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Abstract
Following the popularity of Unsupervised Domain Adaptation (UDA) in person re-identification, the recently proposed 
setting of Online Unsupervised Domain Adaptation (OUDA) attempts to bridge the gap toward practical applications by 
introducing a consideration of streaming data. However, this still falls short of truly representing real-world applications. 
This paper defines the setting of Real-world Real-time Online Unsupervised Domain Adaptation ( R2OUDA) for Person Re-
identification. The R2OUDA setting sets the stage for true real-world real-time OUDA, bringing to light four major limita-
tions found in real-world applications that are often neglected in current research: system generated person images, subset 
distribution selection, time-based data stream segmentation, and a segment-based time constraint. To address all aspects 
of this new R2OUDA setting, this paper further proposes Real-World Real-Time Online Streaming Mutual Mean Teaching 
( R2MMT), a novel multi-camera system for real-world person re-identification. Taking a popular person re-identification 
dataset, R2MMT was used to construct over 100 data subsets and train more than 3000 models, exploring the breadth of the 
R
2OUDA setting to understand the training time and accuracy trade-offs and limitations for real-world applications. R2MMT, 

a real-world system able to respect the strict constraints of the proposed R2OUDA setting, achieves accuracies within 0.1% 
of comparable OUDA methods that cannot be applied directly to real-world applications.

Keywords  Person re-identification · Online learning · Unsupervised learning · Domain adaptation · Real-world · Real-
time · Computer vision · Domain shift · Mutual mean teaching

1  Introduction

Person re-identification (ReID) is the task of matching a per-
son in an image with other instances of that person in other 
images, either from the same camera or a different one. More 
specifically, it is associating a person’s query with its match 
in a gallery of persons [45]. Person ReID is a common task 

in many real-world applications. Such applications include 
video surveillance (e.g., determining when unauthorized 
people are present in an area), public safety (e.g., under-
standing pedestrian motion to avoid accidents), and smart 
health (e.g., mobility assessment and fall detection for sen-
iors needing assistance). Thus, achieving accurate and robust 
person ReID for any environment is an important research 
goal for the community.

Many methods have been developed for person ReID 
[18, 40, 51, 53], and many high quality datasets have been 
created for the task [25, 35, 42, 49, 52]. Deep learning 
approaches have been able to achieve incredible accura-
cies, nearly reaching saturation in some cases [32, 41, 43, 
54]. However, person ReID is a highly context-specific 
task, and models trained on one dataset often fail to per-
form well on others [45]. Unsupervised Domain Adapta-
tion (UDA) has been studied to combat this domain shift 
[2, 8, 28, 36, 42, 45]. In UDA, initial training is performed 
on the labeled data of the source domain, and then infer-
ence is done in a different target domain. UDA methods 
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generally achieve lower accuracies than State-of-the-Art 
(SotA) deep learning approaches that train directly on the 
target domain. However, recent approaches have begun to 
close that gap [11, 12, 48].

One common thread among these approaches is the reli-
ance on having the entirety of the target domain available 
at training time. While this is convenient for research, many 
practical applications do not have unrestricted access to 
the entire target domain. Recently, [33] introduced the set-
ting of Online Unsupervised Domain Adaptation (OUDA). 
OUDA specifies that data from the target domain can only 
be accessed through a data stream, bringing research more 
in line with real-world applications. OUDA adopts a batch-
based relaxation [9] where different identities are separated 
among batches to simulate streaming data. OUDA also 
argues that confidentiality regulations make it such that 
many real-world applications can only store data for a lim-
ited amount of time, applying a restriction that image data 
cannot be stored beyond the batch in which it was collected.

Table 1 shows the challenges of real-world applications, 
and how UDA and OUDA fail to fully address them. Like 
UDA before it, OUDA uses hand-crafted person ReID 
datasets for the target domain. Not only is the data stream 
only simulated, but the provided person images were hand 
selected by the creators of the dataset. In a real-world sys-
tem, person images need to be generated by the system itself, 
creating a layer of noise not present in hand-crafted data-
sets. Further, using hand-crafted datasets, the distribution 
of person images is guaranteed to be suitable for training. 
Specifically, most person ReID dataset tend to have a fairly 
uniform distribution, having around the same number of per-
son images for each identity [26]. However, in real-world 
applications, there is no guarantee that person images gen-
erated from streaming data will form a uniform distribution 
in identities. There is also no guarantee that every identity 
in the dataset will be available for training. Additionally, in 
real-world applications, we often see multi-camera systems 
that rely on processing all this information in real-time. The 
UDA and OUDA settings do not address this. 

