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A B S T R A C T

Monitoring vertical land motion (VLM) along coastlines, which influences the dynamics of sea level changes
in relation to the land, is a challenging task due to its inherent high spatiotemporal variability and limited
availability of observations. This study aimed to investigate the rates, patterns, and drivers of land subsidence
near the coastal town of San Leon, TX, United States, since the 1990s, utilizing a range of space and
terrestrial geodetic techniques. These techniques included interferometric synthetic aperture radar (InSAR),
global navigation satellite systems (GNSS), tide gauge (TG), and satellite radar altimetry (SRA). The small
baseline subset (SBAS) InSAR method was adopted to process 254 images from three synthetic aperture radar
(SAR) sensors, i.e., ERS-2 between 1995 and 1999, ALOS-1 PALSAR between 2006 and 2011, and Sentinel-1
between 2016 and 2020. The results from InSAR subsidence maps were verified by comparing with high-
accuracy vertical positioning observations at ten continuously operating GNSS (cGNSS) stations. Within the
study area, a special attention was given to the Eagle Point TG station where sea level has been significantly
rising relative to the sinking land. Long-term time series of land subsidence at Eagle Point obtained from
sea-level difference between TG and SRA observations were confirmed and compared against InSAR and
the cGNSS station observations recorded in close proximity. Gaussian Process regression (GPR) was then
employed to model the VLM processes at Eagle Point using: (1) the combined results of InSAR and sea-
level difference (i.e., GPR 1), and (2) the InSAR results alone (i.e., GPR 2). A 0.9 mm/yr divergence was
found between GPR 1 and GPR 2 models, indicating the potential to accurately estimate long-term VLM with
InSAR standalone measurements even if multi-year observation gaps intermittently occur, especially for inland
areas where measurement data from other geodetic techniques, such as GNSS, TG, and SRA, are not available.
Further investigations suggest that land subsidence around Eagle Point since 1998 was related to anthropogenic
activities such as hydrocarbon pumping from oil and gas wells that were situated in close proximity to the TG
station.
1. Introduction

Land subsidence is the gradual or sudden downward motion of
Earth’s surface as a result of natural processes (e.g., glacial isostatic
adjustment, compaction and sedimentation, and tectonic movements)
and/or anthropogenic activities (e.g., extraction of water, oil, and
gas) (Shirzaei et al., 2021). Land subsidence, a worldwide challenge,
causes a wide spectrum of environmental, geological and economic
problems such as regional tilting, ground ruptures, damages to infras-
tructures, and increased risk of flooding (Holzer and Johnson, 1985). It
was reported that more than 44,000 square km of land across 45 states
in the U.S. has been directly affected by land subsidence, resulting in
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over $125 million of annual economic losses (Galloway et al., 1999;
National Research Council, 1991).

Consequences of land subsidence may be exacerbated in low-lying
coastal areas, home to ten percent of global population, where sea
water may move inland in wake of rising sea levels relative to subsiding
lands (McGranahan et al., 2007). A prior study revealed that the rate
of local land subsidence could be tenfold or more compared with that
of global mean sea-level rise (Woodworth et al., 2019). For example,
in some major coastal cities, the peak velocity of land subsidence
ranged between −16 and −43 mm/yr (Tay et al., 2022). Meanwhile, the
estimated global sea level rose by around 3 mm/yr observed by satellite
altimeters (Chen et al., 2017). Accurate estimation of the magnitude
vailable online 22 November 2023
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and rate of coastal subsidence is, therefore, considered a key element
in discovering and modeling the patterns of local land–water interac-
tions to facilitate data-informed decision making for stakeholders such
as conservation managers, urban planners, and emergency response
personnel.

With the advent of the global navigation satellite systems (GNSS),
high-precision positioning results can be obtained through static and
continuous observations of code and phase measurements from a
geodetic-grade dual-frequency receiver at the millimeter level (Wang
and Soler, 2015). Over the past two decades, a large number of
continuously operating GNSS (cGNSS) stations have been installed to
support scientific needs worldwide (Blewitt et al., 2018). During this
time, the investigation of accurate land motion and sea-level change
with positioning data collected by cGNSS stations has gained traction.
For example, positioning results obtained from cGNSS stations were
applied to combine with water-level data received at near-located
tide gauge (TG) stations for an estimation of consistent sea-surface
trends (Wöppelmann et al., 2007). However, creating an accurate and
arge-scale coastal land subsidence map using only observations from
he cGNSS network is challenging. This is because: (1) the considerable
ariation in land deformation velocity across different locations makes
t essential to deploy a substantial number of cGNSS stations to effec-
ively capture the diverse spatial patterns (Tang et al., 2021); (2) only a
mall number of cGNSS stations were installed near a coastline with an
xtended observation history of 15 years or more (Yu and Wang, 2017);
nd (3) long-term cGNSS observations are subject to interruptions in
ake of natural and anthropogenic events such as hardware failure
r upgrade, power outage, and natural disasters (Zilkoski et al., 2003;
rocetti et al., 2021; Blewitt et al., 2018).
Growing attention has been paid to monitoring vertical land motion

VLM), including instances of both land subsidence and uplift along the
oastlines with the synthetic aperture radar (SAR) interferometry tech-
ique. Interferometric SAR (InSAR) can provide high-accuracy VLM
esults to an extensive imaged geographical area (Simons and Rosen,
007). The InSAR results display in the form of relative displacement
ime series, both spatially and temporally, requiring external data
ources (Castellazzi et al., 2021; Chen et al., 2021), such as GNSS to
ransform the results referenced to a geodetic datum. For instance,
ulti-platform SAR sensors acquire radar images of the same area
rom different looking angles and at different times, and their InSAR
LM time series need to properly align with long-term stable GNSS
ositioning results (Qu et al., 2015; Chen et al., 2021). However,
hallenges arise in constructing long-term coastal subsidence results
ith InSAR and GNSS data due to limited number of cGNSS stations
long the coastlines with sufficient availability (e.g., 20 years or more).
On the other hand, sea-level data obtained from TGs and satellite

adar altimeters (SRAs) emerged as promising observations for the
urpose of estimating coastal subsidence (Cazenave et al., 1999; Qiao
t al., 2021). One advantage of using sea-level measurements for sub-
idence analysis is the relatively long temporal observation overlaps
etween TG and SRA data, which can reach up to 30 years depend-
ng on the locations. However, VLM results obtained from sea-level
bservations are susceptible to the influence of sea-level variations,
pecifically the inter-annual to decadal variability inherent in time
eries (Woodworth et al., 2019). As a result, previous studies using
ea-level observations have predominantly focused on long-term trends
lone, rather than considering VLM from a time-series perspective (Kuo
t al., 2004; Santamaría-Gómez et al., 2014; Letetrel et al., 2015;
öppelmann and Marcos, 2016). Constructing reliable VLM time series
sing sea-level observations is a challenging yet important task for
nderstanding land motion processes, particularly in close proximity to
G stations and gaining insights into water–land interactions. Previous
tudies have demonstrated the feasibility of constructing VLM time
eries by comparing trend values with GNSS observations in the Texas
2

oast region (Qiao et al., 2022, 2023a). Nevertheless, validating and
omprehending VLM time-series results derived from sea-level obser-
ations may necessitate additional efforts in acquiring multiple sources
f information.
Given the aforementioned practical complexities associated with
onitoring VLM, the utilization of results obtained from various sources
s expected to increase the likelihood of revealing, validating, and
omprehending coastal subsidence (Wang et al., 2022). This study
ocuses on the integration of multiple space and terrestrial geodetic
echniques including InSAR, GNSS, SRA and TG to investigate long-
erm coastal subsidence since the 1990s near the coastal town of San
eon, TX, with a focus on the Eagle Point TG station. The specific
bjectives are to:

