Journal of Real-Time Image Processing (2023) 20:107
https://doi.org/10.1007/511554-023-01362-z

RESEARCH q

Check for
updates

Real-time online unsupervised domain adaptation for real-world
person re-identification

Christopher Neff' - Armin Danesh Pazho' - Hamed Tabkhi'

Received: 15 February 2023 / Accepted: 30 August 2023 / Published online: 24 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Following the popularity of Unsupervised Domain Adaptation (UDA) in person re-identification, the recently proposed
setting of Online Unsupervised Domain Adaptation (OUDA) attempts to bridge the gap toward practical applications by
introducing a consideration of streaming data. However, this still falls short of truly representing real-world applications.
This paper defines the setting of Real-world Real-time Online Unsupervised Domain Adaptation (R2OUDA) for Person Re-
identification. The R2ZOUDA setting sets the stage for true real-world real-time OUDA, bringing to light four major limita-
tions found in real-world applications that are often neglected in current research: system generated person images, subset
distribution selection, time-based data stream segmentation, and a segment-based time constraint. To address all aspects
of this new R?OUDA setting, this paper further proposes Real-World Real-Time Online Streaming Mutual Mean Teaching
(R®MMT), a novel multi-camera system for real-world person re-identification. Taking a popular person re-identification
dataset, R>MMT was used to construct over 100 data subsets and train more than 3000 models, exploring the breadth of the
RZOUDA setting to understand the training time and accuracy trade-offs and limitations for real-world applications. R°MMT,
a real-world system able to respect the strict constraints of the proposed R”OUDA setting, achieves accuracies within 0.1%
of comparable OUDA methods that cannot be applied directly to real-world applications.

Keywords Person re-identification - Online learning - Unsupervised learning - Domain adaptation - Real-world - Real-
time - Computer vision - Domain shift - Mutual mean teaching

1 Introduction

Person re-identification (RelD) is the task of matching a per-
son in an image with other instances of that person in other
images, either from the same camera or a different one. More
specifically, it is associating a person’s query with its match
in a gallery of persons [45]. Person RelD is a common task
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in many real-world applications. Such applications include
video surveillance (e.g., determining when unauthorized
people are present in an area), public safety (e.g., under-
standing pedestrian motion to avoid accidents), and smart
health (e.g., mobility assessment and fall detection for sen-
iors needing assistance). Thus, achieving accurate and robust
person RelD for any environment is an important research
goal for the community.

Many methods have been developed for person RelD
[18, 40, 51, 53], and many high quality datasets have been
created for the task [25, 35, 42, 49, 52]. Deep learning
approaches have been able to achieve incredible accura-
cies, nearly reaching saturation in some cases [32, 41, 43,
54]. However, person RelD is a highly context-specific
task, and models trained on one dataset often fail to per-
form well on others [45]. Unsupervised Domain Adapta-
tion (UDA) has been studied to combat this domain shift
[2, 8, 28, 36, 42, 45]. In UDA, initial training is performed
on the labeled data of the source domain, and then infer-
ence is done in a different target domain. UDA methods
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generally achieve lower accuracies than State-of-the-Art
(SotA) deep learning approaches that train directly on the
target domain. However, recent approaches have begun to
close that gap [11, 12, 48].

One common thread among these approaches is the reli-
ance on having the entirety of the target domain available
at training time. While this is convenient for research, many
practical applications do not have unrestricted access to
the entire target domain. Recently, [33] introduced the set-
ting of Online Unsupervised Domain Adaptation (OUDA).
OUDA specifies that data from the target domain can only
be accessed through a data stream, bringing research more
in line with real-world applications. OUDA adopts a batch-
based relaxation [9] where different identities are separated
among batches to simulate streaming data. OUDA also
argues that confidentiality regulations make it such that
many real-world applications can only store data for a lim-
ited amount of time, applying a restriction that image data
cannot be stored beyond the batch in which it was collected.