To bring the field closer to the real-world, this paper pro-
poses Real-World Real-Time Online Unsupervised Domain 

Adaptation ( R2OUDA), a setting designed to address the 
challenges found in real-world applications, as seen in 
Table 1. R2OUDA defines four major considerations beyond 
the OUDA setting needed to develop systems for the real 
world. First, R2OUDA considers that person images must 
be generated algorithmically from streaming data. Second, 
the distribution of data to be used in training must also be 
determined algorithmically. Third, R2OUDA expands the 
batched-based relaxation [9] of online learning to use time 
segments, relating the conceptual mini-batch to the real-
world notion of time inherent in streaming data. Fourth, R2

OUDA defines a time constraint such that the time spent 
training a single time segment cannot interfere with the 
training for subsequent time segments. The first two con-
siderations address the noisy data inherent in real-world 
systems, while the last two considerations address the time-
based streaming nature of data seen in real-time systems.

To address all aspects of the new R2OUDA setting, 
this paper further proposes Real-World Real-Time Online 
Streaming Mutual Mean Teaching ( R2MMT). R2MMT is 
an end-to-end multi-camera system designed for real-world 
person ReID. Using object detection, pedestrian tracking, 
human pose estimation, and a novel approach for Subset Dis-
tribution Selection (SDS), R2MMT is able to generate person 
crops directly from a data stream, filter them based on rep-
resentation quality, and create a subset with a suitable dis-
tribution for real-time training. To show the viability of R2

MMT to meet the challenges of real-world applications, and 
to explore the breadth of the R2OUDA setting, an exhaus-
tive set of experiments were conducted on the popular and 
challenging DukeMTMC dataset [35]. Using R2MMT, over 
100 data subsets were created and more than 3000 models 
were trained, capturing the trade-offs and limitations of real-
world applications and the R2OUDA setting. R2MMT is a 
real-world system that can meet the demanding requirements 
of the proposed R2OUDA setting, and is able to achieve over 
73% Top-1 accuracy on DukeMTMC-reid, within 0.1% of 
comparable OUDA methods that cannot be directly applied 
for real-world applications.

To summarize, this paper’s contributions are as follows:

Table 1   Challenges of real-
world applications and if they 
are addressed in the UDA, 
OUDA, and R2OUDA settings

† Streaming data is simulated

Real-world UDA OUDA R
2

OUDA 
(Ours)

Data from target domain is only available through a data stream ✗ ✓ † ✓

Person crops are not provided and must be generated online ✗ ✗ ✓

There is no guarantee that every identity will be available during training ✗ ✗ ✓

The distribution of person crops must be determined online ✗ ✗ ✓

Training time must be accounted for ✗ ✗ ✓
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–	 We define the setting of Real-World Real-Time Online 
Unsupervised Domain Adaptation, accounting for the 
challenges of real-world applications and bridging the 
gap between research and application.

–	 We propose Real-World Real-Time Online Streaming 
Mutal Mean Teaching, a novel end-to-end multi-camera 
person ReID system designed to meet the challenges of 
R
2OUDA and real-world applications.

–	 We perform exhaustive experimentation, creating over 
100 data subsets and training over 3000 models, to 
explore the breadth of the R2OUDA setting and under-
stand the trade-offs and limitations of real-world appli-
cations.

2 � Related work

The UDA setting for person ReID has been extensively 
explored by the research community [24, 36, 45, 50]. In 
general, there are two main categories of algorithms used 
to perform UDA for person ReID: style transfer methods 
and target domain clustering methods.