(1) Obtain the VLM estimates from multiple spaceborne synthetic
aperture radar (SAR) platforms between 1995 and 2020 with
InSAR and GNSS data near the coastal town of San Leon, TX;

(2) Evaluate the performance of VLM rates estimated with the sea-
level difference method using TG and SRA observations (Qiao
et al., 2022) by comparing against the displacement time series
obtained from InSAR and GNSS in the immediate vicinity of the
Eagle Point TG station; and

(3) Identify the potential causes behinds observed coastal subsi-
dence at the Eagle Point TG station.

. Study area and data

.1. Study area

The study area covers 1392 km2, corresponding to a bounding box
rom 29.33◦𝑁 to 29.68◦𝑁 and from 95.25◦𝑊 to 94.88◦𝑊 , as indicated
y the blue rectangle in Fig. 1. The study area was selected in a
onsideration of: (1) including the continuously operating Eagle Point
G station 8771013 (NOAA, 2023a) within the city limit of San Leon,
X, USA, and (2) the fact that the sea-level rise trend measured at
agle Point TG station has reached 12.5 mm/yr between 1992 and
012, which was almost twice as great as the trends of its nearby TG
tations (Epps and Khan, 2016; Zhong et al., 2022). Eagle Point is also
the epicenter of high tide flooding (HTF), occurring when the sea level
is over half a meter above high tide measured by National Oceanic and
Atmospheric Administration (NOAA)’s TGs. The HTF frequency reached
38 days in 2020 (Sweet et al., 2021). Geologically speaking, the Chicot
and Evangeline aquifers are the main groundwater sources in the Texas
Gulf Coast aquifer system (Galloway et al., 1999). Activities related
to groundwater withdrawal, oil/gas extraction, and sinkhole collapse
at salt domes are thought to be potential drivers behind the observed
and reported land subsidence near this area (Qu et al., 2015; Galloway
et al., 1999).

Across the entire Texas Gulf Coast, both transgressive marine sed-
iments and regressive marine/non-marine sediments were deposited
during the Tertiary period, resulting in a primary lithology of in-
terbedded sand and shale (Gregory, 1966; Galloway et al., 1982). An
overall stratigraphic illustration of related formations over the Texas
Gulf can be found in Table S1 of the supplementary file, and the
formation records of a gas well near the Eagle Point TG, provided
by the Railroad Commission (RRC) of Texas (RRC, 2023), are shown
in Table S2 of the supplementary file. Regarding oil/gas exploration,
there are three main formations including: the Vicksburg formation
of early Oligocene, the Frio formation of middle Oligocene, and the
Anahuac of late Oligocene (Gregory, 1966). In both Frio and Vicksburg
formations, fluvial and deltaic environments as well as associated
processes facilitated two depocenters separated by the San Marcos
arch: the Houston Embayment of Southeast Texas and the Rio Grande
Embayment of the South Texas Gulf (Galloway et al., 1982; Gregory,
1966; Combes, 1993). Both depositional processes and syn-depositional
faults during deltas being constructed facilitated porous sands, which
is believed to be favorable for generating hydrocarbon (Gregory, 1966;
Hyne, 1984). Besides, the Houston Embayment is characterized by salt

diapirs (Galloway et al., 1982; Combes, 1993).
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Table 1
SAR data acquisitions and corresponding sensor information used in this study.
Direction ERS-2 ALOS-1 PALSAR Sentinel-1

Descending Ascending Ascending Descending

Path 212 175 34 143
Frame 3015 570, 580 90 492
Polarization VV HH VV VV
Wavelength 5.6 cm 23.6 cm 5.5 cm 5.5 cm
Revisit period 35 days 46 days 12 days 12 days
Image number 18 10 (each frame) 102 113
Temporal range Dec. 1995–Jul. 1999 Dec. 2006–Jan. 2011 Sep. 2016–Jun. 2020 Oct. 2016–Jun. 2020
2.2. Data

2.2.1. SAR
A total of 243 SAR images corresponding to three spaceborne SAR

platforms (i.e., ERS-2, ALOS-1 PALSAR, and Sentinel-1) were utilized
to form long-term displacement time series between 1995 and 2020. It
should be noted that SAR images captured by the ALOS-1 PALSAR in
the two frames were merged and processed collectively. For the particu-
lar study area, time frame, and SAR missions employed, only Sentinel-1
SAR images were available in both ascending and descending orbits.
A total of four SAR collections were used in this study, namely ERS-
2 descending, ALOS-1 PALSAR ascending, Sentinel-1 ascending, and
Sentinel-1 descending. The spatial coverage of SAR images is shown
in Fig. 1 with sensor names and path/frame numbers marked at the
top or bottom of the corresponding box. The ERS-2 data were accessed
through UNAVCO (UNAVCO, 2022), and ALOS-1 PALSAR (i.e., L1.0
data) and Sentinel-1 SAR collections were obtained from the Alaska
Satellite Facility (ASF) (ASF, 2022). Detailed information on the SAR
data collections as well as the corresponding sensor characteristics can
be found in Table 1. SAR image acquisition dates corresponding to four
SAR datasets can be found in Table S3 to S6 in the supplementary file.
Precise orbit data, provided by the Delft Institute for Earth-Oriented
Space Research (DEOS), were used to facilitate the processing of the
ERS-2 data (Scharroo and Visser, 1998; DEOS, 2022). For removing
the topographic phase component contained in the interferograms, the
1 arcsec, or approximately 30-m, resolution Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) (Earth Resources Ob-
servation and Science (EROS) Center, 2017) was used in ISCE (Rosen
et al., 2012). Copernicus DEM GLO-30 was adopted by ASF’s Hy-
brid Pluggable Processing Pipeline (HYP3), a cloud-based system that
provides on-demand Sentinel-1 InSAR processing using the GAMMA
software (Hogenson et al., 2016).

