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Abstract—The electric power system is a major contributor to
greenhouse gas (GHG) emissions. To reduce GHG emissions, ac-
curate emission predictions are essential. The marginal emission
factor (MEF) is a useful signal for distributed energy resource
aggregators and end-use customers to mitigate GHG emissions by
scheduling the flexible loads accordingly. The existing methods of
locational MEF prediction often suffer from high computational
burden, low prediction accuracy, and low time granularity. In
this paper, we propose a hybrid machine learning framework
to predict GHG emissions and locational MEF, which integrates
feed-forward neural networks with spatio-temporal graph con-
volutional networks (STGCNs). With the power of STGCN, the
proposed framework can capture the spatio-temporal pattern in
power grid data. A comprehensive case study in California shows
that the proposed approach outperforms the existing techniques
in prediction accuracy. The proposed model provides short-term
locational MEF predictions with high time granularity using only
publicly available dataset.

Index Terms—Greenhouse gas emission, spatio-temporal graph
convolutional network, graph neural network, deep learning.

I. INTRODUCTION

Excessive emission of greenhouse gas (GHG) can cause

global climate change and notable environment impact, such as

global warming and rising sea-levels. Reducing GHG emission

is the key to slowing such detrimental processes. The U.S.

government has announced a target of 50-52% GHG emission

reduction below 2005 levels by 2030 [1]. The electric power

system is one of the main contributors of GHG emissions,

producing about 25% of the total GHG emissions [2]. In power

system operations, a mixture of generation resources are coor-

dinated not only to meet the varying electricity demand with

least cost while satisfying a number of operational constraints.

Different generation resources have different levels of GHG

emissions. Fossil-fueled power plants are major GHG emission

sources while solar and wind resources do not emit GHG at all

in daily operations. The GHG emission from power systems

is influenced by many factors [3] such as generation mix, time

of the day, season, electric load level, and the topology of the

power system.

This work was supported by the National Science Foundation award
2324940 and California Energy Commission award GFO-19-309.

To reduce GHG emissions, accurate GHG emission pre-

dictions are in critical need. There are two major GHG

emission factors: average emissions factor (AEF) and marginal

emissions factor (MEF). The AEF is calculated as the ratio

of total GHG emissions to the total power consumption. The

MEF is the ratio of the change of GHG emissions to the

change of power consumption. Compared with AEF, MEF is a

more useful tool for distributed energy resources aggregators

and end-use customers to make intelligent decisions about how

much electricity should be consumed at different time slots of

a day. MEF signals can be sent along with electricity prices

signals to flexible loads and other smart technologies of the

residential, commercial and industrial customers [4]. Based

on the MEF signals, flexible loads, such as electric vehicles

(EVs), smart thermostats, and batteries can consume or charge

less power during high MEF hours and more power during low

MEF hours. MEF can also be considered in new electricity

pricing design to help reduce GHG emissions.

GHG emission and marginal GHG emission prediction

methods are in their early stage of research and development.

The existing methods can be classified into three groups. In

the first group, GHG emission or MEF is estimated through

production cost simulations of power systems and electricity

markets. Reference [3] used load duration curve and economic

dispatch to emulate power plants dispatch. In [5], the order

of dispatching was empirically derived to calculate AEF and

MEF. In [6], simulations in detailed transmission system mod-

els were used to estimate GHG emissions. These approaches

have two drawbacks. First, to accurately predict AEF or

MEF, high-fidelity production cost simulations of electricity

markets are needed. This can be computationally expensive

if MEF needs to be calculated at high granularity in space

and time. Second, only the market operators have access to

accurate models of transmission networks and propriety bids

and offers submitted by power producers and load serving

entities, making it difficult for others to apply these methods.