2.1 � Style transfer

Style transfer-based methods generally use Generative 
Adversarial Networks (GANs) [15] to perform image-to-
image translation [20], modifying images from the source 
domain to look like the target domain without affecting the 
context of the original images. [4] uses self-similarity and 
domain-dissimilarity to ensure transferred images main-
tain cues to the original identity without matching to other 
identities in the target domain, while [14] introduces an 
online relation-consistency regularization term to ensure 
relations of the source domain are kept after transfer to 
the target domain. [28] separates transfers into factor-wise 
sub-transfers, across illumination, resolution, and camera 
view, to better fit the source images into the target domain. 
[2] uses a dual conditional GAN to transfer source domain 
images to multiple styles in the target domain, creating a 
multitude of training instances for each source identity. 
[42] uses a cycle consistent loss [55] with an emphasis 
on the foreground to better maintain identities between 
styles. [19] looks at domain shift as background shift and 
uses a GAN to remove backgrounds without damaging 
foregrounds, while a densely associated 2-stream network 
integrates identity-related cues present in backgrounds.

2.2 � Target domain clustering

Target domain clustering approaches focus on using clus-
tering algorithms to group features of the target domain for 
use as labels to fine tune a neural network pre-trained on the 
source domain [7]. This is usually done in an iterative fash-
ion, where clustering is performed between training epochs 
to update the group labels as the model learns. [46] pro-
poses using a dynamic graph matching framework to better 
handle large cross-camera variations. [10] introduces a self-
similarity group to leverage part-based similarity to build 
clusters from different camera views. [26] utilizes a diver-
sity regularization term to enforce a uniform distribution 
among the sizes of clusters. [13] introduces hybrid memory 
to dynamically generate instance-level supervisory signal 
for feature representation learning. [11] builds on [38], using 
two teacher models and their temporally averaged weights to 
produce soft pseudo labels for target domain clustering. [3] 
utilizes both target domain clustering and adversarial learn-
ing to create camera invariant features and improve target 
domain feature learning.

2.3 � Online Unsupervised Domain Adaptation

While Online Unsupervised Domain Adaptation has been 
explored for other AI tasks [6, 16, 23, 29, 30, 39, 47], it was 
first defined for the field of person ReID in [33]. OUDA for 
Person ReID aims to create a practical online setting similar 
to that found in practical applications. OUDA builds upon 
the UDA setting by adding two considerations. First, data 
from the target domain is accessed via a data stream and not 
available all at once. Second, due to confidentiality concerns 
common in many countries, data from the target domain can 
only be stored for a limited time and only model parameters 
trained on that data may be persistent.

3 � Proposed R2OUDA setting

The proposed setting of Real-World Real-Time Online Unsu-
pervised Domain Adaptation, building off OUDA [33], con-
siders that we have access to a completely annotated source 
dataset DS as well as partial access to an unlabeled target 
dataset DT in the domain of our target application. In con-
trast to standard UDA, in both OUDA and R2OUDA, the 
data from DT is only accessible as an online stream of data. 
Whereas both UDA and OUDA use person crops from hand-
crafted datasets, R2OUDA specifies that person crops from 
DT must be generated algorithmically from the data stream. 
This reflects how data is gathered in the real world. Where 
hand selected crops from datasets are generally highly rep-
resentative, crops generated from a data stream will have 
varying levels of quality. This introduces noise in DT , both in 
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quality and in the inevitable missed detections, which needs 
to be accounted for.

Additionally, hand-crafted datasets choose person images 
to fit a distribution suitable for training. However, since 
crops in R2OUDA are generated from streaming data, such 
a distribution can not be assumed. This leads to the second 
consideration of R2OUDA, that the distribution of data to be 
used in training must be determined algorithmically. Instead 
of relying on a predefined set of person images, systems 
must generate their own data subset, determining its size and 
distribution appropriately. This also reflects the real-world, 
as it is rarely known beforehand the amount and distribution 
of person crops that will be collected by an application.

Continuing with the batched-based relaxation [9] of the 
online learning scenario proposed in [33], we further intro-
duce a time constraint for R2OUDA. First, instead of sepa-
rating our “mini-batches” (“tasks” as defined in [33]) across 
identities, since R2OUDA requires actual streaming data, 
the data stream is separated into discrete time segments. We 
consider that for a chosen time segment of length � , the 
streaming data will be divided into equal, non-overlapping 
time segments of length � whose combined contents are 
equivalent to the original data stream.

