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AlphaFold2 revolutionized structural biology with the ability to predict protein  
structures with exceptionally high accuracy. Its implementation, however, 
lacks the code and data required to train new models. These are necessary  
to (1) tackle new tasks, like protein–ligand complex structure prediction,  
(2) investigate the process by which the model learns and (3) assess the model’s  
capacity to generalize to unseen regions of fold space. Here we report OpenFold,  
a fast, memory efficient and trainable implementation of AlphaFold2. We 
train OpenFold from scratch, matching the accuracy of AlphaFold2. Having 
established parity, we find that OpenFold is remarkably robust at generalizing 
even when the size and diversity of its training set is deliberately limited, 
including near-complete elisions of classes of secondary structure elements. 
By analyzing intermediate structures produced during training, we also gain 
insights into the hierarchical manner in which OpenFold learns to fold. In sum, 
our studies demonstrate the power and utility of OpenFold, which we believe 
will prove to be a crucial resource for the protein modeling community.

Predicting protein structure from sequence has been a defining chal-
lenge of biology for decades1,2. Building on a line of work applying deep  
learning to coevolutionary information encoded in multiple-sequence 
alignments (MSAs)3–8 and homologous structures9,10, AlphaFold2  
(ref. 11) has arguably solved the problem for natural proteins with suf-
ficiently deep MSAs. The model has been made available to the public 
with DeepMind’s official open-source implementation, which has ena-
bled researchers to optimize AlphaFold2’s prediction procedure and 
user experience12 and to employ it as a module within novel algorithms, 

including ones for protein complex prediction13, peptide–protein inter-
actions14, structure ranking15 and more (for example, refs. 16–18). It 
has also been used to predict the structures of hundreds of millions 
of proteins19–21.

In spite of its utility, the official AlphaFold2 implementation omits 
code for the model’s complex training procedure as well as the compu-
tationally expensive data required to run it. This makes it difficult to  
(1) investigate AlphaFold2’s learning behavior and sensitivity to 
changes in data composition and model architecture and (2) create 
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same protein. To further increase the diversity of this collection, we 
fine-tuned a second set of models that we branched off from the main 
model. In this second branch, we disabled the model’s template pipe-
line, similar to the procedure used for AlphaFold2. Selected snapshots 
from this branch were added to the pool of final models, resulting 
in a total of ten distinct models. Full training details are provided in 
Training details.

We summarize the main results of our training experiment in Fig. 1. 
Predictions made by OpenFold and AlphaFold2 on the CAMEO valida-
tion set are assessed using the lDDT-Cα33 (Local Distance Difference Test 
with respect to the alpha carbon) metric (Fig. 1a) and show very high 
concordance between OpenFold and AlphaFold2, demonstrating that 
OpenFold successfully reproduces AlphaFold2. While OpenFold was 
still training for much of the CASP15 (Critical Assessment of Structure 
Prediction) competition, our retrospective evaluation shows that the 
final model achieves parity on CASP15 domains as well (Extended Data 
Fig. 1). Fig. 1c provides a visual illustration of this concordance. Tracking 
prediction accuracy as a function of training stage (Fig. 1d) reveals the 
remarkable fact that OpenFold achieves ~90% of its final accuracy in just 
1,500 GPU hours (~3% of training time) and ~95% in 2,500 GPU hours; 
total training time is approximately 50,000 GPU hours. Although we 
will show that the extended second phase of training does play an 
important role in learning more detailed physical interactions, this 
rapid rise in accuracy suggests that training of performant OpenFold 
variants can be accomplished with far less compute than is necessary 
for full model training, facilitating rapid exploration of model archi-
tectures. We take advantage of this fact in our data elision experiments.

AlphaFold2 training is broadly split into two phases: an initial train-
ing phase and a more computationally intensive fine-tuning phase. In 
the latter, the size of protein fragments used for training is increased to 
384 residues and an additional loss function that penalizes structural 
violations (for example, steric clashes) is enabled. By comparing pre-
dicted structures between the initial and fine-tuning phases, we find 
that the second phase has only a modest effect on overall structural 
quality metrics, even when considering only long proteins more than 
500 residues in length (Extended Data Fig. 3). Instead, the primary util-
ity of fine-tuning appears to be to resolve violations of known chemical 
constraints. In our training experiments, this occurs quickly after the 
beginning of fine-tuning, suggesting that elided fine-tuning runs can 
be used with minimal impact on prediction quality.

In addition to prediction accuracy, we also tracked pLDDT as a 
function of training stage. pLDDT is the model’s estimate of the lDDT-Cα 
of predicted structures and serves as its primary confidence metric. We 
find that pLDDT is well correlated with true lDDT early in training, albeit 
initially overconfident in its self-assessment and later entering a phase 
of underconfidence (Fig. 1b). It is notable that the model is capable of 
assessing the quality of its own predictions early on in training, when 
its overall predictive capacity remains very limited.

OpenFold can achieve high accuracy using tiny training sets
Having established the equivalency of AlphaFold2 and OpenFold, we 
set out to understand properties of the architecture, starting with its 
data efficiency. AlphaFold2 was trained using ~132,000 protein struc-
tures from the PDB, the result of decades of painstaking and expensive 
experimental structure determination efforts. For other molecular 
systems for which AlphaFold2-style models may be developed, data 
are far more sparse; for example, the PDB contains only 1,664 RNA 
structures. We wondered whether the high accuracy achieved by 
AlphaFold2 in fact depended on its comparatively large training set 
or whether it is possible to achieve comparable performance using less 
data. Were the latter to be true, it would suggest broad applicability of 
the AlphaFold2 paradigm to molecular problems. To investigate this 
possibility, we performed a series of OpenFold training runs in which 
we used progressively less training data, assessing model accuracy as 
a function of training set size.

variants of the model to tackle new tasks. Given the success of Alpha-
Fold2, its many novel components are likely to prove useful for tasks 
beyond protein structure prediction. For instance, retraining Alpha-
Fold2 using a dataset of protein–protein complexes resulted in Alpha-
Fold2-Multimer22, the state-of-the-art model for predicting structures 
of protein complexes. Until recently, however, this capability has been 
exclusive to DeepMind.