Table 1 shows the challenges of real-world applications,
and how UDA and OUDA fail to fully address them. Like
UDA before it, OUDA uses hand-crafted person RelD
datasets for the target domain. Not only is the data stream
only simulated, but the provided person images were hand
selected by the creators of the dataset. In a real-world sys-
tem, person images need to be generated by the system itself,
creating a layer of noise not present in hand-crafted data-
sets. Further, using hand-crafted datasets, the distribution
of person images is guaranteed to be suitable for training.
Specifically, most person RelD dataset tend to have a fairly
uniform distribution, having around the same number of per-
son images for each identity [26]. However, in real-world
applications, there is no guarantee that person images gen-
erated from streaming data will form a uniform distribution
in identities. There is also no guarantee that every identity
in the dataset will be available for training. Additionally, in
real-world applications, we often see multi-camera systems
that rely on processing all this information in real-time. The
UDA and OUDA settings do not address this.

To bring the field closer to the real-world, this paper pro-
poses Real-World Real-Time Online Unsupervised Domain

Adaptation (R?OUDA), a setting designed to address the
challenges found in real-world applications, as seen in
Table 1. R?OUDA defines four major considerations beyond
the OUDA setting needed to develop systems for the real
world. First, R"OUDA considers that person images must
be generated algorithmically from streaming data. Second,
the distribution of data to be used in training must also be
determined algorithmically. Third, R2OUDA expands the
batched-based relaxation [9] of online learning to use time
segments, relating the conceptual mini-batch to the real-
world notion of time inherent in streaming data. Fourth, R?
OUDA defines a time constraint such that the time spent
training a single time segment cannot interfere with the
training for subsequent time segments. The first two con-
siderations address the noisy data inherent in real-world
systems, while the last two considerations address the time-
based streaming nature of data seen in real-time systems.

To address all aspects of the new R?OUDA setting,
this paper further proposes Real-World Real-Time Online
Streaming Mutual Mean Teaching (R®MMT). R2MMT is
an end-to-end multi-camera system designed for real-world
person RelD. Using object detection, pedestrian tracking,
human pose estimation, and a novel approach for Subset Dis-
tribution Selection (SDS), R’MMT is able to generate person
crops directly from a data stream, filter them based on rep-
resentation quality, and create a subset with a suitable dis-
tribution for real-time training. To show the viability of R?
MMT to meet the challenges of real-world applications, and
to explore the breadth of the R*OUDA setting, an exhaus-
tive set of experiments were conducted on the popular and
challenging DukeMTMC dataset [35]. Using R°MMT, over
100 data subsets were created and more than 3000 models
were trained, capturing the trade-offs and limitations of real-
world applications and the R2OUDA setting. R°MMT is a
real-world system that can meet the demanding requirements
of the proposed R*OUDA setting, and is able to achieve over
73% Top-1 accuracy on DukeMTMC-reid, within 0.1% of
comparable OUDA methods that cannot be directly applied
for real-world applications.

To summarize, this paper’s contributions are as follows:

Table 1 Challenges of real-
world applications and if they
are addressed in the UDA,
OUDA, and R20OUDA settings

Real-world UDA OUDA RrR?
OUDA
(Ours)

Data from target domain is only available through a data stream X /T v

Person crops are not provided and must be generated online X X v

There is no guarantee that every identity will be available during training X X v

The distribution of person crops must be determined online X X v

Training time must be accounted for X X v

¥ Streaming data is simulated
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— We define the setting of Real-World Real-Time Online
Unsupervised Domain Adaptation, accounting for the
challenges of real-world applications and bridging the
gap between research and application.

— We propose Real-World Real-Time Online Streaming
Mutal Mean Teaching, a novel end-to-end multi-camera
person RelD system designed to meet the challenges of
R20OUDA and real-world applications.

— We perform exhaustive experimentation, creating over
100 data subsets and training over 3000 models, to
explore the breadth of the R”OUDA setting and under-
stand the trade-offs and limitations of real-world appli-
cations.

2 Related work

The UDA setting for person RelID has been extensively
explored by the research community [24, 36, 45, 50]. In
general, there are two main categories of algorithms used
to perform UDA for person RelD: style transfer methods
and target domain clustering methods.

