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Abstract—The electric power system is a major contributor to
greenhouse gas (GHG) emissions. To reduce GHG emissions, ac-
curate emission predictions are essential. The marginal emission
factor (MEF) is a useful signal for distributed energy resource
aggregators and end-use customers to mitigate GHG emissions by
scheduling the flexible loads accordingly. The existing methods of
locational MEF prediction often suffer from high computational
burden, low prediction accuracy, and low time granularity. In
this paper, we propose a hybrid machine learning framework
to predict GHG emissions and locational MEF, which integrates
feed-forward neural networks with spatio-temporal graph con-
volutional networks (STGCNs). With the power of STGCN, the
proposed framework can capture the spatio-temporal pattern in
power grid data. A comprehensive case study in California shows
that the proposed approach outperforms the existing techniques
in prediction accuracy. The proposed model provides short-term
locational MEF predictions with high time granularity using only
publicly available dataset.

Index Terms—Greenhouse gas emission, spatio-temporal graph
convolutional network, graph neural network, deep learning.

I. INTRODUCTION

Excessive emission of greenhouse gas (GHG) can cause
global climate change and notable environment impact, such as
global warming and rising sea-levels. Reducing GHG emission
is the key to slowing such detrimental processes. The U.S.
government has announced a target of 50-52% GHG emission
reduction below 2005 levels by 2030 [1]. The electric power
system is one of the main contributors of GHG emissions,
producing about 25% of the total GHG emissions [2]. In power
system operations, a mixture of generation resources are coor-
dinated not only to meet the varying electricity demand with
least cost while satisfying a number of operational constraints.
Different generation resources have different levels of GHG
emissions. Fossil-fueled power plants are major GHG emission
sources while solar and wind resources do not emit GHG at all
in daily operations. The GHG emission from power systems
is influenced by many factors [3] such as generation mix, time
of the day, season, electric load level, and the topology of the
power system.
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To reduce GHG emissions, accurate GHG emission pre-
dictions are in critical need. There are two major GHG
emission factors: average emissions factor (AEF) and marginal
emissions factor (MEF). The AEF is calculated as the ratio
of total GHG emissions to the total power consumption. The
MEF is the ratio of the change of GHG emissions to the
change of power consumption. Compared with AEF, MEF is a
more useful tool for distributed energy resources aggregators
and end-use customers to make intelligent decisions about how
much electricity should be consumed at different time slots of
a day. MEF signals can be sent along with electricity prices
signals to flexible loads and other smart technologies of the
residential, commercial and industrial customers [4]. Based
on the MEF signals, flexible loads, such as electric vehicles
(EVs), smart thermostats, and batteries can consume or charge
less power during high MEF hours and more power during low
MEF hours. MEF can also be considered in new electricity
pricing design to help reduce GHG emissions.

GHG emission and marginal GHG emission prediction
methods are in their early stage of research and development.
The existing methods can be classified into three groups. In
the first group, GHG emission or MEF is estimated through
production cost simulations of power systems and electricity
markets. Reference [3] used load duration curve and economic
dispatch to emulate power plants dispatch. In [5], the order
of dispatching was empirically derived to calculate AEF and
MEEF. In [6], simulations in detailed transmission system mod-
els were used to estimate GHG emissions. These approaches
have two drawbacks. First, to accurately predict AEF or
MEF, high-fidelity production cost simulations of electricity
markets are needed. This can be computationally expensive
if MEF needs to be calculated at high granularity in space
and time. Second, only the market operators have access to
accurate models of transmission networks and propriety bids
and offers submitted by power producers and load serving
entities, making it difficult for others to apply these methods.

The second group of methods are based on clustering and
linear regression. In [7], [8], linear regression was used to
predict GHG emissions from load. In [9], cluster analysis
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was first conducted on daily load curves and linear regression
models were developed for each cluster to predict MEF. The
drawback of these approaches is that linear regression models
can not accurately capture the complex interactions between
different influential factors in determining GHG emissions.

