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A B S T R A C T

This review delves into the integration prospects of Urban Metabolism (UM) with industry 4.0 technologies,
particularly digital twin (DT), to bolster sustainable urban development. Embracing a DT framework can
enable the visualization of interdependencies within civil systems, facilitating the prediction of interventions
to mitigate future climate change impacts. Therefore, the scope of this review was to determine how UM
results are represented to end users, such as architects, and engineers and evaluate if these methods align
with industry practices. Initially, we analyzed 70 UM studies to investigate the methods and visualization
techniques employed. Trends revealed minimal integration of UM with Industry 4.0 technologies or DTs.
The findings underscored a lack of dynamic and geographically oriented visualization in UM, with static
representation methods like bar charts and Sankey diagrams prevailing, and mostly disconnected from the
geographical location of the flows represented. Consequently, the research was further expanded to explicitly
review the use of emerging technologies from Industry 4.0, including DTs, using targeted words. An extended
review showed a gap in the integration of the UM framework with DT technologies, although an increased use
in mapping was depicted. There was inconsistency in the adoption of specific technologies or visualization
methods, highlighting ongoing research in this area. The increased use of geographic information system
(GIS) and light detection and ranging (LiDAR) marked a pivotal change for more elaborate mapping of UM
outcomes. Limited application of dynamic visualizations in UM persists, with MFA diagrams, Sankey diagrams,
and bar charts being commonly used methods, despite the need to develop such type of visualizations in the
sustainability field. There is an obvious lack of interoperability of these methods with Computer-Aided Design
(CAD) software as well as Building Information Model (BIM) software, which are standard tools in urban
planning and design. This limitation is particularly significant in environments where the ability to modify
planning scenarios and work with precise spatial representations is crucial. We argue that UM can be more
effective if integrated with technologies such as DT, which can resolve the spatial issue and describe UM
contextualizing it and potentially depicting it in real-time. Additionally, DTs can offer promising solution
by integrating UM analysis results and facilitating modifications to the 3-dimensional environment based
on this information. This capability empowers planners and designers to conduct simulations, update UM
analyses, and iterate the design process, aligning with contemporary practices in planning and design. Given
the interdisciplinary nature of UM, which includes various concepts such as urban flows, city flows, system
of systems, and urban networks, our study deliberately focuses solely on UM and its associated frameworks.
This targeted approach may limit the breadth of concepts explored, but it ensures depth and coherence in our
analysis of UM for this study.
1. Introduction

463 million people are currently living in 29 urban areas larger than
10 million people. By 2035, this number is projected to grow to 862
million in 48 urban areas. Thus, we are at an inflection point (Kennedy
et al., 2015; Stewart et al., 2020). Design and engineering methods at
he system level have not fundamentally changed in the last decades.
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For instance, little research on urban planning and urban metabolism
(UM) integration was conducted (Galan & Perrotti, 2019; Oliveira &
Vaz, 2021). Moreover, existing planning tools are not equipped to
integrate the results of either UM models or urban dynamics models
used to forecast land use change, urban growth or shrinkage, or im-
pacts of urban expansion on the environment (Kennedy et al., 2011;
Koenig, 2018), as the ability to understand a complex sustainability
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analysis or urban simulation model becomes more complex the more
parameters are considered. It can be complicated and time-demanding
for the planner to quantify unintended impacts on the environment or
on citizens’ well-being when designing for new development. There
is, therefore, the need to quickly integrate urban modeling theories
with sustainability scenarios and input from shareholders (Beloin-Saint-
Pierre et al., 2017; Broto et al., 2012; D’Amico et al., 2022; Elliot
et al., 2019; Musango et al., 2017). Additionally, traditional UM models
do not provide a dynamic picture of the flows circulating into a city,
offering instead a static glimpse of inputs and related outputs.

A digital twin (DT) is one technology that is emerging from Industry
4.0; however, Industry 4.0 includes but is not limited to Internet of
Things (IoT), Artificial Intelligence (AI), Big Data, and cloud com-
puting. DTs and other Industry 4.0 technologies have the potential
to unlock a wide array of opportunities to support and improve sus-
tainability decision-making due to their power of visualization, in-
teroperability, short development periods, real-time data collection,
enhanced flexibility, and decentralization of information (Ghobakhloo,
2020; Lasi et al., 2014; Xu et al., 2018). For instance, a DT can facilitate
collaboration in complex projects and enable predictive maintenance in
urban infrastructure.

In this context, urban planners, developers, and policymakers may
find it advantageous to navigate complex decisions within a high-
fidelity simulation environment. This simulation environment not only
aids in decision-making, but also fosters much-needed citizen engage-
ment and input, especially sustainable development decisions. Through
an integrated process that harnesses advanced tools, urban develop-
ment can thrive in a dynamic modeling environment. Community
discussions can be facilitated, allowing for exploration of future devel-
opments before their physical realization (White et al., 2021), and pro-
posals and designs can be fine-tuned through meaningful community
engagement and advanced e-participation (Le Blanc, 2020).

The relationship between UM and DTs is complementary, as they
serve distinct yet interrelated roles in understanding and optimizing
urban systems. UM encompasses a range of established methods for
analyzing the flows of materials, energy, and resources within cities,
providing insights into resource usage, waste generation, and environ-
mental impacts (Beloin-Saint-Pierre et al., 2017; D’Amico et al., 2022;
Kennedy et al., 2007, 2011; Li, 2018; Zhang, 2013; Zhang et al., 2015).
On the other hand, DTs offer virtual representations of physical assets,
processes, and systems, leveraging real-time data, simulations, and pre-
dictive analytics to monitor, simulate, and optimize complex systems.
In the urban context, DTs can model infrastructure, transportation
networks, energy grids, and environmental conditions (Cugurullo et al.,
2023; IBM, 2020; Lu et al., 2020; Semenyuk et al., 2023; Tagliabue
et al., 2021; White et al., 2021).

Integrating UM and DTs enables cities to achieve sustainable devel-
opment by providing a comprehensive understanding of urban dynam-
ics and facilitating data-driven decision-making. This integration allows
end-users to assess environmental impacts, identify inefficiencies, and
design more sustainable urban systems. Incorporating UM into a DT
environment enhances planning and management capabilities, enabling
city planners, policymakers, and shareholders to test scenarios, opti-
mize resource allocation, and develop strategies for enhancing urban
sustainability.

In summary, UM provides the conceptual framework for under-
standing urban systems, while DTs offer the technological platform for
modeling, simulating, and optimizing urban processes towards sustain-
ability (D’Amico et al., 2022; Musango et al., 2017).

