
Nature Methods | Volume 21 | August 2024 | 1514–1524 1514

nature methods

Article https://doi.org/10.1038/s41592-024-02272-z

OpenFold: retraining AlphaFold2 yields
new insights into its learning mechanisms
and capacity for generalization

Gustaf Ahdritz    1,2,20, Nazim Bouatta    3,20  , Christina Floristean1,
Sachin Kadyan1, Qinghui Xia1, William Gerecke3, Timothy J. O’Donnell4,
Daniel Berenberg5, Ian Fisk6, Niccolò Zanichelli7, Bo Zhang    8,
Arkadiusz Nowaczynski9, Bei Wang9, Marta M. Stepniewska-Dziubinska9,
Shang Zhang9, Adegoke Ojewole    9, Murat Efe Guney9, Stella Biderman10,11,
Andrew M. Watkins12, Stephen Ra12, Pablo Ribalta Lorenzo9, Lucas Nivon13,
Brian Weitzner    14, Yih-En Andrew Ban15, Shiyang Chen    16, Minjia Zhang17,
Conglong Li18, Shuaiwen Leon Song18, Yuxiong He18, Peter K. Sorger    3,
Emad Mostaque19, Zhao Zhang    16, Richard Bonneau12 &
Mohammed AlQuraishi    1 

AlphaFold2 revolutionized structural biology with the ability to predict protein
structures with exceptionally high accuracy. Its implementation, however,
lacks the code and data required to train new models. These are necessary
to (1) tackle new tasks, like protein–ligand complex structure prediction,
(2) investigate the process by which the model learns and (3) assess the model’s
capacity to generalize to unseen regions of fold space. Here we report OpenFold,
a fast, memory efficient and trainable implementation of AlphaFold2. We
train OpenFold from scratch, matching the accuracy of AlphaFold2. Having
established parity, we find that OpenFold is remarkably robust at generalizing
even when the size and diversity of its training set is deliberately limited,
including near-complete elisions of classes of secondary structure elements.
By analyzing intermediate structures produced during training, we also gain
insights into the hierarchical manner in which OpenFold learns to fold. In sum,
our studies demonstrate the power and utility of OpenFold, which we believe
will prove to be a crucial resource for the protein modeling community.

Predicting protein structure from sequence has been a defining chal-
lenge of biology for decades1,2. Building on a line of work applying deep
learning to coevolutionary information encoded in multiple-sequence
alignments (MSAs)3–8 and homologous structures9,10, AlphaFold2
(ref. 11) has arguably solved the problem for natural proteins with suf-
ficiently deep MSAs. The model has been made available to the public
with DeepMind’s official open-source implementation, which has ena-
bled researchers to optimize AlphaFold2’s prediction procedure and
user experience12 and to employ it as a module within novel algorithms,

including ones for protein complex prediction13, peptide–protein inter-
actions14, structure ranking15 and more (for example, refs. 16–18). It
has also been used to predict the structures of hundreds of millions
of proteins19–21.

In spite of its utility, the official AlphaFold2 implementation omits
code for the model’s complex training procedure as well as the compu-
tationally expensive data required to run it. This makes it difficult to
(1) investigate AlphaFold2’s learning behavior and sensitivity to
changes in data composition and model architecture and (2) create

Received: 14 August 2023

Accepted: 3 April 2024

Published online: 14 May 2024

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: nbouatta@gmail.com; m.alquraishi@columbia.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02272-z
http://orcid.org/0000-0001-8283-5324
http://orcid.org/0000-0002-6524-874X
http://orcid.org/0000-0002-9714-2827
http://orcid.org/0000-0003-2661-4388
http://orcid.org/0000-0002-1909-0961
http://orcid.org/0000-0003-2626-7865
http://orcid.org/0000-0002-3364-1838
http://orcid.org/0000-0001-5921-0035
http://orcid.org/0000-0001-6817-1322
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02272-z&domain=pdf
mailto:nbouatta@gmail.com
mailto:m.alquraishi@columbia.edu

Nature Methods | Volume 21 | August 2024 | 1514–1524 1515

Article https://doi.org/10.1038/s41592-024-02272-z

same protein. To further increase the diversity of this collection, we
fine-tuned a second set of models that we branched off from the main
model. In this second branch, we disabled the model’s template pipe-
line, similar to the procedure used for AlphaFold2. Selected snapshots
from this branch were added to the pool of final models, resulting
in a total of ten distinct models. Full training details are provided in
Training details.

We summarize the main results of our training experiment in Fig. 1.
Predictions made by OpenFold and AlphaFold2 on the CAMEO valida-
tion set are assessed using the lDDT-Cα33 (Local Distance Difference Test
with respect to the alpha carbon) metric (Fig. 1a) and show very high
concordance between OpenFold and AlphaFold2, demonstrating that
OpenFold successfully reproduces AlphaFold2. While OpenFold was
still training for much of the CASP15 (Critical Assessment of Structure
Prediction) competition, our retrospective evaluation shows that the
final model achieves parity on CASP15 domains as well (Extended Data
Fig. 1). Fig. 1c provides a visual illustration of this concordance. Tracking
prediction accuracy as a function of training stage (Fig. 1d) reveals the
remarkable fact that OpenFold achieves ~90% of its final accuracy in just
1,500 GPU hours (~3% of training time) and ~95% in 2,500 GPU hours;
total training time is approximately 50,000 GPU hours. Although we
will show that the extended second phase of training does play an
important role in learning more detailed physical interactions, this
rapid rise in accuracy suggests that training of performant OpenFold
variants can be accomplished with far less compute than is necessary
for full model training, facilitating rapid exploration of model archi-
tectures. We take advantage of this fact in our data elision experiments.

AlphaFold2 training is broadly split into two phases: an initial train-
ing phase and a more computationally intensive fine-tuning phase. In
the latter, the size of protein fragments used for training is increased to
384 residues and an additional loss function that penalizes structural
violations (for example, steric clashes) is enabled. By comparing pre-
dicted structures between the initial and fine-tuning phases, we find
that the second phase has only a modest effect on overall structural
quality metrics, even when considering only long proteins more than
500 residues in length (Extended Data Fig. 3). Instead, the primary util-
ity of fine-tuning appears to be to resolve violations of known chemical
constraints. In our training experiments, this occurs quickly after the
beginning of fine-tuning, suggesting that elided fine-tuning runs can
be used with minimal impact on prediction quality.

In addition to prediction accuracy, we also tracked pLDDT as a
function of training stage. pLDDT is the model’s estimate of the lDDT-Cα
of predicted structures and serves as its primary confidence metric. We
find that pLDDT is well correlated with true lDDT early in training, albeit
initially overconfident in its self-assessment and later entering a phase
of underconfidence (Fig. 1b). It is notable that the model is capable of
assessing the quality of its own predictions early on in training, when
its overall predictive capacity remains very limited.

OpenFold can achieve high accuracy using tiny training sets
Having established the equivalency of AlphaFold2 and OpenFold, we
set out to understand properties of the architecture, starting with its
data efficiency. AlphaFold2 was trained using ~132,000 protein struc-
tures from the PDB, the result of decades of painstaking and expensive
experimental structure determination efforts. For other molecular
systems for which AlphaFold2-style models may be developed, data
are far more sparse; for example, the PDB contains only 1,664 RNA
structures. We wondered whether the high accuracy achieved by
AlphaFold2 in fact depended on its comparatively large training set
or whether it is possible to achieve comparable performance using less
data. Were the latter to be true, it would suggest broad applicability of
the AlphaFold2 paradigm to molecular problems. To investigate this
possibility, we performed a series of OpenFold training runs in which
we used progressively less training data, assessing model accuracy as
a function of training set size.

variants of the model to tackle new tasks. Given the success of Alpha-
Fold2, its many novel components are likely to prove useful for tasks
beyond protein structure prediction. For instance, retraining Alpha-
Fold2 using a dataset of protein–protein complexes resulted in Alpha-
Fold2-Multimer22, the state-of-the-art model for predicting structures
of protein complexes. Until recently, however, this capability has been
exclusive to DeepMind.

To address this shortcoming, we developed OpenFold, a trainable
open-source implementation of AlphaFold2. We trained OpenFold
from scratch using OpenProteinSet23, our open-source reproduction
of the AlphaFold2 training set, matching AlphaFold2 in prediction
quality. Apart from new training code and data, OpenFold has several
advantages over AlphaFold2: (1) it runs between three and five times
faster for most proteins, (2) it uses less memory, allowing prediction
of extremely long proteins and multi-protein complexes on a single
graphics processing unit (GPU), and (3) it is implemented in PyTorch24,
the most widely used machine learning framework (AlphaFold2 uses
Google’s JAX25). As such, OpenFold can be readily used by the widest
community of developers and interfaces with a rich ecosystem of exist-
ing machine learning software26–29.

Taking advantage of our discovery that ~90% of model accuracy
can be achieved in ~3% of training time, we retrained OpenFold multi-
ple times on specially elided versions of the training set to quantify its
ability to generalize to unseen protein folds. Surprisingly, we found
the model fairly robust even to large elisions of fold space, but its
capacity to generalize varied based on the spatial extent of protein
fragments and folds. We observed even stronger performance when
training the model on more diverse but smaller datasets, some as
small as 1,000 experimental structures. Next, we used OpenFold to
understand how the model learns to fold proteins, focusing on the
geometric characteristics of predicted structures during intermediate
stages of training. In sum, these results yield fundamental new insights
into the learning behavior of AlphaFold2-type models and provide new
conceptual and practical tools for the development of biomolecular
modeling algorithms.