The second group of methods are based on clustering and

linear regression. In [7], [8], linear regression was used to

predict GHG emissions from load. In [9], cluster analysis

979-8-3503-9678-2/23/$31.00 ©2023 IEEE

2
0
2
3
 I

E
E

E
 P

E
S

 I
n
n
o
v
at

iv
e 

S
m

ar
t 

G
ri

d
 T

ec
h
n
o
lo

g
ie

s 
E

u
ro

p
e 

(I
S

G
T

 E
U

R
O

P
E

) 
| 9

7
9
-8

-3
5
0
3
-9

6
7
8
-2

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/I

S
G

T
E

U
R

O
P

E
5
6
7
8
0
.2

0
2
3
.1

0
4
0
7
4
2
2

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2024 at 17:43:51 UTC from IEEE Xplore.  Restrictions apply. 



was first conducted on daily load curves and linear regression

models were developed for each cluster to predict MEF. The

drawback of these approaches is that linear regression models

can not accurately capture the complex interactions between

different influential factors in determining GHG emissions.

In the third group, machine learning models such as feed-

forward neural networks (FNNs) [10], [11], support vector

machines (SVMs) [12], and long short-term memory (LSTM)

networks [11] were proposed to predict GHG emissions. In

[13], an ensemble model combining multiple basic models

such as FNN, LSTM, and random forest (RF) was trained to

predict GHG emissions. Although machine learning models

have shown good prediction accuracy, most of them were

designed to do long-term predictions with very low time

granularity, such as yearly GHG emissions, which are not

sufficient for short-term control of flexible loads and smart

buildings. Furthermore, these models were designed separately

to forecast GHG emissions in each region, ignoring the inter-

actions between different load serving zones, which greatly

limited the prediction accuracy.

The marginal GHG emission factor varies by load zones,

or electric buses, due to the limited power transfer capability

between zones and nodes in the power system. To accurately

predict the locational MEF, the information from the entire

transmission network should be effectively leveraged. Graph

neural network (GNN) [14], [15] is an ideal candidate for

processing and learning from information collected from a

complex network such as the power grid. In fact, GNN has

received increasing attention in recent years from researchers

to tackle a number of prediction, estimation and optimization

problems in power systems such as optimal power flow [16],

solar energy prediction [17], parameter estimation [18], state

estimation [19], and system health index prediction [20].

In this paper, we propose a hybrid machine learning model,

which integrates FNNs with spatio-temporal graph convolu-

tional networks (STGCNs) [21] to predict GHG emissions

and the MEF. We adopted the STGCN due to its capability

to efficiently capture temporal and spatial structure of the

network data. Compared with existing GHG emission pre-

diction methods, our proposed model has three advantages.

First, it captures the complex interactions between multiple

load zones and thus provides highly accurate locational MEF

prediction. Second, it provides short-term MEF predictions

with hourly granularity to aggregators and end-users to control

flexible loads. Third, the model uses only publicly available

electricity market and power system information, making it

widely applicable. A comprehensive case study in California

electricity market shows that the proposed method has more

accurate predictions of GHG emissions and MEF than baseline

methods.

The rest of the paper is organized as follows. Section II de-

scribes the problem setup and the dataset. Section III presents

the technical details of the proposed hybrid machine learning

model. Section IV evaluates the GHG emission prediction

performance and the analyzes the MEF in different scenarios.

Section V states the conclusion.

II. PROBLEM SETUP AND DATASET DESCRIPTION

A. Problem Setup

The objective of this work is to obtain an accurate prediction

of GHG emissions as well as locational MEF of electricity.

Let Et(x1t, x2t, ..., xRt) be the GHG emission of a system at

time t with influential factors x1t, x2t, ..., xRt. xrt is the load

of a subsystem r at time t. Then the locational MEF due to

a local load change ∆x at subsystem r at time t is defined

in (1). If the GHG emission is measured in metric ton of

carbon dioxide equivalent per hour (mTCO2/h) and the load

is measured in megawatt (MW ), then the MEF is measured

in mTCO2/MWh.

∆E

∆G
=

Et(x1t, ..., xrt+∆x, ..., xRt)−Et(x1t, ..., xrt, ..., xRt)

∆x
(1)

The prediction of GHG emissions and locational MEF are

conducted in two steps. First, machine learning models are

trained to predict GHG emissions based on electric power load

and other input features. Second, machine learning models are

used to make new GHG emission predictions with perturbed

load levels. The locational MEF is then calculated following

the definition in (1).

