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Optimal Design of Disturbance Attenuation Feedback Controllers for
Linear Dynamical Systems*

Davide Mannini!

Abstract— This paper finds the optimal feedback controller
for the discrete time, finite horizon disturbance attenuation
problem under bounded disturbances. We consider a linear
dynamical system and a quadratic objective function with a
resulting nonlinear optimization and optimal nonlinear con-
troller. In the space of initial states, two regions are identified.
One region, containing the zero initial state, features the linear
optimal H., controller, while the other region features nonlinear
optimal control, and converges to the linear quadratic regulator
(LQR) controller for large initial states. The transition between
the two regions offers a unified framework that spans from H..
control to LQR control as a function of the relative magnitude
of the initial state and the imposed disturbance. This study
enhances the versatility of disturbance attenuation feedback
controllers and expands on the previous work on the dynamic
game theory approach to optimal robust control design.

I. INTRODUCTION

The disturbance attenuation problem objective is the de-
sign of a feedback control law that guarantees the effect of
a disturbance on a dynamical system is reduced to an ac-
ceptable level. Disturbance attenuation has been considered
to be of practical importance in several engineering and sci-
entific fields, from engine control in mechanical engineering
to distillation column control in chemical engineering [1].
Successful industrial applications of robust controls using
disturbance attenuation include helicopter control design [2].

Zames [3] introduced in the frequency domain the formu-
lation of a disturbance attenuation problem for linear dynami-
cal systems as an H., optimization problem, which minimizes
the H., norm of the transfer function between the bounded
disturbance input and the performance output. Limitations
of frequency domain solution methods motivated Glover and
Doyle [4] to develop the time domain interpretation of the
H.. optimization problem. Basar [5] further expanded time
domain disturbance attenuation optimization with a game
theoretic approach.

Time domain solution methods typically consider zero
initial states or a small neighborhood around the zero initial
state. Didinsky and Basar [6] considered the design of a
feedback controller for a dynamical linear system with non-
zero initial states, proposing two solution regions in the
space of initial states. Basar [7] also suggested that the
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optimal control is nonlinear in a neighborhood around the
zero initial state. Finite and infinite horizon recursive and
non-recursive methods for the optimal design of disturbance
attenuation feedback controllers are established. However,
efficient solution algorithms covering the entire range of
relevant initial states and bounded disturbances are currently
lacking.

In this article, we expand upon the previous disturbance
attenuation and H., control work and introduce a single,
scalar decision variable minimization to directly solve the
disturbance attenuation problem under bounded disturbances
for any initial state. The resulting optimal feedback controller
is nonlinear. Two regions in the space of initial states are
defined: one, containing the zero initial state, where the
optimal control is linear and equivalent to the optimal H.
control, and one where the optimal control is nonlinear, and
converges to the optimal LQR control as the initial state
becomes large.

Notation: Let I and R denote the integers and reals.
The 2-norm of a vector x is defined as |x| = v/x*x, and
the norm of a signal, defined as vector-valued function
of scalar-valued time ¢, x(z), is defined as |x(¢)|, =
X \x*(k)x(k)|)1/ 2 Let x € XN be a vector sequence
defined as x := (x(0),x(1),...,x(N—1)).

II. DISTURBANCE ATTENUATION PROBLEM

The original disturbance attenuation problem in the fre-
quency domain attempted to find the controller that mini-
mizes the H. norm of the transfer function, 7 (s), from a
disturbance input, w(s), to a performance output, zZ(s) [3].
The H.. norm of the transfer function is defined as

17l = sup 12 M
w(s)20 [W(s) [l
We find a time domain interpretation of definition (1) by
applying Plancherel’s theorem [8, p.69] and squaring the
norms of the performance output and disturbance input
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We constrain the squared norm of the disturbance input in

(2) and the time domain disturbance attenuation problem
relevant for this work is
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disturbance attenuation for the following discrete time sys-
tem

xt=fluw) fiR'XUxW = R"

in which x € R" is the state, u € U C R™ is the controlled
input, w € W C RY is the disturbance, and x* denotes the
successor state. The finite horizon optimal control problem
is

Py(x): Vo(x) = inf sup Vy(x,u,w)
UEY (X) we N
where
N-1
V(o w) = ) 0(x(0),u(i)) + Vi (x(N))
i=0

