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ABSTRACT

Large Language Models (LLMs), such as ChatGPT and Google Bard,
have performed interestingly well when assisting developers on
computer programming tasks, a.k.a., coding, thus potentially re-
sulting in convenient and faster software constructions. This new
approach significantly enhances efficiency but also presents chal-
lenges in unsupervised code construction with limited security
guarantees. LLMs excel in producing code with accurate gram-
mar, yet they are not specifically trained to guarantee the security
of the code. In this paper, we provide an initial exploration into
using formal software specifications as a starting point for soft-
ware construction, allowing developers to translate descriptions
of security-related behavior into natural language instructions for
LLMs, a.k.a., prompts. In addition, we leveraged automated verifica-
tion tools to evaluate the code produced against the aforementioned
specifications , following a modular, step-by-step software construc-
tion process. For our study, we leveraged Role-based Access Control
(RBAC), a mature security model, and the Java Modeling Language
(JML), a behavioral specification language for Java. We test our
approach on different publicly-available LLMs, namely, OpenAl
ChatGPT 4.0, Google Bard, and Microsoft CoPilot. We provide a
description of two applications—a security-sensitive Banking ap-
plication employing RBAC and an RBAC API module itself—, the
corresponding JML specifications, as well as a description of the
prompts, the generated code, the verification results, as well as a
series of interesting insights for practitioners interested in further
exploring the use of LLMs for securely constructing applications.

CCS CONCEPTS

« Security and privacy — Access control; Software security
engineering; - Computing methodologies — Artificial intel-
ligence.
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1 INTRODUCTION

Released in late 2022, ChatGPT took the world by surprise, and
rapidly became a technological and media sensation in early 2023.
Based on Large Language Models (LLMs) [3], a popular technique
under the vast spectrum of Generative Artificial Intelligence (AI), it
can eloquently summarize vast amounts of knowledge as a response
to user-issued prompts, and has reportedly performed impressively
well in domains such as financing, journalism, and fiction writing.

Despite the hype, some pitfalls concerning ChatGPT have been
actively discussed by experts, as it may lack the fundamental fea-
tures devised for a broader, General Purpose Al [39]. As an example,
when asked for research papers, it makes them up completely (e.g.,
hallucination) [22]. Also, ChatGPT has been criticized as it may lack
enough safety and security controls. For instance, it may refuse to
serve controversial content when asked directly, but workarounds,
e.g., asking for the same content without explicitly mentioning the
controversial parts, are possible [30].

LLMs in general, have been prophesied as the next evolution
of computing programming, a.k.a., coding, as conversations with
LLMs may result in code being produced, in a variety of different
programming languages [16]. Such a feature has become really
attractive, as it may significantly alleviate the burden of coding, e.g.,
design, implementation, and debugging, resulting in faster, more
efficient developments and improved maintenance over time [1].

Lately, there has been an interest in augmenting Generative Al
approaches such as LLMs with human expert intelligence for en-
hanced results [37, 17, 24]. In our particular context, there is a need
for human-in-the-loop pipelines for developing applications from
scratch securely and efficiently using LLMs (e.g., ChatGPT, Google
Bard / Gemini, Microsoft Copilot or CodeX). To this aim, we pro-
pose a pipeline for developing security-sensitive applications using
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LLMs by leveraging the concept of chain of thought [40], which
refers to a series of connected cognitive reasoning steps in a per-
son’s thinking. Our method is to decompose a conceptual complex
task (described and defined in natural language) into a series of
structured and coherent sub-tasks, facilitating a logical progressive
process throughout the code development. Specifically, we decom-
pose the pipeline for secure constructing applications into three
stages: composing specifications in the Java Modeling Language
(JML) [4], generating code from JML specifications, and refining
and validating code using JML-based validation and verification
tools (V&V). Each stage is facilitated by LLMs to reduce the amount
of human effort required. The proposed pipeline aligns with the
logic progression followed by software programmers when develop-
ing applications. Decomposing the complex task into manageable
sub-steps also enables human-in-the-loop correction, where soft-
ware programmers can refine and validate the application’s security
features at different levels.

With that in mind, this paper reports on our experiences when
performing two case studies in which we leveraged our specification-
based pipeline approach to construct two applications, a Banking
Application as well as a role-based authorization API. The Banking
Application implements banking functionality, such as depositing,
withdrawing, or transferring money, as well as security-related func-
tionality such as restricting the execution of such operations to cer-
tain users only (authorization). The authorization API implements
common concepts for Role-Based Access Control (RBAC) [32], a
well-known access control model.

Overall, this paper makes the following contributions:

(1) In Sec. 2 and Sec. 3, we introduce a discussion on the function-
ality that LLM must provide to effective serve as assistants to
human developers while constructing software applications,
which may include, but may not be limited to: (i) the acquisition
of previously-unknown knowledge; (ii) the reduction of the
overall workload; and, (iii) the support on effectively removing
functional bugs and security vulnerabilities at the source code
level.

(2) In Sec. 4, we present a systematic, pipeline-inspired approach
combining LLMs and human intelligence, supporting task of
constructing secure code by using LLMs and formal specifica-
tions, such that not only LLMs can be leveraged to obtain more
knowledge on the implementation domain of such applications,
but can be also leveraged to automatically generate and correct
code as directed by the results of verification and validation
tools.

Finaly, in Sec. 5, we present the results and the lessons learned

while conducting two case studies in which LLMs were lever-

aged as assistants using our proposed approach. We provide

a description of the JML specifications, the LLM prompts, the

generated code, the verification results, as well as a series of

interesting insights for future practitioners. Overall, our results
show that LLMs can: (i) generate non-trivial functional and se-
curity requirements; (i) understand, generate, infer, and explain

JML specifications; (iii) generate code from JML specifications;

(iv) understand, generate, explain, and correct RBAC policies; (v)

correct code based on feedback received from verification tools;

—
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/*@ requires array.length > 0;
@ ensures (\forall int i;
@ 0 <= i < array.length-1;
Q@ arrayl[i] <= array[i+1] );
@x/

public void sortAscending (int[] array ){
//bubbleSort(array);
quickSort(array); 3}
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Figure 1: A Sample DBC Contract.

and, (vi) translate JML specifications to other programming and
annotation-based specification languages.