To address this shortcoming, we developed OpenFold, a trainable 
open-source implementation of AlphaFold2. We trained OpenFold 
from scratch using OpenProteinSet23, our open-source reproduction 
of the AlphaFold2 training set, matching AlphaFold2 in prediction 
quality. Apart from new training code and data, OpenFold has several 
advantages over AlphaFold2: (1) it runs between three and five times 
faster for most proteins, (2) it uses less memory, allowing prediction 
of extremely long proteins and multi-protein complexes on a single 
graphics processing unit (GPU), and (3) it is implemented in PyTorch24, 
the most widely used machine learning framework (AlphaFold2 uses 
Google’s JAX25). As such, OpenFold can be readily used by the widest 
community of developers and interfaces with a rich ecosystem of exist-
ing machine learning software26–29.

Taking advantage of our discovery that ~90% of model accuracy 
can be achieved in ~3% of training time, we retrained OpenFold multi-
ple times on specially elided versions of the training set to quantify its 
ability to generalize to unseen protein folds. Surprisingly, we found 
the model fairly robust even to large elisions of fold space, but its 
capacity to generalize varied based on the spatial extent of protein 
fragments and folds. We observed even stronger performance when 
training the model on more diverse but smaller datasets, some as 
small as 1,000 experimental structures. Next, we used OpenFold to 
understand how the model learns to fold proteins, focusing on the 
geometric characteristics of predicted structures during intermediate 
stages of training. In sum, these results yield fundamental new insights 
into the learning behavior of AlphaFold2-type models and provide new 
conceptual and practical tools for the development of biomolecular 
modeling algorithms.

Results
OpenFold matches AlphaFold2 in accuracy
OpenFold reproduces the AlphaFold2 model architecture in full, 
without any modifications that could alter its internal mathematical 
computations. This results in perfect interoperability between Open-
Fold and AlphaFold2, enabling use of the original AlphaFold2 model 
parameters within OpenFold and vice versa. To verify that our OpenFold 
implementation recapitulates all aspects of AlphaFold2 training, we 
used it to train a new model from scratch. OpenFold and AlphaFold2 
training requires a collection of protein sequences, MSAs and struc-
tures. As the AlphaFold2 MSA database has not been publicly released, 
we used OpenProteinSet23, a replication of the AlphaFold2 training 
dataset that substitutes newer versions of sequence databases when 
available. Starting from approximately 15 million Uniclust30 (ref. 30) 
MSAs, we selected approximately 270,000 diverse and deep MSAs to 
form a ‘self-distillation’ set; such sets are used to augment experimental 
training data with high-quality predictions. We predicted protein struc-
tures for all MSAs in this set using AlphaFold2 and combined them with 
approximately 132,000 unique (640,000 non-unique) experimental 
structures from the Protein Data Bank (PDB)31 to form the OpenFold 
training dataset. During training on self-distillation proteins, residues 
with a low AlphaFold2 confidence score (<0.5 pLDDT (predicted Local 
Distance Difference Test)) were masked. Our validation set consisted of 
nearly 200 structures from CAMEO32, an online repository for continu-
ous quality assessment of protein structure prediction models, drawn 
over a 3-month period ending on 16 January 2022.

From our main training run, we selected seven snapshots to form 
a collection of distinct (but related) models. During prediction time, 
these models can generate alternate structural hypotheses for the 
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Our first set of tests randomly subsample the original training 
data to 17,000, 10,000, 5,000, 2,500, 2,000 and 1,000 protein chains. 
We used each subsampled set to train OpenFold for at least 7,000 
steps, through the initial rapid rise phase to early convergence. To 
avoid information leakage from the full training set, we did not use 
self-distillation, putting the newly trained models at a disadvantage 
relative to the original OpenFold. We trained models with and without 
structural templates. In all other regards, training was identical to that 
of the standard OpenFold model. Model accuracy (assessed using 
lDDT-Cα) is plotted as a function of training step in Fig. 2a, with colors 
indicating the size of the training set used.

We find that merely 10,000 protein chains (about 7.6% of all 
training data (yellow curves)) suffice to reach essentially the same 
initial lDDT-Cα value as a model trained on the full training set (pink 
curve). After 20,000 steps (not pictured), the full data model reaches 
a peak lDDT-Cα of 0.83, while, after 7,000 steps, the 10,000-sample 
model has already exceeded 0.81 lDDT-Cα. Although performance 
gradually degrades as training set size decreases further and even 

though the rate of convergence does seem to be quite variable across 
random seeds (as demonstrated by the repeated 10,000 ablation in 
Fig. 2a, right), we find that all models are surprisingly performant, 
even ones trained on our smallest subsample of 1,000 protein chains, 
corresponding to just 0.76% of the full training set. We stress the 
important caveat that lDDT is not the only measure of a model’s 
success; models trained for such a short time do not learn, for exam-
ple, uncommon secondary structure elements (SSEs) (Fig. 4) or the 
implicit biophysical energy function acquired by the fully trained 
model15 (see Extended Data Fig. 2 and the Supplementary Discus-
sion (section B.1) for details). Nevertheless, these results clearly set 
AlphaFold2 apart from prior protein structure prediction models. 
The 1,000-chain ablation reaches an lDDT-Cα of 0.64, exceeding the 
median lDDT-Cα of 0.62 achieved at CASP13 by the first AlphaFold, 
the best performing model at the time.

Comparing the accuracies of models trained with and without 
templates, we find that templates on average contribute little to early 
prediction quality even in the low-data setting. This is consistent with 
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the original AlphaFold2 ablation studies, which showed that templates 
have a minimal effect except when MSAs are shallow or entirely absent.

OpenFold generalizes to unseen regions of fold space
Randomly subsampling the OpenFold training set, as in the previous 
analysis, reduces the quantity of the training data used but not nec-
essarily the overall diversity. In molecular modeling tasks, the data 
available for training often do not reflect the underlying diversity of the 
molecular system being modeled, due to biases in the scientific ques-
tions pursued, experimental assays available, etc. To assess OpenFold’s 
capacity to generalize to out-of-distribution data, we subsample the 
training set in a structurally stratified manner such that entire regions 