2.2.2. GNSS
Positioning data obtained from a total of 11 cGNSS stations were

included for result validation and analysis purposes (Fig. 1), spanning
between 1995 and 2020 depending on data availability. These cGNSS
stations belong to multiple cGNSS networks, including five stations
(i.e., COTM, MEPD, NASA, UHC0, and UHCL) from HoustonNet oper-
ated and maintained by the University of Houston, two (i.e., P036 and
PA00) from the PAM network run by the Harris-Galveston Subsidence
District (HGSD), two (i.e., TXAV and TXLQ) from SmartNet North
America (Hexagon, 2023), one (i.e., TXLM) from the Texas Department
of Transportation (TxDOT), and one (i.e., DEN4) from UNAVCO (Yu
and Wang, 2017; Zilkoski et al., 2003). Most cGNSS antennas were
attached to buildings or mounted on poles inserted securely below the
soil. DEN4 is the only cGNSS station at which the antenna was mounted
on a wellhead. Specific details of these cGNSS stations can be found in
Table S7. PAM stations collected GNSS data on a per week basis because
of scheduled routine rotation of surveying equipment among different
sites (Zilkoski et al., 2003). The P036 station within the PAM network,
located near Eagle Point, was included in this research for analyzing
VLM results near the TG (Fig. 1). Raw GNSS observation data at
P036 were accessed from HGSD and processed through NOAA’s Online
3

Positioning User Service (OPUS) (NOAA, 2023c). Daily precise point
positioning (PPP) solutions from the remaining ten cGNSS stations were
directly accessed from the Nevada Geodetic Laboratory (NGL) (NGL,
2023), and were used mainly for validating InSAR results.

2.2.3. Sea-level data
Sea-level observations with six-minute or one-hour intervals be-

tween January 1, 1993, and March 8, 2020, were used to estimate VLM
time series at the Eagle Point TG station (i.e., 8 771013). For a reliable
estimate, three additional TG stations (i.e., 8 771 450, 8 770570, and
8774770) that possessed an observation history over 25 years between
1993 and 2020 were also employed. Sea level observations of these
three TG stations maintained high correlations with that of the Ea-
gle Point TG station. Correlation refers to the correlation coefficient
calculated with the entire water-level time series between the Eagle
Point TG station and each of those three supporting TG stations. De-
tailed information regarding those TG stations can be found in Table
S8 in the supplementary file. Daily water levels were averaged from
the raw data, and the mean value of the sea-level records between
1993 and 2020 was removed on a per station basis to ensure data
consistency across different TG stations. The level-4 sea-surface height
(SSH) product, interpolated as quarter-degree grid cells extracted from
the initial SRA observations, was accessed from the Copernicus Marine
Environment Monitoring Service (CMEMS) and was used to obtain
the absolute sea-level change (ASLC) results (E.U. Copernicus Marine
Service Information, 2022). Dynamic atmospheric corrections (DAC)
data were applied to compensate water-level variations related to
atmospheric winds and pressure contained in the daily SSH time se-
ries (LEGOS/CNRS/CLS, 1992). For each TG involved, the SSH data
from the grid cell in closest proximity was utilized to derive the ASLC
variable. The locations of SSH grid cells can be found in Table S8 of
the supplementary file. Likewise, the time series of DAC were extracted
from the nearest grid cell for each TG.

3. Methods

3.1. Overview

The study integrated space and terrestrial geodetic measurements
obtained small baseline subset (SBAS), GNSS, SRA and TG observations
to investigate long-term coastal subsidence since 1990s near San Leon,
TX, and model the VLM pattern at the Eagle Point TG station. Addition-
ally, this work also examined the connection between potential causes
that resulting in subsidence at the area of interest and documented
anthropogenic activities. The research workflow was summarized in
Fig. 2. SBAS InSAR processing, as elaborated in Section 3.2, consists
on interferogram generation and post-processing in the Miami INsar
Time-series software in PYthon (MintPy) suite to produce land de-
formation time series and velocity estimates (Yunjun et al., 2019),
which corresponds to the first two columns in Fig. 2. Four stacks of
interferograms were generated and post-processed independently for
SAR acquisitions of ERS-2, ALOS-1 PALSAR, Sentinel-1 ascending, and
Sentinel-1 descending. Interferograms were generated from the InSAR
Scientific Computing Environment (ISCE) software (Rosen et al., 2012)
for ERS-2 and ALOS-1 SAR images, and from HYP3 for both Sentinel-1
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Fig. 1. Study area shown in the blue rectangle. Red triangle marks the location of the Eagle Point TG station (ID: 8771013) within the city limit of San Leon, TX. Black dashed
boxes and pink solid boxes correspond to data coverage of the descending and ascending SAR acquisitions, respectively. Sensor name and path/frame numbers are marked at the
top/bottom margin of a specific acquisition box. Both inset and reference maps are provided as guides on the right side of the figure. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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ascending and descending SAR data. InSAR displacement time series
or velocity in the line-of-sight (LOS) direction were converted to the
vertical direction using Sentinel-1’s ascending and/or descending LOS
results. Precise Point positioning (PPP) solutions of the 11 cGNSS
stations were accessed from NGL or processed by OPUS on demand.
Meanwhile, coastal subsidence was estimated using the sea-level dif-
ference between TG and SRA observations, as detailed in Section 3.5,
at the Eagle Point TG station (i.e., 8771013). Finally, coastal subsidence
time series from multiple space geodetic techniques were integrated for
validation, quantification, and analysis of the subsidence processes over
the study area.

3.2. InSAR processing

To qualify ground surface deformation, two main categories of In-
SAR techniques of multi-temporal InSAR (MT-InSAR) processing tech-
niques have been developed: persistent scatterers (PS) and distributed
scatterers (DS) (Yunjun et al., 2019). The PS method only focuses on
phase-stable scatterers by comparing them with a single selected refer-
ence image (Hooper et al., 2004). SBAS, a typical DS InSAR method,
ims to handle decorrelation and improving spatial coverage of avail-
ble pixels by exploiting small spatial–temporal baseline connections
Yunjun et al., 2019; Berardino et al., 2002). To mitigate the impacts in-
uced by infrequent acquisitions as well as their large spatial baselines
btained from SAR platforms that were decommissioned (i.e., ERS-2
nd ALOS-1 PALSAR), the SBAS method was adopted in this research.
4

etailed parameter settings during InSAR processing can be found in t
able 2. The practical grid sizes were approximately 120 m for ERS-
, 90 m for ALOS-1 PALSAR, and 80 m for Sentinel-1 interferograms,
espectively. The same sizes remained for subsequent outputs of the
rocessing chain.
All stacks of interferograms were then independently passed to
intPy for estimating the LOS displacement time series. In each stack
rocessing, network modification was conducted to exclude interfer-
grams when the average coherence fell below specific thresholds
y keeping a minimum spanning tree (MST). A reference point was
hosen within the study area, which exhibited high coherence without
bvious trend of land subsidence. Pixels of stacked SAR interferograms
verlapping with water bodies were masked during MintPy processing.
ifferential phase delay due to the atmosphere was estimated by the
ython based Atmospheric Phase Screen (PyAPS) module (Jolivet et al.,
011) using the ERA-5 data from European Centre for Medium-Range
eather Forecasts (ECMWF) (Hersbach and Dee, 2016). The LOS dis-

placement time series were obtained after inverting the SBAS network
of unwrapped interferograms and applying related corrections (Yunjun
t al., 2019). Detailed key steps of MintPy processing can be found in
ig. 2.