2 BACKGROUND AND RELATED WORK

2.1 Assertion-based Contract Specifications

Design by Contract (DBC) [19] is a well-known software devel-
opment methodology in which the original developers of a soft-
ware module M establish a contract with other future developers,
a.k.a., clients, for M to be used correctly when building software.
Commonly, such a contract is defined in terms of formal descrip-
tions (specifications), a.k.a., assertions [31] in the form of pre- and
post-conditions: before using M, clients must make sure that M’s
pre-conditions hold. Similarly, the original developers must guar-
antee that M’s post-conditions hold once it has finished execution.
Fig. 1 shows a DBC contract written in the Java Modeling Language
(JML) [4], a DBC-inspired specification language for Java mod-
ules, i.e., the class method sortAscending. Pre-conditions (line 1),
expressed by means of the requires keyword, require the input
array to have a length greater than zero. Post-conditions (lines
2-4), expressed by means of the ensures keyword, state that, if the
pre-condition just mentioned is met, the input array will have all
elements in ascending order. Finally, as shown in lines 7-8, the orig-
inal developers may choose among different options to implement
the sortAscending method.

2.2 Verification and Validation Tools

Over the years, a suite of tools has been developed to verify the
correctness of software modules by checking their source code
implementations against their DBC contracts. As an example, the
contract of a module M can be used as a test oracle by first translat-
ing it into Runtime Assertion Checking (RAC) code [7]. Then, values
are randomly created for each of M’s formal parameters, and com-
pared against the RAC code created for M’s pre-condition. If such
a pre-condition is satisfied, a valid test case is said to be created.
Otherwise, the test case is discarded. If the test case is valid, M’s
body and the RAC code for M’s post-condition are both executed. If
the post-condition is satisfied, the test is regarded as a success, and
as a failure otherwise. Going back to Fig. 1, a set of valid test cases
would include producing instances of the input parameter array
whose length is greater than zero. Once the test cases are executed,
if the resulting array always has all of its elements correctly in
ascending order, the sortAscending method is said to have been
verified successfully.

Beyond the dynamic validation approach with RAC, also static
techniques and supporting tools exist. One well-established tech-
nique is Extended Static Checking (ESC). Extended Static Checkers
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RBAC3:

- a set of Roles R,

set of Users U,

set of Permissions P,

Role Hierarchy RH,

role-user assignment UA C R X U,
role-permission assignment PA C R X P,
set Card of constraints on RH, UA, PA.
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Figure 2: The RBAC3 Security Model.

attempt to statically establish DBC assertions (contracts) without
any need for running the application. To be effective, ESC is based
upon the principle of modular reasoning, which implies that it at-
tempts to verify one method at a time [14]. For verifying a method’s
assertions, it uses the contracts of the methods called within rather
than the code itself. The verification is then carried out by translat-
ing a method’s code and specifications into verification conditions,
which in turn are checked by a built-in automated theorem prover.
As the problem of Extended Static Checking is not decidable in
general, false positives and negatives may be produced. The Open-
JML tool-suite offers both RAC and ESC capabilities, which makes
it an attractive validation platform for Java-based contracts [10].
Recently, a German security authority has mentioned OpenJML
as one of the tools supporting the formal verification of secure
software [2] demonstrating its relevance. Also, Bertrand Meyer,
who first developed the DBC methodology described in Sec. 2.1,
points out the problems of Al-based automated code generation by
giving a detailed example. To overcome such problems, he proposes:
“For the past few years, in the competition with remarkable new
subjects such as (surprise) machine learning, these disciplines of
requirements analysis, precise specification, and software verifica-
tion (both dynamic tests and static analyses including proofs) have
taken a second seat.” [20] Our work follows this line of thinking.

2.3 Role-Based Access Control

Role-Based Access Control (RBAC) has is the leading security model
for defining and enforcing authorization properties in software sys-
tems, mainly due to its flexibility and manageability [32]. Over the
years, RBAC has developed to the de-facto standard for access man-
agement in industry due to its economic impact [23]. Fig. 2 shows
a formal description of RBAC3, one of the different sub-models of
RBAC. The basic components, roles, users, and permissions, are
defined in the context of sets (lines 1-3). Roles are in turn organized
into a partial order called the role hierarchy (line 5). For instance, a
role r € R is said to be senior to another role r’ € R, and, conversely,
role r’ is said to be junior to role r if and only if (r, r’) € RH. Users are
assigned to roles by means of the UA relation (line 6). Conversely,
permissions are assigned to roles by means of the PA relation (line
7). Constraints on the RH, UA, and PA relations are shown in line 8.
For instance, the constraint (u, UA, 1)* € Card restrict every user
u € U to be assigned to a single role only. Finally, a user u € U is
granted a permission p € P if and only if there exists (u,r) for some
role r € R, and either (r, p) € PA or (', p) € PA for some role r’ € R
and (r, r’) € RH.

2.4 Using LLMs for Coding

LLM (Large Language Models) is a deep model that is trained on
large-scale datasets with the aim of generating human-level text [3].
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One notable and widely discussed LLM is the GPT (Generative
Pre-trained Transformer) family developed by OpenAl, including
GPT [28] and GPT2 [29]. These models are trained to predict the
next token based on the previously generated tokens. LLM has also
gained attention for its potential in generating near-human-level
code. It can generate API calls [26], aid in self-debugging [5, 27],
and automate data analysis [6].