2.1 Style transfer

Style transfer-based methods generally use Generative
Adversarial Networks (GANs) [15] to perform image-to-
image translation [20], modifying images from the source
domain to look like the target domain without affecting the
context of the original images. [4] uses self-similarity and
domain-dissimilarity to ensure transferred images main-
tain cues to the original identity without matching to other
identities in the target domain, while [14] introduces an
online relation-consistency regularization term to ensure
relations of the source domain are kept after transfer to
the target domain. [28] separates transfers into factor-wise
sub-transfers, across illumination, resolution, and camera
view, to better fit the source images into the target domain.
[2] uses a dual conditional GAN to transfer source domain
images to multiple styles in the target domain, creating a
multitude of training instances for each source identity.
[42] uses a cycle consistent loss [55] with an emphasis
on the foreground to better maintain identities between
styles. [19] looks at domain shift as background shift and
uses a GAN to remove backgrounds without damaging
foregrounds, while a densely associated 2-stream network
integrates identity-related cues present in backgrounds.

2.2 Target domain clustering

Target domain clustering approaches focus on using clus-
tering algorithms to group features of the target domain for
use as labels to fine tune a neural network pre-trained on the
source domain [7]. This is usually done in an iterative fash-
ion, where clustering is performed between training epochs
to update the group labels as the model learns. [46] pro-
poses using a dynamic graph matching framework to better
handle large cross-camera variations. [10] introduces a self-
similarity group to leverage part-based similarity to build
clusters from different camera views. [26] utilizes a diver-
sity regularization term to enforce a uniform distribution
among the sizes of clusters. [13] introduces hybrid memory
to dynamically generate instance-level supervisory signal
for feature representation learning. [11] builds on [38], using
two teacher models and their temporally averaged weights to
produce soft pseudo labels for target domain clustering. [3]
utilizes both target domain clustering and adversarial learn-
ing to create camera invariant features and improve target
domain feature learning.

2.3 Online Unsupervised Domain Adaptation

While Online Unsupervised Domain Adaptation has been
explored for other Al tasks [6, 16, 23, 29, 30, 39, 47], it was
first defined for the field of person RelD in [33]. OUDA for
Person RelD aims to create a practical online setting similar
to that found in practical applications. OUDA builds upon
the UDA setting by adding two considerations. First, data
from the target domain is accessed via a data stream and not
available all at once. Second, due to confidentiality concerns
common in many countries, data from the target domain can
only be stored for a limited time and only model parameters
trained on that data may be persistent.

3 Proposed R2OUDA setting

The proposed setting of Real-World Real-Time Online Unsu-
pervised Domain Adaptation, building off OUDA [33], con-
siders that we have access to a completely annotated source
dataset Dy as well as partial access to an unlabeled target
dataset Dy in the domain of our target application. In con-
trast to standard UDA, in both OUDA and RZOUDA, the
data from D; is only accessible as an online stream of data.
Whereas both UDA and OUDA use person crops from hand-
crafted datasets, R”OUDA specifies that person crops from
Dy must be generated algorithmically from the data stream.
This reflects how data is gathered in the real world. Where
hand selected crops from datasets are generally highly rep-
resentative, crops generated from a data stream will have
varying levels of quality. This introduces noise in Dy, both in
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quality and in the inevitable missed detections, which needs
to be accounted for.

Additionally, hand-crafted datasets choose person images
to fit a distribution suitable for training. However, since
crops in R?OUDA are generated from streaming data, such
a distribution can not be assumed. This leads to the second
consideration of R*OUDA, that the distribution of data to be
used in training must be determined algorithmically. Instead
of relying on a predefined set of person images, systems
must generate their own data subset, determining its size and
distribution appropriately. This also reflects the real-world,
as it is rarely known beforehand the amount and distribution
of person crops that will be collected by an application.

Continuing with the batched-based relaxation [9] of the
online learning scenario proposed in [33], we further intro-
duce a time constraint for R’OUDA. First, instead of sepa-
rating our “mini-batches” (“tasks” as defined in [33]) across
identities, since R>OUDA requires actual streaming data,
the data stream is separated into discrete time segments. We
consider that for a chosen time segment of length 7, the
streaming data will be divided into equal, non-overlapping
time segments of length 7 whose combined contents are
equivalent to the original data stream.

