheng Chen, Qiben Yan, and Hamid
Bagheri. 2023. IoTCom: Dissecting Interaction Threats in IoT Systems. IEEE Trans.
Software Eng. 49, 4 (2023), 1523-1539. https://doi.org/10.1109/TSE.2022.3179294
Hamid Bagheri, Eunsuk Kang, and Niloofar Mansoor. 2020. Synthesis of assurance
cases for software certification. In ICSE-NIER 2020: 42nd International Conference
on Software Engineering, New Ideas and Emerging Results, Seoul, South Korea, 27
June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 61-64.
https://doi.org/10.1145/3377816.3381728

=

—_
A



=

=

=

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[4] Hamid Bagheri and Sam Malek. 2016. Titanium: efficient analysis of evolving alloy

specifications. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.).
ACM, 27-38. https://doi.org/10.1145/2950290.2950337

Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. COVERT:
Compositional Analysis of Android Inter-App Permission Leakage. IEEE Trans.
Software Eng. 41, 9 (2015), 866—-886. https://doi.org/10.1109/TSE.2015.2419611
Hamid Bagheri and Kevin J. Sullivan. 2012. Pol: specification-driven synthesis
of architectural code frameworks for platform-based applications. In Generative
Programming and Component Engineering, GPCE’12, Dresden, Germany, September
26-28, 2012, Klaus Ostermann and Walter Binder (Eds.). ACM, 93-102. https:
//doi.org/10.1145/2371401.2371416

Hamid Bagheri and Kevin J. Sullivan. 2016. Model-driven synthesis of formally
precise, stylized software architectures. Formal Aspects Comput. 28, 3 (2016),
441-467. https://doi.org/10.1007/S00165-016-0360-8

Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2014. TradeMaker: automated
dynamic analysis of synthesized tradespaces. In 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. 106-116.
https://doi.org/10.1145/2568225.2568291

Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2017. Automated Synthesis
and Dynamic Analysis of Tradeoff Spaces for Object-Relational Mapping. IEEE
Trans. Software Eng. 43, 2 (2017), 145-163. https://doi.org/10.1109/TSE.2016.
2587646

Hamid Bagheri, Jianghao Wang, Jarod Aerts, Negar Ghorbani, and Sam Malek.
2021. Flair: efficient analysis of Android inter-component vulnerabilities in
response to incremental changes. Empir. Softw. Eng. 26, 3 (2021), 54. https:
//doi.org/10.1007/s10664-020-09932-6

Hamid Bagheri, Jianghao Wang, Jarod Aerts, and Sam Malek. 2018. Effi-
cient, Evolutionary Security Analysis of Interacting Android Apps. In 2018
IEEE International Conference on Software Maintenance and Evolution, ICSME
2018, Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 357-368.
https://doi.org/10.1109/ICSME.2018.00044

Patrick Blackburn, Johan van Benthem, and Frank Wolter. 2006. Handbook of
Modal Logic. Elsevier.

Antonio Bucchiarone and Juan P. Galeotti. 2008. Dynamic Software Architectures
Verification using DynAlloy. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 10
(2008). https://doi.org/10.14279/tuj.eceasst.10.145

Javier Camara, David Garlan, and Bradley R. Schmerl. 2019. Synthesizing tradeoff
spaces with quantitative guarantees for families of software systems. Journal of
Systems and Software 152 (2019), 33-49. https://doi.org/10.1016/j.js5.2019.02.055
Byron Cook. 2018. Formal Reasoning About the Security of Amazon Web Services.
In Computer Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10981), Hana Chockler
and Georg Weissenbacher (Eds.). Springer, 38-47. https://doi.org/10.1007/978-3-
319-96145-3_3

[16] Juan P. Galeotti, Nicolas Rosner, Carlos Gustavo Lopez Pombo, and Marcelo F.

Frias. 2013. TACO: Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. IEEE Trans. Software Eng. 39, 9 (2013), 1283-1307.
https://doi.org/10.1109/TSE.2013.15

Juan P. Galeotti, Nicolas Rosner, Carlos Lépez Pombo, and Marcelo F. Frias. 2009.
Distributed SAT-Based Computation of Relational Tight Bounds. In APV 2009:
Intl. Symposium on Automatic Program Verification, Rio Cuarto, Argentina, Feb 15,
2009, Unpublished. http://se.inf.ethz.ch/old/events/apv/files/ APV09-02.pdf
Klaus Marius Hansen and Mads Ingstrup. 2010. Modeling and analyzing archi-
tectural change with alloy. In Proceedings of the 2010 ACM Symposium on Applied
Computing (SAC), Sierre, Switzerland, March 22-26, 2010, Sung Y. Shin, Sascha
Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung (Eds.).
ACM, 2257-2264. https://doi.org/10.1145/1774088.1774560

Ramzi A. Haraty and Mirna Naous. 2013. Role-Based Access Control modeling
and validation. In 2013 IEEE Symposium on Computers and Communications,
ISCC 2013, Split, Croatia, 7-10 July, 2013. IEEE Computer Society, 61-66. https:
//doi.org/10.1109/ISCC.2013.6754925

D. Jackson. 2012. Software Abstractions (2nd ed.). MIT Press.

Somesh Jha, Ninghui Li, Mahesh V. Tripunitara, Qihua Wang, and William H.
Winsborough. 2008. Towards Formal Verification of Role-Based Access Control
Policies. IEEE Trans. Dependable Secur. Comput. 5, 4 (2008), 242-255. https:
//doi.org/10.1109/TDSC.2007.70225

Jung Soo Kim and David Garlan. 2006. Analyzing architectural styles with alloy.
In Proceedings of the 2006 Workshop on Role of Software Architecture for Testing
and Analysis, held in conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2006), ROSATEA 2006, Portland, Maine,
USA, July 17-20, 2006, Robert M. Hierons and Henry Muccini (Eds.). ACM, 70-80.
https://doi.org/10.1145/1147249.1147259

Peter Kriens, Sergey Bronnikov, Burkhardt Renz, and Daniel Jackson. 2023. Alloy
models GitHub repository. https://github.com/AlloyTools/models.