Results
OpenFold matches AlphaFold2 in accuracy
OpenFold reproduces the AlphaFold2 model architecture in full,
without any modifications that could alter its internal mathematical
computations. This results in perfect interoperability between Open-
Fold and AlphaFold2, enabling use of the original AlphaFold2 model
parameters within OpenFold and vice versa. To verify that our OpenFold
implementation recapitulates all aspects of AlphaFold2 training, we
used it to train a new model from scratch. OpenFold and AlphaFold2
training requires a collection of protein sequences, MSAs and struc-
tures. As the AlphaFold2 MSA database has not been publicly released,
we used OpenProteinSet23, a replication of the AlphaFold2 training
dataset that substitutes newer versions of sequence databases when
available. Starting from approximately 15 million Uniclust30 (ref. 30)
MSAs, we selected approximately 270,000 diverse and deep MSAs to
form a ‘self-distillation’ set; such sets are used to augment experimental
training data with high-quality predictions. We predicted protein struc-
tures for all MSAs in this set using AlphaFold2 and combined them with
approximately 132,000 unique (640,000 non-unique) experimental
structures from the Protein Data Bank (PDB)31 to form the OpenFold
training dataset. During training on self-distillation proteins, residues
with a low AlphaFold2 confidence score (<0.5 pLDDT (predicted Local
Distance Difference Test)) were masked. Our validation set consisted of
nearly 200 structures from CAMEO32, an online repository for continu-
ous quality assessment of protein structure prediction models, drawn
over a 3-month period ending on 16 January 2022.

From our main training run, we selected seven snapshots to form
a collection of distinct (but related) models. During prediction time,
these models can generate alternate structural hypotheses for the

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | August 2024 | 1514–1524 1516

Article https://doi.org/10.1038/s41592-024-02272-z

Our first set of tests randomly subsample the original training
data to 17,000, 10,000, 5,000, 2,500, 2,000 and 1,000 protein chains.
We used each subsampled set to train OpenFold for at least 7,000
steps, through the initial rapid rise phase to early convergence. To
avoid information leakage from the full training set, we did not use
self-distillation, putting the newly trained models at a disadvantage
relative to the original OpenFold. We trained models with and without
structural templates. In all other regards, training was identical to that
of the standard OpenFold model. Model accuracy (assessed using
lDDT-Cα) is plotted as a function of training step in Fig. 2a, with colors
indicating the size of the training set used.

We find that merely 10,000 protein chains (about 7.6% of all
training data (yellow curves)) suffice to reach essentially the same
initial lDDT-Cα value as a model trained on the full training set (pink
curve). After 20,000 steps (not pictured), the full data model reaches
a peak lDDT-Cα of 0.83, while, after 7,000 steps, the 10,000-sample
model has already exceeded 0.81 lDDT-Cα. Although performance
gradually degrades as training set size decreases further and even

though the rate of convergence does seem to be quite variable across
random seeds (as demonstrated by the repeated 10,000 ablation in
Fig. 2a, right), we find that all models are surprisingly performant,
even ones trained on our smallest subsample of 1,000 protein chains,
corresponding to just 0.76% of the full training set. We stress the
important caveat that lDDT is not the only measure of a model’s
success; models trained for such a short time do not learn, for exam-
ple, uncommon secondary structure elements (SSEs) (Fig. 4) or the
implicit biophysical energy function acquired by the fully trained
model15 (see Extended Data Fig. 2 and the Supplementary Discus-
sion (section B.1) for details). Nevertheless, these results clearly set
AlphaFold2 apart from prior protein structure prediction models.
The 1,000-chain ablation reaches an lDDT-Cα of 0.64, exceeding the
median lDDT-Cα of 0.62 achieved at CASP13 by the first AlphaFold,
the best performing model at the time.

Comparing the accuracies of models trained with and without
templates, we find that templates on average contribute little to early
prediction quality even in the low-data setting. This is consistent with

a b

c d

1.0

0.9

0.8

0.7

O
pe

nF
ol

d

ID
DT

-C
α Step

ID
DT

-C
α

0.6

0.5

0.4

1.0
5,354

4,997

4,640

4,283

3,926

3,569

3,212

2,855

2,498

2,141

1,784

1,427

1,070

713

356

0

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

0 20,000 40,000 60,000 80,000

0.4 0 0.2 0.4 0.6 0.8 1.00.5 0.6 0.7

AlphaFold

IDDT-Cα

pLDDT
0.8 0.9 1.0

AlphaFold: 0.913
OpenFold: 0.911

Means

Templates

OpenFold
AlphaFold
Ground truth

Step

No templates Start of fine-tuning

Fig. 1 | OpenFold matches the accuracy of AlphaFold2. a, Scatterplot of lDDT-
Cα values of AlphaFold and OpenFold predictions on the CAMEO validation set.
b, Average pLDDT versus lDDT-Cα values of OpenFold predictions on the CAMEO
set during the early stage of training. OpenFold is initially overconfident but
quickly becomes underconfident, gradually converging to accurate confidence
estimation. c, Predictions by OpenFold and AlphaFold2 overlaid with an
experimental structure of Streptomyces tokunonesis TokK protein (ref. 59; PDB

accession code 7KDX_A). d, Average lDDT-Cα for OpenFold computed over the
training set during the course of training. The template-free branch is shown
in green, the template-using one is in orange, and the initial training and/or
fine-tuning boundary is in gray. Template-free accuracy is initially poor because
the exponential moving average of the weights used for validation was being
reinitialized.

http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb7KDX/pdb

Nature Methods | Volume 21 | August 2024 | 1514–1524 1517

Article https://doi.org/10.1038/s41592-024-02272-z

the original AlphaFold2 ablation studies, which showed that templates
have a minimal effect except when MSAs are shallow or entirely absent.

OpenFold generalizes to unseen regions of fold space
Randomly subsampling the OpenFold training set, as in the previous
analysis, reduces the quantity of the training data used but not nec-
essarily the overall diversity. In molecular modeling tasks, the data
available for training often do not reflect the underlying diversity of the
molecular system being modeled, due to biases in the scientific ques-
tions pursued, experimental assays available, etc. To assess OpenFold’s
capacity to generalize to out-of-distribution data, we subsample the
training set in a structurally stratified manner such that entire regions

of fold space are excluded from training but retained for model assess-
ment. Multiple structural taxonomies for proteins exist, including the
hierarchical classification of protein domain structures (CATH)34,35 and
structural classification of proteins (SCOP)36 classification systems. For
this task, we use CATH, which assigns protein domains, in increasing
order of specificity, to a class (C), architecture (A), topology (T) and
homologous superfamily (H). Domains with the same homologous
superfamily classification may differ superficially but have highly
similar structural cores. Our preceding analysis can be considered to
structurally stratify data at the homologous superfamily level. For the
present analysis, we stratify data further, holding out entire topologies,
architectures and classes.

TM
ED

1
Ls

i1

α,
 lD

D
T-

C
α:

 0
.6

6
α,

 lD
D

T-
C
α:

 0
.8

8

β,
 lD

D
T-

C
α

a
1.0

Random split (with templates)
100.00

15.10

12.80

7.58

3.79

Percent PD
B used (%

)
Percent clusters used (%

)

1.89

1.52

0.76

100

50

10

0

Random split

0.8

0.6

0.4ID
D

T-
C
α

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

ID
D

T-
C
α

ID
D

T-
C
α

0 1,000 2,000 3,000 4,000 5,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000

0 1,000 2,000 3,000 4,000 5,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000

Step Step

Topology split

Class split

Architecture split

Step

0 1,000 2,000 3,000 4,000 5,000 6,000

Step

Step

c

b

Class 1 ('mostly α')
Class 2 ('mostly β')

Fig. 2 | OpenFold generalization capacity on elided training sets. a, Validation
set lDDT-Cα values as a function of training step for models trained on elided
training sets (10,000 random split repeated 3× demonstrates inter-run variance).
b, Same as a but for CATH-stratified dataset elisions. Validation sets vary across

stratifications and are not directly comparable. c, Experimental structures
(orange) and mainly α-trained (yellow) and mainly β-trained (red) predictions of
largely helical Lsi1 (top) and β-sheet-heavy TMED1 (bottom).

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | August 2024 | 1514–1524 1518

Article https://doi.org/10.1038/s41592-024-02272-z

We start by filtering out protein domains that have not been clas-
sified by CATH, leaving ~440,000 domains spanning 1,385 topologies,
42 architectures and four classes. For the topology stratification, we
randomly sample 100 topologies and remove all associated chains
from the training set. We construct a validation set from the held-out
topologies by sampling one representative chain from each. We also
construct successively smaller training sets from shrinking fractions
of the remaining topologies, including a training set that encom-
passes all of them. We follow an analogous procedure for architec-
tures except that, in this case, the validation set consists of 100 chains
randomly selected from five architectures (20 per architecture). For
class-based stratification, the validation set comprises domains that
are neither in the mainly α nor mainly β classes, hence enriching for
domains with high proportions of both SSEs. For training, we con-
struct two sets, one corresponding exclusively to the mainly α class
and another to the mainly β class; this enables us to ascertain the
capability of models trained largely on either α-helices or β-sheets
to generalize to proteins containing both. For all stratifications, we
train OpenFold to early convergence (~7,000 steps) from scratch. To
prevent leakage of structural information from held-out categories,
all runs are performed without templates. We plot model accuracies
as a function of training step in Fig. 2b, with colors indicating the
fraction of categories retained during training for each respective
level of the CATH hierarchy.

As expected, removing entire regions of fold space has a more
dramatic effect on model performance than merely reducing the
size of the training set. For example, retaining 10% of topologies for
training (green curve in Fig. 2b, topology split), which corresponds
to ~6,400 unique chains, results in a model less performant than one
containing 5,000 randomly selected chains (green curve in Fig. 2a,
no templates). However, even in the most severe elisions of train-
ing set diversity, absolute accuracies remain unexpectedly high. For
instance, the training set containing 5% of topologies (2,000 chains)
still achieves an lDDT-Cα near 0.6, comparable again to results of the
first AlphaFold, which was trained on over 100,000 protein chains.
Similarly, the training set for the smallest architecture-based stratifi-
cation only contains domains from one architecture (of 42 that cover
essentially the entirety of the PDB), yet it peaks near 0.6 lDDT-Cα.
Most surprisingly, the class-stratified models, in which α-helices or
β-sheets are almost entirely absent from training, achieve very high
lDDT-Cα scores of >0.7 on domains containing both α-helices and
β-sheets. These models likely benefit from the comparatively large
number of unique chains in their training sets: 15,400 and 21,100 for
α-helix- and β-sheet-exclusive sets, respectively. It should also be
noted that the mainly α and mainly β categories do contain small frac-
tions of β-sheets and α-helices, respectively (Extended Data Fig. 4).
Despite these caveats, the model is being tasked with a very difficult
out-of-distribution generalization problem in which unfamiliar types
of SSEs (from the perspective of the training set) have to essentially be
inferred with minimal quantities of corresponding training data. In
sum, these results show that the AlphaFold2 architecture is capable
of remarkable feats of generalization.

