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Abstract— This paper finds the optimal feedback controller
for the discrete time, finite horizon disturbance attenuation
problem under bounded disturbances. We consider a linear
dynamical system and a quadratic objective function with a
resulting nonlinear optimization and optimal nonlinear con-
troller. In the space of initial states, two regions are identified.
One region, containing the zero initial state, features the linear
optimal H∞ controller, while the other region features nonlinear
optimal control, and converges to the linear quadratic regulator
(LQR) controller for large initial states. The transition between
the two regions offers a unified framework that spans from H∞

control to LQR control as a function of the relative magnitude
of the initial state and the imposed disturbance. This study
enhances the versatility of disturbance attenuation feedback
controllers and expands on the previous work on the dynamic
game theory approach to optimal robust control design.

I. INTRODUCTION

The disturbance attenuation problem objective is the de-

sign of a feedback control law that guarantees the effect of

a disturbance on a dynamical system is reduced to an ac-

ceptable level. Disturbance attenuation has been considered

to be of practical importance in several engineering and sci-

entific fields, from engine control in mechanical engineering

to distillation column control in chemical engineering [1].

Successful industrial applications of robust controls using

disturbance attenuation include helicopter control design [2].

Zames [3] introduced in the frequency domain the formu-

lation of a disturbance attenuation problem for linear dynami-

cal systems as an H∞ optimization problem, which minimizes

the H∞ norm of the transfer function between the bounded

disturbance input and the performance output. Limitations

of frequency domain solution methods motivated Glover and

Doyle [4] to develop the time domain interpretation of the

H∞ optimization problem. Basar [5] further expanded time

domain disturbance attenuation optimization with a game

theoretic approach.

Time domain solution methods typically consider zero

initial states or a small neighborhood around the zero initial

state. Didinsky and Basar [6] considered the design of a

feedback controller for a dynamical linear system with non-

zero initial states, proposing two solution regions in the

space of initial states. Basar [7] also suggested that the
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optimal control is nonlinear in a neighborhood around the

zero initial state. Finite and infinite horizon recursive and

non-recursive methods for the optimal design of disturbance

attenuation feedback controllers are established. However,

efficient solution algorithms covering the entire range of

relevant initial states and bounded disturbances are currently

lacking.

In this article, we expand upon the previous disturbance

attenuation and H∞ control work and introduce a single,

scalar decision variable minimization to directly solve the

disturbance attenuation problem under bounded disturbances

for any initial state. The resulting optimal feedback controller

is nonlinear. Two regions in the space of initial states are

defined: one, containing the zero initial state, where the

optimal control is linear and equivalent to the optimal H∞

control, and one where the optimal control is nonlinear, and

converges to the optimal LQR control as the initial state

becomes large.

Notation: Let I and R denote the integers and reals.

The 2-norm of a vector x is defined as |x| =
√

x∗x, and

the norm of a signal, defined as vector-valued function

of scalar-valued time t, x(t), is defined as ∥x(t)∥2 :=

(∑∞
k=0 |x∗(k)x(k)|)1/2

. Let x ∈ X
N be a vector sequence

defined as x := (x(0),x(1), . . . ,x(N −1)).

II. DISTURBANCE ATTENUATION PROBLEM

The original disturbance attenuation problem in the fre-

quency domain attempted to find the controller that mini-

mizes the H∞ norm of the transfer function, T (s), from a

disturbance input, w̄(s), to a performance output, z̄(s) [3].

The H∞ norm of the transfer function is defined as

∥T (s)∥∞ = sup
w̄(s) ̸=0

∥z̄(s)∥2

∥w̄(s)∥2

(1)

We find a time domain interpretation of definition (1) by

applying Plancherel’s theorem [8, p.69] and squaring the

norms of the performance output and disturbance input

sup
w̄(s) ̸=0

∥z̄(s)∥2
2

∥w̄(s)∥2
2

= sup
w(t )̸=0

∥z(t)∥2
2

∥w(t)∥2
2

(2)

We constrain the squared norm of the disturbance input in

(2) and the time domain disturbance attenuation problem

relevant for this work is

inf
u(t)

sup
∥w(t)∥2

2≤α

∥z(t)∥2
2

∥w(t)∥2
2

(3)

Where u(t) is the control input and α is a scalar parameter.