U (x) ={ueU]| (x(i),u(i)) e R" xR™,
Vi€ Toy-1, x(N) € Xz, Ywe WV}

For the horizon N € I, we use x(i) := ¢ (i;x, L, w) to denote
the state trajectory at time i € Ip.y, given the initial state
x(0) =x € R", and u(i) = u(x(i)) to denote the control input
trajectory at time i € To,y_1. Let u’(x) denote the minimizing
value of the control variable u, u°(x) the corresponding
optimal control policy, and let V(x) := Vi (x, u°(x)) denote
the value function. We implicitly assume that a solution to
Py (x) exists for all x € Zy(x) == {x| % (x) # 0} and that
Zy is not empty. We thus replace the operators inf and sup
with min and max, respectively. In this paper we will be
dealing with a structure analogous to (3) and performance

output
=27 0 1[0
=10 RV |u)
with an unconstrained linear dynamical system and quadratic
objective function
FOuw)=Ax+Bu+w  x(0) =xp
1 1
[of = £lx,u) = 5 ('Qx+u'Ru)  Vy(x) = SxPpx

inwhichxeR", ue R", weW, 0>0,R>0, Pr>0, and
Xo is the initial state. We parameterize the control input in
feedback form

u=p(x,v)=Kx+v

where K is an arbitrary control gain and v € R™ is a control
variable. The optimal control problem reduces to

N—-1
Vv (x,v,w) = ;) C(x (i), u(i)) + Vi (x(N))

In(x) ={v | (x(i),ui)) e R" xR™, x(N) € Xy, Vw € WN}
Where the disturbance set W is defined as
WO = {w| [lw|3 < a}

Where the scalar « is the bound disturbance. From the linear-
ity of the system, the optimal solution of the maximization
over w lies on the boundary of the constraint set. So we can
equivalently express the constraint as

W= {w| [wll3 = o}

Solving the model as a finite horizon non-recursive problem

X = xg+ BVv+YGw

with
x(1) v(0) w(0)
x(2) v(1) w(l)
x(N) v(N—1) w(N—-1)
Ak B 0 0 - 0
A% AkB B 0 0
o= |A%| @z.—| AxB AxB B 0
AY AR'B AR?B AR ... B
I 0 0 - 0
Ak I 0 - 0
g—| A Ak I - 0
AR AR AR g

where Ag = A + BK. Next, we evaluate the control u given
the control parameterization u = Kx -+ v

u = Jixo+ X +v

with
K 0 0 0 00
0 K 0 0 00
= |0 =0 K 0 0 0
0 0 0 K 0
Defining
Ay=H+0d  By=I0B+] Y=Y

enables the cost function to be expressed as
1. _
Vv (x0,v, W) = 3 |Axo+Bv+ Gwli—)
with

2 = diag (diagy_,(0Q),Ps) % = diagy(R)
D = diag(Q, 2, %)

1 0 0
Ay B Gu

The disturbance attenuation constrained optimization prob-
lem is

VN(x()a v, W)

minmax st |w], =o 4)
\4 w

III. OPTIMIZATION METHODS
We present two equivalent solution methods to the distur-

bance attenuation problem (4): the explicit inner maximiza-
tion method and the saddle point method.
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A. Solution Methods Propositions

We introduce two propositions required to derive the
optimal solutions to the disturbance attenuation problem. The
proofs are given in the Appendix. Denote the eigenvalue
decomposition of G'DG by

U
where U is orthogonal, T and 75 are diagonal, and p; is the
largest eigenvalue of G'DG with multiplicity p < n. Note that
|G'DG| = . First, we present Proposition 1, which is an
important solution step for the explicit inner maximization
solution method.

!
G—/DG:UTU/ _ [Ul U2] {UII[J ] [U1:|
fp)

Proposition 1 (Inner max problem). Consider the optimiza-
tion problem

max f(w,A) = (Gw—d)D(Gw—d)—A(Ww—1) (5)

where d = —(Bv+Axq). Optimization problem (5) has opti-
mal value function

o, ifA<w

oo, if A =W and U{G'Dd # 0

pi +d' [D—DG(G'DG — w1)"G'D]d,
if A = and U{G'Dd =0

A+d [D—-DG(G'DG— A1) 'G'D]d,
if A >

FWO(A),2) =

(6)
and the solution for the cases of finite fO are
(G/DG_ — ,ull)+(_;/Dd +U By,
if A = and U{G'Dd =0 (7
(G'DG—AI)"'G'Dd,  if A >

w(1) =

where B1 € R? is an arbitrary vector.