B. Description of the Dataset

In this paper, we used real-world GHG emissions of Cal-

ifornia in the test case. We utilized data from six sources,

which are summarized in Table I. All of the data, except time,

were collected from the Open Access Same-time Informa-

tion System (OASIS) of the California Independent System

Operator (CAISO), which is publicly-available [22]. In the

dataset, CAISO measured GHG emissions by tracking the

power generations of power plants, the heat rate provided

by generation asset owners, and the GHG emission factors

by resource types [23]. The data were collected between

July 2018 and September 2022. After data cleansing and

preprocessing, about 37,000 hours of data remained.

TABLE I: Summary of Input and Output Data

Data Type

Input

Day-ahead hourly electric load predictions of differ-
ent balancing authorities (MWh).
Two day-ahead predictions of solar and wind power
generation of different regions (MWh).
Hourly natural gas price of different regions (dollars
per thousand cubic feet).
Hourly power supply from different generation re-
sources: renewables, natural gas, large hydro, im-
ports, batteries, nuclear, and coal (MWh).
Time: month, hour, weekday/weekend.

Output
Total hourly California power grid emission from
all resources: imports, natural gas, biogas, biomass,
geothermal, and coal (mTCO2)

The electric load data were collected from not only Cali-

fornia, but also other parts of western United States. These

regions and the corresponding balancing authorities are sum-

marized in Table II and their locations are illustrated in Fig. 1.

All the load data used were one day-ahead predictions made by
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gated convolution (Gated-Conv) layers and one spatial graph

convolution (Graph-Conv) layer. The output layer is a fully

connected layer.

ST-Conv Block

ST-Conv Block

Output Layer

Input

Output

(a) STGCN

ST-Conv Block

Temporal Gated-Conv

Temporal Gated-Conv

Spatial Graph-Conv

(b) ST-Conv

Fig. 3: The structure of an STGCN model. (a) is the overall

structure of STGCN. (b) is the internal structure of an ST-Conv

block.

The Graph-Conv layer uses Chebyshev polynomials to

approximate a graph convolution operation “∗G” with a kernel

Θ as defined in (2):

Θ∗Gx = Θ(L) ≈
K−1∑

k=0

θkTk(L̃)x (2)

Here, Tk(L̃) ∈ R
n×n is the Chebyshev polynomial of order

k, L̃ = 2L/λmax − In is the scaled Laplacian, and x is a n-

dimensional vector representing the inputs at the graph nodes.

L = In−D− 1

2WD− 1

2 . In is an identity matrix. D ∈ R
n×n is

the diagonal degree matrix derived from W , and λmax is the

largest eigenvalue of L. K is the kernel size, which determines

the maximum radius of the convolution. When each node has

a Ci-channel input and Co-dimensional output, the graph is

generalized to (3):

yj =

Ci∑

i=1

Θi,j(L)xi ∈ R
n, 1 ≤ j ≤ Co (3)

Here yj ∈ R
n is the nodal output of channel j. xi ∈ R

n

is the nodal input of channel i. When multiple time steps

are considered, the input and output will have an additional

dimension for time steps.

The temporal Gated-Conv layer is applied to each node in

the graph. Let M be the input time steps; let Ci and Co

be numbers of the input and output channels. The Gated-

Conv layer first uses a convolution kernel Γ ∈ R
Kt×Ci×2Co

to perform 1-D causal convolutions of width Kt and obtains

two elements P and Q, such that [P,Q] ∈ R
(M−Kt+1)×(2Co).

Then this layer uses element-wise Hadamard product (⊙) to

obtain its out as P ⊙ σ(Q) ∈ R
(M−Kt+1)×Co , where σ() is

the sigmoid gate.

D. Load Graph Block

To process the load data with a STGCN model, we need to

determine the graph, model structure, the inputs and outputs

of the model. We use the graph shown in Fig. 1, in which

each node represents a balancing authority and each edge

represents a major transmission path between adjacent regions.

We construct the adjacency matrix W for the model by using

the same weight for each edge in the graph. We use a single-

step in both the inputs and outputs of the STGCN. Thus, in

the temporal Gated-Conv layers, we set Kt = 1. We assume

that each region have direct interactions with only its nearest

neighbors, thus we use a maximum radius of 1 in the Spatial

Graph-Conv layer, i.e. K = 2. To predict the GHG emission

at hour h, the inputs of each node in this graph are the load

at hour h and h − 24 of the corresponding region with both

the z-score and quantile transformation. Note that load used

here are all one day-ahead predictions.