.3. Vertical deformation from LOS InSAR results

For Sentinel-1 data, reliable vertical land subsidence can be de-
omposed by combining the ascending and descending LOS results.
ssuming a target SAR pixel is experiencing land deformation with

he practical velocities of 𝑉𝑛, 𝑉𝑒, and 𝑉𝑢 in the North, East, and Up
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Fig. 2. Research workflow.
Table 2
InSAR processing parameters.
Parameters ISCE HYP3

ERS-2 ALOS-1 PALSAR Sentinel-1

Temporal baseline < 700 days < 700 days < 60 days
Perpendicular baseline < 1,000 m < 2,500 m < 200 m
Phase unwrapping SNAPHUa SNAPHUa MCFb
Multi-looking numberc 30 × 6 30 × 6 20 × 4

a SNAPHU refers to statistical-cost network-flow algorithm for phase unwrapping (Chen and Zebker, 2002).
b MCF is the minimum cost flow algorithm (Costantini, 1998; Hogenson et al., 2016).
c The multi-looking number is shown in azimuth ×range measured in pixels.
directions respectively. Theoretically, the land deformation velocity
𝑉𝐿𝑂𝑆 observed by InSAR in the LOS direction fulfills:

𝑉𝐿𝑂𝑆 = [𝑉𝑛𝑠𝑖𝑛𝜑 − 𝑉𝑒𝑐𝑜𝑠𝜑]𝑠𝑖𝑛𝜃 + 𝑉𝑢𝑐𝑜𝑠𝜃 (1)

where 𝜑 is the satellite heading angle (positive clockwise from the
north), 𝜃 is the radar incidence angle (Fialko et al., 2001). Because
SAR satellites employed near-polar orbits, the LOS measurements are
not sensitive to the north–south motion component of the ground
displacement vector (Wright et al., 2004; Motagh et al., 2017), meaning
that the north–south motion does not contribute significantly to the
InSAR LOS displacement compared with the 𝑉𝑢 and 𝑉𝑒 components.
By excluding the north component, unknowns of 𝑉𝑒 and 𝑉𝑢 can be
hen calculated with observations obtained from both ascending and
escending orbits by solving Eq. (2):
[

−𝑐𝑜𝑠𝜑𝐴𝑠𝑖𝑛𝜃𝐴 𝑐𝑜𝑠𝜃𝐴

−𝑐𝑜𝑠𝜑𝐷𝑠𝑖𝑛𝜃𝐷 𝑐𝑜𝑠𝜃𝐷

] [

𝑉𝑒
𝑉𝑢

]

=
[

𝑉 𝐴
𝐿𝑂𝑆

𝑉 𝐷
𝐿𝑂𝑆

]

(2)

here superscripts ‘‘𝐴’’ and ‘‘𝐷’’ correspond to the ascending and
escending orbit observations, respectively. However, for ascending or
escending only acquisitions (i.e., ERS-2 and ALOS-1 PALSAR in this
tudy), Eq. (2) is not applicable, and the observation 𝑉𝐿𝑂𝑆 was directly
rojected to the vertical direction in this study, by further assuming a
ero East–West bound land motion as indicated by Eq. (3):

𝑢 =
𝑉𝐿𝑂𝑆
𝑐𝑜𝑠𝜃

(3)

In this study, Eqs. (2) and (3) were used to extract the vertical land
motion velocity and to calculate vertical displacement time series from
the LOS results.
5

3.4. GNSS

Online processing modules, for example the OPUS suite by NOAA
(El Shouny and Miky, 2019), have been developed to allow users to
achieve high accuracy GNSS positioning results without having to set
up base stations for maintaining simultaneous observations. The OPUS
tool computes survey-grade coordinates of a rover receiver using a
double differenced and ionospheric-free mathematical model by aver-
aging results from three independent single-baseline solutions within
the continuously operating reference station (CORS) network (Soler
et al., 2011).

The OPUS Static (OPUS-S) processes L1/L2 dual-frequency obser-
vations with a length of between two and 48 h and was adopted in
the study to compute daily coordinates at the P036 cGNSS station
for validating the VLM results near Eagle Point TG. Approximately
1 cm OPUS-S vertical accuracy was reported in processing 24-hour
observations (Wang and Soler, 2013). Raw daily observation files at
the P036 cGNSS station were accessed from HGSD, prepossessed and
uploaded to OPUS repeatedly for PPP calculation. Resultant time-series
of the Earth-centered, Earth-fixed (ECEF) coordinates in the 2014 ITRF
reference frame were converted to the East-North-Up (ENU) directions
relative to a local origin that is close to the P036 station with the
pymap3d module (Hirsch, 2018).

The ECEF positioning time series for the remaining cGNSS stations
(i.e., all cGNSS stations except P036) were provided by NGL (NGL,
2023), which adopts the GipsyX 1.0 suite (Bertiger et al., 2020) to
process daily observation files across the globe and provides PPP so-
lutions in the 2014 ITRF by utilizing precise GNSS orbit, clock data,
and necessary corrections. The coordinates were then projected into the

ENU directions the same way as was done for the P036 station.
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3.5. VLM from sea-level difference

The difference between relative sea-level change (RSLC), measured
by TG stations, and ASLC measured by SRAs, contains land defor-
mation information (Qiao et al., 2021). To suppress high-frequency
ea-level variations for a reliable coastal subsidence estimate, ASLC
nd RSLC variables were corrected with Eq. (4) before differencing
operation (Qiao et al., 2022):

⎧

⎪

⎨

⎪

⎩

𝐴𝑆𝐿𝐶(𝑡) = 𝐴(𝑡) − 1
𝑞
∑𝑞

𝑖=1

[

𝐴𝑄𝑖
(𝑡) − 𝑓𝑄𝑖

(𝑡)
]

𝑅𝑆𝐿𝐶(𝑡) = 𝑅(𝑡) −𝐷(𝑡) − 1
𝑞
∑𝑞

𝑖=1

[

𝑅𝑄𝑖
(𝑡) −𝐷𝑄𝑖

(𝑡) − 𝑔𝑄𝑖
(𝑡)
] (4)

where 𝐴(𝑡), 𝑅(𝑡), and 𝐷(𝑡) correspond to SRA, TG, and DAC observation,
respectively, at the Eagle Point TG station (i.e., 8 771013). Square
brackets in Eq. (4) were used to calculate the sea-level variability using
a set of high-correlated TG stations, i.e., 𝑄 = {8 770570, 8 771450,
8 774770}, as detailed in Table S8. The variable 𝑞 is the number of
stations in 𝑄, and 𝑓𝑄𝑖

(𝑡) and 𝑔𝑄𝑖
(𝑡) are the linear regression models for

𝐴𝑄𝑖
(𝑡) and 𝑅𝑄𝑖

(𝑡) time series, respectively. Finally, coastal subsidence
time series can be estimated with the sea-level difference of 𝐴𝑆𝐿𝐶(𝑡)−
𝑅𝑆𝐿𝐶(𝑡). Detailed description of the method can be found in Qiao et al.
(2022).