The overarching aim of this research is to elegantly merge sustain-
ability assessments into the collaborative urban design process through
meaningful and system-level visualizations. Specifically, the research
aims to bridge the existing gap between UM and emerging technologies,
with a particular focus on DTs, to advance sustainable urban develop-
ment. With this paper, we aimed to address three key questions. First,
2

what is the current state of UM in terms of industrial ecology methods
and visualization techniques? Second, what is the current status of UM
in the context of emerging technologies, particularly DTs? Given the
answers to the first two questions, how can we merge sustainability
assessments into meaningful and system-level visualizations?

To explore these questions, the paper is structured in the following
manner: (1) a background on UM, Industry 4.0 and DT technologies,
(2) a methods section a where systematic literature review of recent
UM research focusing on methods and visualizations, is compared with
a second systematic and refined literature review of UM investigating
Industry 4.0 technologies, considering methods advancements and im-
proved visualizations techniques (i.e, DTs). (3) Results, (4) discussion
and (5) conclusions.

2. Background

In this section, we will delve into the concept of Digital Twin (DT)
and their evolving role in urban development. Since the introduction
of DTs this technology have rapidly advanced as a transformative tool.
This novelty can be leveraged in the context of Urban Metabolism (UM)
studies, where diverse data structures and traditional visualizations
often hinder assimilation of this studies in urban planning. The synergy
between UM and DTs presents a compelling opportunity to bridge these
gaps and enhance the sustainability of urban environments.

What is a Digital Twin? A DT was first introduced in manufacturing
processes in 2002 (IBM, 2020). The first publication, by NASA, can
be traced back to 2011 (Davila Delgado & Oyedele, 2021). A DT is a
non-static tool, a replica of its original counterpart used to virtualize a
physical asset, process, or system that exists in the real world. The main
difference between a DT and a Building Information Model (BIM) is the
real-time data component. A DT is a high-fidelity replica that can also
give feedback to the sensors from which the data is exchanged (Batty,
2018; Davila Delgado & Oyedele, 2021; Digital Twin Consortium, 2021;
Fuller et al., 2020). As Fuller et al. (2020) highlight, this feedback is
a crucial aspect of the definition of a DT. When this two-way data
exchange does not exist, a DT is a mere digital shadow (Fuller et al.,
2020).

The DT industry was valued at 30 billion USD in 2019, is projected
to grow to 35 billion USD by 2025 (Evans et al., 2022). Nevertheless,
this technology’s adoption remains challenging for small cities and
municipalities due to its high computational requirements and the need
for skilled personnel to manage and store data (Lu et al., 2020).

DTs are often mentioned as one of the key factors of the fourth
industrial revolution or Industry 4.0, which has the characteristic
of merging different technologies between the physical, digital, and
biological spheres. A fundamental concept of Industry 4.0 is a re-
newed emphasis on meeting human needs, in contrast to a traditional
productivity-centric manufacturing systems. These fundamental con-
cepts converge around cyber and physical systems into a unified
whole (Lasi et al., 2014).

By embracing a DT framework, the visualization of interdependen-
cies within civil systems can be enabled and facilitate the prediction
of interventions to address future climate change impacts (Allam &
Newman, 2023). While still relatively under-explored, the widespread
adoption of DT models holds significant promise for various civil
engineering applications (Adade & de Vries, 2023; Charitonidou, 2022),
climate adaptation initiatives (Bauer et al., 2021; Ye et al., 2023), and
community development efforts (Bagaria et al., 2020).

Cities have emerged as an important platform for realizing the
potential for DTs (Angelidou, 2014). A recent example is New York
City’s hybrid twin for urban transportation, which integrates real-
time transit and planning (American Society of Civil Engineers, 2022).
Additionally, DTs has been instrumental in creating replicas of cities
such as Singapore, Shanghai, Auckland, Glasgow, Boston, and Amara-
vati (Digital Twin Consortium, 2021; Unreal Engine, 2022). These DTs
were crafted by integrating data from diverse sources, including city

sensors, satellites, and drones, enabling the comprehensive monitoring
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and representation of physical assets. Another example of a DT is for
Dublin, where researchers from Trinity College have developed an
open-source DT that is accessible for use by citizens (White et al.,
2021). Even though cities are at the forefront of DTs, cities could face
challenges in reconciling older technologies and their workforce (Allam
& Newman, 2018; Deren et al., 2021).

The concept of Urban Metabolism (UM) traces its origins back
to A. Wolman in 1965 (Wolman, 1965). In UM studies, the city is
compared to a living organism. The term ‘metabolism’ finds its roots in
Greek, signifying ‘conversion’ or ‘transformation’. While originally used
to describe physiological processes within individual organisms, the
concept of metabolism has found application in fields such as biology,
ecosystems, architecture and even cultural systems (Baccini & Brunner,
2012; Newman, 1999; Rogers, 2008). Due to the term ‘‘metabolism’’,
literature reviews are often vast because this word has been used across
disciplines.

In 2007, Kennedy and colleagues proposed a revised definition of
UM as ‘‘the sum total of technical and socioeconomic processes occur-
ring in cities, resulting in growth, energy production, and waste elimi-
nation’’ (Kennedy et al., 2007). This definition remains foundational in
the field. UM studies scrutinize the sourcing of resources, the pathways
through which resources enter a system, and their circulation within it,
including eventual elimination (Zhang, 2013). Notable reviews of UM
literature include studies by Beloin-Saint-Pierre et al. (2017), Holmes
and Pincetl (2012), Kennedy et al. (2007), Kennedy and Hoornweg
(2012), Kennedy et al. (2011), Li (2018), Zhang (2013) and Zhang et al.
(2015).

Urban designers have embraced UM to explore community issues,
leading to the implementation of several models in a bottom-up partici-
patory fashion in recent years (Chini & Stillwell, 2020; Ecocity Builders,
2022; Khalil & Al-Ahwal, 2021; Papageorgiou et al., 2020; Smit et al.,
019; Stelwagen et al., 2021; Suzuki et al., 2010; Wang et al., 2020).
In a broader context, the framework proposed by Allam and New-
an (2018) includes three essential pillars. First, Urban Metabolism,
his involves understanding the accumulation of materials and energy
tocks and flows within cities. Second, Governance, the framework
mphasizes the importance of forecasting unintended consequences of
rban management programs, infrastructure developments, policies,
nd expansion plans. The goal is to enhance the city’s sustainability
hrough effective governance. Third, Culture, often overlooked in dis-
ussions of smart cities, as the cultural aspect plays a crucial role. It
nvolves promoting two-way communication between citizens and gov-
rnment, considering urban cultural heritage, inclusivity, and livability.
herefore, as we endeavor to create sustainable cities, it becomes
mperative to shift our conceptualization and approach, which is rooted
n an older paradigm, reflecting a different era when the first modern
ities emerged (Allam & Newman, 2018; Bettencourt, 2014).
To navigate the complexities of urban development, it has been