Despite the impressive performance of LLM in coding tasks, it
still needs to be improved to reach human-level proficiency. Various
techniques are being employed to enhance the accuracy of code
generation. One popular approach is to incorporate the concept
of a chain of thoughts (COT) into the prompting [40]. COT refers
to a series of connected reasoning steps or ideas in the thinking
process of humans. Drawing inspiration from the success of COT
techniques, a line of work seeks to promote coherent and struc-
tured reasoning for coding, such as turning one complex coding
task into several rounds with self-debugging and few-shot demon-
strations [5], decomposing a complex coding task into smaller sub-
tasks [27, 25], and dissecting intricate tasks into more digestible
sub-problems tackled in a sequential manner (e.g., “least-to-most
prompting” [41]). Another line of work seeks to understand code
generation via explanations. One study demonstrates the LLM’s
promise in reducing the steep learning curve associated with under-
standing code semantics [18]. Meanwhile, another study evaluates
on GitHub Copilot, a tool powered by LLMs. While initial indica-
tions hint at the tool’s efficacy in assisting with code inception,
the study elucidates the challenges of interpreting and debugging
code snippets generated by Copilot [36]. People have also started
to realize the importance of LLM’s security issues. For example,
Subhash et al. explore Gradient-based universal adversarial attacks
on large language models to ensure the models’ responsible and
secure deployment for high-risk sectors [35]. However, we focus on
the security issues of LLM-generated codes instead of adversarial
attacks on LLM itself, which has not been much observed in the lit-
erature. A recent work in this area comes from Sandoval et al. [33].
They carried out a study with Computer Science students, which
points out that only about 10% more typical low-level security bugs
have been introduced in C code while using an LLM. Although this
rate is surprisingly moderate, one can, however, conclude that the
productivity gained by employing an LLM did not lead to more
secure code.

3 PROBLEM STATEMENT

The tool-based, automated/semi-automated generation of code
based on a series of pre-defined requirements has been largely
studied in the literature in the past, applying a plethora of different
approaches and techniques, with varying results [15]. Unfortu-
nately, a constant among these approaches is the lack of adoption
in practice [34]. However, given the emerging popularity of LLMs,
and the promising results obtained when asked to perform cod-
ing tasks as described in Sec. 2.4, we believe there is an enormous
potential for the widespread adoption of such a technique. There-
fore, in this paper we are interested in exploring the capabilities of
publicly-available LLMs to answer the following research question:
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Figure 3: The research question considered in this paper: Are
LLMs effective assistants for building secure applications?

RQ1: Can publicly-available LLMs be effectively and efficiently lever-
aged for securely constructing software applications?

Concretely, an approach combining human developers, LLMs,
and other relevant tools like the ones described in Sec. 2.2 should
not only make the development process faster, but should also
significantly contribute to producing a better and more secure
application. That includes successfully meeting the following goals:

e G; [Knowledge]: An LLM-based approach must assist human
developers on improving the domain-specific functional as well
as the security-related knowledge needed to successfully build a
secure application. Knowledge can be improved in a quantitative
way, e.g., obtaining a larger number of relevant functional and
security requirements; or in a qualitative way, e.g., improving
the target rules of access control policies to be enforced by the
application under construction.

e Gy [Workload]: An LLM-based approach must assist human
developers with reducing the overall workload required to suc-
cessfully build a secured application. In this context, workload
can be defined in terms of the efforts required to carry out the
design, implementation, and testing of the target application, and
can be measured by the overall time required for such tasks, the
number of coding hours, the number of hours spent on perform-
ing tests, etc.

e Gs [Verification]: An LLM-based approach must assist human
developers with detecting and removing any software incon-
sistencies and/or errors, a.k.a., bugs in both functional and/or
security-related implementation code. That may include classical
functional bugs such as arithmetic miscalculations as well as
security-related ones such as vulnerabilities introduced in the
enforcement code of access control policies.

e Gy [Validation]: Finally, an LLM-based approach must assist
human developers with constructing a software application that
meets both its functional and security requirements. That in-
cludes making sure that the implementation code is correctly ver-
ified and validated with respect to the requirements enunciated
in G; [Knowledge], and has removed any bugs/vulnerabilities
as stated in G3 [Verification].
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In Sec. 5, we present the lessons we learned while conducting two
case studies based on the approach we present in Sec. 4, which pro-
vide empirical evidence towards answering the research question
considered in this paper.

4 OUR APPROACH: COMBINING HUMAN
AND ARTIFICIAL INTELLIGENCE

We now present our initial exploratory work to answer the research
question presented in Sec. 3. Concretely, we are interested in lever-
aging LLMs to assist human developers on transforming a series
of initial requirements, possibly contained within a software de-
sign document written in English, into a securely tested software
application by means of a systematic construction approach.

4.1 Preliminary Assumptions.

For the purposes of our approach, we assume that human developers
have accumulated experience on software construction/develop-
ment matters above an entry, a.k.a., junior, level. That may include
pro-efficient coding skills in Object Oriented Programming (OOP),
e.g., encapsulation, inheritance, and polymorphism, as well as test-
ing and debugging. Also, we assume developers are knowledgeable
in the topics discussed in Sec. 2, i.e., formal specifications (Sec. 2.1),
specification-based V&V tools (Sec. 2.2), the RBAC security model
(Sec. 2.3), and prompt engineering techniques for LLMs (Sec. 2.4).
Finally, the development of an approach at the beginner and junior
experience levels, e.g., programming students and/or recent gradu-
ates, or senior developers not familiar with the topics discussed in
Sec. 2, is left as a very interesting line of future work.

4.2 A Pipeline for Secure Software
Construction.

As shown in Fig. 4, our approach consists of a pipeline that leverages
LLMs, formal specifications, as well as verification and validation
tools, all combined as follows:

(1) Requirements Gathering. We start with a pre-defined initial list
of functional and security software requirements, written in the
natural language, which is provided by the human developers.
Our goal is to collect minimum human knowledge as seed.
Next, we ask the LLM assistants to generate an additional list
of natural language requirements, which are later combined
with the initial one to produce a final list that is consumed in
subsequent steps of our pipeline.

Preliminary Specifications. Next, we asked our LLM assistant to
generate a series of preliminary, a.k.a., rough, JML specifications
based on such natural language requirements.

Specification Refinement. Our next step consists on manually
customizing, a.k.a., refining, the JML specifications obtained in
the previous step, in an effort to better describe the intended
behavior of the software, e.g., handle special and/or corner
cases, exceptions, security violations, etc. This step may require
proficiency in the formulation of JML specifications, since even
when the specifications produced by the LLM in the first place
may be of decent quality, still the input of an expert is desired to
correctly describe security and functional behavior. We argue
that our approach with minimal supervision ensures superior
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Figure 4: A Pipeline for Securely Constructing Applications Using Formal Specifications and LLMs.

security quality, in contrast to designing from scratch or without
non-supervision.