Based on the structure of problem (3), we define a general
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disturbance attenuation for the following discrete time sys-

tem

x+ = f (x,u,w) f : Rn ×U×W→ R
n

in which x ∈ R
n is the state, u ∈ U ⊆ R

m is the controlled

input, w ∈ W ⊆ R
q is the disturbance, and x+ denotes the

successor state. The finite horizon optimal control problem

is

PN(x) : V 0
N(x) = inf

u∈U (x)
sup

w∈WN

VN(x,µ,w)

where

VN(x,µ,w) :=
N−1

∑
i=0

ℓ(x(i),u(i))+Vf (x(N))

U (x) := {u ∈ U | (x(i),u(i)) ∈ R
n ×R

m,

∀i ∈ I0:N−1, x(N) ∈ X f , ∀w ∈W
N}

For the horizon N ∈ I≥0, we use x(i) := φ(i;x,µ,w) to denote

the state trajectory at time i ∈ I0:N , given the initial state

x(0) = x ∈R
n, and u(i) = µ(x(i)) to denote the control input

trajectory at time i∈ I0:N−1. Let u0(x) denote the minimizing

value of the control variable u, µ0(x) the corresponding

optimal control policy, and let V 0
N(x) :=VN(x,µ

0(x)) denote

the value function. We implicitly assume that a solution to

PN(x) exists for all x ∈ XN(x) := {x | U (x) ̸= /0} and that

XN is not empty. We thus replace the operators inf and sup

with min and max, respectively. In this paper we will be

dealing with a structure analogous to (3) and performance

output

z(t) =

[
Q1/2 0

0 R1/2

][
x(t)
u(t)

]

with an unconstrained linear dynamical system and quadratic

objective function

f (x,u,w) = Ax+Bu+w x(0) = x0

|z|2 = ℓ(x,u) =
1

2
(x′Qx+u′Ru) Vf (x) =

1

2
x′Pf x

in which x ∈R
n, u ∈R

m, w ∈W, Q > 0, R > 0, Pf > 0, and

x0 is the initial state. We parameterize the control input in

feedback form

u = µ(x,v) = K̄x+ v

where K̄ is an arbitrary control gain and v ∈R
m is a control

variable. The optimal control problem reduces to

VN(x,v,w) =
N−1

∑
i=0

ℓ(x(i),u(i))+Vf (x(N))

VN(x) := {v | (x(i),u(i)) ∈ R
n ×R

m, x(N) ∈ X f , ∀w ∈W
N}

Where the disturbance set W is defined as

W
0 := {w | ∥w∥2

2 ≤ α}
Where the scalar α is the bound disturbance. From the linear-

ity of the system, the optimal solution of the maximization

over w lies on the boundary of the constraint set. So we can

equivalently express the constraint as

W
0 := {w | ∥w∥2

2 = α}

Solving the model as a finite horizon non-recursive problem

x = A x0 +Bv+G w

with

x :=










x(1)
x(2)
x(3)

...

x(N)










v :=










v(0)
v(1)
v(2)

...

v(N −1)










w :=










w(0)
w(1)
w(2)

...

w(N −1)










A :=










AK

A2
K

A3
K
...

AN
K










B :=










B 0 0 · · · 0

AKB B 0 · · · 0

A2
KB AKB B · · · 0
...

...
...

. . .
...

AN−1
K B AN−2

K B AN−3
K · · · B










G :=










I 0 0 · · · 0

AK I 0 · · · 0

A2
K AK I · · · 0
...

...
...

. . .
...

AN−1
K AN−2

K AN−3
K · · · I










where AK = A+BK̄. Next, we evaluate the control u given

the control parameterization u = K̄x+ v

u = K1x0 +K2x+v

with

K1 :=










K̄

0

0
...

0










K2 :=










0 0 0 0 0

K̄ 0 0 0 0

0 K̄ 0 0 0
...

...
. . .

...
...

0 0 · · · K̄ 0










Defining

Au = K1 +K2A Bu = K2B+ I Gu = K2G

enables the cost function to be expressed as

VN(x0,v,w) =
1

2

∣
∣Āx0 + B̄v+ Ḡw

∣
∣2

D̄

with

Q := diag
(
diagN−1(Q),Pf

)
R := diagN(R)

D̄ = diag(Q,Q,R)

Ā =





I

A
Au



 B̄ =





0

B
Bu



 Ḡ =





0

G
Gu





The disturbance attenuation constrained optimization prob-

lem is

min
v

max
w

VN(x0,v,w)

α
s.t. ∥w∥2 = α (4)

III. OPTIMIZATION METHODS

We present two equivalent solution methods to the distur-

bance attenuation problem (4): the explicit inner maximiza-

tion method and the saddle point method.
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A. Solution Methods Propositions

We introduce two propositions required to derive the

optimal solutions to the disturbance attenuation problem. The

proofs are given in the Appendix. Denote the eigenvalue

decomposition of Ḡ′D̄Ḡ by

Ḡ′D̄Ḡ =UTU ′ =
[
U1 U2

]
[

µ1Ip

T2

][
U ′

1

U ′
2

]

where U is orthogonal, T and T2 are diagonal, and µ1 is the

largest eigenvalue of Ḡ′D̄Ḡ with multiplicity p≤ n. Note that
∣
∣Ḡ′D̄Ḡ

∣
∣ = µ1. First, we present Proposition 1, which is an

important solution step for the explicit inner maximization

solution method.