roposed that urban modeling theories be integrated with UM and
everaged through the use of industry 4.0 technologies (Bibri, 2022;
’Amico et al., 2022; Stephan et al., 2022a), such as DTs (Beloin-Saint-
ierre et al., 2017; Broto et al., 2012; Elliot et al., 2019; Musango et al.,
017).
However, the interdisciplinary adoption of UM has resulted in di-

erse data structures, contingent on distinct methodologies employed
e.g., material flow analysis, life cycle assessment, input–output). Con-
equently, data sets are not easily exchanged among researchers, par-
icularly when novel methods are introduced. This issue has been
reviously addressed by authors such as Broto et al. (2012), Holmes
nd Pincetl (2012), Kennedy and Hoornweg (2012), and more recently
y Pauliuk et al. (2019). Several authors touch on the general lack of
ity-wide data that impairs the potential of these methods, highlighting
he need for policies to facilitate data collection specifically in the
nited States (Caputo et al., 2019; Chini & Stillwell, 2020; Creutzig
t al., 2019; Galan & Perrotti, 2019; González-García & Dias, 2019).
3

oreover, the visualization techniques utilized have not progressed 9
ignificantly from the type of presentation that Wolman proposed in
ts first publication on UM in 1965. Non-geolocated and conceptual
iagrams, along with charts and matrices, are currently employed to
llustrate flows and stocks within a city or a system. These visualizations
ften fail to align with the daily tools used by urban planners, who
tand to benefit greatly from UM studies.
As we delve deeper into specific examples of UM studies, it becomes

vident how DTs have the potential to revolutionize UM, particularly
y enriching UM outcome analysis through real-time data visualiza-
ion, simulation capabilities, and predictive analytics (D’Amico et al.,
022). Comprehensive maps illustrating material, goods, substance,
eople, waste, and food flows are rare and typically require labori-
us data analysis and computer programming (Bahers et al., 2022).
or instance, the Municipality of Rotterdam collaborated with the
nternational Architecture Biennale of Rotterdam (IABR) to explore
rban-nature relationships during the 6th IABR (International Archi-
ecture Biennale Rotterdam, 2014). Utilizing the concept of UM, this
nitiative depicted Rotterdam’s urban system through its flows, offering
nsights crucial for design, planning, and governance of urban land-
capes. Despite their static nature, these maps synthesized complex
rban dynamics, suggesting strategies for resource optimization, energy
y-product utilization, and flow optimization. However, such maps
epresent specific snapshots, like the year 2013 for Rotterdam. DTs
resent a solution by dynamically visualizing flows and contextualizing
nalyses in real-world scenarios.
Another example lies in the work of Metabolic (2018), advising

overnments, businesses, and NGOs on adapting to a rapidly changing
lobal context. Leveraging UM, circular economy, and systems think-
ng, Metabolic translates these concepts into actionable strategies for
rban and regional economic development, as evidenced in projects for
otterdam and Charlotte. Yet, Metabolic’s endeavors remain private,
nderscoring the potential of a UM digital twin for public accessibility
nd development.
In summary, DTs, despite their sophistication, have yet to incor-

orate sustainability data streams and visualizations. These aspects,
rucial for designing sustainably and proactively addressing emerging
hallenges (Ferrão & Fernández, 2013), are often missing. At the same
ime, UM studies lack robust graphical output and dynamic data vi-
ualization. Therefore, integration of UM with DTs is critical now to
everage their potential.

. Methods

To explore these concepts further, we conducted two sequential
iterature reviews (see Fig. 1). In the first review, we focused on UM in
he context of case studies, methods, and visualization of results (review
).
The initial UM review underscored the prevalent use of static visual-

zation methods in presenting UM analysis outcomes. These graphical
epictions primarily consist of diagrams that lack geographic contex-
ualization for the analyzed flows. Furthermore, minimal utilization
f geolocation techniques like light detection and ranging (LIDAR) or
eographic information system (GIS), or machine learning for manag-
ng extensive datasets inherent in analytical methods, was observed. In
ummary, Review 1 elucidated the absence of Industry 4.0 technologies
nd dynamic visualization approaches within UM analytical studies.
Consequently, recognizing the potential for integrating such tech-

ologies to enhance UM practices we then conducted a second review
review 2), that combined UM and Industry 4.0 technologies (such as
he Internet of Things, Artificial Intelligence, Digital Twins, GIS, and
ystem Dynamics). In both reviews, we classified papers in categories
ased on the system analyzed and the objective of the study (see Figs. 2
nd 3), and we also conducted a detailed analysis of methods (see
igs. 4 and 5), and visualization techniques used (see Figs. 6, 7, 8, and

).
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Fig. 1. Literature review methodology.
While review 2 did not yield specific results in the intersection of
DT and UM, it underscored researchers’ robust endeavors in exploring
novel methodologies like system dynamics and machine learning to
enhance UM analysis.

In light of the interdisciplinary nature of UM, which encompasses
diverse concepts such as urban flows, flows of materials, city flows, sys-
tem of systems, and urban networks, we deliberately chose to focus our
study specifically on UM and its associated frameworks only, to provide
a targeted analysis of its interaction with Industry 4.0 technologies,
particularly digital twins, understanding that this focused approach
may present a limitation in the breadth of concepts explored. For the
purpose of this study, we maintained a focused approach to ensure
depth and coherence in our analysis of UM. Furthermore, such concepts
have been explored in literature in relation to a UM framework by Bi
and Little (2022) and Kasai et al. (2015).
4

3.1. Review 1

For the first review, the time period was 2019 to 2023. This time
period was selected because there was a gap in prior reviews between
2019 and 2023, along with a significant increase in publications. For
the second review, we expanded the period from 2016 to 2023 as
Industry 4.0 developed earlier than 2019.

In review 1, we used the key phrase ‘‘Urban Metabolism’’ as the
search criterion, using the Scopus database. This review aimed to
provide both a comprehensive view of UM for the most recent years
while providing adequate information on the case studies, methods,
and visualizations. This process is detailed in Fig. 1. Initially, we
retrieved a total of 2078 papers. These papers were then filtered based
on subject area (urban metabolism), source (journal), document type
(journal article), research area (i.e., environmental science and ecology,
or urban studies) and language (English).
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Fig. 2. Urban metabolism studies from 2019 to 2021 (Review 1) results and categories.
We down-selected the 2078 papers based on several considerations.
irst, manuscript not written in English were excluded, and those from
nrelated fields like anthropology, arts and humanities, or agriculture
ere also disregarded, even if they included ‘metabolism’ as a keyword.
econd, we narrowed the number by reviewing the abstracts of the
hosen papers, focusing on references to applied case studies, new
rameworks, or enhancements to the current state of UM research. This
nsured that the methodologies were analyzable, and results could also
e included in the paper. We considered case studies an essential aspect
or contextualizing the study results. Thus, the final number was 275
apers.
We conducted a detailed review of these 275 papers to filter out

hose lacking applied case study, therefore not employing any method
r using data to calculate UM. The scrutiny methodology employed
s particularly relevant for UM studies as it ensures that the selected
apers provide actionable insights into UM analysis outcomes, guaran-
eeing the availability of methodological approaches and data-driven
alculations necessary for meaningful analysis and visualization. Specif-
cally, we focused on the analysis of methods described within the
5

single papers, which allows for the analysis of results and types of
visualizations used, deemed fundamental to understanding UM and
its usefulness for decision-making in policy or design. Papers with
methodologies and results based on case studies were retained and
subjected to further scrutiny. As a result of this process, we included
70 papers in our first review.