Prompt Generation. Once the JML specifications have been re-
fined, we propose to use them as scripts for generating prompts,
which will be then later fed to the LLM. For this process, we
identify three different techniques: (i) Syntax-Guided Approach:
the prompts are created by wrapping the specifications as fol-
lows: we start with the post-conditions, and then continue with
pre-conditions, processing one requires/ensures clause at a time.
Inside each clause, we unwrap each complex statement, and
produce a prompt separately, which is added to the result pool.
(ii) Specs-Assisted Prompts: The prompts are created by asking
the LLM to explain a subset of the JML specifications, which are
fed one at a time as explained in the previous technique. Then,
from each explanation, an individual prompt is generated sepa-
rately and added to the result pool. (iii) LLM-Assisted Prompts:
This approach proceeds as the previous one by submitting the
JML specifications to the LLM. However, this time, the LLM is
asked to produce the prompts directly, without any extra con-
tent or explanation. From there, a manual customization of each
prompt may take place if desired. As before, each generated
prompt is finally added to the result pool.

Code Generation. Each individual prompt in the result pool is
then fed to the LLM to produce code. Related prompts may also
be combined together if needed, e.g., the prompts related to a
single Java method. The resulting code is then merged into a
single Java module and compiled locally for correctness.

Code Verification & Validation. Finally, the code generated by
the LLM is forwarded to the JML-based V&V tools provided
by the OpenJML framework, i.e., RAC and ESC, as described in
Sec. 2.2. If errors are found by those tools, these are fed back
as prompts to the LLM and it is asked what went wrong. If the
LLM cannot provide a convincing solution to the issues, then

the code is manually modified and fed again to the V&V tools.
Alternatively, the JML specifications can also be modified man-
ually, as illustrated in Step 3, and the pipeline is restarted from
that point onward: prompt generation (Step 4), code generation
(Step 5) and verification (Step 6).

5 CASE STUDIES

In this section, we present a pair of case studies we conducted fol-
lowing the pipeline approach discussed in Sec. 4, which leverages a
series of publicly-available LLM assistants for securely construct-
ing software. We start in Sec. 5.1 by describing the methodology
we followed for both studies, which includes a summary of the
sessions conducted with our LLM assistants as well as a description
of the criteria used to evaluate the effectiveness of the information
retrieved from them. Next, in Sec. 5.2, we describe the construction
of a banking application that implements RBAC as a security model
to restrict access to critical functionality, e.g., withdrawing money
from an account. Later, in Sec. 5.3, we describe the development of
an Application Programming Interface (API) for the RBAC security
model. For each case study, we present the natural language (Eng-
lish) requirements, the preliminary and refined JML specifications,
the code obtained from our LLM assistants, as well as the final code
that was obtained after using JML-based tools. Finally, in Sec. 5.4,
we present a summary of the lessons we learned during our case
studies, which we hope are useful for future practitioners interested
in leveraging our approach for secure software construction.

5.1 Methodology

LLM Sessions. We carried out a series of interactive sessions with
the LLMs considered in our study by leveraging the COT techniques
described in Sec. 2.4. We started our sessions by asking our LLM
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1 Balance(A): Returns the balance of the bank

2 account A. Such balance must never
3 be negative.

4 Deposit(A,M): Increments the balance of A by

5 a positive amount M.

6 Withdraw(A,M): Decrements the balance of A by
7 a positive amount M if and only

8 if the balance of A is greater or
9

equal to M.
10 Transfer(A,B,M): Increments the balance of A
11 by a positive amount M, which is
12 then decremented from the balance
13 of B if and only if the balance
14 of B is greater or equal to M.

(a) Initial Requirements Obtained from Human Developer.

Figure 5: Sample Requirements

1 /*@ requires amount > 0.0 &&

2 @ amount <= acc.balance;

3 @ ensures ((acc.balance ==

4 Q@ \old(acc.balance) - amount) >= 0);
5 @x*/

6 public boolean withdraw(double amount){...}

Figure 6: Preliminary Specifications for withdraw generated
by ChatGPT.

/*@ requires amount > 0;

@ requires balance >= amount;

@ ensures \old(balance) - amount == balance; =*/
public void withdraw(int amount) {...}

S

Figure 7: Preliminary Specifications for withdraw generated
by Google Bard.

1 //@ requires amount > @ && balance >= amount;
2 //@ ensures balance == \old(balance) - amount;
3 public boolean withdraw(double amount){...}

Figure 8: Preliminary Specifications for withdraw generated
by CoPilot.

assistants about any specific real-life deployments of the technolo-
gies considered in our case studies, in order to provide a suitable
starting context. Next, we asked our LLM assistants about specific
information related to each of the steps of our proposed pipeline
approach, e.g., for Step 1, we inquired about a series of specific
functional and security requirements, e.g., operations and security
policy rules, that a secure software back-end should implement, as
well as a proper explanation for each of them. Later, we asked the
LLM assistants to provide more contextual information on each of
the responses provided in the previous step, e.g., a description of
potential use-case scenarios, in an attempt to highlight their im-
portance for real-life deployments. Finally, we also asked our LLM
assistants to provide any sources, e.g., documents, websites, articles,
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1 PayInterest(A,R): Increments the balance of A
2 by a percentage amount determined
3 by interest rate R, for instance,
4 A=A+ (A*x ( R/100 )).

5 The value of R must be a value

6 greater than @ but less than 100.
7 Freeze(A): Denies the subsequent execution of
8 the Balance, Deposit, Withdraw,

9 PayInterest, and Transfer

10 operations for the account A.

11 Unfreeze(A): Allows the subsequent execution
12 of the Balance, Deposit, Withdraw,
13 PayInterest, and Transfer

14 operations for the account A.

(b) New Requirements Obtained from LLM Assistants.

for a Banking Application.

etc., for each provided response, as well as any additional relevant
information, e.g., the date when the source was first published.

V&V Tool Sessions. In the validation and verification step, we use
OpenJML’s RAC and ESC (see Section 2.2). The former tool checks
JML specs, as depicted in Fig. 12, against the LLM-generated code
at runtime, whereas the latter statically checks the generated code
against the specifications, i.e., without running the code.