of fold space are excluded from training but retained for model assess-
ment. Multiple structural taxonomies for proteins exist, including the 
hierarchical classification of protein domain structures (CATH)34,35 and 
structural classification of proteins (SCOP)36 classification systems. For 
this task, we use CATH, which assigns protein domains, in increasing 
order of specificity, to a class (C), architecture (A), topology (T) and 
homologous superfamily (H). Domains with the same homologous 
superfamily classification may differ superficially but have highly 
similar structural cores. Our preceding analysis can be considered to 
structurally stratify data at the homologous superfamily level. For the 
present analysis, we stratify data further, holding out entire topologies, 
architectures and classes.
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We start by filtering out protein domains that have not been clas-
sified by CATH, leaving ~440,000 domains spanning 1,385 topologies, 
42 architectures and four classes. For the topology stratification, we 
randomly sample 100 topologies and remove all associated chains 
from the training set. We construct a validation set from the held-out 
topologies by sampling one representative chain from each. We also 
construct successively smaller training sets from shrinking fractions 
of the remaining topologies, including a training set that encom-
passes all of them. We follow an analogous procedure for architec-
tures except that, in this case, the validation set consists of 100 chains 
randomly selected from five architectures (20 per architecture). For 
class-based stratification, the validation set comprises domains that 
are neither in the mainly α nor mainly β classes, hence enriching for 
domains with high proportions of both SSEs. For training, we con-
struct two sets, one corresponding exclusively to the mainly α class 
and another to the mainly β class; this enables us to ascertain the 
capability of models trained largely on either α-helices or β-sheets 
to generalize to proteins containing both. For all stratifications, we 
train OpenFold to early convergence (~7,000 steps) from scratch. To 
prevent leakage of structural information from held-out categories, 
all runs are performed without templates. We plot model accuracies 
as a function of training step in Fig. 2b, with colors indicating the 
fraction of categories retained during training for each respective 
level of the CATH hierarchy.

As expected, removing entire regions of fold space has a more 
dramatic effect on model performance than merely reducing the 
size of the training set. For example, retaining 10% of topologies for 
training (green curve in Fig. 2b, topology split), which corresponds 
to ~6,400 unique chains, results in a model less performant than one 
containing 5,000 randomly selected chains (green curve in Fig. 2a, 
no templates). However, even in the most severe elisions of train-
ing set diversity, absolute accuracies remain unexpectedly high. For 
instance, the training set containing 5% of topologies (2,000 chains) 
still achieves an lDDT-Cα near 0.6, comparable again to results of the 
first AlphaFold, which was trained on over 100,000 protein chains. 
Similarly, the training set for the smallest architecture-based stratifi-
cation only contains domains from one architecture (of 42 that cover 
essentially the entirety of the PDB), yet it peaks near 0.6 lDDT-Cα. 
Most surprisingly, the class-stratified models, in which α-helices or 
β-sheets are almost entirely absent from training, achieve very high 
lDDT-Cα scores of >0.7 on domains containing both α-helices and 
β-sheets. These models likely benefit from the comparatively large 
number of unique chains in their training sets: 15,400 and 21,100 for 
α-helix- and β-sheet-exclusive sets, respectively. It should also be 
noted that the mainly α and mainly β categories do contain small frac-
tions of β-sheets and α-helices, respectively (Extended Data Fig. 4). 
Despite these caveats, the model is being tasked with a very difficult 
out-of-distribution generalization problem in which unfamiliar types 
of SSEs (from the perspective of the training set) have to essentially be 
inferred with minimal quantities of corresponding training data. In 
sum, these results show that the AlphaFold2 architecture is capable 
of remarkable feats of generalization.

To better understand the behavior of class-stratified models, we 
analyzed the structures of two protein domains, one composed almost 
exclusively of α-helices (rice silicon channel Lsi1 aquaporin domain37) 
and another of β-sheets (human transmembrane p24 trafficking protein 
1 (TMED1) domain38), as they are predicted by models trained on the 
mainly α or mainly β datasets. In the top row of Fig. 2c, we show an experi-
mental structure (orange) for Lsi1 (PDB accession code 7CJS_B (ref. 37)) 
along with predictions made by the mainly α-trained model (yellow) and 
the mainly β-trained model (red). In the bottom row, we show similar 
images for TMED1 (PDB accession code 7RRM_C (ref. 38)). Predictably, 
the mainly α-trained model accurately predicts the α-helices of Lsi1 
but fails to properly form β-sheets for TMED1 and incorrectly adopts a 
small α-helix in part of the structure. The mainly β-trained model has the 

opposite problem: its Lsi1 prediction contains poorly aligned helices and 
an erroneous β-sheet, but TMED1 is reasonably well predicted. Notably, 
however, neither fails catastrophically. Regions corresponding to the 
β-sheets of Lsi1 are predicted by the mainly α model with approximately 
the right shape, except that their atomic coordinates are not sufficiently 
precise to enable DSSP to classify them as β-sheets.

Because the topology ablations were evaluated on held-out 
topologies, the architecture ablations were evaluated on held-out 
architectures and so on, validation scores from different data eli-
sion experiments cannot be compared directly. For a more consist-
ent picture of the relative final accuracies of each set of data elision 
experiments, we re-evaluate the final checkpoints of each model on 
our standard CAMEO validation set in Table 1. For information on 
how well the class-ablated models can predict secondary structure, 
see Extended Data Table 1 and, for a comparison of the effects of 
data elision on global structure as opposed to local structure, see 
Extended Data Fig. 5.

OpenFold’s surprising capacity for generalization across held-out 
regions of fold space suggests that it is somewhat indifferent to the 
diversity of the training set at the global fold level. Instead, the model 
appears to learn how to predict protein structures from local patterns 
of MSA and/or sequence–structure correlations (fragments, SSEs, 
individual residues and so on) rather than from global fold patterns 
captured by CATH. For extended analysis, see the Supplementary 
Discussion (section B.2).

OpenFold is more efficient than AlphaFold2 and trains stably
While the OpenFold model we used in the above experiments perfectly 
matches the computational logic of AlphaFold2, we have implemented 
a number of changes that minimally alter model characteristics but 
improve ease of use and performance when training new models and 
performing large-scale predictions.

First, we made several improvements to the data preprocessing 
and training procedure, including a low-precision (‘FP16’) training 
mode that facilitates model training on past generations of commer-
cially available GPUs, like the widespread NVIDIA V100. Second, we 
introduced a change to the primary structural loss, FAPE (frame aligned 
point error), that enhances training stability. In the original model, 
FAPE is clamped, that is, limited to a fixed maximum value, in a large 
fraction of training batches. We find that, in the dynamic early phase of 
training, this strategy is too aggressive, limiting the number of batches 
with useful training signal and often preventing timely convergence. 
Rather than clamping entire batches in this fashion, we instead clamp 
the equivalent fraction of samples within each batch, ensuring that 
each batch contains at least some unclamped chains. In doing so, 

Table 1 | Data elision models evaluated on the CAMEO 
validation set

Ablated CATH category Training set Mean CAMEO lDDT-Cα

Topology 100% avail. T 0.806

50% avail. T 0.786

10% avail. T 0.678

5% avail. T 0.567

Architecture 100% avail. A 0.795

50% avail. A 0.763

10% avail. A 0.627

5% avail. A 0.586

Class Class 1 (‘mostly α’) 0.689

Class 2 (‘mostly β’) 0.713

Rows correspond to CATH elisions reported in Fig. 2, except that evaluations reported here 
are based on the CAMEO validation set. Avail., available.
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we are able to substantially improve training stability and speed up 
model convergence (Fig. 3a and the Supplementary Discussion (sec-
tion 4.1.2)). Importantly, this change does not appear to affect the 
final accuracy of fully trained models; an OpenFold model trained to 
completion after the change reached 0.902 lDDT-Cα on our CAMEO 
validation set, which is almost identical to the score of our prior fully 
trained model checkpoint.