Of the 70, we then performed an extensive analysis on each paper,
systematically categorizing the visual representations used to present
case study findings. The result of this analysis is a comprehensive in-
ventory of visualization methods commonly employed in UM research
for illustrating case study outcomes. Papers were classified based on
categories representative of the UM system analyzed and the objective
of the study (e.g., city and city’s hinterland), method employed, and
visualization techniques.

3.2. Review 2

A second literature review, based on the findings of the first liter-
ature review, was conducted. We, expanding on the initial research,
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Fig. 3. Urban metabolism and industry 4.0 technology (Review 2) results and categories.
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investigated novel approaches to UM that incorporate the use of Indus-
try 4.0 technologies. Review two is from 2016 to 2023. This time frame
aligns with the emergence of the Industry 4.0. Analyzing this extended
duration offers insights into the evolution and impact of Industry 4.0
technologies in UM research.

Like the first review, the Scopus database was used to perform
the search. This review was performed using the key phrase ‘‘Ur-
ban Metabolism’’ and: ‘‘Digital Twin’’, ‘‘Big Data’’, ‘‘IoT’’, ‘‘Internet
of Things’’, ‘‘System Dynamics’’, ‘‘GIS’’, ‘‘Urban Dynamics’’, ‘‘Smart
City’’, ‘‘Artificial Intelligence’’, ‘‘Smart Urban Metabolism’’, and ‘‘Urban
Modeling’’. 101 papers were retrieved; using the same criteria from
the first review (i.e., case study and method), a total of 25 papers
were selected and analyzed in depth (see Figs. 1 and 5). For Review
2, we followed the same criteria and methodology used in Review 1 to
ensure consistency and comparability in the selection of papers, thereby
maintaining continuity between the two reviews. Also for the second
review, papers were classified based on categories indicative of the
UM system analyzed and the objective of the study (e.g., transportation
systems), method employed, and visualization techniques.

4. Results

This section presents the findings from both review 1 and review 2.
The selected papers are analyzed based on the methods employed (see
Figs. 4 and 5) and the visualization techniques used (refer to Figs. 6,
, 8, and 9). Some papers may employ a combination of methods to
ssess UM in their case studies, using various visualization techniques
o effectively convey different aspects of their results. The papers are
urther classified in broad categories representative of the UM system
nalyzed and the objective of the study, as identified and described in
6

ig. 1 and illustrated in Fig. 2 for review 1 and in Fig. 3 for review 2. U
.1. Categories

With respect to review 1, the category of ‘‘resource management
nd policy’’ is the most prevalent (37%) (Andreoni, 2022; Cunha &
errao, 2023; Galychyn et al., 2022; Ipsen et al., 2019; Liu, Goel et al.,
021; Liu, Zhang et al., 2021; Mohareb & Perrotti, 2023; Stephan et al.,
022a; Xia et al., 2019) with ‘‘city and city’s hinterland’’ following
at 24%) (Bahers et al., 2020; Cui et al., 2019; Deng et al., 2022;
errible et al., 2021; Gan et al., 2023; Islam et al., 2021; Pianegonda
t al., 2022; Strydom et al., 2019; Tanguy et al., 2020; Wassenaar
t al., 2023). Combined these two categories represent 61% of the
esults of this first review. These categories appear to prioritize the
ssessment of existing conditions and management practices, with less
mphasis on exploring new technologies or alternative approaches.
uch research remains important as it provides a foundation for future
ork on the development of innovative and sustainable urban resource
anagement strategies.
In review 2, we saw that limited research integrated UM with In-

ustry 4.0 technologies. Further, UM and digital twin (DT)technologies
ielded no results. It becomes evident that there is significant untapped
otential for further exploration and integration. There is a pressing
eed for technological integration, particularly leveraging DT technol-
gy, the Internet of Things (IoT), and big data, to handle larger volumes
f data more effectively.
Firstly, DT technology offers a powerful platform for simulating and

isualizing complex urban systems, enabling researchers and designers
o model and analyze UM processes in real-time. Through the integra-
ion of IoT devices and sensor networks, DTs can capture real-world
ata streams, providing valuable insights into urban resource flows, en-
rgy consumption patterns, and environmental impacts. Furthermore,
M and DT integration holds the potential to address the challenge
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Fig. 4. Commonly used methods from literature Review 1 (Urban metabolism studies from 2019 to 2021).
f limited real-time data availability (Neves et al., 2023), thereby cat-
alyzing research and investment efforts towards more comprehensive
and timely data collection for UM studies. Given that the predominant
category identified in review 2 was ‘‘resource management and policy’’,
embracing the UM and DT integrative approach has the potential to fos-
ter evidence-based decision-making in urban design and infrastructure
development.

A few categories that were not a part of review 1 were identified
such as ‘‘spatially explicit UM’’ and ‘‘method improvement’’ (Huang,
2018; Mao et al., 2022; Peponi et al., 2022; Schandl et al., 2020;
Xia et al., 2022; Yeow & Cheah, 2019). Of the 25 papers, the preva-
lent categories were ‘‘resource management and policy’’ (Cui, 2022;
Elshaboury & Almetwaly, 2023; Hu et al., 2019; Mohammadiziazi
et al., 2021; Pena et al., 2022; Younan et al., 2023), followed by ‘‘city
and city’s hinterland’’ (12%) (Farzinmoghadam, 2019; Gopal, 2016;
Koenig, 2018) and ‘‘method improvement’’ (Schandl et al., 2020; Xia
t al., 2022; Yeow & Cheah, 2019) (11%) (Fig. 3) with the three
categories accounting for more than half (61%) of the papers analyzed.
To summarize, these papers explore resource use and material flow.
The ‘‘city and city’s hinterland’’ (12%) and ‘‘method improvement’’
articles (11%) introduced the use of machine learning (ML) to support
7

material flow analysis (MFA) (Mao et al., 2022; Peponi et al., 2022) or
system dynamics (SD) for emergy analysis (Huang, 2018). Despite the
prevalence of studies with some form of data geo-localization in these
categories, the primary visualization methods remained bar charts and
spline graphs.