For R2OUDA, we must account both for applications that 
run continuously (i.e., the total length of the data stream is 
infinite) and the fact that, in the real world, computation 
resources are not unlimited. This leads to the necessity of a 
time constraint, but one that is not simple to define. Training 
time is inherently linked to hardware, and there are many 
techniques to hide latency or increase throughput in system 
design. As such, we simply define the time constraint such 
that, for any time segment �i , the length of time spent train-
ing on data collected during �i must be such to not interfere 
with the training for the data collected during �i+1 . This is 

to prevent the training time deficit from increasing infinitely 
as i increases.

In summary, R2OUDA introduces four new considera-
tions to better match real-world applications:

–	 Person crops from the target domain must be generated 
algorithmically from a data stream.

–	 The selection and distribution of data to be used in train-
ing must be determined algorithmically.

–	 An expansion of the batch-based relaxation to use time 
segments, relating the conceptual mini-batch to the real-
world notion of time inherent in streaming data.

–	 An additional time constraint such that the time spent 
training a single time segment cannot interfere with the 
training for any subsequent time segments.

4 � Real‑World Real‑Time Online Streaming 
MMT

To address the challenges of R2OUDA, we present Real-
World Real-Time Online Streaming Mutual Mean Teach-
ing, a novel multi-camera system for real-world person 
ReID. Similar to [31], R2MMT is comprised of multiple 
Local Nodes and a single Global Node. Local nodes have 
access to the data stream directly from the cameras and are 
responsible for generating quality person images. The Global 
Node has access to all data generated by Local Nodes and 
is responsible for global ReID, subset distribution selection, 
and target domain training. An overview of R2MMT can be 
seen in Fig. 1.

On the Local Node, YOLOv5 [22] is used as an object 
detector to find people in the video stream. Image crops are 
created for each person and sent to both a pose estimator 
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(HRNet [37]) and a ReID feature extractor (ResNet-50 
[17]). Coordinates for each person and features generated 
by the feature extractor are sent to a tracker [44] for local 
ReID. Afterward, feature and crop selection are performed 
to ensure that features and person crops sent to the Global 
Node for global ReID and crop collection are highly repre-
sentative. This process utilizes person bounding box coor-
dinates from the tracker to filter out any persons that have 
significant overlap (IoU ≥ 0.3 ) with other persons. This lim-
its the number of crops used for training and features used 
for ReID containing multiple persons. The pose estimator 
is used to determine the quality of the features themselves. 
We reason that if a highly representative feature is present, 
then poses generated from the person crop should be of high 
confidence, while the number of keypoints present can help 
determine if there is significant occlusion or cutoff. Only 
crops and features with poses containing 15 or more key-
points (out of 17 total [27]) with at least 50% confidence are 
sent to the Global Node. This helps ensure that the quality of 
the crops used for training is similar to the quality of crops 
found in hand-crafted datasets.

On the Global Node, local identities and features are 
received from the Local Nodes and sent to a matching algo-
rithm. This matching algorithm, as described in [31], per-
forms global (i.e., multi-camera) ReID. Concurrently, person 
crops from all cameras are collected for a single time seg-
ment. Generally, far more features will be collected than 
can reasonably be used during training. For instance, when 
DukeMTMC-Video [35] is sampled every frame, the system 
produces over 4 million crops that pass feature selection. To 
reduce redundancy and computation, R2MMT samples crops 
for selection once every 60 frames.

After all person crops from a single time segment are col-
lected, the Subset Distribution Selection algorithm is used 
to create a subset that maintains a uniform distribution and 
number of crops suitable for training. R2MMT uses an SDS 
algorithm based on the metric facility location problem [34]. 
We define that given a number of features in a metric space, 
we wish to find a subset of k features such that the mini-
mum distance between any two features within the subset is 

maximized. However, this problem is known to be NP-hard 
[21], making it unsuitable for our real-world applications. 
R
2MMT instead uses a greedy implementation of the algo-

rithm proven to be Ω(log k)-competitive with the optimal 
solution while proving to be significantly faster, especially 
for larger sets of data [1]. For ease of readability, we adopt 
the nomenclature of K to mean the number of instances per 
identity. Therefore the total number of person crops in a 
subset k is equal to the number of identities in the dataset 
times K. To further reduce complexity, SDS is performed 
on the data from each camera individually, and their results 
are combined to form the complete subset. The SDS process 
helps ensure we have a uniform distribution of identities in 
our training data, similar to what is found in hand-crafted 
ReID datasets.