In the third group, machine learning models such as feed-
forward neural networks (FNNs) [10], [11], support vector
machines (SVMs) [12], and long short-term memory (LSTM)
networks [11] were proposed to predict GHG emissions. In
[13], an ensemble model combining multiple basic models
such as FNN, LSTM, and random forest (RF) was trained to
predict GHG emissions. Although machine learning models
have shown good prediction accuracy, most of them were
designed to do long-term predictions with very low time
granularity, such as yearly GHG emissions, which are not
sufficient for short-term control of flexible loads and smart
buildings. Furthermore, these models were designed separately
to forecast GHG emissions in each region, ignoring the inter-
actions between different load serving zones, which greatly
limited the prediction accuracy.

The marginal GHG emission factor varies by load zones,
or electric buses, due to the limited power transfer capability
between zones and nodes in the power system. To accurately
predict the locational MEF, the information from the entire
transmission network should be effectively leveraged. Graph
neural network (GNN) [14], [15] is an ideal candidate for
processing and learning from information collected from a
complex network such as the power grid. In fact, GNN has
received increasing attention in recent years from researchers
to tackle a number of prediction, estimation and optimization
problems in power systems such as optimal power flow [16],
solar energy prediction [17], parameter estimation [18], state
estimation [19], and system health index prediction [20].

In this paper, we propose a hybrid machine learning model,
which integrates FNNs with spatio-temporal graph convolu-
tional networks (STGCNs) [21] to predict GHG emissions
and the MEF. We adopted the STGCN due to its capability
to efficiently capture temporal and spatial structure of the
network data. Compared with existing GHG emission pre-
diction methods, our proposed model has three advantages.
First, it captures the complex interactions between multiple
load zones and thus provides highly accurate locational MEF
prediction. Second, it provides short-term MEF predictions
with hourly granularity to aggregators and end-users to control
flexible loads. Third, the model uses only publicly available
electricity market and power system information, making it
widely applicable. A comprehensive case study in California
electricity market shows that the proposed method has more
accurate predictions of GHG emissions and MEF than baseline
methods.

The rest of the paper is organized as follows. Section II de-
scribes the problem setup and the dataset. Section III presents
the technical details of the proposed hybrid machine learning
model. Section IV evaluates the GHG emission prediction
performance and the analyzes the MEF in different scenarios.
Section V states the conclusion.

II. PROBLEM SETUP AND DATASET DESCRIPTION
A. Problem Setup

The objective of this work is to obtain an accurate prediction
of GHG emissions as well as locational MEF of electricity.
Let Ey(x14, Zot, ..., xre) be the GHG emission of a system at
time ¢ with influential factors x4, oy, ..., Trs. x4 18 the load
of a subsystem r at time ¢. Then the locational MEF due to
a local load change Ax at subsystem r at time ¢ is defined
in (1). If the GHG emission is measured in metric ton of
carbon dioxide equivalent per hour (mT'C'O2/h) and the load
is measured in megawatt (M W), then the MEF is measured
in mT'COy/MW h.

AE - Et(:rltv ...,Irt+ASE, ...,fERt)*Et(Ilt, coey Lty ...7I'Rt)
AG Az
(1

The prediction of GHG emissions and locational MEF are
conducted in two steps. First, machine learning models are
trained to predict GHG emissions based on electric power load
and other input features. Second, machine learning models are
used to make new GHG emission predictions with perturbed
load levels. The locational MEF is then calculated following
the definition in (1).

B. Description of the Dataset

In this paper, we used real-world GHG emissions of Cal-
ifornia in the test case. We utilized data from six sources,
which are summarized in Table I. All of the data, except time,
were collected from the Open Access Same-time Informa-
tion System (OASIS) of the California Independent System
Operator (CAISO), which is publicly-available [22]. In the
dataset, CAISO measured GHG emissions by tracking the
power generations of power plants, the heat rate provided
by generation asset owners, and the GHG emission factors
by resource types [23]. The data were collected between
July 2018 and September 2022. After data cleansing and
preprocessing, about 37,000 hours of data remained.