Proposition 2 is necessary for the saddle point solution
method.

Proposition 2. Consider the quadratic function f(-) :

Rn+)n — R
o= 2] 72858 S [

u —B'DG

M
with b € R"™"™,

1) A solution to maxyming f exists if and only if b €
R(M). Similarly, a solution to miny maxy f exists if
and only if b € R(M).

2) For b € R(M), strong duality holds so that

minmax f(u,w) = maxmin f(u,w) = f(u*,w")
u w w u

where (W*,w*) are saddle points of the function f,
satisfying

and df(u,w)/d(u,w) =0 at (u*,w*).

B. Explicit Inner Maximization Solution Method

We expand upon previous results on robust least squares
design as described by Sayed et al. [9], and define an
unconstrained optimization problem equivalent to (4) using
Lagrange multipliers, A € R

minmaxminL(A,v, w;xo)
v w A
where the Lagrangian function is defined as

Vv (v, Wixo)

LA, v,wixo) := o

—A(Iwll, —a)
or equivalently
1
L(A,v,w;xg) == ?(OCVN(V,W;XO) —A(llwll, —a))

where A = o2 . Strong duality holds for the operators max
w
and min
A

maxminL(A,v,w;xo) = minmax L(A,v,w;xg)
w A A w

Where
minminmax L(A, v, W;xp) (8)
v A w

is the dual Lagrangian problem statement. Strong duality al-
lows to characterize the solutions of the original optimization
problem through the dual Lagrangian problem. As proved in
the Appendix, optimization problem (8), which is equivalent
to
minminmax L(A,v, w;xp) 9)
A v w

is unbounded for A < apu;, and structures for the control
variable sequence v and the disturbance sequence w as a
function of the Lagrange multiplier A, v’(1) and w®(1), are
derived. Therefore, the disturbance attenuation optimization
problem using the dual Lagrangian problem is reduced to a
scalar minimization over the variable A

min L(A,v(A),w(1);x0) (10)
A>ouy

Where the optimal solutions are:
1 A% =au,
VO = :%pxo
wl = FIxo+Uq

Where q is an arbitrary vector. The term U;q is
necessary to satisfy the constraint ||w||3 = a, as shown
in Proposition 1. Thus the optimal control input at time

i €lpy is
u®(1,%x0) = Kx(t) + H(1)xo
2) A% > ay
V0= #x
wl= 7x

Thus the optimal control input at time i € [y is

MO(I,AO;XO) = Ex(t) +K(t;X())X()
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Where
H(0) J(0) K(0)
| HO - 1(11) PR
H(N-1) JIN=1) K(N—1)

The control gains H(¢) and K(¢;xp) are obtained from deriv-
ing the solution structure for v?(1) for the cases A° = au;
and A% > au;, respectively. The structure of the optimal
gains are

D A% =au,
F = (D—DG(G'DG — 1) GD)

J =—(G'DG—mI)*G'D(BH# +A)
2) AY> au
F := a(D—DG(aG'DG — A°1)~'GD)
A — —(BFB)"\BFA
7 = —a(aG'DG— 201 \GDBA +A)
C. Saddle Point Solution Method

Optimization problem (9) is strongly dual for the operators
min and max and the optimal solutions as a function of 14

v w
are obtained from the necessary conditions
VywL(A,v,W;x0) =0

By factoring (9)

/ /
L(A,v,w;xg) = %( [w] M {w] -2 [VVV} b+ oxoExo+ oA

\4 \4

N—

e
Mo {aGDG Al

—oG'DB
—aB'DG

oB' DB
Gl ~= -

b:= {_ —} aDAx E:=A'DA

And solving for the necessary conditions, we obtain

] -»

And from Proposition 2 in the Appendix the solution is

0
va((%))] — M*b+N(M)
Statement (10) is solved using the functions w(A) and v(A)
obtained in (11), and the optimal solutions for optimization
problem (9), v° and w°, which are equivalent to the ones
obtained through the explicit inner maximization solution
method, are recovered. The saddle point solution method is
valid for A° > ou;. When A® > oy, the pseudoinverse,
M, becomes an inverse, M~!, as the matrix M is always
nonsingular in this case. When A% = au;, the nullspace

(1)
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Fig. 1. Top. Optimal control gain K as a function of xo, for & = 1. Middle.
Optimal control input u®(0,29) as a function of xg, for & = 1. Bottom.
Contour plot of K as a function of x¢ and o.