Third, we made optimizations that improve memory efficiency 
during training, when model weights are continually updated to opti-
mize model behavior for prediction, and during inference, when the 
model is used to make new predictions. In AlphaFold2, the computa-
tional characteristics of these two modes vary greatly. To save memory 
at training time, which requires storing intermediate computations 
during the optimization procedure, AlphaFold2 and OpenFold are 
evaluated on short protein fragments ranging in size from 256 to 384 
residues. At inference time, intermediate computations need not 
be stored, but input sequences can be more than ten times longer 
than the longest fragments encountered during training. Because 
the model’s memory usage naively grows cubically with input length, 
inference time prediction stresses modules that are not necessarily 
bottlenecks at training time. To satisfy both sets of desiderata and 

enhance model efficiency, we implemented a number of training- and 
inference-specific optimizations. These optimizations create tradeoffs 
between memory consumption and speed that can be tuned differently 
for training and inference. They include advanced implementations of 
neural network attention mechanisms39 with favorable properties for 
unusually short and long sequences29,40, module refactoring for lower 
memory usage, optional approximations of certain computations that 
reduce the memory burden and specialized low-level code customized 
for GPU hardware. For technical details, see Training time optimiza-
tions and features and Inference.

In sum, these optimizations result in a substantially more efficient 
implementation than AlphaFold2. We report OpenFold runtimes in 
Fig. 3b. During inference, OpenFold is up to four times faster than 
AlphaFold2. OpenFold is more memory efficient than AlphaFold2  
at inference time. Beyond 2,500 residues, AlphaFold2 crashes on  
single GPUs due to memory constraints. OpenFold runs success-
fully on longer proteins and complexes exceeding 4,000 residues in  
length. OpenFold training speed matches or improves upon that  
of AlphaFold2, as has been reported by other researchers using  
OpenFold41,42, and it can be trained on long crop sizes (up to 1,200 in 
the ‘initial training’ setting).
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Learning of secondary structure is staggered and multi-scale
The preceding analysis suggests that SSEs are learned subsequent  
to tertiary structure. We next set out to formally confirm this obser-
vation and chronicle the order in which distinct SSEs are learned. For  
every protein in our validation set and every step of training, we used 
DSSP43 to identify residues matching the eight recognized SSE states. 
We treat as ground truth DSSP assignments of residues in the experi-
mental structures and compute F1 scores as a combined metric of the 
recall and precision achieved by the model for every type of SSE at 
various training steps (Fig. 4a).

We observe a clear sequence in which SSEs are discovered: α-helices 
are learned first, followed by β-sheets, followed by less common SSEs. 

Unsurprisingly, this sequence roughly corresponds to the relative fre-
quencies of SSEs in proteins (Fig. 4b), with the exception of uncommon 
helix variants. As was previously evident, the model’s discovery of SSEs 
lags that of accurate global structure. For instance, the F1 score for 
β-sheets (‘E’) only plateaus hundreds of steps after global structural accu-
racy, as measured by GDT-TS44, a similarity metric for tertiary protein 
structures. This is also clearly visible in our animations of progressive 
training predictions; for each protein, secondary structure is recognized 
and rendered properly only after global geometry is essentially finalized.

To investigate the possibility that OpenFold is achieving high 
α-helical F1 scores by gradually learning small fragmentary helices, 
we binned predicted helices by the longest contiguous fraction of the 
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ground truth helix they recover and plotted the resulting histogram as 
a function of training step in Fig. 4c. Evidently, little probability mass 
ever accumulates between 0.0 (helices that are not recovered at all) and 
1.0 (helices that are completely recovered). This suggests that, at least 
from the perspective of DSSP, most helices become correctly predicted 
essentially all at once. This sudden transition coincides with most  
of the improvement in helix DSSP F1 scores in the early phase of training.

Based on the above observation, we reasoned that, as training 
progresses, OpenFold may first learn to predict smaller structural 
fragments before larger ones and that this may be evident on both 
the tertiary and secondary structure levels. Focusing first on tertiary 
structure, we assessed the prediction quality, at each training step, 
of all non-overlapping fragments 10, 20 and 50 residues long in our 
validation set. Average GDT-TS values are shown in Fig. 5a. Unlike 
global GDT-TS (pink), which improves minimally in the first 300–400 
steps of training, fragment GDT-TS improves markedly during this 
phase, with shorter fragments showing larger gains. By step 1,000, 
when the model reaches a temporary plateau, it has learned to pre-
dict local structure far better than global structure (GDT-TS > 50 

for ten-residue fragments versus GDT-TS < 10 for whole proteins). 
Soon after, at step 1,800, the accuracy of all fragment lengths includ-
ing global structure begins to increase rapidly. However, the gains 
achieved by shorter fragments are smaller than those of longer 
fragments, such that the gap between ten-residue fragments and 
whole proteins is much smaller at step 3,000 than at step 1,800 
(GDT-TS ≈ 90 for ten-residue fragments versus GDT-TS ≈ 70 for whole 
proteins). This trend continues until the model is fully trained, when 
the gap between ten-residue fragments and whole proteins shrinks 
to a mere ten GDT-TS points. Thus, while the model ultimately learns 
to predict global structure almost as well as local structure, it first 
learns to predict the latter.