For R2ZOUDA, we must account both for applications that
run continuously (i.e., the total length of the data stream is
infinite) and the fact that, in the real world, computation
resources are not unlimited. This leads to the necessity of a
time constraint, but one that is not simple to define. Training
time is inherently linked to hardware, and there are many
techniques to hide latency or increase throughput in system
design. As such, we simply define the time constraint such
that, for any time segment 7;, the length of time spent train-
ing on data collected during 7; must be such to not interfere
with the training for the data collected during 7;, . This is

to prevent the training time deficit from increasing infinitely
as i increases.

In summary, R*OUDA introduces four new considera-
tions to better match real-world applications:

— Person crops from the target domain must be generated
algorithmically from a data stream.

— The selection and distribution of data to be used in train-
ing must be determined algorithmically.

— An expansion of the batch-based relaxation to use time
segments, relating the conceptual mini-batch to the real-
world notion of time inherent in streaming data.

— An additional time constraint such that the time spent
training a single time segment cannot interfere with the
training for any subsequent time segments.

4 Real-World Real-Time Online Streaming
MMT

To address the challenges of R*OUDA, we present Real-
World Real-Time Online Streaming Mutual Mean Teach-
ing, a novel multi-camera system for real-world person
RelD. Similar to [31], R*MMT is comprised of multiple
Local Nodes and a single Global Node. Local nodes have
access to the data stream directly from the cameras and are
responsible for generating quality person images. The Global
Node has access to all data generated by Local Nodes and
is responsible for global RelD, subset distribution selection,
and target domain training. An overview of R”MMT can be
seen in Fig. 1.

On the Local Node, YOLOvVS [22] is used as an object
detector to find people in the video stream. Image crops are
created for each person and sent to both a pose estimator

Global
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Fig. 1 System view of Real-World Real-Time Online Streaming Mutual Mean Teaching
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(HRNet [37]) and a RelD feature extractor (ResNet-50
[17]). Coordinates for each person and features generated
by the feature extractor are sent to a tracker [44] for local
RelD. Afterward, feature and crop selection are performed
to ensure that features and person crops sent to the Global
Node for global ReID and crop collection are highly repre-
sentative. This process utilizes person bounding box coor-
dinates from the tracker to filter out any persons that have
significant overlap (IoU > 0.3) with other persons. This lim-
its the number of crops used for training and features used
for RelD containing multiple persons. The pose estimator
is used to determine the quality of the features themselves.
We reason that if a highly representative feature is present,
then poses generated from the person crop should be of high
confidence, while the number of keypoints present can help
determine if there is significant occlusion or cutoff. Only
crops and features with poses containing 15 or more key-
points (out of 17 total [27]) with at least 50% confidence are
sent to the Global Node. This helps ensure that the quality of
the crops used for training is similar to the quality of crops
found in hand-crafted datasets.

On the Global Node, local identities and features are
received from the Local Nodes and sent to a matching algo-
rithm. This matching algorithm, as described in [31], per-
forms global (i.e., multi-camera) ReID. Concurrently, person
crops from all cameras are collected for a single time seg-
ment. Generally, far more features will be collected than
can reasonably be used during training. For instance, when
DukeMTMC-Video [35] is sampled every frame, the system
produces over 4 million crops that pass feature selection. To
reduce redundancy and computation, R>MMT samples crops
for selection once every 60 frames.

After all person crops from a single time segment are col-
lected, the Subset Distribution Selection algorithm is used
to create a subset that maintains a uniform distribution and
number of crops suitable for training. R”>MMT uses an SDS
algorithm based on the metric facility location problem [34].
We define that given a number of features in a metric space,
we wish to find a subset of k features such that the mini-
mum distance between any two features within the subset is

maximized. However, this problem is known to be NP-hard
[21], making it unsuitable for our real-world applications.
R>MMT instead uses a greedy implementation of the algo-
rithm proven to be Q(log k)-competitive with the optimal
solution while proving to be significantly faster, especially
for larger sets of data [1]. For ease of readability, we adopt
the nomenclature of K to mean the number of instances per
identity. Therefore the total number of person crops in a
subset & is equal to the number of identities in the dataset
times K. To further reduce complexity, SDS is performed
on the data from each camera individually, and their results
are combined to form the complete subset. The SDS process
helps ensure we have a uniform distribution of identities in
our training data, similar to what is found in hand-crafted
RelD datasets.