TABLE I: Summary of Input and Output Data

Data Type
Day-ahead hourly electric load predictions of differ-
ent balancing authorities (MWh).
Two day-ahead predictions of solar and wind power
generation of different regions (MWh).
Hourly natural gas price of different regions (dollars
per thousand cubic feet).
Hourly power supply from different generation re-
sources: renewables, natural gas, large hydro, im-
ports, batteries, nuclear, and coal (MWh).
Time: month, hour, weekday/weekend.
Total hourly California power grid emission from
all resources: imports, natural gas, biogas, biomass,
geothermal, and coal (mTCO32)

Input

Output

The electric load data were collected from not only Cali-
fornia, but also other parts of western United States. These
regions and the corresponding balancing authorities are sum-
marized in Table II and their locations are illustrated in Fig. 1.
All the load data used were one day-ahead predictions made by
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system operators with mean absolute percentage error (MAPE)
below 3%.

TABLE II: Summary of the Regions and Balancing Authorities
of the Load Data

Code Name [ Full Name [ State
MWD-TAC Metrop(‘)llt‘an Water District California
Transmission System
PGE-TAC Pacific Gas And Electric California
SCE-TAC Southern California Edison California
SDGE-TAC | San Diego Gas And Electric California
VEA-TAC Valley Electric Association California
IPCO Idaho Power Company Idaho
PACE PacifiCorp East Utah
PACW PacifiCorp West Utah
PGE Portland General Electric Oregon
PSEI Puget Sound Energy ‘Washington
NEVP Nevada Energy Nevada
@ Central area of service region
. PSEI Major transmission path
between adjacent regions
® PGE
@® IPCO
® NEVP
® PGE-TAC o o
PCAW PCAE
® VEA-TAC
@® SCE-TAC
MWD-TAC @
@®SDGE-TAC

Fig. 1: Electric power interconnection map

The solar and wind power generation data in California were
from three regions (coded as NP15, ZP26, and SP1) specified
by CAISO, which represent the north, middle, and south of
California. They were two day-ahead predictions made by
CAISO with MAPE below 7%. Natural gas is the main fuel
source for thermal power plants in California, and thus its price
in different regions of California was collected. The power
supply by resource type reported by CAISO are used as input
features. The output of the prediction model is the total GHG
emissions of all the electric power resources in California.

III. TECHNICAL METHODOLOGY

A. Overall Framework of the GHG Emission Prediction Model

The overall framework of the proposed GHG emission
prediction model is illustrated in Fig. 2. As shown in the figure,

we design a hybrid model that combines both STGCNs and
FNNs. The load graph block and the renewable generation
graph block are two STGCN models, while the parallel block
is an FNN model. The load data and the renewable gener-
ation data are fed into the load graph block and renewable
generation graph block respectively; these two types of data
and other input data are also fed into the parallel block. The
outputs of these three blocks are concatenated into one tensor
for each time instance, and fed into the output block, which
is an FNN network and its output is the predicted GHG
emission. The details of the proposed method is described in
the following subsections, including the data preprocessing,
brief introduction of STGCN, the design of each block, and
the data split and hyperparameter tuning.

Load Data Other Data

Renewable Generation Data

Renewable
Generation Graph
Block (STGCN)
|

Output Block
FNN

Load Graph Block
(STGCN)

Parallel Block
(FNN)

GHG Emission Prediction

Fig. 2: Framework of the Prediction Model

B. Data Preprocessing

1) Preprocessing of Time Data: We used a binary variable
to represent weekday (value 0) and weekend (value 1). To
represent month and hour, we use cyclical encoding. In cycli-
cal encoding, The k-th hour (k = 1,2, ...,24) is encoded by

[cos%, sm%] Similarly, the k-th month (k = 1,2, ...,12)
is encoded by [cos %, sinZTE].