To better understand the behavior of class-stratified models, we
analyzed the structures of two protein domains, one composed almost
exclusively of α-helices (rice silicon channel Lsi1 aquaporin domain37)
and another of β-sheets (human transmembrane p24 trafficking protein
1 (TMED1) domain38), as they are predicted by models trained on the
mainly α or mainly β datasets. In the top row of Fig. 2c, we show an experi-
mental structure (orange) for Lsi1 (PDB accession code 7CJS_B (ref. 37))
along with predictions made by the mainly α-trained model (yellow) and
the mainly β-trained model (red). In the bottom row, we show similar
images for TMED1 (PDB accession code 7RRM_C (ref. 38)). Predictably,
the mainly α-trained model accurately predicts the α-helices of Lsi1
but fails to properly form β-sheets for TMED1 and incorrectly adopts a
small α-helix in part of the structure. The mainly β-trained model has the

opposite problem: its Lsi1 prediction contains poorly aligned helices and
an erroneous β-sheet, but TMED1 is reasonably well predicted. Notably,
however, neither fails catastrophically. Regions corresponding to the
β-sheets of Lsi1 are predicted by the mainly α model with approximately
the right shape, except that their atomic coordinates are not sufficiently
precise to enable DSSP to classify them as β-sheets.

Because the topology ablations were evaluated on held-out
topologies, the architecture ablations were evaluated on held-out
architectures and so on, validation scores from different data eli-
sion experiments cannot be compared directly. For a more consist-
ent picture of the relative final accuracies of each set of data elision
experiments, we re-evaluate the final checkpoints of each model on
our standard CAMEO validation set in Table 1. For information on
how well the class-ablated models can predict secondary structure,
see Extended Data Table 1 and, for a comparison of the effects of
data elision on global structure as opposed to local structure, see
Extended Data Fig. 5.

OpenFold’s surprising capacity for generalization across held-out
regions of fold space suggests that it is somewhat indifferent to the
diversity of the training set at the global fold level. Instead, the model
appears to learn how to predict protein structures from local patterns
of MSA and/or sequence–structure correlations (fragments, SSEs,
individual residues and so on) rather than from global fold patterns
captured by CATH. For extended analysis, see the Supplementary
Discussion (section B.2).

OpenFold is more efficient than AlphaFold2 and trains stably
While the OpenFold model we used in the above experiments perfectly
matches the computational logic of AlphaFold2, we have implemented
a number of changes that minimally alter model characteristics but
improve ease of use and performance when training new models and
performing large-scale predictions.

First, we made several improvements to the data preprocessing
and training procedure, including a low-precision (‘FP16’) training
mode that facilitates model training on past generations of commer-
cially available GPUs, like the widespread NVIDIA V100. Second, we
introduced a change to the primary structural loss, FAPE (frame aligned
point error), that enhances training stability. In the original model,
FAPE is clamped, that is, limited to a fixed maximum value, in a large
fraction of training batches. We find that, in the dynamic early phase of
training, this strategy is too aggressive, limiting the number of batches
with useful training signal and often preventing timely convergence.
Rather than clamping entire batches in this fashion, we instead clamp
the equivalent fraction of samples within each batch, ensuring that
each batch contains at least some unclamped chains. In doing so,

Table 1 | Data elision models evaluated on the CAMEO
validation set

Ablated CATH category Training set Mean CAMEO lDDT-Cα

Topology 100% avail. T 0.806

50% avail. T 0.786

10% avail. T 0.678

5% avail. T 0.567

Architecture 100% avail. A 0.795

50% avail. A 0.763

10% avail. A 0.627

5% avail. A 0.586

Class Class 1 (‘mostly α’) 0.689

Class 2 (‘mostly β’) 0.713

Rows correspond to CATH elisions reported in Fig. 2, except that evaluations reported here
are based on the CAMEO validation set. Avail., available.

http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb7CJS/pdb
http://doi.org/10.2210/pdb7RRM/pdb

Nature Methods | Volume 21 | August 2024 | 1514–1524 1519

Article https://doi.org/10.1038/s41592-024-02272-z

we are able to substantially improve training stability and speed up
model convergence (Fig. 3a and the Supplementary Discussion (sec-
tion 4.1.2)). Importantly, this change does not appear to affect the
final accuracy of fully trained models; an OpenFold model trained to
completion after the change reached 0.902 lDDT-Cα on our CAMEO
validation set, which is almost identical to the score of our prior fully
trained model checkpoint.

Third, we made optimizations that improve memory efficiency
during training, when model weights are continually updated to opti-
mize model behavior for prediction, and during inference, when the
model is used to make new predictions. In AlphaFold2, the computa-
tional characteristics of these two modes vary greatly. To save memory
at training time, which requires storing intermediate computations
during the optimization procedure, AlphaFold2 and OpenFold are
evaluated on short protein fragments ranging in size from 256 to 384
residues. At inference time, intermediate computations need not
be stored, but input sequences can be more than ten times longer
than the longest fragments encountered during training. Because
the model’s memory usage naively grows cubically with input length,
inference time prediction stresses modules that are not necessarily
bottlenecks at training time. To satisfy both sets of desiderata and

enhance model efficiency, we implemented a number of training- and
inference-specific optimizations. These optimizations create tradeoffs
between memory consumption and speed that can be tuned differently
for training and inference. They include advanced implementations of
neural network attention mechanisms39 with favorable properties for
unusually short and long sequences29,40, module refactoring for lower
memory usage, optional approximations of certain computations that
reduce the memory burden and specialized low-level code customized
for GPU hardware. For technical details, see Training time optimiza-
tions and features and Inference.

In sum, these optimizations result in a substantially more efficient
implementation than AlphaFold2. We report OpenFold runtimes in
Fig. 3b. During inference, OpenFold is up to four times faster than
AlphaFold2. OpenFold is more memory efficient than AlphaFold2
at inference time. Beyond 2,500 residues, AlphaFold2 crashes on
single GPUs due to memory constraints. OpenFold runs success-
fully on longer proteins and complexes exceeding 4,000 residues in
length. OpenFold training speed matches or improves upon that
of AlphaFold2, as has been reported by other researchers using
OpenFold41,42, and it can be trained on long crop sizes (up to 1,200 in
the ‘initial training’ setting).

0.8 25

103

102

101

0 500 1,000 1,500 2,000

Sequence length
2,500 3,000 3,500 4,000

20

15

10

5

0.6

0.4ID
D

T-
C
α

ID
D

T-
C
α

Ti
m

e
(lo

g
(s

))

0.2

0
0 2,000 4,000

New clamping protocol

AlphaFold2
AlphaFold2 crashes
OpenFold

Old clamping protocol

New clamping protocol
Old clamping protocol

6,000

Step Step
8,000 10,000 0 2,000 4,000 6,000 8,000 10,000

a

b

Fig. 3 | Model improvements. a, OpenFold trains more stably than AlphaFold2.
lDDT-Cα and dRMSD-Cα (distance root mean squared deviation with respect
to the alpha carbon) on the CAMEO validation set as a function of training
step for five independent training runs with (orange) and without (blue) the
new FAPE clamping protocol. Runs using the old protocol exhibit substantial
instability with two rapidly converging runs, two late converging runs and one

non-converging run. By contrast, all 15 independent runs using the new protocol
converge rapidly. Runs using the new protocol also reach high accuracy faster.
b, OpenFold is consistently three to four times faster than AlphaFold2 and can be
run on longer sequences. Prediction runtimes in seconds on a single A100 NVIDIA
GPU for OpenFold and AlphaFold2 with proteins of varying length.

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | August 2024 | 1514–1524 1520

Article https://doi.org/10.1038/s41592-024-02272-z

Learning of secondary structure is staggered and multi-scale
The preceding analysis suggests that SSEs are learned subsequent
to tertiary structure. We next set out to formally confirm this obser-
vation and chronicle the order in which distinct SSEs are learned. For
every protein in our validation set and every step of training, we used
DSSP43 to identify residues matching the eight recognized SSE states.
We treat as ground truth DSSP assignments of residues in the experi-
mental structures and compute F1 scores as a combined metric of the
recall and precision achieved by the model for every type of SSE at
various training steps (Fig. 4a).

We observe a clear sequence in which SSEs are discovered: α-helices
are learned first, followed by β-sheets, followed by less common SSEs.

Unsurprisingly, this sequence roughly corresponds to the relative fre-
quencies of SSEs in proteins (Fig. 4b), with the exception of uncommon
helix variants. As was previously evident, the model’s discovery of SSEs
lags that of accurate global structure. For instance, the F1 score for
β-sheets (‘E’) only plateaus hundreds of steps after global structural accu-
racy, as measured by GDT-TS44, a similarity metric for tertiary protein
structures. This is also clearly visible in our animations of progressive
training predictions; for each protein, secondary structure is recognized
and rendered properly only after global geometry is essentially finalized.