Proposition 1 (Inner max problem). Consider the optimiza-

tion problem

max
w

f (w,λ ) = (Ḡw−d)′D̄(Ḡw−d)−λ (w′w−1) (5)

where d =−(B̄v+ Āx0). Optimization problem (5) has opti-

mal value function

f (w0(λ ),λ ) =







∞, if λ < µ1

∞, if λ = µ1 and U ′
1Ḡ′D̄d ̸= 0

µ1 +d′[D̄− D̄Ḡ(Ḡ′D̄Ḡ−µ1I)+Ḡ′D̄
]
d,

if λ = µ1 and U ′
1Ḡ′D̄d = 0

λ +d′[D̄− D̄Ḡ(Ḡ′D̄Ḡ−λ I)−1Ḡ′D̄
]
d,

if λ > µ1

(6)

and the solution for the cases of finite f 0 are

w0(λ ) =







(Ḡ′D̄Ḡ−µ1I)+Ḡ′D̄d +U1β1,

if λ = µ1 and U ′
1Ḡ′D̄d = 0

(Ḡ′D̄Ḡ−λ I)−1Ḡ′D̄d, if λ > µ1

(7)

where β1 ∈ R
p is an arbitrary vector.

Proposition 2 is necessary for the saddle point solution

method.

Proposition 2. Consider the quadratic function f (·) :

R
n+m → R

f (u,w) :=

[
w

u

]′ [
Ḡ′D̄Ḡ−λ I −Ḡ′D̄B̄

−B̄′D̄Ḡ B̄′D̄B̄

]

︸ ︷︷ ︸

M

[
w

u

]

+

[
w

u

]′ [
b1

b2

]

with b ∈ R
n+m.

1) A solution to maxw minu f exists if and only if b ∈
R(M). Similarly, a solution to minu maxw f exists if

and only if b ∈ R(M).
2) For b ∈ R(M), strong duality holds so that

min
u

max
w

f (u,w) = max
w

min
u

f (u,w) = f (u∗,w∗)

where (u∗,w∗) are saddle points of the function f ,

satisfying
[

u∗

w∗

]

∈ −M+b+N(M) f (u∗,w∗) =−b′M+b

and d f (u,w)/d(u,w) = 0 at (u∗,w∗).

B. Explicit Inner Maximization Solution Method

We expand upon previous results on robust least squares

design as described by Sayed et al. [9], and define an

unconstrained optimization problem equivalent to (4) using

Lagrange multipliers, λ̃ ∈ R

min
v

max
w

min
λ̃

L(λ̃ ,v,w;x0)

where the Lagrangian function is defined as

L(λ̃ ,v,w;x0) :=
VN(v,w;x0)

α
− λ̃ (∥w∥2 −α)

or equivalently

L(λ ,v,w;x0) :=
1

α2
(αVN(v,w;x0)−λ (∥w∥2 −α))

where λ = α2λ̃ . Strong duality holds for the operators max
w

and min
λ

max
w

min
λ

L(λ ,v,w;x0) = min
λ

max
w

L(λ ,v,w;x0)

Where

min
v

min
λ

max
w

L(λ ,v,w;x0) (8)

is the dual Lagrangian problem statement. Strong duality al-

lows to characterize the solutions of the original optimization

problem through the dual Lagrangian problem. As proved in

the Appendix, optimization problem (8), which is equivalent

to

min
λ

min
v

max
w

L(λ ,v,w;x0) (9)

is unbounded for λ < αµ1, and structures for the control

variable sequence v and the disturbance sequence w as a

function of the Lagrange multiplier λ , v0(λ ) and w0(λ ), are

derived. Therefore, the disturbance attenuation optimization

problem using the dual Lagrangian problem is reduced to a

scalar minimization over the variable λ

min
λ≥αµ1

L(λ ,v(λ ),w(λ );x0) (10)

Where the optimal solutions are:

1) λ 0 = αµ1

v0 = H x0

w0 = J x0 +U1q

Where q is an arbitrary vector. The term U1q is

necessary to satisfy the constraint ∥w∥2
2 = α , as shown

in Proposition 1. Thus the optimal control input at time

i ∈ I0:N is

u0(t,λ 0;x0) = K̄x(t)+H(t)x0

2) λ 0 > αµ1

v0 = K x0

w0 = J x0

Thus the optimal control input at time i ∈ I0:N is

u0(t,λ 0;x0) = K̄x(t)+K(t;x0)x0
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and substituting this result into the expression for

f (w,λ ) gives

f 0 = λ +d′[D̄− D̄Ḡ(Ḡ′D̄Ḡ−λ I)−1Ḡ′D̄
]
d

Proof of Proposition 2.

Proof. First we show that b ∈ R(M) implies existence of

solutions to both minmax and maxmin problems. It is con-

venient to organize the terms in f two ways

f (u,w) =
1

2
u′M22u+u′(b2 +M′

12w)− 1

2
w′M11w+w′b1

(14)

=−1

2
w′M11w+w′(b1 +M12u)+

1

2
u′M22u+u′b2

(15)

with M11 = Ḡ′D̄Ḡ−λ I, M12 =−Ḡ′D̄B̄, and M22 = B̄′D̄B̄

a) Maxmin exists: Consider the inner problem

minu f (u,w) using (14). The optimal solution satisfies

d f/du = 0, giving

M22u0 +M′
12w+b2 = 0 (16)

which, when feasible, implicitly defines a function (point-

to-set map) u0(w) that is the optimal solution of the inner

problem as a function of w. Next we solve the outer

maximization maxz V (z,y0(z)). To take the derivative we use

the chain rule

d

dw
d(w,u0(w)) =

(
∂ f/∂w

)

u0 + j′
(
∂ f/∂u0

)

w

where j = (∂u0(w)/∂w) is the Jacobian of the vector-

valued function u0(w). Taking the partial derivatives using

expression (15) for the first and (14) for the second gives

(
∂ f/∂w

)

u0 =−M11w+M12u0 +b1

(
∂ f/∂u0

)

w
= M22u0 +M′

12w+b2

Setting d f/dw = 0 then gives a linear equation for the

optimal w, −M11w0 +M12u0 +b1 = 0, and combining with

(16) gives the set of equations for the maxmin solution
[
−M11 M12

M′
12 M22

][
w0

u0

]

=−
[

b1

b2

]

M

[
w0

u0

]

=−b

Notice that this set of equations is feasible since b ∈ R(M),
and we have the solution

[
w0

u0

]

∈ −M+b+N(M)

which shows that w0 = w∗. If we want to evaluate the

corresponding u0 values, then we take the optimal w and

solve (16) yielding

u0(w∗) ∈ −M+
22(M

′
12w∗+b2)+N(M22)

Note that u∗ ∈ u0(w∗).

b) Minmax exists.: Proceeding analogously, we con-

sider the inner problem maxw f (u,w) using expression (15),

and set d f/dw = 0 to obtain

−M11w0 +M12u+b1 = 0 (17)

where we now have an implicit function of the optimal

w, w0(u) as a function of parameter u. Then we solve

outer minu f (w0(u),u) by setting d f/du = 0. Proceeding

as above, we obtain a linear equation for the optimal u,

M22u0 +M′
12w0 + b2 = 0. Combining with (17) we obtain

an identical set of equations for the minmax problem
[
−M11 M12

M′
12 M22

][
w0

u0

]

=−
[

b1

b2

]

M

[
w0

uu0

]

=−b

The equations are feasible since b ∈ R(M), and we have

obtained the solution for the minmax problem
[

w0

u0

]

∈ −M+b+N(M)

which shows that u0 = u∗. As before we can find the

corresponding w0 values from (17)

w0(u∗) ∈ M+
22(M12u∗+b1)+N(M11)

and we note that w∗ ∈ w0(u∗). So for b ∈ R(M), we have

established strong duality. The optimal value is then

f (u∗,w∗) =
1

2
b′M+MM+b−b′M+b =−1

2
b′M+b

Finally, if b /∈ R(M), we have no solution to (16) in

the maxmin problem for which d f (w,u0(w))/dw = 0, so

the maxmin does not have a solution. Analogously, there

is no solution to (17) for which d f (w0(u),u)/du = 0, so

the minmax problem also does not have a solution, and

Proposition 2 has been established.
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[10] T. Başar and P. Bernhard, H∞-Optimal Control and Related Minimax

Design Problems: A Dynamic Game Approach. Boston: Birkhäuser,
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