N(aG'DG — o) is necessary to satisfy the constraint
W[5 =

w’ e WA+ N(aG'DG — auI)

as shown in the proof for Proposition 2 in the Appendix.

Regardless of the chosen solution method, the optimal
controller is linear and independent of the parameter o, when
A% = au;. The optimal controller is instead nonlinear and
depends on the parameter ¢, when A > a ;. Furthermore,
if A% = au;, the controller is equivalent to the H., optimal
control.

IV. SOLUTION TO THE DISTURBANCE
ATTENUATION PROBLEM

Optimization problem (9) features two solution regions in
the space of the initial states. We define the following region,
%7 where the optimal solution is A? = o

2r={x0eRY:x{, 7' Zxo<a}

Where the gain _# is computed for A = a1, and is obtained
using either solution method presented in Section III. When
the arbitrary gain K is chosen to be K.., the optimal control
gain from the solution of the H., control problem, then (12)
characterizes a region with an optimal linear control, which

12)
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Fig. 2. Contour plot of the relative difference between the optimal control
gain |K| and the optimal H., control gain |K.|, for o = 1.

is equivalent to the optimal H.. control. Indeed by choosing
K = K.., we obtain

V0 = #x, H =0

And thus the optimal control input, which is linear and
independent of xg, at time i € [y.y is

ul(1:1°) = Rx(t) = Kox(t), xo € 21

The region Zyy :=R"\ 21, where the optimal solution is
A0 > oy, features instead a nonlinear optimal controller,
which converges to the optimal LQR control when the initial
state xo becomes large, and is defined as

e = {x0 RV :xy 7' Fxo >}

Where the gain _# is computed for A = ctyt;. Both regions
Zpin (12) and 2y in (13) are characterizable a priori. Once
the region is known, then solution methods from Section
III are used to retrieve the optimal control solution, v’, to
implement in potential applications. While the optimization
methods are formulated within a finite horizon framework,
choosing a large horizon length provides open-loop conver-
gence to the optimal solutions at the first time step, i.e.,
t =0. A numerical scalar example, based on [10, p. 92], for
the following system

(13)

A=1 B=1 R=1 Q=1

~Ko=1 —Kpp=0.62

demonstrates the overall nonlinear behavior of the optimal
control gain, K = K., +K(0;xp) for xo € 2z or K = Koo +
H(0) for xo € 27, and control input, u°(0;A%) = Kxo, and
the transition from region 27 to region Zyi, as illustrated
in the top and middle plots of Figure 1. The dependence on
the parameter « of the optimal control gain, K, is shown
in the bottom plot of Figure 1. Within region 27, the
optimal linear control is independent of the parameter a. As
expected, for o¢ = 0, the optimal LQR control is recovered.
A multidimensional numerical example for the following

system
2 05 1 05
a=15 %) =l

o<y g ol

is used to compute the relative difference between |K| and
|K-| to clearly illustrate the elliptical nature of the boundary
of region 27, d 21, where the optimal control is linear and
equivalent to |K.|, as shown in Figure 2.

V. CONCLUSIONS

This paper expands upon the previous work on H., optimal
control and demonstrates the nonlinearity of the optimal
feedback control of the disturbance attenuation problem for
linear dynamical systems, providing a unified framework
that spans from robust H. control to LQR control as a
function of the initial state compared to the magnitude
of the disturbance. Future work includes 1) applying the
proposed solution methods to a closed-loop framework, i.e.,
robust model predictive control, and investigate relevant
applications and 2) develop a state estimator for the proposed
solution methods to account for imperfect measurements.