4. Results

4.1. InSAR time series and velocity estimation

The study adopted average spatial coherence thresholds of 0.35 for
ERS-2, 0.60 for ALOS-1 PALSAR, 0.50 for Sentinel-1 ascending, and
0.60 for Sentinel-1 descending data to exclude some low-coherence
interferograms. Such thresholds came as a consideration of practical
coherence capabilities related to the SAR-sensor characteristics across
different acquisitions, such as revisit frequency, radar signal wave-
length, and so forth. Besides, considering the L-band ALOS-1 data tend
to be easily affected by ionospheric delay (Zhu et al., 2019), some
interferograms in ALOS-1 PALSAR were further excluded via manual
inspection given that no ionospheric corrections were conducted in
MintPy processing in this study. As a result, a total of 861 interfero-
grams remained and were used for time series analysis, including 35
from ERS-2, 20 from ALOS-1 PALSAR, 388 from Sentinel-1 ascending,
and 418 from Sentinel-1 descending acquisitions, as shown in Fig. 3.
Each subplot in Fig. 3 shows the scatter plot between the perpen-
dicular and temporal baselines, as well as the possible connection
corresponding to an interferogram for each of the four SAR datasets.

Displacement time series were calculated on a per pixel basis for
each of the SAR data collections from a redundant differential SBAS
network as shown in Fig. 3. A land deformation trend was then esti-
mated using time series at each pixel, and the LOS velocity map for
each SAR collection is illustrated in Fig. 4, where deformation patterns
are distinct across different SAR platforms, e.g., the South of the study
area. Similar spatial patterns manifest between Sentinel-1 ascending
and descending acquisitions as shown in Fig. 4(c) and (d), although
they were based on two different LOS directions, implying that the land
motion of the study area occurred mainly to the vertical dimension.
Besides, the deformation rate over the same area may vary over time
across different SAR platforms in their corresponding LOS directions.
For example, the city of Seabrook, TX, as boxed in red in Fig. 4(a),
demonstrated stronger LOS deformation in the late 1990s as imaged
by the ERS-2 sensor. Vertical velocity was calculated as per Eq. (2)
for Sentinel-1 by combining both ascending and descending results, as
illustrated in Fig. 5. In order to maintain the clarity and conciseness of
the presentation, the vertical velocity maps from the ERS-2 and ALOS-1
LOS results, computed as dictated by Eq. (3), are not showcased.
6

4.2. InSAR time-series validation

InSAR results derived from the four SAR data collections were
validated through ten cGNSS stations. Specifically, displacement time
series in the vertical direction of each cGNSS station were compared
against that of the InSAR grid cell in the closest proximity, as shown
in Fig. 6. ERS-2 and ALOS-1 PALSAR sensors actively illuminated the
ground with average radar angles of inclination of 23.2◦ and 39.7◦,
respectively, and their vertical time series were converted from single
orbit LOS results using Eq. (3). Ascending and descending results of
Sentinel-1 were first averaged to the monthly mean and then decom-
posed into vertical as per Eq. (2) on a per month basis. In Fig. 6, time
series of InSAR results were vertically shifted to be superimposed on
GNSS results for better visual comparison. It is worth noting that this
intentional vertical shift on InSAR results did not alter the nature of the
main focus in the study on VLM rate estimate. Among the ten cGNSS
stations (Fig. 5), there are two stations covering the time span of both
ALOS-1 and Sentinel-1 sensors between 2007 and 2020, i.e., in Fig. 6(f)
and (j), and only one station covering the whole period of the three SAR
platforms between 1995 and 2020 (i.e., Fig. 6(j)).

In Fig. 6, overall good agreement can be observed from the time-
series comparison between InSAR and GNSS in terms of the trend
and variations. However, there is a notable divergence in the VLM
trend obtained between InSAR and the DEN4 cGNSS station as shown
in Fig. 6(b). This is likely because the DEN4 antenna was rigidly
mounted on the wellhead (Fig. 7), and the well was drilled down
through the subsurface. Therefore, its GNSS measurements may reflect
the subsurface subsidence, while SBAS InSAR measured land-surface
deformation of a specific multi-looked grid cell. In addition, visible
divergence between InSAR and GNSS also appears at other locations
(e.g., Fig. 6(g)). Possible reasons for potential divergences in the InSAR
vs. GNSS comparison include: (1) the InSAR technique delivers an
average land-deformation rate within a specific grid cell depending on
the spatial resolution between 80 and 120 m in this study while GNSS
measures VLM on particular point locations, (2) GNSS antennas at some
stations were anchored below the land surface as indicated in Table S7
while InSAR reveals land surface deformation, and (3) InSAR results are
affected by phase decorrelation related to baseline/geometry, terrain
changes like vegetated area, and so forth (Hanssen, 2001).

4.3. OPUS GNSS positioning

Among all the cGNSS stations employed in the study, the results
from the P036 station were used to compare with that obtained from
InSAR and sea-level observations in the immediate vicinity of the Eagle
Point TG station. The vertical displacement at P036 is shown as blue
squares in Fig. 8. As mentioned in Section 2.2.2, a GNSS antenna was
installed on a PAM station at a regular rotational interval to collect
data, resulting in potential height abrupt variations due to antenna
changes. Dates at the four visually obvious vertical shifts in Fig. 8 were
assumed as steps related to antenna changes, resulting in five time
series segments. To facilitate a fair and qualitative performance analysis
and comparison with the InSAR and sea-level results, P036 data were
further processed to mitigate the impact of abrupt positioning shifts.
Specifically, Segments 2 and 4 remained unchanged due to seemingly
good alignment to each other. Segment 1 was systematically shifted
in an amount of the vertical mean difference relative to Segment
2. Segments 3 and 5 were shifted in the same way, but the shifts
were relative to Segment 4. The further processed P036 time-series
are shown as pink circles in Fig. 9. It is noteworthy that residual
shifts remain in the processed time-series at P036, particularly between
Segments 1 and 2.
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Fig. 3. SBAS network plots between perpendicular and temporal baseline for the SAR data collections of: (a) ERS-2 spanning from 1995 to 1999, (b) ALOS-1 PALSAR spanning
rom 2007 to 2011, (c) Sentinel-1 ascending orbit spanning from 2016 to 2020, and (d) Sentinel-1 descending orbit spanning from 2016 to 2020. Yellow markers represent the
AR acquisitions, and blue lines are interferogram connections in the network. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
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.4. Multi-source VLM estimates at Eagle Point

Time-series results derived from multiple space and terrestrial geode-
ic techniques including InSAR, GNSS, and sea-level difference between
G and SRA observations were used for VLM performance analysis and
omparison near the Eagle Point TG station (i.e., 8771013). Specifi-
ally, sea-level difference between the TG and SRA observations was
alculated as per Eq. (4) and clear land subsidence patterns after 1998
an be observed from the monthly mean displacement time-series as the
lue dots show in Fig. 9 (Qiao et al., 2022). Fig. 9 also includes InSAR
esults with ERS-2, ALOS-1, and Sentinel-1 land subsidence time-series
s well as the vertical positioning results at the P036 cGNSS station as
rocessed in Section 4.3. The Eagle Point TG station is approximately
.8 km away from the P036 cGNSS station and is less than 400 m apart
rom the nearest ERS-2, ALOS-1, and Sentinel-1 InSAR grid cells. The
ndependently processed InSAR time-series were manually shifted to
lign with the sea-level difference results as shown in Fig. 9(a).
Favorable agreement in VLM results can be observed between us-

ng InSAR and sea-level difference techniques, and both techniques
ecovered the subsidence inflection point, in particular, around 1998.
he cosine similarity was calculated using 𝐚⋅𝐛

‖𝐚‖‖𝐛‖ , where the vector
𝐚 is InSAR estimates as shown in Fig. 9(a), the vector 𝐛 contains
measurements of sea-level difference with the same temporal overlap
with InSAR, and the ‖ ⋅ ‖ operations corresponds to the Euclidean
distance of a vector. The cosine value varies between 0 and 1, with
higher values indicating greater similarity. In this case study, the cosine
similarity value between InSAR and sea-level difference results is ap-
proximately 0.96, indicating a strong agreement between the estimates
of the two techniques. In addition, overall good agreement in VLM
results obtained from P036 cGNSS station and sea-level difference
can be observed in Fig. 9(b), although GNSS time-series still exhibit
segment offsets after adjustment as processed in Section 4.3. In general,
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results derived across different geodetic techniques under investigation
demonstrate comparable coastal subsidence performance near the Ea-
gle Point TG station. Meanwhile, coastal subsidence estimated by the
monthly mean sea-level difference between TG and SRA observation
has the potential of providing longer-term VLM time-series compared
with the InSAR or GNSS results due to longer observation history with
less observation gaps or disruptions.