E. Renewable Generation Graph Block

Similar to the load data, the renewable generation data of

solar power and wind power also have a graph structure.

The renewable generation data was recorded separately in the

three regions: NP15, ZP26, and SP15, representing the north,

central, and the south parts of California. Thus, the graph of

this block was designed as three nodes connected to each other

with three edges. We use a single time step in both the input

and output, thus we set Kt = 1. Since it is a small graph, any

non-zero convolution radius will average the nodal features.

Hence, we set K = 1 to avoid this. To predict the GHG

emission at hour h, the inputs of this block are the renewable

generation power at hour h and h− 24 with both the z-score

and quantile transformation for each of the three nodes. Note

that the renewable generation data used here are all two day-

ahead predictions.

F. Parallel Block

Since not all input data are collected from a graph, we

also design a parallel block to extract information that is not

captured by the STGCN blocks. The inputs to the parallel

block include the load data, renewable generation data an

other input data. The other input data are the time feature data

(described in Section III-B) of hour h and h− 24, the natural

gas price at hour h and h − 24, the supply resource mix at

hour h− 24, and the historical GHG emission at hour h− 24.

Every input feature except time and historical GHG emission

uses both z-score and quantile transformation. The historical

GHG emission uses only the quantile transformation.

G. Output Block

The output block is designed as an FNN with batch

normalization before each layer. Its output is the quantile

transformation of the GHG emission. The proposed hybrid

model is trained to minimize the mean squared error of

the quantile-transformed GHG emission. To obtain the final

prediction, inverse of quantile transform is performed.

H. Data Split and Hyperparameter Tuning

To train the proposed model and tune its hyperparameters,

the dataset is split into three parts. The first 80% of samples

are used as the training and validation dataset while the last

20% of the samples were used as the testing dataset to evaluate

the model’s GHG emission prediction performance. In the first
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80% of samples, for every five day’s data (120 samples), we

put the first four days into the training dataset and the last

day’s data into the validation dataset. Thus, 64% of the whole

data set is used as the training dataset and 16% is used as

the validation dataset. The proposed machine learning model

contains many hyperparameters: the number of layers in each

block, the dimension of each layer, the size of spatial kernel

and temporal kernel, learning rate, etc. To systematically tune

hyperparameters, for each hyperparameter setup, we trained

the model 10 times using the training dataset, and calculate

the average prediction error using the validation dataset. The

hyperparameter setup with the lowest average error in the

validation dataset is chosen as the best hyperparameter setup.

IV. GHG EMISSION PREDICTION PERFORMANCE AND

ANALYSIS OF MARGINAL GHG EMISSION

In this section, we evaluate the prediction performance for

California’s GHG emissions of the proposed hybrid machine

learning model and compared it with two baseline algorithms.

We also calculate and analyze the locational MEF under

different scenarios.

A. GHG Emission Prediction Performance

We compare the GHG emission prediction performance of

our proposed model (hybrid STGCN) and two other baseline

models: FNN and gradient boosted trees (GBT). Note that the

FNN and GBT models use the same input features as our

proposed model.

The hyperparameters all three machine learning models

were tuned following the approach in Subsection III-H. We

trained the hybrid STGCN model and FNN model using the

Adam algorithm, with batch size = 10 and early stopping

patience = 10 epochs. We trained the GBT with early stopping

patience = 10 rounds. By tuning hyperparameters, the num-

bers of channels of the three “sandwich” layers in ST-Conv

and the output layer of STGCN are 4−2−4−2 respectively

in the load graph block, and 8−4−8−2 in the renewable

generation graph block; the FNN in the parallel block and the

output block are two three-layer FNNs of dimension 20−20−1.

The number of neurons of the FNN model is 20−20−20−1.

All FNN models use batch normalization before each layer.