5.2 Case Study I: A Banking Application

We conducted our experiments in this case study with three LLM
assistants, ChatGPT, Bard, and CoPilot.

Step 1. Requirements Gathering. The initial list of functional re-
quirements for the Banking Application, as defined by a human de-
veloper with experience as a regular user of banking operations, are
listed in Fig. 5(a), and contained basic operations such as Deposit,
Withdraw, and Transfer. Later, we asked our LLM assistants for
information on additional banking operations that could be imple-
mented in the context of our application. As a result, we obtained
several different options besides the ones listed in Fig. 5(a). Fig. 5(b)
shows a brief summary of additional operations that were finally
included as requirements in the context of our banking application.

In addition, the Banking Application required a security policy
restricting access to the aforementioned operations as follows:

o Three roles were identified: Manager, Supervisor, and Teller. Fol-
lowing Sec. 2.3, a role hierarchy is defined as: role Manager is
senior to Supervisor, and role Supervisor is senior to Teller.

o Highly-sensitive operations must be reserved only for users as-
signed the role Manager, e.g., the Freeze and Unfreeze operations.

o Mildly-sensitive operations are reserved only for users assigned
the role Supervisor, and roles seniors to Supervisor (Manager),
e.g.,;: Withdraw, Transfer, and PayInterest.

o All other operations are accessible to all employees, despite their
role assigned, e.g., Balance and Deposit.

Again, we asked our LLM assistants for information regarding
this access control policy. For instance, we asked what operations
should be carried out only for upper-level employees, e.g., Managers
and Supervisors, and what operations should be available to all
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/*@ requires amount > 0.0 &&
c] amount <= acc.balance &&
isFrozen == false &&
(role.equals(Role.SUPERVISOR) ||
role.equals (Role.MANAGER));
assignable balance, acc.balance;
ensures ((acc.balance ==
\old(acc.balance) - amount) >= 0)
==> (\result == true) ||
((acc.balance ==
\old(acc.balance) - amount) < 0)
12 c] ==> (\result == false); =*/
13 public boolean withdraw(double amount){...}

1
2
3
4
5
6
7
8
9

@ ® ® 0 ® ® ® @ @

(a) Specifications for the withdraw Method.
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1 /*@ requires amount > 0.0 &&

2 Q amount <= acc.balance &&

3 @ isFrozen == false &&

4 c] (role.equals(Role.SUPERVISOR) ||
5 @ role.equals(Role.MANAGER));

6 @ assignable balance, acc.balance;

7 @ ensures balance ==

8 c] (\old(balance) + amount) &&

9 c] acc.balance ==

10 c] (\old(acc.balance) - amount);
11 @x*/

12 public void transfer (double amount,

13 BankAccount acc){...}

(b) Specifications for the transfer Method.

Figure 9: Refined JML Specifications for a Banking Application.

employees. For our specific policy, we were to confirm most of the
policy rules described above. Only minor changes were suggested
and ultimately accepted. For instance, Google Bard suggested that
the Freeze/Unfreeze operations should only be available to Man-
agers. Initially, it was available to both Managers and Supervisors.

Overall, the information received from our LLM assistants with
respect to requirements gathering provided significant evidence
towards meeting goals G; [Knowledge], G, [Workload], and Gy4
[Validation].

Step 2. Preliminary Specifications. Following our proposed ap-
proach, we asked our LLM assistants to retrieve a series of JML
specifications for the banking operations shown in Fig. 5(a) and
Fig. 5(b). As shown in Fig. 6 and Fig. 8, LLM assistants are able to
provide syntactically correct specifications. However, they make
limited use of JML syntax, and they may not be able to fully cover
different specification cases as needed by Human Developers. As
an example, in Fig. 6, JML specifications restricting the execution of
the withdraw method to roles Supervisor and Manager, as required
by the policy described in a previous step, were missing. Also, the
JML assignable clause, which limits the variables and parame-
ters that can be potentially modified by method withdraw is also
missing. Such a specification is crucial to prevent the method from
introducing unwanted side effects [8].

Step 3. Refined Specifications. To express the requirements in a
more formal and precise way, we leveraged the preliminary specifi-
cations depicted in formulated them as JML specifications as shown
in Figs. 9(a) and 9(b). For example, the JML specification for the
withdraw method (see Fig. 9(a)) includes preconditions stating that
(1) the roles Supervisor and Manager are required, (2) the amount
must be greater than or equal to 0.0, (3) the amount must be less
than or equal to the account’s balance and (4) finally the account
must not be frozen. The specifications for the other methods were
defined in a similar way, and required a moderate-to-considerable
effort from the human developers before the refinement could be
considered as optimal for further steps of our case study.

Overall, the information obtained from our LLM assistants with
respect to providing useful JML specifications via Steps 2 and 3
may be considered as moderate evidence towards meeting goals G1
[Knowledge], G, [Workload], and G3 [Verification].

Step 4. Prompt Generation. As described in Sec. 4, we conceived
three different strategies to generate prompts based on JML spec-
ifications. Fig. 10 shows the prompts generated while using the
Syntax-Guided approach on the JML post-condition specifications
for the transfer method, shown in Fig. 9(b) (lines 7-10). Conversely,
Fig. 11 shows the prompts generated for the JML pre-condition spec-
ifications of the same transfer method in Fig. 9(b). This time, the
RBAC policy is disclosed as a single prompt (lines 1-3), and it is
interleaved with other sample prompts for functionality behavior
(lines 5-13). We performed the translation from JML specification to
prompts in a manual way, e.g., without the use of any supporting
implementation software, which is left as an interesting feature to
explore as a part of future work.

Step 5. Code Generation. We provided all the generated prompts
to our LLM assistants within the same session, starting with the
prompts for JML post-conditions and continuing with prompts for
JML pre-conditions. An illustrative excerpt of the obtained code,
as generated by ChatGPT, is shown in Fig. 12. Lines 3-9 show the
code generated for the withdraw method, which was obtained from
prompts generated for JML post-conditions. Interestingly, ChatGPT
generated code from JML pre-conditions separately, as depicted
in lines 12-18, which shows code to allow for role Manager to
not only execute the withdraw method, but to also implement the
pre-condition checks required by our refined JML specifications.