To investigate the possibility that OpenFold is achieving high
α-helical F1 scores by gradually learning small fragmentary helices,
we binned predicted helices by the longest contiguous fraction of the

a

b c

0.8

1.0

0.6

F1
G

DT-TS

0.4

0.2

0

100

80

60

40

20

0

1.0

0.8

0.6

0.4

0.2

0

2,000 3,000 4,000
Step

Step

I B P G S T E H

4,297
3,769

3,212
2,977

2,757
2,498

2,185
Helix fraction recovered
0.3

0.6

0.9

0

5,000 92,000

B (isolated β-bridge)
E (strand)
G (3–10 helix)

H (α-helix)
I (π-helix)
P (poly-proline helix)

S (bend) GDT-TS
T (turn)
C (coil)

Fig. 4 | Secondary structure categories are learned in succession. a, F1 scores
for secondary structure categories over time. The corner pane depicts the same
data using a simplified three-state assignment (details are in the Supplementary

Discussion (section B.5)). GDT-TS and final values are also provided.
b, Corresponding counts of individual secondary structure assignments.
c, Contiguous fractions of individual helices recovered early in training.

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | August 2024 | 1514–1524 1521

Article https://doi.org/10.1038/s41592-024-02272-z

ground truth helix they recover and plotted the resulting histogram as
a function of training step in Fig. 4c. Evidently, little probability mass
ever accumulates between 0.0 (helices that are not recovered at all) and
1.0 (helices that are completely recovered). This suggests that, at least
from the perspective of DSSP, most helices become correctly predicted
essentially all at once. This sudden transition coincides with most
of the improvement in helix DSSP F1 scores in the early phase of training.

Based on the above observation, we reasoned that, as training
progresses, OpenFold may first learn to predict smaller structural
fragments before larger ones and that this may be evident on both
the tertiary and secondary structure levels. Focusing first on tertiary
structure, we assessed the prediction quality, at each training step,
of all non-overlapping fragments 10, 20 and 50 residues long in our
validation set. Average GDT-TS values are shown in Fig. 5a. Unlike
global GDT-TS (pink), which improves minimally in the first 300–400
steps of training, fragment GDT-TS improves markedly during this
phase, with shorter fragments showing larger gains. By step 1,000,
when the model reaches a temporary plateau, it has learned to pre-
dict local structure far better than global structure (GDT-TS > 50

for ten-residue fragments versus GDT-TS < 10 for whole proteins).
Soon after, at step 1,800, the accuracy of all fragment lengths includ-
ing global structure begins to increase rapidly. However, the gains
achieved by shorter fragments are smaller than those of longer
fragments, such that the gap between ten-residue fragments and
whole proteins is much smaller at step 3,000 than at step 1,800
(GDT-TS ≈ 90 for ten-residue fragments versus GDT-TS ≈ 70 for whole
proteins). This trend continues until the model is fully trained, when
the gap between ten-residue fragments and whole proteins shrinks
to a mere ten GDT-TS points. Thus, while the model ultimately learns
to predict global structure almost as well as local structure, it first
learns to predict the latter.

Turning to secondary structure, we investigated whether the same
multi-scale learning behavior is detectable when examining SSEs. As
before, we treat as ground truth the DSSP classifications of experimen-
tal structures in our validation set, focusing exclusively on α-helices and
β-sheets. We bin both SSEs according to size, defined as the number
of residues for α-helices and the number of strands for β-sheets. As
uniform binnings would result in highly imbalanced bins, we instead

100
a

b

25

Full

50

20

10

20

15

10

5

0

G
DT

-T
S

C
on

ta
ct

 F
1

dR
M

SD
-C

α

dR
M

SD
-C

α

Size

Size
Fragm

ent length
80

60

1.0
26.1 10.9

8.0

7.0

6.0

5.0

4.0

3.0

2.0

18.0

13.9

11.5

9.5

7.5

5.5

4.0
3.0

0.8

0.6

0.4

15

10

5

0

1.0

0.8

0.6

0.4

15

10

5

0

40

20

0

0 1,000 2,000 3,000

Step

0 500 1,000 1,500 2,000 2,500 3,000

Step
0 500 1,000 1,500 2,000 2,500 3,000

Step

4,000 92,000 0 1,000 2,000 3,000

Step

Helix Sheet

4,000 92,000

Fig. 5 | Learning proceeds at multiple scales. a, Mean GDT-TS and dRMSD-Cα
validation scores as a function of training step for non-overlapping protein
fragments of varying lengths (color bars indicate fragment length). b, Average
contact F1 score (threshold of 8 Å) and dRMSD for predicted α-helices and

β-sheets of varying lengths and number of strands, respectively, as a function of
training step. Color bars indicate the weighted average of the lengths and widths
of helices and sheets in each bin, respectively.

http://www.nature.com/naturemethods

Nature Methods | Volume 21 | August 2024 | 1514–1524 1522

Article https://doi.org/10.1038/s41592-024-02272-z

opt for a dynamic binning procedure. First, each SSE is assigned to
a (potentially imbalanced) bin that corresponds to its size. Bins are
then iteratively merged with adjacent bins, subject to the condition
that no bin exceed a maximum size (in this case, 200 for helices and
30 for sheets), until no further merges can occur. Finally, bins below a
minimum bin size (20 for both) are unconditionally merged with adja-
cent bins. We compute metrics averaged over each bin independently
(Fig. 5b). In Extended Data Fig. 8, we provide another view of the sheet
data in Fig. 5b by distinguishing between small- (6 Å), medium- (12 Å)
and long- (24 Å) range contacts, as in, for example, ref. 8

Analogous to what we observe for tertiary structure (see Extended
Data Figs. 6 and 7 for details), short helices and narrow sheets are better
predicted during earlier phases of training than their longer and wider
counterparts, respectively. Improvement in SSE accuracy coincides
with the rapid increase in tertiary structure accuracy, albeit shifted,
as we observed in Fig. 4a. Notably, the final quality of predicted SSEs is
essentially independent of length and width despite the initially large
spread in prediction accuracies, suggesting that OpenFold ultimately
becomes independent of scale in its predictive capacity, at least for sec-
ondary structure. We note that the identification of SSEs is performed
by DSSP, which is sensitive to the details of their hydrogen bonding
networks. It is possible that, in earlier phases of training, OpenFold
has already recovered aspects of secondary structure not recognized
by DSSP on account of imprecise atom positioning.

Discussion
We have developed OpenFold, a complete open-source reimplemen-
tation of AlphaFold2 that includes training code and data. By training
OpenFold from scratch and matching the accuracy of AlphaFold2,
we have demonstrated the reproducibility of the AlphaFold2 model
for protein structure prediction. Furthermore, the OpenFold imple-
mentation introduces technical advances over AlphaFold2, including
markedly faster prediction speed. It is built using PyTorch, the most
widely used deep learning framework, facilitating incorporation of
OpenFold components in future machine learning models.

OpenFold immediately makes possible two broad areas of
advances: (1) deeper analyses of the strengths, weaknesses and learn-
ing behavior of AlphaFold2-like models and (2) development of new
(bio)molecular models that take advantage of AlphaFold2 modules.
In this work, we have focused on the former. First, we assessed Open-
Fold’s capacity to learn from training sets substantially reduced in
size. Remarkably, we found that even a 100-fold reduction in dataset
size (0.76% models in Fig. 2a) results in models more performant than
the first version of AlphaFold. Stated differently, the architectural
advances introduced in AlphaFold2 enable it to be 100× more data
efficient than its predecessor, which at the time of its introduction set
a new state of the art. These results demonstrate that architectural
innovations can have a more profound impact on model accuracy than
larger datasets, particularly in domains where data acquisition is costly
or time consuming, as is often the case in (bio)molecular systems.
However, it merits noting that AlphaFold2 in general learns MSA–struc-
ture, not sequence–structure, relationships. MSAs implicitly encode
a substantial amount of structural knowledge, as evidenced by early
coevolution-based structure prediction methods that were entirely
unsupervised, making no use of experimental structural data45,46.
Hence, the applicability of the AlphaFold2 architecture to problems
that do not exhibit a coevolutionary signal remains undemonstrated.

Our data elision results can be interpreted in light of recent work
on large transformer-based language models that has revealed broadly
applicable ‘scaling laws’ that predict model accuracy as a simple func-
tion of model size, compute used and training set size47,48. When not
constrained by any one of these three pillars, models benefit from
investments into the other two. These observations have largely focused
on transformer-based architectures, of which AlphaFold2 is an exam-
ple, but more recent work has revealed similar behavior for other

architectures49. Although determining the precise scaling properties of
AlphaFold2 is beyond the scope of the present study, our results suggest
that it is hardly constrained by the size or diversity of the PDB, motivat-
ing potential development of larger instantiations of its architecture.

OpenFold lays the groundwork for future efforts aimed at improv-
ing the AlphaFold2 architecture and repurposing it for new molecular
modeling problems. Since the release of our codebase, there have been
multiple efforts that either depend on OpenFold or directly build upon
and extend it. These include the ESMFold method for protein structure
prediction50, which replaces MSAs with protein language models51–53,
and FastFold, a community effort that has implemented substantial
improvements including fast model-parallel training and inference41.
We expect future work to go further by disassembling OpenFold to
attack problems beyond protein structure prediction. For instance, the
evoformer module is a general-purpose primitive for reasoning over
evolutionarily related sequences. DNA and RNA sequences also exhibit
a coevolutionary signal, with efforts aimed at predicting RNA structure
from MSAs fast materializing (for example, refs. 54–56). It is plausible
that even more basic questions in evolutionary biology, such as phylo-
genetic inference, may prove amenable to evoformer-like architectures.
Similarly, AlphaFold2’s structure module and in particular the invariant
point attention mechanism provide a general-purpose approach for
spatial reasoning over polymers, one that may be further extendable to
arbitrary molecules. We anticipate that, as protein structures and other
biomolecules shift from being an output to be predicted to an input to
be used, downstream tasks that rely on spatial reasoning capabilities
will become increasingly important (for example, refs. 57,58). We hope
that OpenFold will play a key role in facilitating these developments.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02272-z.