Once the training subset is created, domain adaptation is 
performed using Mutual Mean Teaching (MMT) [11]. R2

MMT follows the training methodology described in [11], 
except that epochs and iterations are variable. Clustering 
is done using DBSCAN [5], as GPU acceleration allows it 
to perform much faster than CPU-based approaches. Exact 
training parameters, both for pre-training on the source 
domain and domain transfer on the target domain, are as 
detailed in [11] unless otherwise noted.

Both SDS and training are time consuming, particularly 
when dealing with large amounts of data. To meet the time 
constraint of the R2OUDA setting, R2MMT utilizes a pipe-
lined processing model, taking advantage of parallel com-
puting resources while hiding the latency of the aforemen-
tioned tasks. An illustration of this pipelined approach can 
be seen in Fig. 2. Crop collection, SDS, and training are 
separated into their own pipeline stages. This means that 
while a model collects data for the current time segment, 
SDS on that data will occur the following time segment, 
and the training for that subset will occur the time segment 
after that. More formally, during a single time segment TN , a 
model trained on data from TN−3 is used to collect data from 
time segment TN , while subset distribution selection is per-
formed on data collected during TN−1 and another network is 
being trained on a subset created from data from TN−2 . All of 
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Fig. 2   Illustration of computation overlap through time
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these processes will finish before TN+1 . This means there will 
always be a latency of two time segments between collection 
and inference for a single time segment. However, due to the 
pipeline structure, training throughput remains at a rate of 
one time segment per time segment. This satisfies the time 
constraint of R2OUDA.

5 � Experimental results

To explore the setting of R2OUDA, we select the Market 
1501 dataset [49] as the source domain and the Duke-
MTMC dataset [35] as the target domain. The DukeMTMC 
dataset is desirable as a target domain because it has both 
a video dataset (DukeMTMC-video) and a hand-crafted 
person ReID dataset (DukeMTMC-reid), both in the same 
domain. The video dataset is required in order to satisfy 
the streaming data constraint of the R2OUDA setting. The 
hand-crafted ReID dataset brings two benefits. First, it 
allows us to directly observe the effect of noisy system gen-
erated crops compared hand selected person images when 
used for training. Second, testing on the ReID dataset allows 
direct comparison with works done in the UDA and OUDA 
space. As such, all our Top-1 accuracies are reported on the 
DukeMTMC-reid dataset. Similarly, we determining subset 
size, we treat the number of identities for both DukeMTMC-
reid and DukeMTMC-video to be 702, as described in [35]. 
The number of person crops in a subset k is always equal to 
k × 702.

For all experiments, R2MMT is used to perform domain 
adaptation. Parameters in all experiments are the same as 
in [11], except where noted otherwise. All Local Nodes are 
run on a single server with two AMD EPYC 7513 CPUs, 
256 GB of RAM, and three Nvidia V100 GPUs. The Global 
Node is run on a workstation with an AMD Threadripper Pro 

3975WX CPU, 256 GB RAM, and three Nvidia RTX A6000 
GPUs. All timing results presented in this section are using 
this Global Node.

5.1 � Subset Distribution Selection

We first explore the effect of using our baseline Subset 
Distribution Selection algorithm for training on the Duke-
MTMC-reid dataset. Using hand-selected person crops from 
the dataset, we remove the effect of noise generated by our 
system and single out the impact of our SDS algorithm and 
the reduction in amount of data on domain adaptation. We 
vary the number of person images per identity K, iterations 
per epoch I, and total epochs E as shown below. Note that 
using the entire DukeMTMC-reid dataset would be equiva-
lent to K = 25.

These variable ranges lead to 240 training permutations, 
which is difficult to list in a single table. Instead, the results 
are plotted in a three-dimensional space and can be seen in 
Fig. 3. Training Time and Top-1 make up the x and y axes, 
Epochs are the z axis, Iterations are noted by color, and k 
is indicated by size, with bigger circles representing higher 
values of k. As the purpose of these experiments is to focus 
on the effects of our SDS algorithm, the system pipeline 
described in Sect. 4 is ignored and timing results count SDS 
and training sequentially. More detailed information on these 
experiments can be found in the supplementary materials.