Turning to secondary structure, we investigated whether the same 
multi-scale learning behavior is detectable when examining SSEs. As 
before, we treat as ground truth the DSSP classifications of experimen-
tal structures in our validation set, focusing exclusively on α-helices and 
β-sheets. We bin both SSEs according to size, defined as the number 
of residues for α-helices and the number of strands for β-sheets. As 
uniform binnings would result in highly imbalanced bins, we instead 
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opt for a dynamic binning procedure. First, each SSE is assigned to 
a (potentially imbalanced) bin that corresponds to its size. Bins are 
then iteratively merged with adjacent bins, subject to the condition 
that no bin exceed a maximum size (in this case, 200 for helices and 
30 for sheets), until no further merges can occur. Finally, bins below a 
minimum bin size (20 for both) are unconditionally merged with adja-
cent bins. We compute metrics averaged over each bin independently 
(Fig. 5b). In Extended Data Fig. 8, we provide another view of the sheet 
data in Fig. 5b by distinguishing between small- (6 Å), medium- (12 Å) 
and long- (24 Å) range contacts, as in, for example, ref. 8

Analogous to what we observe for tertiary structure (see Extended 
Data Figs. 6 and 7 for details), short helices and narrow sheets are better 
predicted during earlier phases of training than their longer and wider 
counterparts, respectively. Improvement in SSE accuracy coincides 
with the rapid increase in tertiary structure accuracy, albeit shifted, 
as we observed in Fig. 4a. Notably, the final quality of predicted SSEs is 
essentially independent of length and width despite the initially large 
spread in prediction accuracies, suggesting that OpenFold ultimately 
becomes independent of scale in its predictive capacity, at least for sec-
ondary structure. We note that the identification of SSEs is performed 
by DSSP, which is sensitive to the details of their hydrogen bonding 
networks. It is possible that, in earlier phases of training, OpenFold 
has already recovered aspects of secondary structure not recognized 
by DSSP on account of imprecise atom positioning.

Discussion
We have developed OpenFold, a complete open-source reimplemen-
tation of AlphaFold2 that includes training code and data. By training 
OpenFold from scratch and matching the accuracy of AlphaFold2, 
we have demonstrated the reproducibility of the AlphaFold2 model 
for protein structure prediction. Furthermore, the OpenFold imple-
mentation introduces technical advances over AlphaFold2, including  
markedly faster prediction speed. It is built using PyTorch, the most 
widely used deep learning framework, facilitating incorporation of 
OpenFold components in future machine learning models.

OpenFold immediately makes possible two broad areas of 
advances: (1) deeper analyses of the strengths, weaknesses and learn-
ing behavior of AlphaFold2-like models and (2) development of new 
(bio)molecular models that take advantage of AlphaFold2 modules. 
In this work, we have focused on the former. First, we assessed Open-
Fold’s capacity to learn from training sets substantially reduced in 
size. Remarkably, we found that even a 100-fold reduction in dataset 
size (0.76% models in Fig. 2a) results in models more performant than 
the first version of AlphaFold. Stated differently, the architectural 
advances introduced in AlphaFold2 enable it to be 100× more data 
efficient than its predecessor, which at the time of its introduction set 
a new state of the art. These results demonstrate that architectural 
innovations can have a more profound impact on model accuracy than 
larger datasets, particularly in domains where data acquisition is costly 
or time consuming, as is often the case in (bio)molecular systems. 
However, it merits noting that AlphaFold2 in general learns MSA–struc-
ture, not sequence–structure, relationships. MSAs implicitly encode 
a substantial amount of structural knowledge, as evidenced by early 
coevolution-based structure prediction methods that were entirely 
unsupervised, making no use of experimental structural data45,46. 
Hence, the applicability of the AlphaFold2 architecture to problems 
that do not exhibit a coevolutionary signal remains undemonstrated.

Our data elision results can be interpreted in light of recent work 
on large transformer-based language models that has revealed broadly 
applicable ‘scaling laws’ that predict model accuracy as a simple func-
tion of model size, compute used and training set size47,48. When not 
constrained by any one of these three pillars, models benefit from 
investments into the other two. These observations have largely focused 
on transformer-based architectures, of which AlphaFold2 is an exam-
ple, but more recent work has revealed similar behavior for other 

architectures49. Although determining the precise scaling properties of 
AlphaFold2 is beyond the scope of the present study, our results suggest 
that it is hardly constrained by the size or diversity of the PDB, motivat-
ing potential development of larger instantiations of its architecture.

OpenFold lays the groundwork for future efforts aimed at improv-
ing the AlphaFold2 architecture and repurposing it for new molecular 
modeling problems. Since the release of our codebase, there have been 
multiple efforts that either depend on OpenFold or directly build upon 
and extend it. These include the ESMFold method for protein structure 
prediction50, which replaces MSAs with protein language models51–53, 
and FastFold, a community effort that has implemented substantial 
improvements including fast model-parallel training and inference41. 
We expect future work to go further by disassembling OpenFold to 
attack problems beyond protein structure prediction. For instance, the 
evoformer module is a general-purpose primitive for reasoning over 
evolutionarily related sequences. DNA and RNA sequences also exhibit 
a coevolutionary signal, with efforts aimed at predicting RNA structure 
from MSAs fast materializing (for example, refs. 54–56). It is plausible 
that even more basic questions in evolutionary biology, such as phylo-
genetic inference, may prove amenable to evoformer-like architectures. 
Similarly, AlphaFold2’s structure module and in particular the invariant 
point attention mechanism provide a general-purpose approach for 
spatial reasoning over polymers, one that may be further extendable to 
arbitrary molecules. We anticipate that, as protein structures and other 
biomolecules shift from being an output to be predicted to an input to 
be used, downstream tasks that rely on spatial reasoning capabilities 
will become increasingly important (for example, refs. 57,58). We hope 
that OpenFold will play a key role in facilitating these developments.
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Methods
Our code and data are fully available at https://github.com/aqlabora-
tory/openfold and https://registry.opendata.aws/openfold/, respec-
tively. In this section, we provide some additional details that may be 
of interest to those attempting to reproduce our results.

Differences between OpenFold and AlphaFold2
In this section, we describe additions and improvements we made to 
OpenFold subject to the constraint that the weights of the two models 
should be interchangeable. We also describe our design decisions in the 
handful of instances for which the AlphaFold2 paper was ambiguous.

Changes to the data pipeline. Template trick. During AlphaFold2 
training, structural template hits undergo two successive rounds of 
filtering. Between these two rounds, the dataloader parses the template 
structure data. The top 20 template hits to pass both filters are shuf-
fled uniformly at random. Finally, the dataloader samples a number of 
templates uniformly at random in the range [0, 4] and draws that many 
samples from the shuffled pool of valid hits. These are then passed as 
inputs to the model. This subsampling process is intended to lower the 
average quality of templates seen by the model during training. We note 
that pre-emptively parsing structure files for each template hit during 
the filtering process is an expensive operation and, for proteins with 
many hits, considerably slows training. For this reason, we replace the 
original algorithm with an approximation. Instead of sampling hits 
from the top 20 template candidates from the pool of templates that 
pass both sets of filters, we use the top 20 hits to pass the first filter. 
These are then shuffled and subsampled as before. Only when a hit is 
drawn is it passed through the second filter; hits that fail to pass the 
second filter at this point are discarded and replaced. If not enough 
hits in the initial 20-sample pool pass the second filter, we continue 
drawing candidates from the top hits outside that pool, without further 
shuffling. This procedure has the disadvantage that, if too many hits 
pass the first filter but not the second filter, the hits used for the model 
are not shuffled. Even in instances where only x of the initial hits fail to 
pass the second filter, OpenFold effectively only shuffles the top (20 − x) 
proteins to pass both filters, strictly increasing the expected quality of 
template hits relative to those used by AlphaFold2. However, in most 
cases, this approximation allows the dataloader to parse only as many 
structure files as are needed, speeding up the process by a factor of 
at least five. In practice, the vast majority of invalid template hits are 
successfully detected by the first filter, suggesting that the difference 
in final template quality between the two procedures is marginal.