Once the training subset is created, domain adaptation is
performed using Mutual Mean Teaching (MMT) [11]. R?
MMT follows the training methodology described in [11],
except that epochs and iterations are variable. Clustering
is done using DBSCAN [5], as GPU acceleration allows it
to perform much faster than CPU-based approaches. Exact
training parameters, both for pre-training on the source
domain and domain transfer on the target domain, are as
detailed in [11] unless otherwise noted.

Both SDS and training are time consuming, particularly
when dealing with large amounts of data. To meet the time
constraint of the R2OUDA setting, R”MMT utilizes a pipe-
lined processing model, taking advantage of parallel com-
puting resources while hiding the latency of the aforemen-
tioned tasks. An illustration of this pipelined approach can
be seen in Fig. 2. Crop collection, SDS, and training are
separated into their own pipeline stages. This means that
while a model collects data for the current time segment,
SDS on that data will occur the following time segment,
and the training for that subset will occur the time segment
after that. More formally, during a single time segment 7, a
model trained on data from 7),_5 is used to collect data from
time segment T, while subset distribution selection is per-
formed on data collected during T),_, and another network is
being trained on a subset created from data from 7)_,. All of
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these processes will finish before Ty, ;. This means there will
always be a latency of two time segments between collection
and inference for a single time segment. However, due to the
pipeline structure, training throughput remains at a rate of
one time segment per time segment. This satisfies the time
constraint of R?*OUDA.

5 Experimental results

To explore the setting of RZOUDA, we select the Market
1501 dataset [49] as the source domain and the Duke-
MTMC dataset [35] as the target domain. The DukeMTMC
dataset is desirable as a target domain because it has both
a video dataset (DukeMTMC-video) and a hand-crafted
person RelD dataset (DukeMTMC-reid), both in the same
domain. The video dataset is required in order to satisfy
the streaming data constraint of the RROUDA setting. The
hand-crafted RelD dataset brings two benefits. First, it
allows us to directly observe the effect of noisy system gen-
erated crops compared hand selected person images when
used for training. Second, testing on the RelD dataset allows
direct comparison with works done in the UDA and OUDA
space. As such, all our Top-1 accuracies are reported on the
DukeMTMC-reid dataset. Similarly, we determining subset
size, we treat the number of identities for both DukeMTMC-
reid and DukeMTMC-video to be 702, as described in [35].
The number of person crops in a subset & is always equal to
k x 702.

For all experiments, R>MMT is used to perform domain
adaptation. Parameters in all experiments are the same as
in [11], except where noted otherwise. All Local Nodes are
run on a single server with two AMD EPYC 7513 CPUs,
256 GB of RAM, and three Nvidia V100 GPUs. The Global
Node is run on a workstation with an AMD Threadripper Pro

3975WX CPU, 256 GB RAM, and three Nvidia RTX A6000
GPUs. All timing results presented in this section are using
this Global Node.

5.1 Subset Distribution Selection

We first explore the effect of using our baseline Subset
Distribution Selection algorithm for training on the Duke-
MTMC-reid dataset. Using hand-selected person crops from
the dataset, we remove the effect of noise generated by our
system and single out the impact of our SDS algorithm and
the reduction in amount of data on domain adaptation. We
vary the number of person images per identity K, iterations
per epoch /, and total epochs E as shown below. Note that
using the entire DukeMTMC-reid dataset would be equiva-
lent to K = 25.

K €12,4,6,8,10,12, 14,16, 18, 20]
I € [100, 250, 500, 750, 1000, 1500] ¢))
Ee€[1,2,3,5].