From these graphs, we can understand the general trend of 
the data. Intuitively, we see a fairly linear trend where more 
data generally results in higher Top-1 accuracy. Likewise, 

(1)
K ∈ [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

I ∈ [100, 250, 500, 750, 1000, 1500]

E ∈ [1, 2, 3, 5].

Fig. 3   Results exploring SDS on the hand-crafted DukeMTMC-reid dataset [35]. a and b Show two views of the results plotted in three-dimen-
sional space, while (c) shows a two-dimensional view when E = 5 . Larger circles represent larger values of k 
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more iterations per epoch and more epochs also tend to result 
in higher accuracy. Interestingly, with lower values of k we see 
the reverse effect; more time spent training results in decreased 
accuracy, sometimes even below the pre-trained accuracy of 
42.0%. In general, at least 6 person images per identity are 
needed to consistently learn, while we start to see diminish-
ing returns at around 16 person images per identity. The top 
result occurs when K = 20 , I = 1500 , and E = 5 , achieving a 
Top-1 accuracy of 74.55% with a training time of 82 minutes. 
This is only 3.5% less than what comparable algorithms are 
able to achieve in the UDA setting [11] and over 2% greater 
than the same algorithm in the OUDA setting [33]. When 
using the same hardware, R2MMT is 2.6× faster than its UDA 
counterpart.

5.2 � System Generated Data

As explained in Sect. 3, one of the requirements of the R2

OUDA setting is that person crops must be generated algorith-
mically from a data stream. As such, it is necessary to explore 
the effects of the noise this introduces. The structure of these 
experiments are exactly the same as in Sect. 5.1, except that 
instead of using DukeMTMC-reid, R2MMT generates data 
from the DukeMTMC-video dataset. Similar to Sect. 5.1, we 
ignore the system pipeline and focus on the effects of the gen-
erated data. Based on the larger amount of data available in 
DukeMTMC-video, the ranges for our experimental variables 
are adjusted as shown below. Using all generated data would 
be equivalent to K = 99.

(2)
K ∈ [16, 18, 20, 25, 30, 40]

I ∈ [100, 250, 500, 1000, 1500]

E ∈ [1, 2, 3, 5].

The results of this exploration can be seen in Fig. 4, with 
more details available in the supplementary materials. Axes 
are identical to Fig. 3, with color and size representing itera-
tions and k respectively. These graphs show a somewhat 
similar trend as in Sect. 5.1 with some interesting devia-
tions. While the trend starts off with accuracy increasing as 
k gets larger, there is a sharp decrease in accuracy when k 
increases beyond a certain point. The scale of the decrease, 
as well as how early it occurs, lessens with both iterations 
and epochs. This is likely a byproduct of how many identi-
ties are present in DukeMTMC-video. While DukeMTMC 
only labels a total of 1404 identities, our system is able to 
detect far more. Increasing iterations has such a drastic effect 
here because it determines how many of and how often these 
identities are seen during an epoch. Further increasing itera-
tions and epochs could help mitigate this, but would also 
increase overall training time. This, combined with the 
fact that more epochs and more iterations always result in 
higher accuracy, suggests that accuracy saturation has not 
been reached here, and the main limiting factor is training 
time. The highest accuracy achieved on this noisy data was a 
Top-1 of 69.34% , with K = 20 , I = 1500 , E = 5 , and a total 
training time of just under 57 minutes. This is notably worse 
than both the 74.55% achieved in Sect. 5.1 and the 72.3% 
MMT achieves in the OUDA setting [33]. This demonstrates 
the extreme impact noisy data can have on unsupervised 
domain adaptation, and why the extra considerations of the 
R
2OUDA setting are a necessity when designing algorithms 

for real-world applications.