References
1.	 Anfinsen, C. B. Principles that govern the folding of protein

chains. Science 181, 223–230 (1973).
2.	 Dill, K. A., Ozkan, S. B., Shell, M. S. & Weikl, T. R. The protein

folding problem. Annu. Rev. Biophys. 37, 289–316 (2008).
3.	 Jones, D. T., Singh, T., Kosciolek, T. & Tetchner, S. MetaPSICOV:

combining coevolution methods for accurate prediction
of contacts and long range hydrogen bonding in proteins.
Bioinformatics 31, 999–1006 (2015).

4.	 Golkov, V. et al. Protein contact prediction from amino acid
co-evolution using convolutional networks for graph-valued
images. In Advances in Neural Information Processing Systems
(eds Lee, D. et al.) (Curran Associates, 2016).

5.	 Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo
prediction of protein contact map by ultra-deep learning model.
PLoS Comput. Biol. 13, e1005324 (2017).

6.	 Liu, Y., Palmedo, P., Ye, Q., Berger, B. & Peng, J. Enhancing
evolutionary couplings with deep convolutional neural networks.
Cell Syst. 6, 65–74 (2018).

7.	 Senior, A. W. et al. Improved protein structure prediction using
potentials from deep learning. Nature 577, 706–710 (2020).

8.	 Xu, J., McPartlon, M. & Li, J. Improved protein structure prediction
by deep learning irrespective of co-evolution information.
Nat. Mach. Intell. 3, 601–609 (2021).

9.	 Šali, A. & Blundell, T. L. Comparative protein modelling by
satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

10.	 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for
automated protein structure and function prediction. Nat. Protoc.
5, 725–738 (2010).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02272-z

Nature Methods | Volume 21 | August 2024 | 1514–1524 1523

Article https://doi.org/10.1038/s41592-024-02272-z

11.	 Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 577, 583–589 (2021).

12.	 Mirdita, M. et al. ColabFold: making protein folding accessible to
all. Nat. Methods 19, 679–682 (2022).

13.	 Baek, M. Adding a big enough number for ‘residue_index’
feature is enough to model hetero-complex using AlphaFold
(green&cyan: crystal structure / magenta: predicted model
w/ residue_index modification). Twitter twitter.com/minkbaek/
status/1417538291709071362?lang=en (2021).

14.	 Tsaban, T. et al. Harnessing protein folding neural networks for
peptide–protein docking. Nat. Commun. 13, 176 (2022).

15.	 Roney, J. P. & Ovchinnikov, S. State-of-the-art estimation of protein
model accuracy using AlphaFold. Phys. Rev. Lett. 129, 238101 (2022).

16.	 Baltzis, A. et al. Highly significant improvement of protein
sequence alignments with AlphaFold2. Bioinformatics 38,
5007–5011 (2022).

17.	 Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of
protein–protein interactions using AlphaFold2. Nat. Commun. 13,
1265 (2022).

18.	 Wayment-Steele, H. K., Ovchinnikov, S., Colwell, L. & Kern, D.
Prediction of multiple conformational states by combining
sequence clustering with AlphaFold2. Nature 625, 832–839 (2024).

19.	 Tunyasuvunakool, K. et al. Highly accurate protein structure
prediction for the human proteome. Nature 596, 590–596 (2021).

20.	 Varadi, M. et al. AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space
with high-accuracy models. Nucleic Acids Res. 50, D439–D444
(2021).

21.	 Callaway, E. ‘The entire protein universe’: AI predicts shape of
nearly every known protein. Nature 608, 15–16 (2022).

22.	 Evans, R. et al. Protein complex prediction with AlphaFold-
Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.
04.463034 (2021).

23.	 Ahdritz, G. et al. OpenProteinSet: training data for structural
biology at scale. In Advances in Neural Information Processing
Systems (eds Oh, A. et al.) 4597-4609 (Curran Associates, 2023).

24.	 Paszke, A. et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information
Processing Systems (eds Wallach, H. et al.) 8026–8037
(Curran Associates, 2019).

25.	 Bradbury, J. et al. JAX: composable transformations of
Python+NumPy programs. GitHub github.com/google/jax (2018).

26.	 Rasley, J., Rajbhandari, S., Ruwase, O. & He, Y. DeepSpeed: system
optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD ’20 3505–3506 (Association for Computing Machinery, 2020).

27.	 Charlier, B., Feydy, J., Glaunès, J., Collin, F.-D. & Durif, G. Kernel
operations on the GPU, with autodiff, without memory overflows.
J. Mach. Learn. Res. 22, 1–6 (2021).

28.	 Falcon, W. & the PyTorch Lightning team. PyTorch Lightning
(PyTorch Lightning, 2019).

29.	 Dao, T., Fu, D. Y., Ermon, S., Rudra, A. & Ré, C. FlashAttention:
fast and memory-efficient exact attention with IO-awareness. In
Advances in Neural Information Processing Systems (eds Koyejo, S.
et al.) 16344–16359 (Curran Associates, 2022).

30.	 Mirdita, M. et al. Uniclust databases of clustered and deeply
annotated protein sequences and alignments. Nucleic Acids Res.
45, D170–D176 (2017).

31.	 wwPDB Consortium. Protein Data Bank: the single global archive
for 3D macromolecular structure data. Nucleic Acids Res. 47,
D520–D528 (2018).

32.	 Haas, J. ürgen et al. Continuous automated model evaluation
(CAMEO) complementing the critical assessment of structure
prediction in CASP12. Proteins 86, 387–398 (2018).

33.	 Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local
superposition-free score for comparing protein structures
and models using distance difference tests. Bioinformatics 29,
2722–2728 (2013).

34.	 Orengo, C. A. et al. CATH—a hierarchic classification of protein
domain structures. Structure 5, 1093–1108 (1997).

35.	 Sillitoe, I. et al. CATH: increased structural coverage of functional
space. Nucleic Acids Res. 49, D266–D273 (2021).

36.	 Andreeva, A., Kulesha, E., Gough, J. & Murzin, A. G. The SCOP
database in 2020: expanded classification of representative
family and superfamily domains of known protein structures.
Nucleic Acids Res. 48, D376–D382 (2020).

37.	 Saitoh, Y. et al. Structural basis for high selectivity of a rice silicon
channel Lsi1. Nat. Commun. 12, 6236 (2021).

38.	 Mota, DaniellyC. A. M. et al. Structural and thermodynamic
analyses of human TMED1 (p241) Golgi dynamics. Biochimie 192,
72–82 (2022).

39.	 Vaswani, A. et al. Attention is all you need. In Advances in Neural
Information Processing Systems (eds Guyon, I. et al.) (Curran
Associates, 2017).

40.	 Rabe, M. N. & Staats, C. Self-attention does not need O(n2) memory.
Preprint at https://doi.org/10.48550/arXiv.2112.05682 (2021).

41.	 Cheng, S. et al. FastFold: Optimizing AlphaFold Training and
Inference on GPU Clusters. In Proceedings of the 29th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming 417–430 (Association for Computing Machinery,
2024).

42.	 Li, Z. et al. Uni-Fold: an open-source platform for developing
protein folding models beyond AlphaFold. Preprint at bioRxiv
https://doi.org/10.1101/2022.08.04.502811 (2022).

43.	 Kabsch, W. & Sander, C. Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical
features. Science 22, 2577–2637 (1983).

44.	 Zemla, A. LGA: a method for finding 3D similarities in protein
structures. Nucleic Acids Res. 31, 3370–3374 (2003).

45.	 Marks, D. S. et al. Protein 3D structure computed from
evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

46.	 Sułkowska, J. I., Morcos, F., Weigt, M., Hwa, T. & Onuchic, José
Genomics-aided structure prediction. Proc. Natl Acad. Sci. USA
109, 10340–10345 (2012).

47.	 Kaplan, J. et al. Scaling laws for neural language models. Preprint
at https://doi.org/10.48550/arXiv.2001.08361 (2020).

48.	 Hoffmann, J. et al. An empirical analysis of compute-optimal
large language model training. In Advances in Neural Information
Processing Systems (eds Oh, A. H. et al.) 30016–30030 (NeurIPS,
2022).

49.	 Tay, Y. et al. Scaling laws vs model architectures: how does
inductive bias influence scaling? In Findings of the Association for
Computational Linguistics: EMNLP 2023 (eds Bouamor, H. et al.)
12342–12364 (Association for Computational Linguistics, 2023).

50.	 Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science 379, 1123–1130 (2023).

51.	 Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M.
Unified rational protein engineering with sequence-based deep
representation learning. Nat. Methods 16, 1315–1322 (2019).

52.	 Chowdhury, R. et al. Single-sequence protein structure prediction
using a language model and deep learning. Nat. Biotechnol. 40,
1617–1623 (2022).

53.	 Wu, R. et al. High-resolution de novo structure prediction from
primary sequence. Preprint at bioRxiv https://doi.org/10.1101/
2022.07.21.500999 (2022).

54.	 Singh, J., Paliwal, K., Litfin, T., Singh, J. & Zhou, Y. Predicting RNA
distance-based contact maps by integrated deep learning on
physics-inferred secondary structure and evolutionary-derived
mutational coupling. Bioinformatics 38, 3900–3910 (2022).

http://www.nature.com/naturemethods
https://twitter.com/minkbaek/status/1417538291709071362?lang=en
https://twitter.com/minkbaek/status/1417538291709071362?lang=en
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1101/2021.10.04.463034
https://github.com/google/jax
https://doi.org/10.48550/arXiv.2112.05682
https://doi.org/10.1101/2022.08.04.502811
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.1101/2022.07.21.500999
https://doi.org/10.1101/2022.07.21.500999

Nature Methods | Volume 21 | August 2024 | 1514–1524 1524

Article https://doi.org/10.1038/s41592-024-02272-z

55.	 Baek, M., McHugh, R., Anishchenko, I., Baker, D. &
DiMaio, F. Accurate prediction of protein–nucleic acid
complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121
(2024).