These variable ranges lead to 240 training permutations,
which is difficult to list in a single table. Instead, the results
are plotted in a three-dimensional space and can be seen in
Fig. 3. Training Time and Top-1 make up the x and y axes,
Epochs are the z axis, Iterations are noted by color, and k
is indicated by size, with bigger circles representing higher
values of k. As the purpose of these experiments is to focus
on the effects of our SDS algorithm, the system pipeline
described in Sect. 4 is ignored and timing results count SDS
and training sequentially. More detailed information on these
experiments can be found in the supplementary materials.
From these graphs, we can understand the general trend of
the data. Intuitively, we see a fairly linear trend where more
data generally results in higher Top-1 accuracy. Likewise,

80 Tterations
1,500

1,000

Top-1 (%)
&

w—LoT ° 750

500

s P 250
10 100
Sy 4, e D O Sy P T, Ta S, S

% Y, ", %, %, 0, %, ", ",

Time (s)

()

Fig.3 Results exploring SDS on the hand-crafted DukeMTMC-reid dataset [35]. a and b Show two views of the results plotted in three-dimen-
sional space, while (¢) shows a two-dimensional view when E = 5. Larger circles represent larger values of k
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more iterations per epoch and more epochs also tend to result
in higher accuracy. Interestingly, with lower values of £ we see
the reverse effect; more time spent training results in decreased
accuracy, sometimes even below the pre-trained accuracy of
42.0%. In general, at least 6 person images per identity are
needed to consistently learn, while we start to see diminish-
ing returns at around 16 person images per identity. The top
result occurs when K = 20,/ = 1500, and E = 5, achieving a
Top-1 accuracy of 74.55% with a training time of 82 minutes.
This is only 3.5% less than what comparable algorithms are
able to achieve in the UDA setting [11] and over 2% greater
than the same algorithm in the OUDA setting [33]. When
using the same hardware, R?®MMT is 2.6 faster than its UDA
counterpart.

5.2 System Generated Data

As explained in Sect. 3, one of the requirements of the R?
OUDA setting is that person crops must be generated algorith-
mically from a data stream. As such, it is necessary to explore
the effects of the noise this introduces. The structure of these
experiments are exactly the same as in Sect. 5.1, except that
instead of using DukeMTMC-reid, R®MMT generates data
from the DukeMTMC-video dataset. Similar to Sect. 5.1, we
ignore the system pipeline and focus on the effects of the gen-
erated data. Based on the larger amount of data available in
DukeMTMC-video, the ranges for our experimental variables
are adjusted as shown below. Using all generated data would
be equivalent to K = 99.

K €16, 18,20, 25,30,40]
I € [100, 250, 500, 1000, 1500] 2)
Ee[1,2,3,5]

The results of this exploration can be seen in Fig. 4, with
more details available in the supplementary materials. Axes
are identical to Fig. 3, with color and size representing itera-
tions and k respectively. These graphs show a somewhat
similar trend as in Sect. 5.1 with some interesting devia-
tions. While the trend starts off with accuracy increasing as
k gets larger, there is a sharp decrease in accuracy when k
increases beyond a certain point. The scale of the decrease,
as well as how early it occurs, lessens with both iterations
and epochs. This is likely a byproduct of how many identi-
ties are present in DukeMTMC-video. While DukeMTMC
only labels a total of 1404 identities, our system is able to
detect far more. Increasing iterations has such a drastic effect
here because it determines how many of and how often these
identities are seen during an epoch. Further increasing itera-
tions and epochs could help mitigate this, but would also
increase overall training time. This, combined with the
fact that more epochs and more iterations always result in
higher accuracy, suggests that accuracy saturation has not
been reached here, and the main limiting factor is training
time. The highest accuracy achieved on this noisy data was a
Top-1 of 69.34%, with K = 20, I = 1500, E = 5, and a total
training time of just under 57 minutes. This is notably worse
than both the 74.55% achieved in Sect. 5.1 and the 72.3%
MMT achieves in the OUDA setting [33]. This demonstrates
the extreme impact noisy data can have on unsupervised
domain adaptation, and why the extra considerations of the
RZOUDA setting are a necessity when designing algorithms
for real-world applications.