5.3 � R2MMT

Finally, we make the first attempt at addressing the R2OUDA 
setting. An exhaustive set of experiments are conducted with 
R
2MMT, producing a fully functional, end-to-end system that 

Fig. 4   Results exploring the use of system generated data using DukeMTMC-video [35]. a and b Show two views of the results plotted in three-
dimensional space, while (c) shows a two-dimensional view when E = 5 . Larger circles represent larger values of k 
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meets all the requirements of the R2OUDA setting. R2MMT 
generates person crops from a stream of data, uses SDS to 
construct training subsets, operates on the notion of time seg-
ments, and must adhere to the strict time constraint outlined 
in Sect. 3. A successful implementation will conform to all of 
those standards while achieving the highest accuracy possible, 
ideally within range of what was seen in Sect. 5.1.

One hour of DukeMTMC-video is used as the data stream, 
split into equal sized continuous segments of size � . SDS is per-
formed at each time segment on each camera individually, and 
k refers to the total number of person crops across all training 
subsets for the full hour. Two methods are used to determine the 
number of crops needed at each time segment. In the standard 
method, only data collected in a time segment may be used for 
training related to that time segment. The second method uses a 
form of memory, allowing the use of data from the current time 
segment and previous time segments still in memory. For these 
experiments, we assume a memory length of up to 60 min. 
Equations 3 and 4 are used to calculate the number of person 
crops needed from each camera at each time segment, for the 
standard and memory-based methods respectively.

where k is the total number of person crops desired for the 
training subset over an hour of video stream, �t is a time seg-
ment of length � minutes that begins at � × t minutes, Ci is 
the ith camera, P(Ci) is the percentage of total person crops 
received from CI when compared to all cameras over an hour 
of video, and P(Ci)P(Ci ∩ �t) is the percentage of person 
crops received during �t for Ci compared to all person crops 
received from Ci over an hour of video.

This ensures the number of person crops selected 
for a subset from each camera at each time segment is 

(3)k =

60

�
−1

∑

t=0

8
∑

i=1

P(Ci)P(Ci ∩ �t),

(4)k =

60

�
−1

∑

t=0

8
∑

i=1

P(Ci)

t
∑

�=0

P(Ci ∩ �
�
),

proportional to the number of person crops received. The 
variable ranges used in these experiments are shown below.

This creates over 2500 data points across the two methods, 
becoming difficult to visualize even in three-dimensional 
space. Figure 5 displays the distribution of training accuracies 
for each � at each time segment. Out of the 864 configurations 
tested, more than half of them failed to consistently meet the 
time requirement of R2OUDA and are not included in the 
statistics. Most notably, all configurations that used memory 
failed to consistently meet the time requirement when given 
a � of 15. When memory is utilized, the time required for 
SDS greatly increases for successive time segments as more 
images accumulate. This limits how large k can be, restricting 
K to 20 or below when � = 20 and 30 or below when � = 30 . 
Even without memory, the time constraint proves very limit-
ing. Only when � = 20 is the entire range of K able to be 
utilized. For a more fine grain look at all 2500+ data points 
in this experiment, please see the supplementary materials.

The data in general follows similar trends as seen in 
Sects. 5.1 and 5.2, but to more of an extreme. In addition 
to disqualifying several configurations off the bat, the seg-
mented data stream and time constraint generally mean R2

MMT has less data to work with during any given train-
ing. Unlike in the previous experiments, the time constraint 
prevents the system from just throwing more data and 
more training at the problem. Instead, a balance must be 
found. We see an overall increase in top accuracies when � 
increases, both in standard and memory configurations. Top 
accuracies also increase over time, with one notable excep-
tion. When � = 15 , accuracy actually drops in the final time 
segment. This is due to the extremely low amount of data 
available in that particular time segment.

(5)

K ∈ [18, 20, 25, 30, 40, 50]

I ∈ [100, 250, 500, 750, 1000, 1500]

E ∈ [1, 2, 3, 5]

� ∈ [15, 20, 30]

t ∈ ℤ ∶ {0 ≤ t ≤ (
60

�
− 1)}.
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Fig. 5   Distribution of accuracies achieved on DukeMTMC [35] with R2MMT
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Another interesting observation can be made by looking 
at � = 20 both with and without memory. While the stand-
ard R2 MMT achieves higher overall top accuracies, the dis-
tribution is a lot more varied when compared to R2 MMT 
with memory. Many configurations actually lose accuracy, 
far more than when memory is present. This suggests that 
while memory is limiting, it may add stability to training 
over time. This is further demonstrated when � = 30 . When 
memory is used the maximum accuracy is lower in the first 
time segment, being restricted to a lower value of K, but is 
higher in the second time segment due to the increased range 
of available data.