It is also interesting that despite fewer categories were identified
in the second review, the prevalent categories align closely with those
discovered in the first review, indicating a consistent pattern across
both analyses, and suggesting robustness in the identified themes.
Additionally, the absence of the ‘informal city’ category in the second
review may be attributed to potential resource limitations.

4.2. Methods

Regarding review 1, in terms of methods used, material flow anal-
ysis (MFA) and MFA in conjunction with life cycle assessment (LCA)
have emerged as the most used, respectively the 33% and 10% (Fig. 4).
MFA, being the most prevalent, models the flow of materials entering
and exiting a city, calculating the stocks of materials and the point at

which such accumulation occurs within the system. MFA’s integration
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Fig. 5. Commonly used methods from literature Review 2 (Urban metabolism and industry 4.0 technologies).
with LCA facilitates the identification and quantification of environ-
mental impacts. Combined MFA and LCA represent nearly the 50% of
the methods used in review 1 (Fig. 4). The remainder 50% of the papers
utilized a scattered variety of methods as it can be observed in Fig. 4,
spanning from Input-Output analysis (Galychyn et al., 2022; Islam
et al., 2021; Zhang et al., 2022), to Exergy Accounting (Liu, Goel et al.,
2021), to the use of specific UM tools such as the Integrated Urban
Metabolism Analysis Tool (IUMAT) (González-García et al., 2021; Liu,
Goel et al., 2021) and Multi-Scale Integrated Analysis of Societal and
Ecosystem Metabolism (MuSIASEM) (Andreoni, 2022; Dextre et al.,
2022). While ecological network analysis (ENA), which aims to as-
sess the structure, function, and dynamics of industrial ecosystems,
was employed independently in a limited number of cases (6%) (Li
et al., 2023), it is frequently integrated with input–output models or
MFA (Galan & Perrotti, 2019; Li et al., 2019; Xu et al., 2020; Zhai et al.,
2019), resulting in its overall utilization in 13% of the papers analyzed.
This method is predominantly featured in the ‘‘resource management
and policy’’ category, (Fig. 10).

As system dynamics (SD) emerged as the prevalent method (20%)
in review 2 (Elliot & Levasseur, 2022; Elliot et al., 2022; Hu et al.,
019; Koenig, 2018; Procter, 2016; Tang et al., 2022) (Fig. 5), the
integration of DTs as a next step appears logical. The adoption of SD
approaches within DT frameworks allows for the dynamic modeling
of feedback loops and causal relationships within urban systems, fa-
8

cilitating a deeper understanding of system behaviors and emergent
phenomena. Nonetheless, DTs have the capacity to provide an ideal
environment for visualizing and analyzing results generated by SD.
Ultimately, researchers will be able explore various scenarios and
interventions to optimize UM processes, enhance resource efficiency,
and promote sustainable urban development.

In some cases, SD was combined with the use of an input–output
model or emergy to calculate the variables of the metabolic system
used in the SD environment (Huang, 2018). MFA do not reveal the
mechanisms within the system analyzed (Beloin-Saint-Pierre et al.,
2017; Zhang, 2013); therefore, the development of hybrid methods has
helped researchers unveil relations and dependencies between different
flows in the system analyzed. Ultimately, hybrid approaches can also
help end-users facilitate planning and policy decision-making (Elliot,
2018).

4.3. Visualization techniques

Regarding visualization techniques, we carefully reviewed each pa-
per, identifying and classifying all graphical outputs utilized to depict
the outcomes of the case studies. This enabled the creation of a com-
prehensive list of the visualization techniques commonly utilized in UM
research.

With respect to review 1 and visualizations a not significant varia-
tion was observed in the choice of visualization techniques correspond-

ing to each of the methods employed (see Fig. 6). When MFA was
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Fig. 6. Review 1 heat map to compare visualization techniques against method used.
sed, as expected, MFA diagrams or Sankey diagrams were presented.
FA diagrams, while effectively illustrating material flows, are not
he most suitable tool for pinpointing flows on a specific geographic
erritory being primarily designed to offer a systemic overview of
lows and relationships among processes, sectors, or nodes. Despite
eing predominantly used in two of the observed categories (‘‘city
nd city hinterland’’ and ‘‘resource management and policy’’), this
isualization method accounts for 14% of instances across different
ethodologies (Arora et al., 2022; Chen, Wang et al., 2020; Cui et al.,
019; Derrible et al., 2021; González-García et al., 2021; Ipsen et al.,
019; Kissinger & Stossel, 2019; Lanau et al., 2021; Ohms et al., 2019;
apageorgiou et al., 2020; Stelwagen et al., 2021; Stephan et al., 2022b;
aleghani et al., 2020; Wang et al., 2020; Whetstone et al., 2020; Wu
t al., 2023; Xia et al., 2019; Zhang, Liu et al., 2019). Our analysis
hows how Sankey diagrams are also widely used in the two of the
ain observed categories (12%) (Bahers et al., 2020; Chen, Chen et al.,
020; Chen, Wang et al., 2020; Chini & Stillwell, 2019; Derrible et al.,
2021; Galan & Perrotti, 2019; Hastie et al., 2020; Islam et al., 2021;
Khalil & Al-Ahwal, 2021; Kumdokrub et al., 2023; Li et al., 2019;
Liu, Goel et al., 2021; Stelwagen et al., 2021; Strydom et al., 2019;
Tanguy et al., 2020) (Fig. 7). Primarily to visualize the magnitude and
direction of flows within a system, Sankey diagrams do not provide
precise geographic localization information on their own. However,
they can be adapted or supplemented with geographic information
to represent flows on the territory (Evans, 2016). Bar charts were
employed across nearly all of methods (24%) (Fig. 6), and they were
used to convey quantitative data to compare and contrast different
variables, categories, or metrics (Chen, Chen et al., 2020; Fu et al.,
2022; González-García et al., 2021; González-García & Dias, 2019;
Ipsen et al., 2019; Islam et al., 2021; Kissinger & Stossel, 2019, 2021;
Kovacic et al., 2019; Lanau et al., 2021; Li et al., 2019; Liu, Goel et al.,
9

2021; Liu, Zhang et al., 2021; Ohms et al., 2019; Smit et al., 2019;
Strydom et al., 2019; Tanguy et al., 2020; Tasmeea et al., 2021; Wang
et al., 2019; Whetstone et al., 2020; Xu et al., 2021; Zhai et al., 2019;
Zhang, Huang et al., 2019; Zhang et al., 2020; Zhang, Liu et al., 2019;
Zhi et al., 2023).

These graphical representations are decontextualized from the ac-
tual geographic locations of the analyzed elements and do not convey
the intensity of these metrics, impacts, or flows at different territorial
scales. This is a fundamental aspect of urban planning practice, as
analyzing the context in which development will be carried out is
crucial.