Self-distillation training set filtering. The set of 270,262 MSAs yielded 
by our self-distillation procedure is smaller than the 355,993 MSAs 
reported by DeepMind, despite having started with the same data-
base. We suspect that the discrepancy arises due to the first step of the 
filtering process, of which the description in the AlphaFold2 paper is 
somewhat ambiguous.

Zero-centering target structures. We find that centering target struc-
tures at the origin slightly improves the numerical stability of the 
model, especially during low-precision training.

Plateaus and phase transitions. During training of the original version 
of OpenFold, we and third-party developers observed two distinct train-
ing behaviors. The large majority of training runs are almost identical to 
the training curves shown in Fig. 1; after a few thousand training steps, 
validation lDDT-Cα rapidly increases to ~0.83 and improves only incre-
mentally thereafter. Occasionally, such runs exhibit a ‘double descent’, 
briefly improving and then degrading in accuracy before finally con-
verging in the same way. In a fraction of training runs, however, lDDT-Cα 
plateaus between 0.30 and 0.35 on the same set (Fig. 3a). Anecdotally, 
these values appear to be consistent across environments, OpenFold 

versions, architectural modifications and users. If the runs are allowed 
to continue long past the point where lDDT-Cα would otherwise have 
stopped improving (>10,000 training steps), they eventually undergo a 
phase transition, suddenly exceeding 0.8 lDDT-Cα and then continuing 
to improve much as normal runs do. We have not been able to determine 
whether this phenomenon is the result of an error in the OpenFold 
codebase or whether it is a property of the AlphaFold2 algorithm.

Since running the experiments described in the main text of this 
paper, we have discovered a workaround that deviates slightly from the 
original AlphaFold2 training procedure but that appears to completely 
resolve early training instabilities. In the original training configu-
ration, for each AlphaFold2 batch, backbone FAPE loss, the model’s 
primary structural loss, is clamped for all samples in the batch with 
probability 0.9. This practice is potentially problematic during the 
volatile early phase of training, when FAPE values can be extremely 
large and frequent clamping zeroes gradients for most of the resi-
dues in each crop. We find that clamping each sample independently, 
that is, clamping approximately 90% of the samples in each batch 
rather than clamping 90% of all batches, eliminates training instability 
and speeds up convergence to high accuracy by about 30%. We show 
before-and-after data in Fig. 3a.

Training details
Our main OpenFold model was trained using the abridged training 
schedule outlined in the AlphaFold2 Supplementary Materials of  
ref. 11 rather than the original training schedule in ref. 11. Specifically, it 
was trained for three rounds: the initial training phase, the fine-tuning 
phase and the predicted TM60 fine-tuning stage. During the initial 
training phase, sequences were cropped to 256 residues, MSA depth 
was capped at 128 and extra MSA depth was capped at 1,024. During 
fine-tuning, these values were increased to 384, 512 and 5,120, respec-
tively. The second phase also introduced the ‘violation’ and ‘experimen-
tally resolved’ losses, which respectively penalize nonphysical steric 
clashes and incorrect predictions of whether atomic coordinates are 
resolved in experimental structures. Next, we ran a short third phase 
with the predicted TM score loss enabled. The three phases were run 
for 10 million, 1.5 million and 0.5 million protein samples, respectively. 
We trained the model with PyTorch version 1.10, DeepSpeed26 version 
0.5.10 and stage 2 of the ZeRO redundancy optimizer61. We used Adam62 
with β1 = 0.9, β2 = 0.99 and ϵ = 10−6. We warmed up the learning rate lin-
early over the first 1,000 iterations from 0 to 10−3. After approximately  
7 million samples, we marginally decreased the learning rate to 
9.5 × 10−4. This decrease had no noticeable effect on model training. 
For the latter two phases, the learning rate was halved to 5 × 10−4. 
All model, data and loss-related hyperparameters were identical to  
those used during AlphaFold2 training. We also replicated all of the  
stochastic training time dataset augmentation, filtering and resam-
pling procedures described in the original paper.

During the initial fine-tuning and subsequent predicted TM 
fine-tuning phases, we manually sampled checkpoints at peaks in the 
validation lDDT-Cα33. These checkpoints were added to the pool of 
model checkpoints used in the final model ensemble.

Training was run on a cluster of 44 NVIDIA A100 GPUs, each with 
40 GB of DRAM. The model was trained in a data-parallel fashion, with 
one protein per GPU. To simulate as closely as possible the batch size 
of 128 used in training AlphaFold2, we performed three-way gradient 
accumulation to raise our effective batch size from 44 to 132.

As in the original paper, CAMEO chains longer than 700 residues 
were removed from the validation set.

Inference details
Runtime benchmarks were performed on a single 40-GB A100 GPU. 
Times correspond to the intensive ‘model_1_ptm’ config preset, which 
uses deep MSAs and the maximum number of templates. AlphaFold 
was run with JAX version 0.3.13.
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Additional model optimizations and features
Training time optimizations and features. Despite its relatively small 
parameter count (~93 million), AlphaFold2 manifests very large inter-
mediate activations during training, resulting in peak memory usage, 
along with floating point operation counts, much greater than that of 
state-of-the-art transformer-based models from other domains63. In 
AlphaFold2, peak memory usage during training grows cubically as a 
function of input sequence length. As a result, during the second phase 
of training when the inputs are longest, the model manifests individual 
tensors as large as 12 GB. Intermediate activation tensors stored for the 
backward pass are even larger. This bottleneck is exacerbated by several 
limitations of the PyTorch framework. First, PyTorch is run eagerly and 
does not benefit from the efficient compiler used by JAX models that 
improves runtime and reduces memory usage. Second, even on GPUs 
that in principle have sufficient memory to store all intermediate tensors 
used during the forward pass, suboptimal allocation patterns frequently 
result in memory fragmentation, preventing the model from using all 
available memory. For this reason, among others, a preliminary version 
of OpenFold naively modeled after the official JAX-based implementation 
frequently ran out of memory despite having allocated as little as 40% of 
total available memory. To amelioriate these problems, we introduced 
several features that reduce peak memory consumption during training.