4.5. Long-term land subsidence modeling

In order to further examine the ability of monitoring land subsi-
dence patterns with different geodetic techniques near the Eagle Point
TG station, two regression models were developed and analyzed. The
first model was built by taking both sea-level difference and InSAR
results as input data while the second model was trained by using
InSAR data alone to investigate the long-term performance without any
other geodetic data sources. The Gaussian Process (GP) was adopted
for modeling VLM estimates, given it is non-parametric and flexible in
fitting non-linear processes, resilient to substantial sample outage, and
easy to access confidence interval (Rasmussen and Williams, 2006). The
P is a supervised learning method, where the probability distribution
ver functions is determined during data fitting with specified covari-
nce function (Rasmussen and Williams, 2006). This indicates that the
ovariance function (i.e., a kernel function) as well as its parameters
eed to be learned from the training data despite GP being a non-
arametric model that can fit data flexibly (Rasmussen and Williams,
006). In this study, the radial basis function (RBF) and white Gaussian
ernels were used for producing a new kernel as defined in Eq. (5) to
it the VLM estimates:

(𝑥, 𝑥′) = 𝑘0(𝑥, 𝑥′) + 𝑘𝑛(𝑥, 𝑥′)

=

[

𝜃21𝑒𝑥𝑝
(

−
(𝑥 − 𝑥′)2

2𝜃22

)

]

+

[

𝜃23𝑒𝑥𝑝
(

−
(𝑥 − 𝑥′)2

2𝜃24

)

+ 𝜃5

]

(5)

where 𝑘0(𝑥, 𝑥′) is a RBF kernel intended for a smoothing trend and
𝑘 (𝑥, 𝑥′) is a noise model as the sum of a RBF kernel and an independent
𝑛
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Fig. 4. Land deformation velocity in the LOS direction obtained from acquisitions of: (a) ERS-2 spanning from 1995 to 1999 with the red box highlighting a coastal subsiding
hotspot at Seabrook, TX, (b) ALOS-1 PALSAR spanning from 2006 to 2011, (c) Sentinel-1 ascending orbit spanning from 2016 to 2020, and (d) Sentinel-1 descending orbit
spanning from 2016 to 2020. The black square in each map corresponds to the reference point, which exhibited high coherence without obvious trend of land deformation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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variance component, 𝑥 and 𝑥′ correspond to different time in this work,
and

[

𝜃1, 𝜃2,… , 𝜃5
]

corresponds to the parameters controlling amplitude
i.e., 𝜃1, 𝜃3), characteristic length-scale (i.e., 𝜃2, 𝜃4), and noise level
(i.e., 𝜃5 for noise variance) of the GP kernels. Parameters of the kernel
were optimized during fitting the Gaussian Process regression (GPR)
models.

This study focused on modeling and predicting VLM with the time
span between 1993 and 2020. Fig. 10(a) corresponds to VLM processes
modeled (i.e., GPR 1) using both InSAR and sea-level difference mea-
surements. Fig. 10(b) illustrates GPR 2 results modeled with InSAR
measurements alone. A direct comparison between GPR models 1 and
2 can be found in Fig. 10(c). It can be observed that GPR 1 agreed
well with GPR 2 from a long-term perspective, although some offsets
can be noticed around 1995, 2002, and 2012 (Fig. 10(d)). Such offsets
probably arose from infrequent InSAR measurements, alignment errors
of InSAR time-series across different SAR sensors, and so forth. The
slope of the difference between GPRs 1 and 2 with a linear regression
8

was 0.9 mm/yr, which shows the potential of using InSAR technique
alone in estimating long-term VLM even if multi-year observation
gaps intermittently emerge, particularly at inland areas where other
geodetic techniques, such as GNSS, TG, and SRA, are not available.
The advantage of using GP models to predict InSAR-based VLM along
the coastlines can also be seen from another angle, where long-term
RSLC trend can be further estimated by combining both GP-modeled
multi-mission InSAR results and SRA observations.

5. Discussion

5.1. Anthropogenic influences on coastal subsidence around Eagle Point

The agreement of VLM results in Section 4.4 may prompt curiosity
bout the causality associated with observed subsiding processes at
agle Point. Land subsidence can be classified into two general cate-
ories: endogenic subsidence originating within the Earth (e.g., folding,
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Fig. 5. Vertical velocity map obtained by combining the Sentinel-1 ascending and
descending orbit measurements. Circles in the map correspond to cGNSS stations used
for validating InSAR results.

faulting, continental drift, etc.) and exogenic subsidence occurring near
the earth surface due to both natural and anthropogenic related pro-
cesses (Prokopovich, 1979). Two main causes of exogenic subsidence
are the removal of the solid support, such as mining and karst, and
an increasing load on a compressible stratum (e.g., the withdrawal of
water and hydrocarbon) (Prokopovich, 1979). Endogenic subsidence
tends to bear a regional and sustained trend over time and space and,
therefore, the study mainly centered on the exogenic part, which gives
rise to varied spatial–temporal patterns of the observed VLM results.

Anthropogenic activities such as fluid (e.g., oil, gas, groundwater)
extraction from subsurface reservoirs may cause overlaid rocks to
deform. When a reservoir has reached equilibrium before pumping,
the geostatic load from its overburden formations is balanced through
pore pressure and associated effective stresses (Gambolati et al., 2006).
hen the fluid head declines after pumping, pressure loss usually dis-
ributes more to solid grain-to-grain contacts in the reservoir (i.e., less
ffective stress contribution from fluid-to-fluid and fluid-to-solid con-
acts), and the resulting compaction of a drained reservoir may extend
o overlaid rocks in the form of land surface subsidence (Gambolati
t al., 2006). Although the amount and geographical extent of subsi-
ence caused by hydrocarbon extraction from a local oil/gas trap of a
eep-seated and well-consolidated reservoir is usually considered less
ignificant than that caused by groundwater withdrawal from large-
cale and shallow aquifer systems (Poland and Davis, 1969; Gambolati
t al., 2006), non-negligible amounts of cumulative subsidence have
een reported worldwide with reservoir depth over 3048 m (Gambolati
t al., 2006; Poland and Davis, 1969; Hermansen et al., 2000; Pratt and
ohnson, 1926).
Over the Houston-Galveston region in Texas, groundwater with-

rawal was reported to cause rapid land subsidence between the early
940s and late 1970s due to industrial water use. Moreover, areas far
way from Eagle Point are still undergoing land subsidence due to
roundwater withdrawal (Greuter et al., 2021). Oil/gas extraction has
also contributed to subsidence (Qiao et al., 2023b). For example, an
rea with a size about 4.0 × 2.4 km2 centered at the Goose Creek oil
ield (approximately 27 km apart from the Eagle Point TG) subsided
ubstantially with a cumulative subsidence of around 1 m between
918 and 1926 due to oil extraction (Galloway et al., 1999; Pratt and
ohnson, 1926).
9