2) Transformation of Data: To improve the convergence
in training and prediction accuracy, we applied two types of
transformation to the data: z-score normalization and quantile
transformation. In the z-score normalization, the data are
centered and normalized by their standard deviation. In the
quantile transformation, the data are transformed to follow
a normal distribution. The z-score normalization is a linear
transformation, which preserves the correlations and distances
within the data; on the other hand, the nonlinear quantile
transformation smooths out unusual distributions and is less
influences by outliers than z-score.

C. Brief Introduction of STGCN

Here we briefly introduce the design of STGCN and more
details can be found in [21]. STGCN is designed to process
and learn data set collected from a graph. Let G = (V, &, W)
be a graph, in which V is the set of vertices (nodes), &£ is the
set of edges, and W € R"*"™ is the weighted adjacency matrix
(n = |V|). The structure of the STGCN model is illustrated in
Fig. 3. An STGCN contains three parts: two spatial-temporal
convolutional (ST-Conv) blocks and an output layer. Each ST-
Conv block contains a “sandwich” structure of two temporal
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gated convolution (Gated-Conv) layers and one spatial graph
convolution (Graph-Conv) layer. The output layer is a fully
connected layer.

Input

<

ST-Conv Block

Temporal Gated-Conv

ST-Conv Block l
ST-Conv Block
Output Layer

Output 1
(a) STGCN (b) ST-Conv

Fig. 3: The structure of an STGCN model. (a) is the overall
structure of STGCN. (b) is the internal structure of an ST-Conv
block.

The Graph-Conv layer uses Chebyshev polynomials to
approximate a graph convolution operation “xG” with a kernel
© as defined in (2):

K-1
O.gr = O(L) = Y O:Ti(L)x 2)
k=0
Here, Ty (L) € R™*" is the Chebyshev polynomial of order
k, L= 2L/Amax — I, is the scaled Laplacian, and « is a n-
dimensional vector representing the inputs at the graph nodes.
L=1,— D WD 3. I, is an identity matrix. D € R™*" is
the diagonal degree matrix derived from W, and A4, is the
largest eigenvalue of L. K is the kernel size, which determines
the maximum radius of the convolution. When each node has
a Cj-channel input and C,-dimensional output, the graph is
generalized to (3):

C;
y] = Z@ZJ(L)wZ S |Rn7 1 S j S Co (3)
=1

Here y,;, € R™ is the nodal output of channel j. z; € R"
is the nodal input of channel ;. When multiple time steps
are considered, the input and output will have an additional
dimension for time steps.

The temporal Gated-Conv layer is applied to each node in
the graph. Let M be the input time steps; let C; and C,
be numbers of the input and output channels. The Gated-
Conv layer first uses a convolution kernel I' € RX:xCix2C
to perform 1-D causal convolutions of width K; and obtains
two elements P and @, such that [P, Q] € ROM—Ki+1)x(2Co)
Then this layer uses element-wise Hadamard product (®) to
obtain its out as P ® o(Q) € RIM~K:i+1)xCo where () is
the sigmoid gate.

D. Load Graph Block

To process the load data with a STGCN model, we need to
determine the graph, model structure, the inputs and outputs
of the model. We use the graph shown in Fig. 1, in which
each node represents a balancing authority and each edge
represents a major transmission path between adjacent regions.

We construct the adjacency matrix W for the model by using
the same weight for each edge in the graph. We use a single-
step in both the inputs and outputs of the STGCN. Thus, in
the temporal Gated-Conv layers, we set K; = 1. We assume
that each region have direct interactions with only its nearest
neighbors, thus we use a maximum radius of 1 in the Spatial
Graph-Conv layer, i.e. K = 2. To predict the GHG emission
at hour h, the inputs of each node in this graph are the load
at hour h and h — 24 of the corresponding region with both
the z-score and quantile transformation. Note that load used
here are all one day-ahead predictions.