To evaluate the prediction accuracy of the machine learning

models, we train each model 10 times using the training

dataset, and then test the models with the testing dataset. Three

error metrics are used to evaluate the prediction accuracy:

mean squared error (MSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE). The prediction per-

formance of the three machine learning models are compared

in Table III. For each type of measurements, two values

were recorded: the average performance over 10 tests, and

the optimal value, i.e. the performance of the model with the

lowest validation loss. We can see that our proposed hybrid

STGCN model has the lowest prediction error in MSE, MAE,

and MAPE in both average value and the optimal value.

In addition, by choosing the optimal value from multiple

trained models, our proposed prediction model can further

improve the prediction accuracy. These results show that by

capturing the complex spatio-temporal relationship of the data,

our proposed model can significantly improve the accuracy of

GHG emission prediction.

TABLE III: Prediction Performance of GHG Emissions. (Av-

erage Value / Optimal Value)

Model
MSE

(mTCO2/h)2
MAE

(mTCO2/h)
MAPE

(%)

Hybrid STGCN 2.90/2.77E+05 4.02/3.88E+02 9.46/9.15
FNN 3.01/3.11E+05 4.09/4.18E+02 10.80/10.36
GBT 3.25/3.23E+05 4.27/4.25E+02 11.43/11.43

B. Analysis of Locational Marginal GHG Emission

We use the trained hybrid STGCN model to calculate the

locational MEF and ∆E, following the definition in (1). The

locational MEF and ∆E are calculated for each hour and each

region’s load change in the dataset, with a ∆G = 100MW .

We then analyze the locational marginal MEFs in two aspects:

hourly pattern of locational MEF with high renewable energy

output and weekday/weekend effect.

1) Locational MEF on a Day with High Renewable Energy

Output: California has very high renewable energy penetration

rate. On March 27, 2022, California hit a record that 94.5% of

the electricity on the grid came form renewable energy [24].

We calculate the 24-hour locational MEF on this day in the

balancing authority of PGE-TAC and SCE-TAC respectively.

The result is illustrated in Fig. 4. From this figure, we can see

that the marginal GHG emission is significantly lower during

the day. This is because solar photovoltaic (PV) generation

is very high during these hours and does not emit any GHG.

This result shows that the proposed hybrid STGCN model

successfully recognizes the contribution of renewable energy

in reducing GHG emission. Furthermore, the MEF for SCE-

TAC and slightly lower than that of PGE-TAC between 12:00

pm and 18:00 pm. This is because Southern California has

much higher solar PV generation and not all all renewable

energy can be moved from Southern California to Northern

California due to limited power transfer capability.

0 5 10 15 20 25

Hour
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0.2

0.3

0.4

0.5

M
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C
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2
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PGE-TAC

SCE-TAC

Fig. 4: Hourly MEF on March 27, 2022 for PGE-TAC and

SCE-TAC.

2) Weekday/Weekend Effect on Marginal GHG Emission:

We calculate the average locational MEF for 24 hours on

weekdays and weekends in the PGE-TAC area. The result is
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illustrated in Fig. 5. From this figure, we can see that the

MEF is lower during the day, which has been explained in

Subsection IV-B1. We can also observe that the weekends

have lower MEF than the weekdays. This is due to the lower

power demand on weekends. When there are lower power

demand, system operators can turn off the less fuel-efficient

power stations and keep running the power plants with higher

fuel-efficiency. These results show that the proposed hybrid

STGCN model can reflect the GHG emission differences be-

tween weekday and weekends and between different operation

conditions.
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Weekend

Fig. 5: Average hourly MEF on weekdays/weekends in PGE-

TAC.

V. CONCLUSION

In this paper, we developed a hybrid machine learning

model by integrating FNN with STGCNs to predict GHG

emissions and locational MEF. The STGCN components of

the model allows us to capture the complex spatio-temporal

correlations in the network data and improves the prediction

accuracy. The proposed model can provide short-term loca-

tional MEF predictions at hourly granularity to aggregators

and end-users to manage flexible loads and it does not re-

quire accurate power system model. The numerical study on

California’s electricity market shows that the proposed method

has more accurate GHG emission predictions than the baseline

machine learning models. Detailed analysis also showed how

the locational MEF is influenced by load level, hour, and

renewable generation levels.
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