This study examined anthropogenic activities such as groundwater
ithdrawal and oil/gas extraction affecting subsidence around Eagle
oint, TX. For this study, additional data were utilized to facilitate
nalysis including: (1) hydrocarbon production from oil/gas wells near
he Eagle Point TG station obtained from the RRC of Texas (RRC, 2023)
s shown in Fig. 11(a) and (b), (2) monthly Palmer Drought Severity
ndex (PDSI) time series of the climate division covering Eagle Point
i.e., division 08) (Palmer, 1965; NOAA, 2023b) as demonstrated in
ig. 11(e), and (3) groundwater level measurements of the well KH-64-
3-213 from National Water Information System (NWIS) provided by
he United States Geological Survey (USGS) (USGS, 2023) as illustrated
n Fig. 11(f). It should be noted that there were three oil and gas
ields near Eagle Point, including Eagle Bay (Vicksburg), Eagle Bay
Vicksburg 15750), and Eagle Bay (Frio 13200), and the locations of
he oil and gas wells from these fields can be found in Fig. 11(h). These
ields were mainly composed of gas wells with depths ranging from
850 to 5457 m. The total gas production (Fig. 11(b)) from all oil and
as wells in the three fields was calculated in billion cubic feet (BCF),
ncluding gas volume collected from gas wells and that from casinghead
f oil wells. Similarly, Fig. 11(c) reflects the total oil production in
illion barrels (MMBBL), obtained from oil wells and gas-well conden-
ate. According to RRC, condensate refers to the liquid hydrocarbon
ecovered by surface separators from natural gas. Only one class II well,
hich is used to inject fluids associated with hydrocarbon production,
as found within the study area (Fig. 11(h)), and its disposal volumes
f salt water up to a depth of around 1849 m are shown in Fig. 11(d).
rior investigations revealed that the salt-water disposal caused surface
plift in some localized studies in Texas, and its role in mitigating the
ubsidence rate in the study area warrants future attention (Shirzaei
t al., 2016; Karanam and Lu, 2023). Locations of the Eagle Point
TG and the groundwater well, as well as the climate division can be
found in Fig. 11(g). The PDSI (Fig. 11(e)) and groundwater level data
(Fig. 11(f)) data provided an insight to discover the connection between
and subsidence and groundwater usage and withdrawal.
An analysis of Fig. 11 does not suggest that groundwater extrac-

ion be responsible for explaining the subsidence around Eagle Point
ince 1998 because: (1) regulatory action plans have been adopted
y HGSD since its foundation in 1975 to reduce groundwater with-
rawal (Greuter et al., 2021; Galloway et al., 1999), and (2) a long
period of abnormally low rainfall was not for this recorded time period
coupled with a rising trend of the groundwater levels (Fig. 11(e) and
(f)). Additionally, a temporal coincidence between the inflection of
VLM vs. significant increase in oil and gas production can be observed
(Fig. 11(a), (b), and (c)). The active oil and gas wells were found
located near the Eagle Point TG station (Fig. 11(h)). The solid lines
depict casing strings that reach from the reservoir bottoms to the
onshore wellheads. Scatter plot of the comparison between land sub-
sidence and cumulative oil/gas extraction around Eagle Point is shown
in Fig. 12, where strong negative correlations were discovered. Overall,
the findings tend to support that anthropogenic activities related to oil
and gas extraction are accountable for land subsidence at Eagle Point.

From a geophysical and geological perspective, the onset and amount
of practical land subsidence due to fluid withdrawal depend on geomet-
ric and geological settings of related subsurface formations, pumping
depth and volume, medium properties (e.g., porosity and compress-
ibility), and so forth (Gambolati et al., 2006). Direct evidence of
land subsidence induced by hydrocarbon extraction is the reservoir
compaction and the downward movement of overburdened rocks at
different depths after pumping. However, finding the direct evidence is
not straightforward, and researchers have resorted to examining several
crucial conditions occurred to a reservoir, including: (1) a significant
drop of pressure, (2) a compressible rock, (3) a considerable thickness,
and (4) a small burial depth (Gambolati et al., 2006; Geertsma, 1973).
For example, Sharp and Hill showed reservoir depressurization at the
Big Hill and Fannett oil fields near the northeastern Texas Gulf Coast us-
ing bottom hole pressure (BHP) data, and land subsidence was modeled



International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103580X. Qiao et al.
Fig. 6. InSAR time-series validation by comparing with positioning results at ten cGNSS stations in the vertical direction. InSAR time series were vertically shifted for better
visualization.
with appropriate hydro-geological parameters (Sharp and Hill, 1995).
It is likely that some of these reservoir conditions also hold true in
the case of Eagle Point. A surface pressure of approximately 661.9 bar
(equivalent to 9600 pounds per square inch (PSI)) at a depth of around
4694 m was reported when a gas well, around 2 km away from San
Leon, TX, was being drilled on May 6, 1997, and the Vicksburg interval
was reported to be as thick as 610 m (Petzet, 1997). Considering a rapid
10
rate of fluid extraction after 1998 as shown in Fig. 11(b) and (c), reser-
voir pressure may have dropped significantly since then. Compared
with 1 m cumulative subsidence at Goose Creek oil field with reservoir
depths up to 1219 m (Pratt and Johnson, 1926), the observed 0.2 m
cumulative land subsidence at Eagle Point is assumed to support the
fact that the main Vicksburg formation tends to be more consolidated
and less compressible due to deep burial processes. However, further



International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103580X. Qiao et al.

5

n
T
k
p
s
e
E
l
F

S
s
1
b
s
a
e

t
o
o
E

Fig. 7. A photograph of the DEN4 station (UNAVCO, 2023) and its GNSS antenna
setup.

Fig. 8. Positioning time-series in the vertical direction at the P036 cGNSS station. The
blue squares represent original P036 solutions. To mitigate the impact of the positioning
shifts induced by the frequent antenna changes in the PAM network, Segments 1, 3, and
5 were further processed. Specifically, points in Segment 1 were systematically adjusted
in the amount of the vertical mean difference relative to Segment 2. Segments 3 and
5 were shifted in the same way relative to Segment 4.

investigation is needed to explore subsurface activities such as reservoir
compaction, fluid dynamics, reservoir geomechanical properties, and so
forth (Gambolati et al., 2006).