In-place operations. We refactored the model by replacing element-wise 
tensor operations with in-place equivalents wherever possible to  
prevent unnecessary allocation of large intermediate tensors.

Custom CUDA kernels. We implemented custom CUDA kernels for all 
the attention modules in the network based on FlashAttention29 but 
with support for the bias terms required by the attention variants in 
the AlphaFold2 architecture. Prior versions of OpenFold relied on a 
custom implementation of the model’s ‘MSA row attention’ module, 
the multi-head attention operation where the aforementioned 12-GB 
tensor is allocated. Modified from optimized softmax kernels from 
FastFold41, which are in turn derived from OneFlow kernels64, our ker-
nels operate entirely in place. This is made possible partly by a fusion 
of the backward passes of the softmax operation and the succeeding 
matrix multiplication. Overall, only a single copy of the quadratic atten-
tion logit tensor is allocated, resulting in peak memory usage five and 
four times lower than that of equivalent native PyTorch code and the 
original FastFold kernels, respectively.

DeepSpeed. OpenFold is trained using DeepSpeed. Using its ZeRO 
redundancy optimizer61 in the ‘stage 2’ configuration, the model parti-
tions gradients and optimizer states between GPUs during data-parallel 
training, further reducing peak memory usage.

Half-precision training. By default, as a memory-saving measure, Alpha-
Fold2 is trained using bfloat16 floating point precision. This 16-bit 
format trades the large precision of the classic half-precision format 
(FP16) for the complete numerical range of full-precision floats (FP32), 
making it well suited for training deep neural networks of the type used 
by AlphaFold2, which is not compatible with FP16 training by default. 
However, unlike FP16, bfloat16 hardware support is still limited to rela-
tively recent NVIDIA GPUs (Ampere and Hopper architectures), and so 
the format remains out of reach for academic laboratories with access 
to older GPUs that are otherwise capable of training AlphaFold2 models 
(for example, V100 GPUs). We address this problem by implementing 
a stable FP16 training mode with more careful typecasting throughout 
the model pipeline, making OpenFold training broadly accessible.

Inference. We also introduce several inference time optimizations to 
OpenFold. As previously mentioned, these features trade off memory 
usage for runtime, contributing to more versatile inference on chains 
of diverse lengths.

FlashAttention. We incorporate FlashAttention29, an efficient fused 
attention implementation that tiles computation to reduce data move-
ment between different levels of GPU memory, greatly improving peak 
memory usage and runtime in the process. We find it to be particularly 
effective for short sequences with 1,000 residues or less, on which it con-
tributes to an OpenFold speedup of up to 15% despite only being com-
patible with a small number of the attention modules in the network.

Low-memory attention. Separately, OpenFold makes use of a recent 
attention algorithm that uses a novel chunking technique to perform 
the entire operation in constant space40. Although enabling this feature 
marginally slows down the model, it nullifies attention as a memory 
bottleneck during inference.

Refactored triangle multiplicative attention. A naive implementation 
of the triangle multiplicative update manifests five concurrent tensors 
the size of the input pair representation. These pair representations 
grow quadratically with input length, such that, during inference on 
long sequences or complexes, they become the key bottleneck. We 
refactored the operation to reduce its peak memory usage by 50%, 
requiring only 2.5 copies of the pair representation.

Template averaging. AlphaFold2 and OpenFold create separate pair 
embeddings for each structural template passed to each model and 
then reduce them to a single embedding at the end of the template 
pipeline with an attention module. For very long sequences or very 
many templates, this operation can become a memory bottleneck. 
AlphaFold-Multimer22 avoids this problem by computing a running 
average of template pair embeddings. Although we trained OpenFold 
using the original AlphaFold2 (nonmultimer) procedure, we find that 
the newer approach can be adopted during inference without a notice-
able decrease in accuracy. We thus make it available as an optional 
inference time memory-saving optimization.

In-place operations. Without the requirement to store intermediate acti-
vations for the backward pass, OpenFold is able to make more extensive 
use of in-place operations during inference. We also actively remove 
unused tensors to mitigate crashes caused by memory fragmentation.

Chunk size tuning. AlphaFold2 offsets extreme inference time memory 
costs with a technique called ‘chunking’, which splits input tensors into 
‘chunks’ along designated, module-specific sub-batch dimensions and 
then runs those modules sequentially on each chunk. For AlphaFold2, 
the chunk size used in this procedure is a model-wide hyperparameter 
that is manually tuned. OpenFold, on the other hand, dynamically 
adjusts chunk size values for each module independently, taking into 
account the model’s configuration and the current memory limitations 
of the system. Although the profiling runs introduced by this process 
incur a small computational overhead, the modules do not need to be 
recompiled for each run, unlike their AlphaFold2 equivalents, and said 
profiling runs are only necessary the first time the model is run; once 
computed, the optimal chunk sizes are cached and reused until con-
ditions change. We find this to be a robust way to seamlessly improve 
runtimes in a variety of settings.

Tensor offloading. Optionally, OpenFold can aggressively offload inter-
mediate tensors to CPU memory, temporarily freeing additional GPU 
memory for memory-intensive computations at the cost of a consider-
able slowdown. This feature is useful during inference on extremely 
long sequences that would otherwise not be computable.

TorchScript tracing. Specially written PyTorch programs can be con-
verted to TorchScript, a JIT-compiled variant of PyTorch. We use this 
feature during inference to speed up parts of the evoformer module. 
Although TorchScript tracing and compilation do introduce some 
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overhead at the beginning of model inference and lock the model to 
a particular sequence length, similar to JAX compilation, we find that 
using TorchScript achieves overall speedups of up to 15%, especially 
on sequences shorter than 1,000 residues. This feature is particularly 
useful during batch inference, where sequences are grouped by length 
to avoid repeated recompilations and to take maximal advantage of 
faster inference times.

AlphaFold-Gap implementation. OpenFold currently supports multi-
meric inference using AlphaFold-Gap13, a zero-shot hack that allows 
inference on protein complexes using monomeric weights. Although 
it falls short of the accuracy of AlphaFold-Multimer (for a comparison 
of the two techniques, see ref. 22), it is a capable tool, especially for 
homomultimers. Because complexes manifest in the model as long 
sequences, OpenFold-Gap in particular benefits from the memory 
optimizations discussed earlier.