[24

[25

[26

[27

(28]

[29

[31

[32

[33

&
=

[35

[36

[37

[39

[40

(41

[42

Clay Stevens and Hamid Bagheri

Dong Liu and Benjamin Carrién Schéfer. 2016. Efficient and reliable High-Level
Synthesis Design Space Explorer for FPGAs. In Proceedings of FPL. 1-8.
Niloofar Mansoor, Jonathan A. Saddler, Bruno Vieira Resende e Silva, Hamid
Bagheri, Myra B. Cohen, and Shane Farritor. 2018. Modeling and testing a family
of surgical robots: an experience report. In Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,
FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S.
Pasareanu (Eds.). ACM, 785-790. https://doi.org/10.1145/3236024.3275534
Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. 2011.
Unifying execution of imperative and declarative code. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE ’11). 511-520. https:
//doi.org/10.1145/1985793.1985863

Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2018. Flex-
ible and Efficient Decision-Making for Proactive Latency-Aware Self-Adaptation.
ACM Trans. Auton. Adapt. Syst. 13, 1, Article 3 (April 2018), 36 pages. https:
//doi.org/10.1145/3149180

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. 2015. How Amazon Web Services Uses Formal Methods.
Commun. ACM 58, 4 (mar 2015), 66-73. https://doi.org/10.1145/2699417
Jaideep Nijjar and Tevfik Bultan. 2011. Bounded verification of Ruby on Rails data
models. In Proceedings of the 20th International Symposium on Software Testing and
Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, Matthew B. Dwyer
and Frank Tip (Eds.). ACM, 67-77. https://doi.org/10.1145/2001420.2001429
Haiyu Pan, Yongming Li, Yongzhi Cao, and Zhanyou Ma. 2015. Model checking
fuzzy computation tree logic. Fuzzy Sets Syst. 262 (2015), 60-77. https://doi.org/
10.1016/j.fs5.2014.07.008

Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza Johnson, and
Ben Laurie. 2020. Towards making formal methods normal: meeting developers
where they are. CoRR abs/2010.16345 (2020). arXiv:2010.16345 https://arxiv.org/
abs/2010.16345

Alireza Sadeghi, Reyhaneh Jabbarvand, Negar Ghorbani, Hamid Bagheri, and
Sam Malek. 2018. A temporal permission analysis and enforcement framework
for Android. In Proceedings of the 40th International Conference on Software En-
gineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 846-857.
https://doi.org/10.1145/3180155.3180172

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
1996. Role-Based Access Control Models. IEEE Computer 29, 2 (1996), 38—47.
https://doi.org/10.1109/2.485845

Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a sat solver with conflict-
clause minimization. SAT 2005, 53 (2005), 1-2.

Clay Stevens, Mohannad Alhanahnah, Qiben Yan, and Hamid Bagheri. 2020.
Comparing formal models of IoT app coordination analysis. In Proceedings of the
3rd ACM SIGSOFT International Workshop on Software Security from Design to
Deployment. 3-10.

Clay Stevens and Hamid Bagheri. 2020. Reducing run-time adaptation space via
analysis of possible utility bounds. In 42nd International Conference on Software
Engineering, ICSE °20, Virtual Event, USA, July 6-11, 2020. ACM.

Clay Stevens and Hamid Bagheri. 2022. Combining solution reuse and bound
tightening for efficient analysis of evolving systems. In ISSTA "22: 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event,
South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.).
ACM, 89-100. https://doi.org/10.1145/3533767.3534399

Clay Stevens and Hamid Bagheri. 2023. Project Website. https://sites.google.
com/view/relational-bound-propagation/home.

Maurice H. ter Beek, Kim G. Larsen, Dejan Nickovic, and Tim A. C. Willemse.
2022. Formal methods and tools for industrial critical systems. Int. . Softw. Tools
Technol. Transf. 24, 3 (2022), 325-330. https://doi.org/10.1007/s10009-022-00660-4
Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In
Tools and Algorithms for the Construction and Analysis of Systems, 13th Interna-
tional Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1,
2007, Proceedings (Lecture Notes in Computer Science, Vol. 4424), Orna Grumberg
and Michael Huth (Eds.). Springer, 632-647. https://doi.org/10.1007/978-3-540-
71209-1_49

Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sar-
fraz Khurshid. 2018. Systematic Generation of Non-equivalent Expressions
for Relational Algebra. In Abstract State Machines, Alloy, B, TLA, VDM, and
Z - 6th International Conference, ABZ 2018, Southampton, UK, June 5-8, 2018,
Proceedings (Lecture Notes in Computer Science, Vol. 10817), Michael J. Butler,
Alexander Raschke, Thai Son Hoang, and Klaus Reichl (Eds.). Springer, 105-120.
https://doi.org/10.1007/978-3-319-91271-4_8

Wenxi Wang, Kaiyuan Wang, Mengshi Zhang, and Sarfraz Khurshid. 2019. Learn-
ing to Optimize the Alloy Analyzer. In 12th IEEE Conference on Software Testing,
Validation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019. IEEE, 228~
239. https://doi.org/10.1109/ICST.2019.00031