.2. Coastal subsidence near Seabrook, TX

Within the study area, another coastal subsidence hotspot is located
ear Seabrook, TX, as observed between 1995 and 1999 (Fig. 4(a)).
he distance between Eagle Point and Seabrook is approximately 14
m. Similar to the analysis near Eagle Point (Fig. 11), hydrocarbon
roduction near Seabrook, TX, and corresponding well locations are
hown in Fig. 13. It is evident that hydrocarbon production was mainly
xtracted before 2000, which explains the presence of VLM in the
RS-2 results rather than in newer SAR acquisitions. Moreover, well
ocations in Fig. 13 coincide with the geospatial extent in subsidence in
ig. 4(a). The findings suggest that the hydrocarbon withdrawal near
11
eabrook, TX, was potentially accountable for land subsidence. Prior
tudies echoed the conclusions by using the ERS dataset during the
990s. Specifically, the subsidence near Seabrook, TX, was believed to
e driven by hydrocarbon production given the bowl-shape subsidence
patial pattern (i.e., a typical spatial characteristic associated with oil
nd/or gas extraction) and close proximity to the oil and gas wells (Qu
t al., 2015; Buckley et al., 2003).
The well depth near Seabrook, TX, ranged between 2833 and

3890 m, suggesting that the influence of land subsidence associated
with oil and gas extraction was not negligible despite the wells being
situated at deep-seated reservoirs. This, to some extent, further supports
the hypothesis of hydrocarbon-production-induced land subsidence at
Eagle Point, given the similar geological settings.

5.3. InSAR estimate

During InSAR data processing, ionospheric corrections were ignored
in MintPy, which may have affected the InSAR results through re-
lated interferometric phase errors, especially for low-frequency SAR
systems (Zhu et al., 2019) such as the ALOS-1 PALSAR employed in
his study. In addition, for ERS-2 and ALOS-1 PALSAR, only ascending
r descending observations were utilized due to data availability to
btain vertical coastal subsidence by assuming zero land motion in the
ast–West direction as per Eq. (3). Under such an assumption, vertical
displacement estimated from LOS InSAR results may contain errors in
case measurable East–West land motion takes place.

When combining InSAR results from multiple platforms, vertical
shifts across independently processed time-series segments need to be
well determined for a long-term estimate of land subsidence. In this
study, the difference in shifting the vertical results between ALOS-1
PALSAR and Sentinel-1 remained the same amount at TXLM cGNSS
station (Fig. 6(f)) and at Eagle Point TG (Fig. 9(a)). However, the
difference in shifting the vertical results among the same SAR sensors
at GNSS PA00 varied. This inconsistency is believed to stem from the
discontinuity of PA00 (Fig. 6(j)) mainly due to a series of antenna
changes (NGL, 2023). This also implies the challenge of aligning InSAR
time series obtained from multiple SAR platforms, especially in cases
where long-term continuous GNSS observations tend to be scarce. A
larger study area with more reliable cGNSS stations is considered
essential for better understanding the amount to which each InSAR
time-series results from independent SAR platforms should be aligned.

6. Conclusions

This study combined space and terrestrial geodetic techniques in-
cluding SBAS InSAR, GNSS, TG, and SRA to investigate coastal sub-
sidence near San Leon, TX, since the 1990s with a focus around the
Eagle Point TG station, where sea-level rise relative to the land was
reported to be among the highest in the United States. The performance
of long-term VLM time-series obtained from multiple SAR platforms
(i.e., ERS-2, ALOS-1 PALSAR, and Sentinel-1) were evaluated and
validated by comparing with that derived at ten cGNSS stations. VLM
processes derived from sea-level difference between TG and SRA ob-
servations at the Eagle Point TG station were found consistent with the
time-series obtained from InSAR, including the subsidence inflection
around 1998, and GNSS results. Anthropogenic activities related to
oil and gas extraction are potentially accountable for associated land
subsidence around the Eagle Point TG station given the fact that: (1)
the TG station and oil/gas wells were in close proximity, (2) land subsi-
dence had shortly started to emerge since the inception of hydrocarbon
resource development around 1998, (3) the coastal land kept subsiding
as hydrocarbon development continued, and (4) vertical displacements
well synchronized with the cumulative hydrocarbon production. In
addition, the study modeled VLM processes at Eagle Point with GP
using results obtained from sea-level difference and InSAR (i.e., GPR
1) and that from InSAR alone (i.e., GPR 2). Around 0.9 mm/yr trend
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Fig. 9. Land subsidence near the Eagle Point TG station derived from multiple space and terrestrial geodetic techniques: (a) comparison between InSAR vs. monthly mean sea-level
difference, and (b) comparison between GNSS vs. monthly mean sea-level difference.

Fig. 10. Time-series modeling of cumulative land subsidence with GP using: (a) both aligned InSAR and sea-level difference results, and (b) InSAR measurements alone. Shaded
areas around the regression line in (a) and (b) represent the standard deviation of GP prediction. (c) compares the two GP models, and (d) estimates the offsets between the GP
models as well as the corresponding trend. The cyan dashed line in (d) consists of temporal-invariant zero values.
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Fig. 11. Cause-and-effect analysis on anthropogenic factors affecting land subsidence around Eagle Point area: (a) cumulative coastal subsidence time-series processed by combining
the sea-level difference and InSAR data at the Eagle Point TG station, (b) total gas production from gas wells and oil-well casinghead, (c) total oil production from oil wells and
gas-well condensate, (d) water disposal associated with oil/gas activities, (e) PDSI time-series of the ‘‘08’’ climate division zone covering the Eagle Point TG station with negative
values in red representing drought and positive in blue for non-drought, (f) groundwater levels at the well KH-64-33-213 at a depth of around 240 m below land surface, (g) a
map illustrating the locations of the groundwater well, the Eagle Point TG station, and the coverage of the ‘‘08’’ climate division zone, and (h) a map of oil and gas wells and
lines connecting the surface and bottom of the wells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Scatter plot between vertical displacements (sea-level difference & InSAR as well as their GP modeling) vs. (a) cumulative total gas production and (b) cumulative total oil
roduction. The blue dots display original vertical displacement values combining results obtained from the sea-level difference and InSAR (Fig. 11(a)) after hydrocarbon resource
development started around 1998. The pink and orange dots correspond to the displacement values from the GPR 1 regression model as developed in Section 4.5. The correlation
coefficient, denoted by 𝑐𝑜𝑟𝑟, between vertical displacement and production is provided in the legend. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 13. Hydrocarbon production and corresponding well locations near Seabrook, TX: (a) total gas production from gas wells and oil-well casinghead, (b) total oil production
rom oil wells and gas-well condensate, and (c) the map of oil and gas locations.
ifference was documented between these two GPR models, demon-
trating the potential of estimating long-term VLM trend using InSAR
esults alone even if long observation gaps intermittently occur, partic-
larly at inland areas where the observation data obtained from other
eodetic techniques are not available. Future work will concentrate
n: (1) including more SAR sensors such as ENVISAT and COSMO-
kyMed to increase data availability and coverage to enhance long-term
LM estimation capabilities, and (2) investigating the potential of RSLC
stimation along coastal Texas by employing multiple space geodetic
echniques and validating its performance through comparing with the
easurements obtained from TG stations.
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S6), detailed description of cGNSS stations (Table S7), and description
for TG stations (Table S8).
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