As a comparison, Fig. 13 shows the corresponding code produced
by GitHub’s CoPilot. It provided a simpler implementation, not
introducing a Manager class, but with similar functionality.

Overall, the evidence provided by LLM assistant on coding gen-
eration, comprising Steps 4 and 5 of our approach, was significant
toward meeting goals G; [Knowledge] and G, [Workload], as
the workload of coding was significantly reduced once prompts for
our JML specification were provided by human developers. This is
consistent with other recent studies featuring the use of LLMs for
code generation, as it is described in Sec. 2.4.

Step 6. Code Verification & Validation. We employed OpenJML’s
RAC and ESC tools to validate the Java code generated in the previ-
ous step. Both tools reported problems with this code. For example,
missing spec_public statements for private member fields were
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Table 1: Assessing Goals for LLM Assistants via Case Study I.

Goal Step 1 Steps 2-3  Steps 4-5 Step 6

G; [Knowledge]  Significant Moderate Significant — Moderate
G, [Workload] Significant Moderate Significant ~ Moderate
G3 [Verification] N/A Moderate N/A Significant
Gy [Validation] Significant N/A N/A Moderate

Create Java code for a bank account

1
2

3 Create a method called transfer, which
4 deducts a certain amount of money from
5 an external bank account and pass it to
6 the current bank account

Figure 10: Prompts from a JML Ensures Clause.

reported by both RAC and ESC.! In another case, ESC reported a
violation of a pre-condition of Account.withdraw. To understand
this problem, consider lines 15 and 16 in Fig. 12. One can see that the
method withdraw of the (inner) class Manager does not check the
condition ! isFrozen before calling Account.withdraw and hence
the pre-condition of Account.withdraw cannot be satisfied (see
line 7, where it is required that isFrozen must be false). Conse-
quently, ESC correctly reported this violation.

We gave this feedback to ChatGPT and formulated a prompt
stating that the pre-condition !isFrozen could not be established
by ESC. Interestingly, it first tried to modify the JML specification
accordingly. This, however, was not the fix we expected. So we
requested ChatGPT to correct the code rather than the JML specifi-
cation. It then actually came up with the corrected code by adding
lisFrozen to the if-statement before the account. isFrozen call.
It also explained its fix correctly:

o In this updated code, the Manager.withdraw method includes the
additional precondition laccount.isFrozen to establish the necessary
condition for calling account.withdraw. This change ensures that the
lisFrozen precondition of the withdraw method in the Account class
can be proven when invoked by the Manager class. By incorporating
this modification, ESC should be able to successfully verify the code
with the desired preconditions and ensure that the account is not
frozen before performing a withdrawal.

Overall, with respect to Step 6, the information retrieved by
LLM assistants can be considered as moderate evidence with re-
spect to meeting goals G; [Knowledge], G2 [Workload], and G4
[Validation]. Conversely, the assistance of the JML tools can be con-
sidered to be significant evidence with respect to G2 [Workload],
Gs [Verification], and G4 [Validation]. Finally, a summary of
the assessment of the research goals addressed in this paper, with
respect to our Case Study I, can be found in Table 1.

5.3 Case Study II: An API for RBAC
We also conducted a second case study, in which an RBAC API is
implemented, which, for example, could be used by the Banking

!Private member fields may only occur in JML specifications if they are defined with
this JML statement.
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Create a text policy file to represent
the following role hierarchy
"Teller:Supervisor:Manager"

Create Java code for an RBAC role
Create Java code transfer money from

one account to another, use the BankAccount
class created before

© e N G R W N =

10
11 Before transferring money check that the
12 amount is greater than zero and the amount
13 is less or equal to the account balance

Figure 11: Prompts from a JML Requires Clause.

1 public class BankingApp {

2 public static class Account {
3  public void withdraw(

4 double amount) {
5 if (amount > 0 &&

6 balance >= amount

7 && !isFrozen)({

8 this.balance -= amount;

9 3

10 3}

11 public static class Manager {
12 public void

13 withdraw(Account account,
14 double amount) {
15 if (account != null &&

16 amount > @) {

17 account.withdraw(amount);
18 }

19 333}

Figure 12: Sample Code Generated by ChatGPT.

1 public class BankAccount {

2 private double balance;

3 public void withdraw(double amount) {
4 checkFrozen();

5 balance -= amount;

6 }

7}

Figure 13: Sample Code Generated by CoPilot.

Application for implementing role-based policies. The aim is to gain
further experience with our LLM-based approach for constructing
secure code and obtain hints how far our results can be generalized.
The case study was carried out with ChatGPT and now also with
Google Bard (instead of CoPilot) to conduct a broader comparison.

Step 1. Requirements Gathering. The requirement-gathering phase
was simplified in this case. In particular, we let the LLM assistants
help us find the functional and security requirements required for
a basic RBAC-API implementation. Please consider the first two
prompts depicted in Fig. 15 for this purpose. The second prompt
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create a bank application in Java

with almost all the functionalities

that are required by a user to operate

a bank account and also for the bank

to be able to check for the banking
rules based on the United States Banking
System and Protocols.

DS Y. B NI R

Figure 14: Sample Prompts for Requirements.

1 Do you know RBAC?

2 Do you know the RBAC standard?

3 Can you produce a small Java module
core RBAC API?

4 Can you extend this with role hierarchies?

5 And Static Separation of Duty?

implementing a

Figure 15: Sample Requirements Prompts for an RBAC APL

(concerning the ANSI RBAC standard [12]) was meant to find out
whether the LLMs knew the RBAC standard. As a result of these
experiments, both LLMs did know core RBAC concepts including
users, roles, and permissions as well as user and permission assign-
ment and could explain these concepts to the user in response to
the prompts (addressing G1 [Knowledge]). Additionally, Google
Bard even seems to know the ANSI RBAC standard.

Step 2. Preliminary Specifications and Step 3. Refined Specifications.
From the results of the first two prompts, we concluded that the
LLMs knew the principles of RBAC and its components quite well.
There was no need (in our first attempt) to devise more detailed
specifications. This corresponds to the procedures usual developers
would follow as they often do not have a clear understanding of
the components of an RBAC system and therefore do not know
the functional and security requirements of such an access control
system in advance.