5.3 R°MMT
Finally, we make the first attempt at addressing the R”>2OUDA

setting. An exhaustive set of experiments are conducted with
RMMT, producing a fully functional, end-to-end system that
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Fig.4 Results exploring the use of system generated data using DukeMTMC-video [35]. a and b Show two views of the results plotted in three-
dimensional space, while (c¢) shows a two-dimensional view when E = 5. Larger circles represent larger values of &

@ Springer



107 Page8of12

Journal of Real-Time Image Processing (2023) 20:107

meets all the requirements of the R2OUDA setting. R°MMT
generates person crops from a stream of data, uses SDS to
construct training subsets, operates on the notion of time seg-
ments, and must adhere to the strict time constraint outlined
in Sect. 3. A successful implementation will conform to all of
those standards while achieving the highest accuracy possible,
ideally within range of what was seen in Sect. 5.1.

One hour of DukeMTMC-video is used as the data stream,
split into equal sized continuous segments of size 7. SDS is per-
formed at each time segment on each camera individually, and
k refers to the total number of person crops across all training
subsets for the full hour. Two methods are used to determine the
number of crops needed at each time segment. In the standard
method, only data collected in a time segment may be used for
training related to that time segment. The second method uses a
form of memory, allowing the use of data from the current time
segment and previous time segments still in memory. For these
experiments, we assume a memory length of up to 60 min.
Equations 3 and 4 are used to calculate the number of person
crops needed from each camera at each time segment, for the
standard and memory-based methods respectively.

-1 3

k=Y Y PC)PICinr,), ()

=0 i=1

Dy g

k= Z D P(C) Y P(CinT), @
n=0

=0 i=1

where k is the total number of person crops desired for the
training subset over an hour of video stream, 7, is a time seg-
ment of length 7 minutes that begins at 7 X ¢ minutes, C, is
the i’ camera, P(C;) is the percentage of total person crops
received from C; when compared to all cameras over an hour
of video, and P(C,)P(C; N 7,) is the percentage of person
crops received during 7, for C; compared to all person crops
received from C; over an hour of video.

This ensures the number of person crops selected
for a subset from each camera at each time segment is

proportional to the number of person crops received. The
variable ranges used in these experiments are shown below.
K €[18,20,25, 30,40, 50]

I € [100, 250, 500, 750, 1000, 1500]
E€[1,2,3,5]

T € [15,20,30]

(5)
tEZ:{OStS(%—l)}.

This creates over 2500 data points across the two methods,
becoming difficult to visualize even in three-dimensional
space. Figure 5 displays the distribution of training accuracies
for each 7 at each time segment. Out of the 864 configurations
tested, more than half of them failed to consistently meet the
time requirement of R?OUDA and are not included in the
statistics. Most notably, all configurations that used memory
failed to consistently meet the time requirement when given
a 7 of 15. When memory is utilized, the time required for
SDS greatly increases for successive time segments as more
images accumulate. This limits how large k can be, restricting
K to 20 or below when 7 = 20 and 30 or below when 7 = 30.
Even without memory, the time constraint proves very limit-
ing. Only when 7 = 20 is the entire range of K able to be
utilized. For a more fine grain look at all 2500+ data points
in this experiment, please see the supplementary materials.

The data in general follows similar trends as seen in
Sects. 5.1 and 5.2, but to more of an extreme. In addition
to disqualifying several configurations off the bat, the seg-
mented data stream and time constraint generally mean R>
MMT has less data to work with during any given train-
ing. Unlike in the previous experiments, the time constraint
prevents the system from just throwing more data and
more training at the problem. Instead, a balance must be
found. We see an overall increase in top accuracies when ¢
increases, both in standard and memory configurations. Top
accuracies also increase over time, with one notable excep-
tion. When 7 = 15, accuracy actually drops in the final time
segment. This is due to the extremely low amount of data
available in that particular time segment.

[T I ] I I _+
~ 60 70| 1 o6e0f 1 ol ]
E 50| 60 -
60 | B 60 |-
'L 40 % 0 % | % 50 B
S 30| N 501 1 40 = JEEEE i
| | | | | | | | |
01 2 3 0 1 2 0 1 0 1 2 0 1
t t t t t
(a)r=15 (b) =20 (c)r =30 (d) r=20 (e)r =30

(w/ memory) (w/ memory)