E. Renewable Generation Graph Block

Similar to the load data, the renewable generation data of
solar power and wind power also have a graph structure.
The renewable generation data was recorded separately in the
three regions: NP15, ZP26, and SP15, representing the north,
central, and the south parts of California. Thus, the graph of
this block was designed as three nodes connected to each other
with three edges. We use a single time step in both the input
and output, thus we set K; = 1. Since it is a small graph, any
non-zero convolution radius will average the nodal features.
Hence, we set K = 1 to avoid this. To predict the GHG
emission at hour h, the inputs of this block are the renewable
generation power at hour i and h — 24 with both the z-score
and quantile transformation for each of the three nodes. Note
that the renewable generation data used here are all two day-
ahead predictions.

FE. Parallel Block

Since not all input data are collected from a graph, we
also design a parallel block to extract information that is not
captured by the STGCN blocks. The inputs to the parallel
block include the load data, renewable generation data an
other input data. The other input data are the time feature data
(described in Section III-B) of hour h and h — 24, the natural
gas price at hour h and h — 24, the supply resource mix at
hour h — 24, and the historical GHG emission at hour h — 24.
Every input feature except time and historical GHG emission
uses both z-score and quantile transformation. The historical
GHG emission uses only the quantile transformation.

G. Output Block

The output block is designed as an FNN with batch
normalization before each layer. Its output is the quantile
transformation of the GHG emission. The proposed hybrid
model is trained to minimize the mean squared error of
the quantile-transformed GHG emission. To obtain the final
prediction, inverse of quantile transform is performed.

H. Data Split and Hyperparameter Tuning

To train the proposed model and tune its hyperparameters,
the dataset is split into three parts. The first 80% of samples
are used as the training and validation dataset while the last
20% of the samples were used as the testing dataset to evaluate
the model’s GHG emission prediction performance. In the first
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80% of samples, for every five day’s data (120 samples), we
put the first four days into the training dataset and the last
day’s data into the validation dataset. Thus, 64% of the whole
data set is used as the training dataset and 16% is used as
the validation dataset. The proposed machine learning model
contains many hyperparameters: the number of layers in each
block, the dimension of each layer, the size of spatial kernel
and temporal kernel, learning rate, etc. To systematically tune
hyperparameters, for each hyperparameter setup, we trained
the model 10 times using the training dataset, and calculate
the average prediction error using the validation dataset. The
hyperparameter setup with the lowest average error in the
validation dataset is chosen as the best hyperparameter setup.

IV. GHG EMISSION PREDICTION PERFORMANCE AND
ANALYSIS OF MARGINAL GHG EMISSION

In this section, we evaluate the prediction performance for
California’s GHG emissions of the proposed hybrid machine
learning model and compared it with two baseline algorithms.
We also calculate and analyze the locational MEF under
different scenarios.

A. GHG Emission Prediction Performance

We compare the GHG emission prediction performance of
our proposed model (hybrid STGCN) and two other baseline
models: FNN and gradient boosted trees (GBT). Note that the
FNN and GBT models use the same input features as our
proposed model.

The hyperparameters all three machine learning models
were tuned following the approach in Subsection III-H. We
trained the hybrid STGCN model and FNN model using the
Adam algorithm, with batch size = 10 and early stopping
patience = 10 epochs. We trained the GBT with early stopping
patience = 10 rounds. By tuning hyperparameters, the num-
bers of channels of the three “sandwich” layers in ST-Conv
and the output layer of STGCN are 4—2—4—2 respectively
in the load graph block, and 8 —4 —8 —2 in the renewable
generation graph block; the FNN in the parallel block and the
output block are two three-layer FNNs of dimension 20—20—1.
The number of neurons of the FNN model is 20—20—20—1.
All FNN models use batch normalization before each layer.

To evaluate the prediction accuracy of the machine learning
models, we train each model 10 times using the training
dataset, and then test the models with the testing dataset. Three
error metrics are used to evaluate the prediction accuracy:
mean squared error (MSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE). The prediction per-
formance of the three machine learning models are compared
in Table III. For each type of measurements, two values
were recorded: the average performance over 10 tests, and
the optimal value, i.e. the performance of the model with the
lowest validation loss. We can see that our proposed hybrid
STGCN model has the lowest prediction error in MSE, MAE,
and MAPE in both average value and the optimal value.
In addition, by choosing the optimal value from multiple
trained models, our proposed prediction model can further

improve the prediction accuracy. These results show that by
capturing the complex spatio-temporal relationship of the data,
our proposed model can significantly improve the accuracy of
GHG emission prediction.