Table 2 and Figure 6 show the best configurations of 
R
2MMT, both with and without memory, for each � . The 

overall highest accuracy is achieved with memory when 
� = 30 , K = 30 , E = 5 , and I = 500 , reaching an impres-
sive 73.2% Top-1. Despite the much harsher requirements 
of the R2OUDA setting, this is within 0.1% of the best 
possible accuracy using MMT in the OUDA setting [33]. 
However, with a � of 30 it also has a latency of 60 min 
between collecting data and inferencing with a model 
trained on that data. This can be reduced to 30 min by 
changing � to 15, but then accuracy drops to a disappoint-
ing 58.08% . Interestingly, with a � of 15, accuracy actually 
drops in the final time segment. This is due to a limited 
number of persons present in the dataset during that time, 
leading to less data available for training and making the 
model less generalizable. A � of 20 splits the difference, 
achieving a final Top-1 of 69.97% while reducing the infer-
ence latency to 40 min. This is within 4% of our best over-
all result, and reduces the delay by over 30%.

The strict time constraint disqualified many of the con-
figurations in Sect. 5.3. However, if we ignore the time 

constraint for a moment, we see accuracies reaching up 
to 76.53% when � = 15 , K = 40 , E = 5 , and I = 1500 in a 
system with memory, putting it within 1.5% of MMT in the 
UDA setting [11]. With further optimization or more pow-
erful hardware, R2MMT might be able to achieve higher 
accuracies with decreased latency between collection 
and inference. This shows that there is a lot of room for 
improvement and growth in the R2OUDA setting. Overall, 
it is clear that larger values of K and more training time 
lead to better results, but the time constraint limits both of 
these factors. For any practical implementation, a balance 
must be found for that specific use case. The explorations 
in this paper can serve as a guideline for future works. 
The specific optimal ranges for each variable will shift 
with different target domains, but the overall trends and 
optimization techniques will be consistent.

1520 30 4045 60
40

50

60

70

Time

T
op

-1
(%

)

Fig. 6   Best results for each system configuration. Dashed lines (-  -) 
represent standard configurations. Solid lines (–) represent configura-
tions with memory. , , and  denote � values of , 

, and  respectively

Table 2   Distribution of 
accuracies achieved on 
DukeMTMC [35] with R2MMT

� t Min Q
1

Q
2

Q
3

Max

 R2MMT
15 0 35.28 40.93 43.76 47.80 52.29

1 35.68 41.43 44.48 51.66 57.05
2 30.92 37.75 41.97 52.74 59.92
3 26.30 33.62 40.89 51.71 58.08

20 0 39.00 44.39 50.27 54.29 61.63
1 33.75 42.42 55.39 61.15 68.76
2 28.73 43.31 56.96 63.85 69.97

30 0 44.30 51.35 54.76 59.04 65.66
1 43.22 53.91 58.71 65.04 72.08

 R2MMT with memory
20 0 38.87 41.67 42.77 43.65 46.36

1 38.42 45.20 48.03 49.87 54.26
2 37.88 47.44 51.35 53.90 60.73

30 0 44.26 50.30 54.17 57.72 64.36
1 47.58 58.39 62.17 67.00 73.21
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6 � Conclusion

This paper proposed the setting of R2OUDA, to better rep-
resent the unique challenges of real-world applications. R2

MMT was introduced as the first attempt at a real-world, 
end-to-end system that can address all the demands of the 
R
2OUDA setting. An exhaustive set of experiments were 

conducted, using R2MMT to create over 100 data subsets 
and train more than 3000 models, exploring the breadth 
of the R2OUDA setting. While meeting the harsh require-
ments of R2OUDA, including noisy data and time con-
straints, R2MMT was able to achieve over 73% Top-1 accu-
racy, reaching within 0.1% of comparable SotA OUDA 
approaches without noisy data or a time constraint, that 
cannot be directly applied to real-world applications.
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