APPENDIX
Proof of Proposition 1.
Proof. Perform an invertible coordinate transformation w =

UB,B =U’'w, and we maximize over § in place of w. The
objective function is

f(w,1)=w (G'DG—Al)w—2d'DGw +d'Dd + A
fla,d) = (u —2A)Blon + By (Mz — AT)Br—
2(¥1B1 +y2P2) +d'Dd + A
with vector y = U'G’Dd. We have the following four cases
1) A < . Choose B; — oo and B, =0 to obtain f — oo,
which is the first result.
2) A =w,U{G'Dd =y, #0. We then have
F(BA) = Bs(Ta = AD)By — 2(y1 Bi +¥2B2) +d'Dd + A

Choose B = —py1, fo =0 and let p — o to obtain
f — oo, which is the second result.
3) A=, U{G'Dd =y, =0. We then have
f(BA) = Bo(Ta — D)2 = 2y2p2 +d'Dd + A

Matrix (T, — p;1) is invertible, so the optimal value is
BY = (T» — wiI)~'y,, and By is arbitrary. Converting
back to w gives

w = U By + Uy (T — 1)~ 'USG'Dd

wd = UBi+ (G/DG— [J11)+G_/Dd
where we have used the pseudo-inverse in place of

the SVD expression. Substituting this result into the
expression for f(w,A) above gives

£ = +d'[D—BG(G'BG— w1)*G'D)d
and we have established the third case.

4) A > yy. The matrix T — A[ is now invertible and the
optimal solution is

Bo=(T-An"'y w'=(G'DG—AI)"'G'Dd
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and substituting this result into the expression for
f(w, L) gives

fO=A+d'[D—DG(GDG—A1)"'G'Dd

Proof of Proposition 2.

Proof. First we show that b € R(M) implies existence of
solutions to both minmax and maxmin problems. It is con-
venient to organize the terms in f two ways

1 1
flu,w) = EU/Mzzll +u'(by + Mj,w) — 5w’M11W-&-W/191
(14)

1 1
= _EW,MI W+ w (b +Mjpu) + gu’Mzzu—i—u/bz
(15)

with M = G'DG — Al M, = —G/DB, and My, = B'DB

a) Maxmin exists: Consider the inner problem
miny f(u,w) using (14). The optimal solution satisfies
df/du =0, giving

M22§0+M;2W+b2:0 (16)

which, when feasible, implicitly defines a function (point-
to-set map) u’(w) that is the optimal solution of the inner
problem as a function of w. Next we solve the outer
maximization max,V(z,y°(z)). To take the derivative we use
the chain rule B

d

Ed(mgo(w)) = (9f/ow) 0 +j(af/ou’)

where j = (du’(w)/dw) is the Jacobian of the vector-
valued function u®(w). Taking the partial derivatives using
expression (15) for the first and (14) for the second gives

(9f/3w)go = —Myw+Mpul+ b

(8f/8g0)w = Mzzgo —|—M12W+ by

Setting df/dw = 0O then gives a linear equation for the
optimal w, —M; w0 —|—Mlzgo +b; =0, and combining with
(16) gives the set of equations for the maxmin solution

—M11 M12 W0 b1 W0

=— M =—b
[Mig Mzz} [uo by u’
Notice that this set of equations is feasible since b € R(M),
and we have the solution

m(;} € —M*bh+N(M)

which shows that w® = w*. If we want to evaluate the

corresponding u’ values, then we take the optimal w and
solve (16) yielding

u’(W*) € =My (M{,w* +by) +N(Mpy)

Note that u* € u®(w*).

b) Minmax exists.: Proceeding analogously, we con-
sider the inner problem maxy, f(u,w) using expression (15),
and set df/dw =0 to obtain

~M W’ +Mpu+b; =0 (17)

where we now have an implicit function of the optimal

w, W'(u) as a function of parameter u. Then we solve

outer min, f(W°(u),u) by setting df/du = 0. Proceeding
as above, we obtain a linear equation for the optimal u,
Mxpu® + M|, W’ + b, = 0. Combining with (17) we obtain
an identical set of equations for the minmax problem

_ =0 0

o ] el
M, Mpxp||u by uu

The equations are feasible since b € R(M), and we have

obtained the solution for the minmax problem

ﬁg} €-M"b+N(M)

which shows that u® = u*. As before we can find the

corresponding W° values from (17)
W (u*) € My (Myau* +by) +N(Myy)

and we note that w* € W’(u*). So for b € R(M), we have
established strong duality. The optimal value is then

1 1
fu*,w") = Eb’M+MM+b —bM"b= —Eb'M’Lb

Finally, if b ¢ R(M), we have no solution to (16) in
the maxmin problem for which df(w,u’(w))/dw = 0, so
the maxmin does not have a solution. Analogously, there
is no solution to (17) for which df(w°(u),u)/du = 0, so
the minmax problem also does not have a solution, and
Proposition 2 has been established. O
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