Fig.5 Distribution of accuracies achieved on DukeMTMC [35] with R2MMT
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Table 2 . Distribution of - t Min 0, 0, 0, Max
accuracies achieved on
DukeMTMC [35] with R2MMT REMMT
15 0 35.28 40.93 43.76 47.80 52.29
1 35.68 41.43 44.48 51.66 57.05
2 30.92 37.75 41.97 52.74 59.92
3 26.30 33.62 40.89 51.71 58.08
20 0 39.00 44.39 50.27 54.29 61.63
1 33.75 42.42 55.39 61.15 68.76
2 28.73 43.31 56.96 63.85 69.97
30 0 44.30 51.35 54.76 59.04 65.66
1 43.22 53.91 58.71 65.04 72.08
R*MMT with memory
20 0 38.87 41.67 42.77 43.65 46.36
1 38.42 45.20 48.03 49.87 54.26
2 37.88 47.44 51.35 53.90 60.73
30 0 44.26 50.30 54.17 57.72 64.36
1 47.58 58.39 62.17 67.00 73.21

Another interesting observation can be made by looking
at 7 = 20 both with and without memory. While the stand-
ard R MMT achieves higher overall top accuracies, the dis-
tribution is a lot more varied when compared to R> MMT
with memory. Many configurations actually lose accuracy,
far more than when memory is present. This suggests that
while memory is limiting, it may add stability to training
over time. This is further demonstrated when = = 30. When
memory is used the maximum accuracy is lower in the first
time segment, being restricted to a lower value of K, but is
higher in the second time segment due to the increased range
of available data.

Table 2 and Figure 6 show the best configurations of
RZMMT, both with and without memory, for each z. The
overall highest accuracy is achieved with memory when
7 =30, K =30, E=5, and I/ = 500, reaching an impres-
sive 73.2% Top-1. Despite the much harsher requirements
of the R2OUDA setting, this is within 0.1% of the best
possible accuracy using MMT in the OUDA setting [33].
However, with a 7 of 30 it also has a latency of 60 min
between collecting data and inferencing with a model
trained on that data. This can be reduced to 30 min by
changing 7 to 15, but then accuracy drops to a disappoint-
ing 58.08%. Interestingly, with a = of 15, accuracy actually
drops in the final time segment. This is due to a limited
number of persons present in the dataset during that time,
leading to less data available for training and making the
model less generalizable. A 7 of 20 splits the difference,
achieving a final Top-1 of 69.97% while reducing the infer-
ence latency to 40 min. This is within 4% of our best over-
all result, and reduces the delay by over 30%.

The strict time constraint disqualified many of the con-
figurations in Sect. 5.3. However, if we ignore the time

constraint for a moment, we see accuracies reaching up
to 76.53% whent =15, K =40, E=5,and I = 1500 in a
system with memory, putting it within 1.5% of MMT in the
UDA setting [11]. With further optimization or more pow-
erful hardware, R’MMT might be able to achieve higher
accuracies with decreased latency between collection
and inference. This shows that there is a lot of room for
improvement and growth in the R OUDA setting. Overall,
it is clear that larger values of K and more training time
lead to better results, but the time constraint limits both of
these factors. For any practical implementation, a balance
must be found for that specific use case. The explorations
in this paper can serve as a guideline for future works.
The specific optimal ranges for each variable will shift
with different target domains, but the overall trends and
optimization techniques will be consistent.

— \ =
1520 30 4045 60

Time
Fig.6 Best results for each system configuration. Dashed lines (- -)
represent standard configurations. Solid lines (-) represent configura-

tions with memory. Green, , and purple denote 7 values of 15,
, and 30 respectively
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6 Conclusion

This paper proposed the setting of R?*OUDA, to better rep-
resent the unique challenges of real-world applications. R?
MMT was introduced as the first attempt at a real-world,
end-to-end system that can address all the demands of the
RZOUDA setting. An exhaustive set of experiments were
conducted, using R*MMT to create over 100 data subsets
and train more than 3000 models, exploring the breadth
of the R?”OUDA setting. While meeting the harsh require-
ments of RZOUDA, including noisy data and time con-
straints, R2MMT was able to achieve over 73% Top-1 accu-
racy, reaching within 0.1% of comparable SotA OUDA
approaches without noisy data or a time constraint, that
cannot be directly applied to real-world applications.
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