Step 4. Prompt Generation and Step 5. Code Generation. Based
upon the aforementioned observation, we simply asked the LLMs
to implement core RBAC concepts (cf. the third prompt in Fig. 15).
Both LLMs were then capable of generating code for a core RBAC
APL. In particular, both LLMs implemented an interface with the
following functionality:
addUserToRole(u,r): Adds user u to role r.
removeUserFromRole(u,r): Removes user u from role r.
addPermissionToRole(r,p): Adds permission p to role r.
removePermissionFromRole(r,p): Removes permission p from
roler.

e hasPermission(u,p): Returns true if u has a role with permis-
sion p, otherwise false.

Both LLMs were also able to generate code for hierarchical RBAC
as well as for Simple Static Separation of Duty (the last two prompts).
Google Bard used Java inheritance for its implementation of hierar-
chical RBAC and Static Separation of Duty.

To give a concrete example, Fig. 16 and Fig. 17 show the code
generated by ChatGPT and Google Bard for a method that checks
whether a user has a specific permission (a kind of policy decision

1

I TS

I RS IS
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public boolean checkAccess(User user, Permission
permission) {
for (Role role user.getRoles()) {
if (role.getPermissions().contains(
permission)) {
return true;
}
3

return false;

Figure 16: The checkAccess Method Generated by ChatGPT.

public boolean hasPermission(String userId,
permissionName) {
for (String roleName userRolesMap.

getOrDefault (userId, Collections.emptySet

0N {

if (rolePermissionsMap.containsKey(
roleName) && rolePermissionsMap.get(
roleName).contains(permissionName)) {
return true;

String

3
}

return false;

Figure 17: The hasPermission Method Generated by Google
Bard.

point). One can see that each code snippet looks reasonable and
uses data structures for permission and user assignment. As a result,
LLMs seem to help developers with the task of implementing core
RBAC functionality. Employing LLMs, a developer, who might not
be familiar with RBAC concepts, has a basis for implementing this
code—this may reduce her workload (G2 [Workload]).

Step 6. Code Verification & Validation. As mentioned above, we
decided not to define formal specifications for the RBAC engine in
advance as developers often do not have a clear picture of the RBAC
system’s components. However, to address G3 [Verification] and
G4 [Validation], we had to provide specifications or more pre-
cisely rules that static vulnerability checkers usually require for
their work [9]. In our approach (see Fig. 4), we employ OpenJML
(both RAC and ESC) as the verification & validation tool, imply-
ing that we still need JML specifications as rules. As annotating
code is usually considered a burden, a more automated approach
is desirable. Automated specification inference, however, is also
a difficult task [13, 11, 21, 38]. For this reason, we decided to let
the LLM help us and generate JML specifications from the code
(in essence, doing specification inference for us). For this task, we
entered the following prompt:

“Can you provide JML specs for each public method, while the
code remains unchanged?”
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Table 2: Assessing Goals for LLM Assistants via Case Study 5.4 Results and Lessons Learned

IL. We now summarize the tasks that we performed with LLM and also

report on our experiences.

Goal Step 1 Steps 2-3  Steps 4-5 Step 6

G; [Knowledge Significant Moderate Significant =~ Moderate
1 [ gel ° & (1) LLMs Can Generate Code from FJML specifications for a Software

G [Workload] Significant Moderate  Significant  Significant )
Gs [Verification] N/A Moderate N/A Significant Application. LLMs were able to understand the JML specifica-
Gy [Validation] Significant N/A N/A Moderate tions that we provided, similar to the specifications, for example,
depicted in Fig. 9(a). There was some inconsistency in the code
initially. However, overtime the code generation got improved
as the model got updated. Fig. 12 depicts a code excerpt that
1 //@ requires userId != null & permissionName != has been generated by LLM-based on the given JML specifi-
null; ) ) cations, which in turn formulate the functional and security
2 //@ ensures \result == (\exists String roleName ; requirements. As an implementation detail, one can see that
userRolesMap.get(userId).contains( . . . . .
o ) it generated Java inner classes for implementing the specific
roleName) && rolePermissionsMap.containsKey ( functi litv f . d tell
roleName) && rolePermissionsMap.get(roleName). unctionality for managers, supervisors, and tellers.
contains(permissionName));
(2) LLM Can Generate Non-trivial Requirements for a Software Ap-
plication. As mentioned in Sec. 4, we also requested ChatGPT
Figure 18: JML specs for hasPermission Generated by Chat- to complement and extend the functional and security require-
GPT. ments for our banking application. As shown in Fig. 14, we

asked ChatGPT to provide requirements based on the United
States Banking System and Protocols. As a response, ChatGPT

1 //JML specification for hasPermission method prov1dedthef0110w1ng:

2 @Requires({"userId != null", "permissionName != o Implement a createAccount method, which takes a Customer
null"}) object and an initial balance as parameters. It generates a new

3 @Ensures("result elementof {true, false}") account number, creates a new Account object, associates it with

the customer, and adds it to the accounts map.

o Implement a withdraw method, which returns a Boolean indi-
cating whether the withdrawal was successful. It checks if the
account exists and has sufficient balance before performing the

Figure 19: JML specs for hasPermission Generated by Bard.

withdrawal.
o Add methods getAllAccounts and getAccountsByCustomer to

Fig. 19 and Fig. 18 depict the JML specifications for the has- retrieve all accounts or accounts associated with a specific cus-
Permission method generated by Google Bard and ChatGPT, re- tomer, respectively.
spectively. The specifications produced by Google Bard are not (3) LLMs Can Understand, Generate, Infer, and Explain JML Speci-
syntactically correct and furthermore do not seem to be helpful fications. We conducted several experiments to find out if and
(see Fig. 19, line 3), whereas ChatGPT’s JML specifications are close how far LLM can understand JML and its concepts (see below
to what is needed: They state, for example, that the user’s role set for an example of how ChatGPT interprets JML specifications).
must contain a role that has the requested permission, correctly ChatGPT was aware of JML and how to use the specifications to
using JML’s exist expression (see Fig. 18). Having in mind that generate some basic related code from it. It could also generate
such specifications should be handled with caution and must likely JML specifications itself, i.e., we formulated some requirements
be adjusted, they can be seen as good starting points alleviating of the Banking Application as textual prompts and requested
the specification burden (G, [Workload]). Inference systems like ChatGPT to produce JML specifications from them. In this task,
Daikon [11] can only provide likely invariants rather than giving we had problems in finding the right English prompt for the
definitive results. required specifications to be generated at first. After formulat-