TABLE III: Prediction Performance of GHG Emissions. (Av-
erage Value / Optimal Value)

Model MSE MAE MAPE
(mTCO2/h)2  (mTCO4/h) (%)
Hybrid STGCN | 2.90/2.77E+05 _ 4.02/3.88E+02 _ 9.46/9.15
FNN 3.01/3.11B+05  4.09/4.18E+02  10.80/10.36
GBT 3.25/323B+05  4.27/425E+02  11.43/11.43

B. Analysis of Locational Marginal GHG Emission

We use the trained hybrid STGCN model to calculate the
locational MEF and AFE, following the definition in (1). The
locational MEF and A F are calculated for each hour and each
region’s load change in the dataset, with a AG = 100MW.
We then analyze the locational marginal MEFs in two aspects:
hourly pattern of locational MEF with high renewable energy
output and weekday/weekend effect.

1) Locational MEF on a Day with High Renewable Energy
Output: California has very high renewable energy penetration
rate. On March 27, 2022, California hit a record that 94.5% of
the electricity on the grid came form renewable energy [24].
We calculate the 24-hour locational MEF on this day in the
balancing authority of PGE-TAC and SCE-TAC respectively.
The result is illustrated in Fig. 4. From this figure, we can see
that the marginal GHG emission is significantly lower during
the day. This is because solar photovoltaic (PV) generation
is very high during these hours and does not emit any GHG.
This result shows that the proposed hybrid STGCN model
successfully recognizes the contribution of renewable energy
in reducing GHG emission. Furthermore, the MEF for SCE-
TAC and slightly lower than that of PGE-TAC between 12:00
pm and 18:00 pm. This is because Southern California has
much higher solar PV generation and not all all renewable
energy can be moved from Southern California to Northern
California due to limited power transfer capability.

0.5

o
>
T

MEF (mTCO,/MWh)
=) =)
N w

—o—SCE-TAC
0 é 16 ; {5 26 25
Hour
Fig. 4: Hourly MEF on March 27, 2022 for PGE-TAC and

SCE-TAC.

0.1

2) Weekday/Weekend Effect on Marginal GHG Emission:
We calculate the average locational MEF for 24 hours on
weekdays and weekends in the PGE-TAC area. The result is
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illustrated in Fig. 5. From this figure, we can see that the
MEF is lower during the day, which has been explained in
Subsection IV-B1. We can also observe that the weekends
have lower MEF than the weekdays. This is due to the lower
power demand on weekends. When there are lower power
demand, system operators can turn off the less fuel-efficient
power stations and keep running the power plants with higher
fuel-efficiency. These results show that the proposed hybrid
STGCN model can reflect the GHG emission differences be-
tween weekday and weekends and between different operation
conditions.

0.35 T
= —— Weekday
= —e—Weekend
=
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o 031 1
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©
b
)
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0.2t L I I I E
0 5 10 15 20 25

Hour

Fig. 5: Average hourly MEF on weekdays/weekends in PGE-
TAC.

V. CONCLUSION

In this paper, we developed a hybrid machine learning
model by integrating FNN with STGCNs to predict GHG
emissions and locational MEF. The STGCN components of
the model allows us to capture the complex spatio-temporal
correlations in the network data and improves the prediction
accuracy. The proposed model can provide short-term loca-
tional MEF predictions at hourly granularity to aggregators
and end-users to manage flexible loads and it does not re-
quire accurate power system model. The numerical study on
California’s electricity market shows that the proposed method
has more accurate GHG emission predictions than the baseline
machine learning models. Detailed analysis also showed how
the locational MEF is influenced by load level, hour, and
renewable generation levels.
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