Review 1 revealed that in 2019, only one paper attempted to
spatially describe UM (Xia et al., 2019), while there were no such cases
in 2020. However, there was a notable increase in 2022 and 2023, with
papers employing conceptual maps and diagrams, and intensity maps
to depict the geographical distribution of flows analyzed for a fixed
period, typically one year (Kolkwitz et al., 2023; Pianegonda et al.,
2022; Stephan et al., 2022b; Talandier & Donsimoni, 2022; Wang et al.,
2022; Yang, Liu, Li et al., 2023; Yang, Liu, Wang et al., 2023).

Galan and Perrotti (2019) incorporated UM analysis into spatial
planning decision-making by using MFA and ecological footprint anal-
ysis contemporarily, to provide a means for planners and decision-
makers to easily understand the results of the study. A regional model
to integrate UM to spatial planning was developed with the aim of
optimizing the material and energy flows in the region (Galan &
Perrotti, 2019). However, the volume of data to be processed was an
obstacle forcing the authors to limit the quantity of data to be processed
to a reasonable amount. Ultimately, the authors did not incorporate the
use of technologies such as DT, IoT, and SD, which would allow them
to handle a higher volume of data more easily and start a framework
to technologically advance the concept of UM.

Spatial graphics are pivotal in infrastructure design, facilitating the

analysis of interrelations between new or revised infrastructure in a
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Fig. 7. Review 1 heat map to compare visualization techniques against category.
comprehensive manner. Galan and Perrotti (2019) employs sankey
and conceptual diagrams to illustrate water, waste, and electricity
flows, effectively identifying targets. However, these visualizations lack
geographical context, making it challenging to envision flows and
stocks within the real-world environment, which is crucial for informed
decision-making. Integration of geographical context in visualization
techniques is essential to immediately recognize the impact of specific
flows or stocks on particular locations and assess their potential reuse.
Therefore, advancements in spatial analysis technologies, such as ad-
vanced GIS applications, remote sensing technologies, and interactive
mapping tools, are indispensable for enhancing UM studies.

In contrast to review 1, review 2 revealed a significant effort by
researchers to evaluate the spatial aspects of UM, as evidenced by a
substantial increase in studies introducing new spatial visualization
methods such as correlation matrices (Elliot, 2018) and mapping (Pena
et al., 2022) (Figs. 8 and 9).

However, the results indicate that the use of bar charts (26%) (Cui,
022; Elliot et al., 2022; Younan et al., 2023) and spline graphs
10
(21%) (Elliot et al., 2022; Farzinmoghadam, 2019; Peponi et al., 2022)
remains predominant, accounting for 47% of the papers examined.

As illustrated in Fig. 9, review 2 highlighted a narrower variety of
visualization methods when analyzing works in the convergence be-
tween UM and Industry 4.0. Few new visualization methods were iden-
tified, including correlation matrices (Elliot, 2018), histograms (Mo-
hammadiziazi et al., 2021), violin plots (Yang, Dang et al., 2023), and
mapping (Pena et al., 2022). It can be summarized that a dynamic
visual representation of UM has not yet been established. Furthermore,
no trends among methods have been identified; for instance, bar charts,
intensity maps, and spline graphs were the most used even when
methods such as SD and ML were employed (Fig. 8).

Fig. 9 also indicates that the predominant category in review 2
is ‘‘resource management and policy’’. Researchers’ efforts in explor-
ing new visualization methods and techniques within this category
suggest the need to find better, improved, and more direct ways to
communicate results to policymakers and designers for decision-making
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Fig. 8. Review 2 heat map to compare visualization techniques against method used.
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urposes. DTs can address this issue by offering an immersive gaming
nvironment where end-users can better understand specific concepts
nd characteristics of new developments, or how solutions can be
pplied in real case studies.

.4. Results summary

In reviewing the literature on UM and UM use of Industry 4.0
echnologies distinct trends emerged across all categories, methods and
isualization techniques analyzed. This section aims to provide a con-
ise summary of the key findings derived from the two comprehensive
eviews.
In review 1, combining Figs. 6 and 7, the two main categories

f ‘‘city and city’s hinterland’’ and ‘‘resource management and pol-
cy’’, largely used sankey diagrams, MFA diagram, and bar diagram.
hile the remaining categories tended to use a limited number of
echniques, often tied to their chosen research methodologies (Bor-
olotti et al., 2020; Chini & Stillwell, 2020; Chiu et al., 2019; Fan &
ang, 2019; Maranghi et al., 2020; Pérez-Sánchez et al., 2019; Roy
Thangaraj, 2021; Xu et al., 2020). The larger number of articles

n this field indicated a significant emphasis on investigating the best
trategies for managing and optimizing urban resources. These studies
ere primarily focused on analyzing the socio-economic conditions of
rban areas (Bahers et al., 2020; Bortolotti et al., 2020; Cui et al.,
11

019; Guo et al., 2023; Liu, Goel et al., 2021; Stelwagen et al., 2021; S
u et al., 2021), such as patterns of consumption and urbanization,
o better understand their environmental impact; this understanding
an then inform resource management and policy decisions aimed at
ptimizing resource usage and planning for future resource manage-
ent (Emamjomehzadeh et al., 2023; Islam et al., 2021; Kissinger &
tossel, 2021; Lanau et al., 2021; Li et al., 2019; Roy & Thangaraj,
021; Sun et al., 2023).
Summarizing review 2, Figs. 8, and 9 show that spatial variables

ere not predominant despite their usefulness being widely recog-
ized (Elliot, 2018; Gopal, 2016; Koenig, 2018; Oliveira & Vaz, 2021).
isualization techniques such as bar charts, sankey diagrams, MFA
iagrams, and spline graphs were widely used in UM analyses.
In review 1, the analysis of 70 papers revealed a predominant

ocus on Chinese cities, accounting for 36% of the studies, followed
y European regions at 24%. This distribution underscores China’s
eadership in analytical UM studies conducted between 2019 and 2023.
he primary objective of these studies was to create evidence for
olicy-making or resource management, with the category of ‘‘resource
anagement and policy’’ emerging as the most prominent. Notably, a
iverse array of methods and visualization techniques were employed,
ndicating ongoing experimentation and exploration within the field, as
epicted in Fig. 10.
On the contrary, review 2 showcased a more balanced distribution

f research efforts among Europe (20%), China (24%), and the United

tates (Fig. 11). Among the 25 papers scrutinized, spanning from 2016



Sustainable Cities and Society 107 (2024) 105445F. Geremicca and M.M. Bilec
Fig. 9. Review 2 heat map to compare visualization techniques against categories.
to 2023, the United States took the lead with 28% of the papers focus-
ing on the integration of Industry 4.0 technologies into UM analysis.
The exploration of various frameworks, ranging from machine learning
to GIS and LIDAR usage, to SD and IUMAT, reflects the diverse research
scopes within this domain.