We finally used a slightly modified variant of the JML specifica- ing the right prompt, however, we were able to generate the
tions with OpenJML’s ESC—ESC, but could not prove this specifica- JML specifications we expected. The generated code and the
tion as it is in general beyond the capabilities of static checkers to specifications were moderate enough to require some or no
prove such complex specifications and hence future work is needed changes to them. It also seemed that ChatGPT could learn from
to improve such validation tools in this direction. Beyond checking, the conversations and was aware of the context.
we can also feed inferred (and maybe adjusted) specifications back Furthermore, ChatGPT was able to infer JML specifications
to step 3 of our pipeline. from Java code as demonstrated by the second case study.

As with Case Study I, we also give a summary of the assessment
of the research goals we pursued (see Table 2). In particular, Step 6 (4) LLMs Can Understand, Generate, Explain, and Correct RBAC
contributes significantly to Gz [Workload] and G3 [Verification] Policies. We also requested ChatGPT for assistance on explain-

due to its specification-inference capabilities. ing and implementing the RBAC policy shown in Sec. 5.2. We
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Can you give me a brief overview
of RBAC and how it can be integrated
in our existing code ?

Update the existing code to use
RBAC principles and do not limit
it's functionality to what we
already have achieved instead try
to add as many features and

10 functionalities as you can.

=T - % I N VR R

Figure 20: Sample Prompts for RBAC.

started with general prompts and then ask the ChatGPT to in-
corporate the explanations given into our application context.
As shown in Fig. 20, we first started with an initial request
(lines 1-3), which was later extended to a second one (lines
5-10), in which we encouraged ChatGPT to provide more de-
tailed, useful information. As a response, ChatGPT provided
some useful information, whose sample is shown next. Besides
functionality that could be directly added to the code shown in
Fig. 12, ChatGPT also suggested the need to implement a full
administrative system to allow for users to be properly assigned
roles, thus assisting on better preserving the security properties
shown in the RBAC policy of Sec. 5.2. Finally, ChatGPT also
suggested that the RBAC policy is implemented by introduc-
ing authorization code checks before attempting any banking
operation.

o Maintain User-Role Mapping: Establish a mechanism to map
users to their assigned roles. This mapping can be stored in
a database or another data structure. You can associate each
Customer object with a specific role or introduce a separate User
class that holds the role information.

o Role Assignment and Management: Provide functionality to
assign and manage roles for users. This could include methods to
assign roles during user registration, modify roles based on user
promotions or changes in responsibilities, and handle revocation
of roles when necessary.

o Access Control Enforcement: Integrate RBAC into the existing
code by verifying the user’s role and permissions before exe-
cuting specific operations. For example, when creating a new
account, check if the user’s role allows the creation of accounts.
If not, deny the operation.

We incorporated some of this functionality to our case study

as relevant, and use the suggestions to generate more code-

producing prompts, following the guidelines described in Sec. 4.

LLMs Can Correct Code Based on Feedback from Validation Tools
and Understand the Identified Problem.

Step 6 (verification step) in the first case study confirms that the
LLMs under study are able to understand JML specifications and
possible problems related to that code if given precise feedback.
In particular, LLMs can correct the code accordingly.

LLMs Can Translate the JML Specifications to other Program-
ming and Annotation Languages. In another experiment, we
requested ChatGPT to translate the generated code plus the

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

1 public void Withdraw(double amount)

2 {

3 Contract.Requires(amount > 0);

4 Contract.Requires(balance >= amount);
5 Contract.Requires(!isFrozen);

6 Contract.Ensures(balance ==

7 Contract.0ldValue(balance) - amount);
8

9 if (amount > @ && balance

10 >= amount && !isFrozen)

1 {

12 balance -= amount;

13}

14 3}

Figure 21: Sample C# Code from JML Specs.

JML specifications to other programming languages and corre-
sponding annotation languages. When requesting C, it came
up with C code and corresponding ACSL (Frama-C) specifica-
tions; similarly, it produced C# code and .NET Code Contracts.
In an earlier ChatGPT session, however, it produced C# code
annotated with JML specifications, which is not the result we
expected. Also, we did not check if the specifications and the
code are actually correct. Fig. 21 shows a sample snippet of the
generated C# code along withs some DBC-like specifications.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a pipeline approach as well as
the details and the lessons learned from our case study. We can
conclude that, when it comes to building applications using LLMs,
generating code from JML specifications seems to be a preferred
method compared to generating code directly from natural lan-
guage descriptions. This is because JML specifications are logical
expressions that represent a coherent chain of thought (Sec. 2.4)
derived from natural language descriptions or software require-
ment documents. Using a chain of thought in prompting aligns
with the “predicting next token” training objective and offers se-
quential guidance to LLMs. This guidance provides a consistent
context throughout the process of code generation. An accurate
code generation that adheres to security specifications will facil-
itate the correct implementation of security features of the final
application. As a result of the two case studies conducted, we can
conclude that LLM assistants provide moderate-to-significant as-
sistance to human developers when it comes to producing secure
applications leveraging our approach. We have identified the cases
when LLMs perform significantly well, e.g., code generation, as well
as tasks in which more work is needed, e.g., code verification and
validation. Overall, the combination of human and artificial intelli-
gence, facilitated by LLMs, formal specifications, and expert-level
human developers, seems promising as automated code generation
techniques evolve in the future.

As a part of future work, we plan to extend our case study to
consider other security models and techniques, as well as other ap-
plications. Also, we plan to experiment with different ways to create
prompts from JML specifications, as described in Sec. 4. Finally, we
also plan to incorporate feedback obtained throughout the different
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phases of our pipeline into a reinforcement learning approach, so
we can incorporate new knowledge such as effective prompts and
verified code into an existing LLM, thus potentially increasing its
chances of producing better code results in the future.
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