Known issues during training
During and after the primary OpenFold retraining experiment, we 
discovered a handful of minor implementation errors that, given the 
prohibitive cost of retraining a full model from scratch, could not be 
corrected. In this section, we describe these errata and the measures 
that we have taken to mitigate them.

Distillation template error. As described in the main text, OpenFold 
and AlphaFold2 training consists of three phases, of which the first is the 
longest and most determinative of final model accuracy. During this first 
phase of the main OpenFold training run, a bug in the dataloader caused 
distillation templates to be filtered entirely; OpenFold was only pre-
sented with templates for PDB chains, which constitute ~25% of training 
samples, and not self-distillation set chains. The issue was corrected for 
later phases, which were run slightly longer than usual to compensate.

Although the accuracy of the resulting OpenFold model matches 
that of the original AlphaFold2 in holistic evaluations, certain down-
stream tasks that specifically exploit the template stack65 do not per-
form as well as the original AlphaFold2. There is evidence, for instance, 
that OpenFold disregards the amino acid sequence of input templates. 
After the bug was corrected, follow-up experiments involving shorter 
training runs showed template usage behavior at parity with that of 
AlphaFold2. Furthermore, OpenFold can be run with the original Alpha-
Fold2 weights in cases where templates are expected to be important to 
take advantage of the new inference characteristics without diminution 
of template-related performance.

Gradient clipping. OpenFold, unlike AlphaFold2, was trained using 
per-batch as opposed to per-sample gradient clipping (first noted by 
the Uni-Fold team42). Uni-Fold experiments show that models trained 
using the latter clipping technique achieve slightly better accuracy.

Training instability. Our primary training run was performed before 
we introduced the changes described in Plateaus and phase transitions. 
While we have no reason to believe that the instabilities we observed 
there are a result of a bug in the OpenFold codebase, as opposed to an 
inherent limitation of the AlphaFold2 architecture, the former remains 
a possibility. It is unclear how potential issues of this kind may have 
affected runs that, like our primary training run, appeared to converge 
at the expected rate.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
OpenProteinSet and OpenFold model parameters are hosted on the 
Registry of Open Data on AWS and can be accessed at https://registry.

opendata.aws/openfold/. Both are available under the permissive  
CC BY 4.0 license. Throughout the study, we use validation sets derived 
from the PDB via CAMEO. We also use CASP evaluation sets. Source data 
are provided with this paper.

Code availability
OpenFold can be accessed at https://github.com/aqlaboratory/open-
fold. It is available under the permissive Apache 2 Licence.
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Extended Data Fig. 1 | OpenFold matches the accuracy of AlphaFold2 on 
CASP15 targets. Scatter plot of GDT-TS values of AlphaFold and OpenFold 
‘Model 1’ predictions against all currently available ‘all groups’ CASP15 domains 
(n = 90). OpenFold’s mean accuracy (95% confidence interval = 68.6-78.8) is on 

par with AlphaFold’s (95% confidence interval = 69.7-79.2) and OpenFold does at 
least as well as the latter on exactly 50% of targets. Confidence intervals of each 
mean are estimated from 10,000 bootstrap samples.
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Extended Data Fig. 2 | OpenFold learns decoy ranking slowly. Decoy ranking results (mean Spearman correlation between pLDDT and decoy TM Score) using 
intermediate checkpoints of OpenFold on 28 randomly chosen proteins from the Rosetta decoy ranking dataset from15. See Supplementary Information section B.1 for 
more details.
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Extended Data Fig. 3 | Fine-tuning does not materially improve prediction accuracy on long proteins. Mean lDDT-Cα over validation proteins with at least 500 
residues as a function of fine-tuning step.
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Extended Data Fig. 4 | The ‘Mostly alpha’ CATH class contains some beta sheets, and vice versa. Counts for alpha helices and beta sheets in the mostly alpha and 
mostly beta CATH class-stratified training sets from Fig. 2, based on 1,000 random samples. Counts are binned by size, defined as the number of residues for alpha 
helices and number of strands for beta sheets.
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Extended Data Fig. 5 | Reduced dataset diversity disproportionately affects global structure. Mean GDT-TS and lDDT-Cα of non-overlapping protein fragments 
from CAMEO validation set as a function of the percentage of CATH clusters in elided training sets. Data for both topology and architecture elisions are included. The 
fragmenting procedure is the same as that described in Fig. 5a.
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Extended Data Fig. 6 | Early predictions crudely approximate lower-
dimensional PCA projections. (A) Mean dRMSD, as a function of training step, 
between low- dimensional PCA projections of predicted structures and the 
final 3D prediction at step 5,000 (denoted by *). Averages are computed over 
the CAMEO validation set. Insets show idealized behavior corresponding to 
unstaggered, simultaneous growth in all dimensions and perfectly staggered 
growth. Empirical training behavior more closely resembles the staggered 

scenario. (B) Low-dimensional projections as in (A) compared to projections of 
the final predicted structures at step 5,000. (C) Mean displacement, as a function 
of training step, of C? atoms along the directions of their final structure’s PCA 
eigenvectors. Results are shown for two individual proteins (PDB accession codes 
7DQ9_A ref. 66 and 7RDT_A ref. 67). Shaded regions correspond loosely to ‘1D,’ 
‘2D,’ and ‘3D’ phases of dimensionality.
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Extended Data Fig. 7 | Radius of gyration as an order parameter for learning 
protein phase structure. Radii of gyration for proteins in the CAMEO validation 
set (or- ange) as a function of sequence length over training time, plotted on a log-
log scale against experimental structures (blue). Legends show equations of best 

fit curves, computed using non-linear least squares. The training steps chosen 
correspond loosely to four phases of dimensional growth. See Supplementary 
Information section B.3 for extended discussion.
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Extended Data Fig. 8 | Contact prediction for beta sheets at different ranges. Binned contact F1 scores (8 Å threshold) for beta sheets of various widths as a function 
of training step at different residue-residue separation ranges (SMLR ≥ 6 residues apart; LR ≥ 24 residues apart, as in8). Sheet widths are weighted averages of sheet 
thread counts within each bin, as in Fig. 5b.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Table 1 | Secondary structure recovery by class-stratified models

Recall and F1 scores for reduced secondary structure categories derived using DSSP. Results are shown for the two class-stratified models from the final panel of Fig. 2b, here evaluated on the 
CAMEO validation set. We use the reduced secondary state scheme described in Supplementary Information section B.5.
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