Review 2 also revealed that, despite the primary focus on informing
policy-making and resource management, in Europe and China, a sim-
ilar array of methods was employed across these regions, highlighting
the universality of the challenges and objectives in UM research.

However, it is noteworthy that regions with limited resources,
particularly in developing countries, were not as prominent in review
2. This observation can be attributed to the intricate nature of UM
studies, which often encounter challenges related to interdisciplinary
collaboration, data limitations, and insufficient financial, technical, and
digital infrastructure required for advanced technology solutions.

For example, regions in Africa accounted for 7% of the papers
analyzed in review 1, employing analytical methodologies, such as
combining MFA with LCA. Data collection approaches were predom-
inantly bottom-up due to the scarcity of top-down data availability.
12
These findings underscore the imperative of addressing resource con-
straints and enhancing data accessibility to facilitate UM studies in
developing regions, thereby promoting equitable and inclusive urban
development initiatives.

5. Discussion

This study investigated UM and UM integration with Industry 4.0
technologies; we also explored sustainability methods and visualiza-
tions at a system-level. The findings from both review 1 and review
2 (summarized in Fig. 12) highlight trends and gaps in UM methods.

The dominance of ‘‘resource management and policy’’ and ‘‘city
and city’s hinterland’’ categories in review 1 signify a foundation for
understanding and optimizing urban resource usage and their distri-
bution on the territory. However, the limited integration of advanced
technologies, such as DTs and Industry 4.0, raises questions about
the potential uncharted benefits of DTs in enhancing UM studies. The
prevalence of MFA and MFA combined with LCA in review 1 indicates
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Fig. 10. Review 1: Sankey diagram showing connections across countries (Center), methods employed (Left), and categories (Right). N.B. : ‘‘MFA’’ = material flow analysis; ‘‘LCA’’
= life cycle assessment; ‘‘ENA’’ = ecological network analysis; ‘‘EFA’’ = energy flow analysis; ‘‘MuSIASEM’’= multi-scale integrated analysis of societal and ecosystem metabolism;
‘‘IO’’ = input–output; ‘‘IUMAT’’ = integrated urban metabolism analysis tool; ‘‘SFA’’ = substance flow analysis; ‘‘CEPA’’ = carbon emission pinch analysis; ‘‘EIA’’ = environmental
impact assessment; ‘‘DEA’’ = data envelopment analysis; ‘‘PIOT’’ = physical input output table. The total number of papers analyzed is 70.
Fig. 11. Review 2: Sankey diagram showing connections across countries (Center), methods employed (Left), and categories (Right). N.B. : ‘‘SD’’ = system dynamics; ‘‘IUMAT’’
= integrated urban metabolism analysis tool; ‘‘IO’’ = input–output; ‘‘MFA’’ = material flow analysis; ‘‘EFA’’ = energy flow analysis; ‘‘GPS’’ = global positioning system; ‘‘AI’’ =
artificial intelligence; ‘‘LIDAR’’ = Light detection and ranging; ‘‘CA’’ = carbon accounting; ‘‘ENA’’ = ecological network analysis. Total number of papers analyzed is 25.
a favored analytical approach but also emphasizes a need for method-
ological diversification. We found that leveraging DT technologies due
to their capacity for dynamic and interactive representations could be
the bridge to usher in a new generation of comprehensive and insightful
UM studies.
13
On average, the papers analyzed utilized two to three different
visualization types (mainly sankey diagrams, bar charts and MFA di-
agrams), with some employing four or five graphical representations
(additionally spline graphs, conceptual diagrams, and area charts were
used). This diversity in visualization methods reflects the necessity to
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Fig. 12. Timeline describing Review 1 (Top) and Review 2 (Bottom) findings. Circles are representing the total papers published each year. N.B. ‘‘MFA’’ = material flow analysis;
‘‘MuSIASEM’’ = multi-scale integrated analysis of societal and ecosystem metabolism; ‘‘SD’’ = system dynamics; ‘‘ML’’ = machine learning; ‘‘GIS’’ = geographic information system;
‘‘UM’’ = urban metabolism.
effectively communicate results to a broad audience, particularly end-
users in the ‘‘resource management and policy’’ or ‘‘city and city’s hin-
terland’’ categories. However, the adoption of DTs offers a promising
solution by providing a unique virtual environment that contextualizes
data within the analysis, fostering deeper understanding and facilitating
collaboration among researchers, urban designers and policymakers,
and potentially citizens. Implementing DTs may consequently miti-
gate the need for a high number of less informative representations,
streamlining the communication of UM analysis outcomes.

Review 2 with its focus on Industry 4.0 technologies, offers a
glimpse into the future but exposes a gap in the intersection of UM and
DTs. The ‘‘spatially explicit UM’’ category’s use of technologies such
as LIDAR and GIS showcases a step forward in precision in localizing
flows, yet most MFAs were represented during discrete time periods.
The prominent use of SD in review 2 suggests a shift towards dynamic
modeling, providing a pathway for future studies. However, the lack
of dynamic visualization methods across both reviews underscores a
critical need for advancements in depicting UM in real-time.

This study highlights the need of UM to adapt to the technological
advancements of this decade. A renewed approach will emphasize the
utilization of results (Alfeld, 1995; Clarke, 2014) to provide sustain-
ability end users with accessible and visual tools for expressing their
research findings.

Most methods (such as MFA, LCA, input output) or visualizations
(such as bar charts, MFA diagrams, sankey diagrams) used in the
UM field (see Figs. 6 and 7) do not interoperate with CAD software
(i.e. Rhinoceros 3D and AutoCAD), and Building Information Model
(BIM) software (i.e. Revit, Archicad), which are typical tools employed
by urban planners. Even more in an environment where the ability
to readily modify planning scenarios and work with precise spatial
representations holds such significant importance (Koenig, 2018). How-
14

ever, DTs offer a promising solution as they can incorporate the results
of UM analysis and modify the 3-dimensional environment based on
this information. This capability enables planners and designers to
run simulations, update UM analyses, and iterate the design process,
aligning with current practices in planning and design (D’Amico et al.,
2022).

There are several reasons behind the lack of integration of Indus-
try 4.0 technologies into the UM framework, despite the significant
potential benefits.

The complexity and interdisciplinary nature of UM pose a signifi-
cant obstacle, requiring coordination among urban planners, engineers,
and data scientists (Liu et al., 2015; Olawumi & Chan, 2018). UM
studies often encounter limitations due to specific data requirements,
including issues related to data availability (Neves et al., 2023), quality,
and interoperability (Athanassiadis et al., 2017). DTs relies heavily on
vast amounts of data from various sources, contrasting with urban data
infrastructure which may be fragmented, inconsistent, and outdated.
There may also be a lack of awareness among urban practitioners
and policymakers regarding the potential benefits and applications of
Industry 4.0 technologies in UM studies. Therefore, the concept of
urban DT pose significant challenges when applied to material flows
in UM analysis.