56.	 Pearce, R., Omenn, G. S. & Zhang, Y. De novo RNA tertiary
structure prediction at atomic resolution using geometric
potentials from deep learning. Preprint at bioRxiv https://doi.
org/10.1101/2022.05.15.491755 (2022).

57.	 McPartlon, M., Lai, B. & Xu, J. A deep SE(3)-equivariant model for
learning inverse protein folding. Preprint at bioRxiv https://doi.
org/10.1101/2022.04.15.488492 (2022).

58.	 McPartlon, M. & Xu, J. An end-to-end deep learning method for
protein side-chain packing and inverse folding. In Proceedings
of the National Academy of Sciences e2216438120 (PNAS,
2023).

59.	 Knox, H. L., Sinner, E. K., Townsend, C. A., Boal, A. K. & Booker, S. J.
Structure of a B12-dependent radical SAM enzyme in carbapenem
biosynthesis. Nature 602, 343–348 (2022).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

1Department of Systems Biology, Columbia University, New York, NY, USA. 2Harvard University, Cambridge, MA, USA. 3Laboratory of Systems
Pharmacology, Harvard Medical School, Boston, MA, USA. 4Icahn School of Medicine at Mount Sinai, New York, NY, USA. 5Department of Computer
Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA. 6Flatiron Institute, New York, NY, USA. 7OpenBioML,
Cambridge, MA, USA. 8Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA. 9NVIDIA, Santa Clara, CA, USA. 10EleutherAI,
New York, NY, USA. 11Booz Allen Hamilton, McLean, VA, USA. 12Prescient Design, Genentech, New York, NY, USA. 13Cyrus Bio, Seattle, WA, USA. 14Outpace
Bio, Seattle, WA, USA. 15Arzeda, Seattle, WA, USA. 16Rutgers University, New Brunswick, NJ, USA. 17University of Illinois at Urbana-Champaign, Champaign,
IL, USA. 18Microsoft, Redmond, WA, USA. 19Stability AI, Los Altos, CA, USA. 20These authors contributed equally: Gustaf Ahdritz, Nazim Bouatta.

 e-mail: nbouatta@gmail.com; m.alquraishi@columbia.edu

http://www.nature.com/naturemethods
https://doi.org/10.1101/2022.05.15.491755
https://doi.org/10.1101/2022.05.15.491755
https://doi.org/10.1101/2022.04.15.488492
https://doi.org/10.1101/2022.04.15.488492
mailto:nbouatta@gmail.com
mailto:m.alquraishi@columbia.edu

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Methods
Our code and data are fully available at https://github.com/aqlabora-
tory/openfold and https://registry.opendata.aws/openfold/, respec-
tively. In this section, we provide some additional details that may be
of interest to those attempting to reproduce our results.

Differences between OpenFold and AlphaFold2
In this section, we describe additions and improvements we made to
OpenFold subject to the constraint that the weights of the two models
should be interchangeable. We also describe our design decisions in the
handful of instances for which the AlphaFold2 paper was ambiguous.

Changes to the data pipeline. Template trick. During AlphaFold2
training, structural template hits undergo two successive rounds of
filtering. Between these two rounds, the dataloader parses the template
structure data. The top 20 template hits to pass both filters are shuf-
fled uniformly at random. Finally, the dataloader samples a number of
templates uniformly at random in the range [0, 4] and draws that many
samples from the shuffled pool of valid hits. These are then passed as
inputs to the model. This subsampling process is intended to lower the
average quality of templates seen by the model during training. We note
that pre-emptively parsing structure files for each template hit during
the filtering process is an expensive operation and, for proteins with
many hits, considerably slows training. For this reason, we replace the
original algorithm with an approximation. Instead of sampling hits
from the top 20 template candidates from the pool of templates that
pass both sets of filters, we use the top 20 hits to pass the first filter.
These are then shuffled and subsampled as before. Only when a hit is
drawn is it passed through the second filter; hits that fail to pass the
second filter at this point are discarded and replaced. If not enough
hits in the initial 20-sample pool pass the second filter, we continue
drawing candidates from the top hits outside that pool, without further
shuffling. This procedure has the disadvantage that, if too many hits
pass the first filter but not the second filter, the hits used for the model
are not shuffled. Even in instances where only x of the initial hits fail to
pass the second filter, OpenFold effectively only shuffles the top (20 − x)
proteins to pass both filters, strictly increasing the expected quality of
template hits relative to those used by AlphaFold2. However, in most
cases, this approximation allows the dataloader to parse only as many
structure files as are needed, speeding up the process by a factor of
at least five. In practice, the vast majority of invalid template hits are
successfully detected by the first filter, suggesting that the difference
in final template quality between the two procedures is marginal.

Self-distillation training set filtering. The set of 270,262 MSAs yielded
by our self-distillation procedure is smaller than the 355,993 MSAs
reported by DeepMind, despite having started with the same data-
base. We suspect that the discrepancy arises due to the first step of the
filtering process, of which the description in the AlphaFold2 paper is
somewhat ambiguous.

Zero-centering target structures. We find that centering target struc-
tures at the origin slightly improves the numerical stability of the
model, especially during low-precision training.

Plateaus and phase transitions. During training of the original version
of OpenFold, we and third-party developers observed two distinct train-
ing behaviors. The large majority of training runs are almost identical to
the training curves shown in Fig. 1; after a few thousand training steps,
validation lDDT-Cα rapidly increases to ~0.83 and improves only incre-
mentally thereafter. Occasionally, such runs exhibit a ‘double descent’,
briefly improving and then degrading in accuracy before finally con-
verging in the same way. In a fraction of training runs, however, lDDT-Cα
plateaus between 0.30 and 0.35 on the same set (Fig. 3a). Anecdotally,
these values appear to be consistent across environments, OpenFold

versions, architectural modifications and users. If the runs are allowed
to continue long past the point where lDDT-Cα would otherwise have
stopped improving (>10,000 training steps), they eventually undergo a
phase transition, suddenly exceeding 0.8 lDDT-Cα and then continuing
to improve much as normal runs do. We have not been able to determine
whether this phenomenon is the result of an error in the OpenFold
codebase or whether it is a property of the AlphaFold2 algorithm.

Since running the experiments described in the main text of this
paper, we have discovered a workaround that deviates slightly from the
original AlphaFold2 training procedure but that appears to completely
resolve early training instabilities. In the original training configu-
ration, for each AlphaFold2 batch, backbone FAPE loss, the model’s
primary structural loss, is clamped for all samples in the batch with
probability 0.9. This practice is potentially problematic during the
volatile early phase of training, when FAPE values can be extremely
large and frequent clamping zeroes gradients for most of the resi-
dues in each crop. We find that clamping each sample independently,
that is, clamping approximately 90% of the samples in each batch
rather than clamping 90% of all batches, eliminates training instability
and speeds up convergence to high accuracy by about 30%. We show
before-and-after data in Fig. 3a.

Training details
Our main OpenFold model was trained using the abridged training
schedule outlined in the AlphaFold2 Supplementary Materials of
ref. 11 rather than the original training schedule in ref. 11. Specifically, it
was trained for three rounds: the initial training phase, the fine-tuning
phase and the predicted TM60 fine-tuning stage. During the initial
training phase, sequences were cropped to 256 residues, MSA depth
was capped at 128 and extra MSA depth was capped at 1,024. During
fine-tuning, these values were increased to 384, 512 and 5,120, respec-
tively. The second phase also introduced the ‘violation’ and ‘experimen-
tally resolved’ losses, which respectively penalize nonphysical steric
clashes and incorrect predictions of whether atomic coordinates are
resolved in experimental structures. Next, we ran a short third phase
with the predicted TM score loss enabled. The three phases were run
for 10 million, 1.5 million and 0.5 million protein samples, respectively.
We trained the model with PyTorch version 1.10, DeepSpeed26 version
0.5.10 and stage 2 of the ZeRO redundancy optimizer61. We used Adam62
with β1 = 0.9, β2 = 0.99 and ϵ = 10−6. We warmed up the learning rate lin-
early over the first 1,000 iterations from 0 to 10−3. After approximately
7 million samples, we marginally decreased the learning rate to
9.5 × 10−4. This decrease had no noticeable effect on model training.
For the latter two phases, the learning rate was halved to 5 × 10−4.
All model, data and loss-related hyperparameters were identical to
those used during AlphaFold2 training. We also replicated all of the
stochastic training time dataset augmentation, filtering and resam-
pling procedures described in the original paper.

During the initial fine-tuning and subsequent predicted TM
fine-tuning phases, we manually sampled checkpoints at peaks in the
validation lDDT-Cα33. These checkpoints were added to the pool of
model checkpoints used in the final model ensemble.

Training was run on a cluster of 44 NVIDIA A100 GPUs, each with
40 GB of DRAM. The model was trained in a data-parallel fashion, with
one protein per GPU. To simulate as closely as possible the batch size
of 128 used in training AlphaFold2, we performed three-way gradient
accumulation to raise our effective batch size from 44 to 132.

As in the original paper, CAMEO chains longer than 700 residues
were removed from the validation set.

Inference details
Runtime benchmarks were performed on a single 40-GB A100 GPU.
Times correspond to the intensive ‘model_1_ptm’ config preset, which
uses deep MSAs and the maximum number of templates. AlphaFold
was run with JAX version 0.3.13.

http://www.nature.com/naturemethods
https://github.com/aqlaboratory/openfold
https://github.com/aqlaboratory/openfold
https://registry.opendata.aws/openfold/

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Additional model optimizations and features
Training time optimizations and features. Despite its relatively small
parameter count (~93 million), AlphaFold2 manifests very large inter-
mediate activations during training, resulting in peak memory usage,
along with floating point operation counts, much greater than that of
state-of-the-art transformer-based models from other domains63. In
AlphaFold2, peak memory usage during training grows cubically as a
function of input sequence length. As a result, during the second phase
of training when the inputs are longest, the model manifests individual
tensors as large as 12 GB. Intermediate activation tensors stored for the
backward pass are even larger. This bottleneck is exacerbated by several
limitations of the PyTorch framework. First, PyTorch is run eagerly and
does not benefit from the efficient compiler used by JAX models that
improves runtime and reduces memory usage. Second, even on GPUs
that in principle have sufficient memory to store all intermediate tensors
used during the forward pass, suboptimal allocation patterns frequently
result in memory fragmentation, preventing the model from using all
available memory. For this reason, among others, a preliminary version
of OpenFold naively modeled after the official JAX-based implementation
frequently ran out of memory despite having allocated as little as 40% of
total available memory. To amelioriate these problems, we introduced
several features that reduce peak memory consumption during training.

In-place operations. We refactored the model by replacing element-wise
tensor operations with in-place equivalents wherever possible to
prevent unnecessary allocation of large intermediate tensors.

Custom CUDA kernels. We implemented custom CUDA kernels for all
the attention modules in the network based on FlashAttention29 but
with support for the bias terms required by the attention variants in
the AlphaFold2 architecture. Prior versions of OpenFold relied on a
custom implementation of the model’s ‘MSA row attention’ module,
the multi-head attention operation where the aforementioned 12-GB
tensor is allocated. Modified from optimized softmax kernels from
FastFold41, which are in turn derived from OneFlow kernels64, our ker-
nels operate entirely in place. This is made possible partly by a fusion
of the backward passes of the softmax operation and the succeeding
matrix multiplication. Overall, only a single copy of the quadratic atten-
tion logit tensor is allocated, resulting in peak memory usage five and
four times lower than that of equivalent native PyTorch code and the
original FastFold kernels, respectively.

DeepSpeed. OpenFold is trained using DeepSpeed. Using its ZeRO
redundancy optimizer61 in the ‘stage 2’ configuration, the model parti-
tions gradients and optimizer states between GPUs during data-parallel
training, further reducing peak memory usage.

Half-precision training. By default, as a memory-saving measure, Alpha-
Fold2 is trained using bfloat16 floating point precision. This 16-bit
format trades the large precision of the classic half-precision format
(FP16) for the complete numerical range of full-precision floats (FP32),
making it well suited for training deep neural networks of the type used
by AlphaFold2, which is not compatible with FP16 training by default.
However, unlike FP16, bfloat16 hardware support is still limited to rela-
tively recent NVIDIA GPUs (Ampere and Hopper architectures), and so
the format remains out of reach for academic laboratories with access
to older GPUs that are otherwise capable of training AlphaFold2 models
(for example, V100 GPUs). We address this problem by implementing
a stable FP16 training mode with more careful typecasting throughout
the model pipeline, making OpenFold training broadly accessible.

Inference. We also introduce several inference time optimizations to
OpenFold. As previously mentioned, these features trade off memory
usage for runtime, contributing to more versatile inference on chains
of diverse lengths.

FlashAttention. We incorporate FlashAttention29, an efficient fused
attention implementation that tiles computation to reduce data move-
ment between different levels of GPU memory, greatly improving peak
memory usage and runtime in the process. We find it to be particularly
effective for short sequences with 1,000 residues or less, on which it con-
tributes to an OpenFold speedup of up to 15% despite only being com-
patible with a small number of the attention modules in the network.

Low-memory attention. Separately, OpenFold makes use of a recent
attention algorithm that uses a novel chunking technique to perform
the entire operation in constant space40. Although enabling this feature
marginally slows down the model, it nullifies attention as a memory
bottleneck during inference.

Refactored triangle multiplicative attention. A naive implementation
of the triangle multiplicative update manifests five concurrent tensors
the size of the input pair representation. These pair representations
grow quadratically with input length, such that, during inference on
long sequences or complexes, they become the key bottleneck. We
refactored the operation to reduce its peak memory usage by 50%,
requiring only 2.5 copies of the pair representation.

Template averaging. AlphaFold2 and OpenFold create separate pair
embeddings for each structural template passed to each model and
then reduce them to a single embedding at the end of the template
pipeline with an attention module. For very long sequences or very
many templates, this operation can become a memory bottleneck.
AlphaFold-Multimer22 avoids this problem by computing a running
average of template pair embeddings. Although we trained OpenFold
using the original AlphaFold2 (nonmultimer) procedure, we find that
the newer approach can be adopted during inference without a notice-
able decrease in accuracy. We thus make it available as an optional
inference time memory-saving optimization.

In-place operations. Without the requirement to store intermediate acti-
vations for the backward pass, OpenFold is able to make more extensive
use of in-place operations during inference. We also actively remove
unused tensors to mitigate crashes caused by memory fragmentation.

Chunk size tuning. AlphaFold2 offsets extreme inference time memory
costs with a technique called ‘chunking’, which splits input tensors into
‘chunks’ along designated, module-specific sub-batch dimensions and
then runs those modules sequentially on each chunk. For AlphaFold2,
the chunk size used in this procedure is a model-wide hyperparameter
that is manually tuned. OpenFold, on the other hand, dynamically
adjusts chunk size values for each module independently, taking into
account the model’s configuration and the current memory limitations
of the system. Although the profiling runs introduced by this process
incur a small computational overhead, the modules do not need to be
recompiled for each run, unlike their AlphaFold2 equivalents, and said
profiling runs are only necessary the first time the model is run; once
computed, the optimal chunk sizes are cached and reused until con-
ditions change. We find this to be a robust way to seamlessly improve
runtimes in a variety of settings.

Tensor offloading. Optionally, OpenFold can aggressively offload inter-
mediate tensors to CPU memory, temporarily freeing additional GPU
memory for memory-intensive computations at the cost of a consider-
able slowdown. This feature is useful during inference on extremely
long sequences that would otherwise not be computable.

TorchScript tracing. Specially written PyTorch programs can be con-
verted to TorchScript, a JIT-compiled variant of PyTorch. We use this
feature during inference to speed up parts of the evoformer module.
Although TorchScript tracing and compilation do introduce some

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

overhead at the beginning of model inference and lock the model to
a particular sequence length, similar to JAX compilation, we find that
using TorchScript achieves overall speedups of up to 15%, especially
on sequences shorter than 1,000 residues. This feature is particularly
useful during batch inference, where sequences are grouped by length
to avoid repeated recompilations and to take maximal advantage of
faster inference times.

AlphaFold-Gap implementation. OpenFold currently supports multi-
meric inference using AlphaFold-Gap13, a zero-shot hack that allows
inference on protein complexes using monomeric weights. Although
it falls short of the accuracy of AlphaFold-Multimer (for a comparison
of the two techniques, see ref. 22), it is a capable tool, especially for
homomultimers. Because complexes manifest in the model as long
sequences, OpenFold-Gap in particular benefits from the memory
optimizations discussed earlier.

Known issues during training
During and after the primary OpenFold retraining experiment, we
discovered a handful of minor implementation errors that, given the
prohibitive cost of retraining a full model from scratch, could not be
corrected. In this section, we describe these errata and the measures
that we have taken to mitigate them.

Distillation template error. As described in the main text, OpenFold
and AlphaFold2 training consists of three phases, of which the first is the
longest and most determinative of final model accuracy. During this first
phase of the main OpenFold training run, a bug in the dataloader caused
distillation templates to be filtered entirely; OpenFold was only pre-
sented with templates for PDB chains, which constitute ~25% of training
samples, and not self-distillation set chains. The issue was corrected for
later phases, which were run slightly longer than usual to compensate.

Although the accuracy of the resulting OpenFold model matches
that of the original AlphaFold2 in holistic evaluations, certain down-
stream tasks that specifically exploit the template stack65 do not per-
form as well as the original AlphaFold2. There is evidence, for instance,
that OpenFold disregards the amino acid sequence of input templates.
After the bug was corrected, follow-up experiments involving shorter
training runs showed template usage behavior at parity with that of
AlphaFold2. Furthermore, OpenFold can be run with the original Alpha-
Fold2 weights in cases where templates are expected to be important to
take advantage of the new inference characteristics without diminution
of template-related performance.

Gradient clipping. OpenFold, unlike AlphaFold2, was trained using
per-batch as opposed to per-sample gradient clipping (first noted by
the Uni-Fold team42). Uni-Fold experiments show that models trained
using the latter clipping technique achieve slightly better accuracy.

Training instability. Our primary training run was performed before
we introduced the changes described in Plateaus and phase transitions.
While we have no reason to believe that the instabilities we observed
there are a result of a bug in the OpenFold codebase, as opposed to an
inherent limitation of the AlphaFold2 architecture, the former remains
a possibility. It is unclear how potential issues of this kind may have
affected runs that, like our primary training run, appeared to converge
at the expected rate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
OpenProteinSet and OpenFold model parameters are hosted on the
Registry of Open Data on AWS and can be accessed at https://registry.

opendata.aws/openfold/. Both are available under the permissive
CC BY 4.0 license. Throughout the study, we use validation sets derived
from the PDB via CAMEO. We also use CASP evaluation sets. Source data
are provided with this paper.

Code availability
OpenFold can be accessed at https://github.com/aqlaboratory/open-
fold. It is available under the permissive Apache 2 Licence.

References
60.	 Zhang, Y. & Skolnick, J. Scoring function for automated

assessment of protein structure template quality. Proteins 57,
702–710 (2004).

61.	 Rajbhandari, S., Rasley, J., Ruwase, O. & He, Y. Zero: memory
optimizations toward training trillion parameter models. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (IEEE Press, 2020).

62.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
In 3rd International Conference on Learning Representations
(eds Bengio, Y. & LeCun, Y.) (ICLR, 2015).

63.	 Wang, G. et al. HelixFold: an efficient implementation of
AlphaFold2 using PaddlePaddle. Preprint at https://doi.org/
10.48550/arXiv.2207.05477 (2022).

64.	 Yuan, J. et al. OneFlow: redesign the distributed deep learning
framework from scratch. Preprint at https://doi.org/10.48550/
arXiv.2110.15032 (2021).

65.	 Ovchinnikov, S. Weekend project! nerd-face So now that
OpenFold weights are available. I was curious how different they
are from AlphaFold weights and if they can be used for AfDesign
evaluation. More specifically, if you design a protein with
AlphaFold, can OpenFold predict it (and vice-versa)? (1/5). Twitter
twitter.com/sokrypton/status/1551242121528520704?lang=en
(2022).

66.	 Wei, X. et al. The α-helical cap domain of a novel esterase from
gut Alistipes shahii shaping the substrate-binding pocket. J. Agric.
Food Chem. 69, 6064–6072 (2021).

67.	 Carroll, B. L. et al. Caught in motion: human NTHL1 undergoes
interdomain rearrangement necessary for catalysis. Nucleic Acids
Res. 49, 13165–13178 (2021).

Acknowledgements
We thank the Flatiron Institute, OpenBioML, Stability AI, the Texas
Advanced Computing Center and NVIDIA for providing compute
for experiments in this paper. Individually, we thank M. Mirdita,
M. Steinegger and S. Ovchinnikov for valuable support and expertise.
This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the US Department of Energy under contract no. DE-AC02-
05CH11231. We acknowledge the Texas Advanced Computing Center
at the University of Texas at Austin for providing HPC resources that
have contributed to the research results reported within this paper.
G.A. is supported by a Simons Investigator Fellowship, NSF grant
DMS-2134157, DARPA grant W911NF2010021, DOE grant DE-SC0022199
and a graduate fellowship from the Kempner Institute at Harvard
University. N.B. is supported by DARPA Panacea program grant
HR0011-19-2-0022 and NCI grant U54-CA225088. C.F. and S.K. are
supported by NIH grant R35GM150546. B.Z. and Z.Z. are supported by
grants NSF OAC-2112606 and OAC-2106661. The funders had no role
in study design, data collection and analysis, decision to publish or
preparation of the manuscript.

Author contributions
G.A. wrote and optimized the OpenFold codebase, generated data,
trained the model, performed experiments and maintained the
GitHub repository. C.F. wrote and tested code for the OpenFold

http://www.nature.com/naturemethods
https://registry.opendata.aws/openfold/
https://registry.opendata.aws/openfold/
https://creativecommons.org/licenses/by/4.0/
https://www.rcsb.org/
https://cameo3d.org/
https://predictioncenter.org/casp15/
https://github.com/aqlaboratory/openfold
https://github.com/aqlaboratory/openfold
https://doi.org/10.48550/arXiv.2207.05477
https://doi.org/10.48550/arXiv.2207.05477
https://doi.org/10.48550/arXiv.2110.15032
https://doi.org/10.48550/arXiv.2110.15032
https://twitter.com/sokrypton/status/1551242121528520704?lang=en

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

implementation of AlphaFold-Multimer. S.K. and W.G. wrote data
preprocessing code. G.A., N.B. and M.A. conceived of and managed
the project, designed experiments, analyzed results and wrote the
manuscript. G.A., B.Z., Z.Z., N.Z. and A.N. ran ablations. All authors
read and approved the manuscript. The Flatiron Institute (via I.F.,
A.M.W., S.R. and R.B.) provided compute for ablations, all data
generation and our main training experiments. NVIDIA (A.N., B. Wang,
M.M.S.-D., S.Z., A.O., M.E.G. and P.R.L.) performed training stability
experiments, fixed critical bugs in the codebase, added new model
features and provided compute for ablations. Stability AI (via N.Z.,
S.B. and E.M.) provided compute for ablations. The DeepSpeed team
at Microsoft (S.C., M.Z., C.L., S.L.S. and Y.H.) wrote custom optimized
attention kernels. Q.X. and T.J.O.’D. debugged code and provided
feedback.

Competing interests
M.A. is a member of the scientific advisory boards of Cyrus
Biotechnology, Deep Forest Sciences, Nabla Bio, Oracle Therapeutics
and FL2021-002, a Foresite Labs company. P.K.S. is a cofounder and
member of the BOD of Glencoe Software, member of the BOD for
Applied BioMath and a member of the SAB for RareCyte, NanoString,

Reverb Therapeutics and Montai Health; he holds equity in Glencoe,
Applied BioMath and RareCyte. L.N. is an employee of Cyrus
Biotechnology. The other authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-024-02272-z.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41592-024-02272-z.

Correspondence and requests for materials should be addressed to
Nazim Bouatta or Mohammed AlQuraishi.

Peer review information Nature Methods thanks the anonymous
reviewers for their contribution to the peer review of this work.
Primary Handling Editor: Arunima Singh, in collaboration with the
Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02272-z
https://doi.org/10.1038/s41592-024-02272-z
http://www.nature.com/reprints

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 1 | OpenFold matches the accuracy of AlphaFold2 on
CASP15 targets. Scatter plot of GDT-TS values of AlphaFold and OpenFold
‘Model 1’ predictions against all currently available ‘all groups’ CASP15 domains
(n = 90). OpenFold’s mean accuracy (95% confidence interval = 68.6-78.8) is on

par with AlphaFold’s (95% confidence interval = 69.7-79.2) and OpenFold does at
least as well as the latter on exactly 50% of targets. Confidence intervals of each
mean are estimated from 10,000 bootstrap samples.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 2 | OpenFold learns decoy ranking slowly. Decoy ranking results (mean Spearman correlation between pLDDT and decoy TM Score) using
intermediate checkpoints of OpenFold on 28 randomly chosen proteins from the Rosetta decoy ranking dataset from15. See Supplementary Information section B.1 for
more details.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 3 | Fine-tuning does not materially improve prediction accuracy on long proteins. Mean lDDT-Cα over validation proteins with at least 500
residues as a function of fine-tuning step.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 4 | The ‘Mostly alpha’ CATH class contains some beta sheets, and vice versa. Counts for alpha helices and beta sheets in the mostly alpha and
mostly beta CATH class-stratified training sets from Fig. 2, based on 1,000 random samples. Counts are binned by size, defined as the number of residues for alpha
helices and number of strands for beta sheets.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 5 | Reduced dataset diversity disproportionately affects global structure. Mean GDT-TS and lDDT-Cα of non-overlapping protein fragments
from CAMEO validation set as a function of the percentage of CATH clusters in elided training sets. Data for both topology and architecture elisions are included. The
fragmenting procedure is the same as that described in Fig. 5a.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

A B

C
7DQ9_A 7RDT_A

End of 1D phase

End of 2D phase

Extended Data Fig. 6 | Early predictions crudely approximate lower-
dimensional PCA projections. (A) Mean dRMSD, as a function of training step,
between low- dimensional PCA projections of predicted structures and the
final 3D prediction at step 5,000 (denoted by *). Averages are computed over
the CAMEO validation set. Insets show idealized behavior corresponding to
unstaggered, simultaneous growth in all dimensions and perfectly staggered
growth. Empirical training behavior more closely resembles the staggered

scenario. (B) Low-dimensional projections as in (A) compared to projections of
the final predicted structures at step 5,000. (C) Mean displacement, as a function
of training step, of C? atoms along the directions of their final structure’s PCA
eigenvectors. Results are shown for two individual proteins (PDB accession codes
7DQ9_A ref. 66 and 7RDT_A ref. 67). Shaded regions correspond loosely to ‘1D,’
‘2D,’ and ‘3D’ phases of dimensionality.

http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb7DQ9/pdb
https://doi.org/10.2210/pdb7RDT/pdb

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 7 | Radius of gyration as an order parameter for learning
protein phase structure. Radii of gyration for proteins in the CAMEO validation
set (or- ange) as a function of sequence length over training time, plotted on a log-
log scale against experimental structures (blue). Legends show equations of best

fit curves, computed using non-linear least squares. The training steps chosen
correspond loosely to four phases of dimensional growth. See Supplementary
Information section B.3 for extended discussion.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Fig. 8 | Contact prediction for beta sheets at different ranges. Binned contact F1 scores (8 Å threshold) for beta sheets of various widths as a function
of training step at different residue-residue separation ranges (SMLR ≥ 6 residues apart; LR ≥ 24 residues apart, as in8). Sheet widths are weighted averages of sheet
thread counts within each bin, as in Fig. 5b.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02272-z

Extended Data Table 1 | Secondary structure recovery by class-stratified models

Recall and F1 scores for reduced secondary structure categories derived using DSSP. Results are shown for the two class-stratified models from the final panel of Fig. 2b, here evaluated on the
CAMEO validation set. We use the reduced secondary state scheme described in Supplementary Information section B.5.

http://www.nature.com/naturemethods

	OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

	Results

	OpenFold matches AlphaFold2 in accuracy

	OpenFold can achieve high accuracy using tiny training sets

	OpenFold generalizes to unseen regions of fold space

	OpenFold is more efficient than AlphaFold2 and trains stably

	Learning of secondary structure is staggered and multi-scale

	Discussion

	Online content

	Fig. 1 OpenFold matches the accuracy of AlphaFold2.
	Fig. 2 OpenFold generalization capacity on elided training sets.
	Fig. 3 Model improvements.
	Fig. 4 Secondary structure categories are learned in succession.
	Fig. 5 Learning proceeds at multiple scales.
	Extended Data Fig. 1 OpenFold matches the accuracy of AlphaFold2 on CASP15 targets.
	Extended Data Fig. 2 OpenFold learns decoy ranking slowly.
	Extended Data Fig. 3 Fine-tuning does not materially improve prediction accuracy on long proteins.
	Extended Data Fig. 4 The ‘Mostly alpha’ CATH class contains some beta sheets, and vice versa.
	Extended Data Fig. 5 Reduced dataset diversity disproportionately affects global structure.
	Extended Data Fig. 6 Early predictions crudely approximate lower-dimensional PCA projections.
	Extended Data Fig. 7 Radius of gyration as an order parameter for learning protein phase structure.
	Extended Data Fig. 8 Contact prediction for beta sheets at different ranges.
	Table 1 Data elision models evaluated on the CAMEO validation set.
	Extended Data Table 1 Secondary structure recovery by class-stratified models.