Cost, infrastructure requirements, cultural, and organizational
change, further impede this transition (Liu et al., 2015; Olawumi &
Chan, 2018). This is especially evident in developing countries, where
UM analysis for informal cities faces significant challenges, such as the
lack of financial resources, technical expertise, and digital infrastruc-
tures needed to deploy and maintain advanced technology solutions
for UM studies.

Embracing Industry 4.0 technologies requires cultural and organi-
zational changes within urban planning and management institutions.
Traditional decision-making processes, hierarchical structures, and re-
sistance to change pose obstacles to the adoption of these technolo-
gies (Liu et al., 2015; Olawumi & Chan, 2018). To facilitate the integra-
tion process, programs aim to empower practitioners, researchers, and
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policymakers with the knowledge and skills required to effectively uti-
lize DTs and Industry 4.0 technologies in UM studies can be promoted.
Developing a framework for integrating heterogeneous data sources
and formats is also crucial to enable data interoperability across UM
and the development of DT platforms.

Implementing DT for UM can mitigate these limitations, by central-
izing analyses within a unified framework, streamlining data storage
and access, while ensuring uniformity and standardization (Caputo
et al., 2019). This approach not only streamlines DT implementation
ut also enhances the accuracy of UM analysis.
This approach necessitates careful consideration of data quality,

patial granularity, and the representation of dynamic urban processes.
n envisioning a DT for UM, it is crucial to prioritize accuracy, inter-
perability, and scalability to effectively model and simulate material
lows, infrastructure dynamics, and socio-economic factors within ur-
an environments. Such a DT should facilitate comprehensive analysis,
nformed decision-making, and the exploration of sustainable urban
evelopment pathways.
Certain emerging categories or methodologies have been scarcely

bserved in the reviewed papers, presenting opportunities for deeper
nvestigation and innovation within the field of UM. Specifically, areas
uch as the integration of DT technologies, not found through the
esearch on Scopus, and the application of machine learning algorithms
or data analysis which remains relatively under-explored.
Moving forward, we intend to address these gaps by actively pursu-

ng research endeavors that delve into these emerging areas, contribut-
ng to the advancement and enrichment of UM studies. By fostering
nterdisciplinary collaboration and embracing innovative methodolo-
ies, we aim to cultivate a deeper understanding of UM dynamics and
heir implications for sustainable urban development.
While our study primarily focuses on exploring the connections

etween UM, DTs, and Industry 4.0 technologies, it is worth noting
hat further analysis on categories such as ‘‘resource management
nd policy’’ could reveal how economic incentives within sustain-
ble development policies may promote the integration of Industry
.0 technologies in public administrations. Understanding the role of
conomic factors in policy-making and management strategies could
ncourage the adoption of advanced technologies, ultimately contribut-
ng to more effective urban governance and sustainable development
ractices (Hritonenko & Yatsenko, 2022; Padovan et al., 2022).
Research to enhance and standardize UM visualization is needed,

nd to accommodate the increasing interest from various research
ields due to the interdisciplinarity of this relevant tool (Broto et al.,
012; Creutzig et al., 2019; Musango et al., 2017). A human-centered
metabolism and society can be achieved by finding links between an
individual’s behavior and social metabolism characteristics (Allam &
Newman, 2018; Haberl et al., 2019). Industry 4.0 technologies and
advancements in computational power can facilitate the digitalization
of UM making it accessible to professionals and citizens (Fang et al.,
2016; Ghobakhloo, 2020; Li, 2018; Musango et al., 2017) leading to
socially just, inclusive, and comprehensive urban design, planning and
development (Kaviti Musango et al., 2020; Keena et al., 2018; Musango
et al., 2017; Zhang & Fath, 2019).

6. Conclusions

We presented a review of the most recent UM analyses (review 1),
and then explored connections between Industry 4.0 technologies and
UM (review 2).

Review 1 revealed a dominant focus of UM on optimizing urban
resources and understanding their environmental impacts, (‘‘resource
management and policy’’ and ‘‘city and city’s hinterland’’ categories).

MFA and its combination with LCA emerged as prevalent methods,
comprising nearly 45% of the studies analyzed in review 1. Both meth-
ods consistently employ similar visualization techniques, indicating
their established status in the UM field. However, the utilization of
15
maps to illustrate UM results was infrequent, and observed in only few
instances (refer to Fig. 6).

Interestingly, the choice of visualization methods varied across
different categories, implying a need for further research to identify
optimal result representation for effective communication with share-
holders. The predominance of the ‘‘resource management and policy’’
and ‘‘city and city’s hinterland’’ categories, underscores the neces-
sity for exploring new impactful visualization methods to facilitate
decision-making processes, policy making, and management strategies.

Review 2 demonstrated limited integration of UM with Industry 4.0
technologies, and a noteworthy absence of results in the intersection
of UM and DT technologies (as summarized in Figs. 6, 7, 8, and 9),
despite the pressing need to develop dynamic outcome visualization in
this field (Gopal, 2016; Li et al., 2019; Stephan & Athanassiadis, 2018).

It was observed that SD and GIS emerged as the prevalent methods,
to address the spatial limitations often encountered in UM analyses
with all other methods employed appearing only once.

This lack of methodological consistency, characterized by the fre-
quent use of various methods, poses challenges for the advancement
and refinement of UM research methodologies. Nonetheless, the diver-
sity in methods employed reflects the breadth of research efforts across
different areas of expertise, suggesting a need for future convergence
and standardization in methodological approaches.

A similar trend is observed in visualization methods, where despite
the predominance of bar charts, intensity maps, and spline graphs, a
wide array of other visualization techniques are utilized. While this
indicates ongoing investigation, the absence of a definitive solution
underscores the complexity of the field.

In this context, UM provides the conceptual framework, while DTs
offer the technological platform for modeling, simulating, and opti-
mizing urban processes toward sustainability empowering stakeholders
to develop strategies for enhancing urban sustainability. In leveraging
DTs, cities gain a comprehensive understanding of urban dynamics,
enabling data-driven decision-making and sustainable urban planning.
This integration holds the potential to mark a significant step forward
in urban system analysis and optimization.

It will be necessary to implement novel frameworks encompassing
diverse dimensions to enable practitioners to effectively adopt UM and
DT methodologies for sustainable urban development, encompassing
socio-economic dynamics, infrastructure resilience, and technological
advancements (Papangelou et al., 2023).

DTs can offer a user-friendly interface, facilitating analyses and
insights for practitioners irrespective of their technical proficiency.
The new framework should inform evidence-based policy recommen-
dations, ensuring consistent data updates from heterogeneous sources
including spatial, sensor, socio-economic, and environmental datasets.
Lastly, the integration of indicators and metrics should assist practi-
tioners and policymakers in evaluating outcomes and assessing impacts
effectively.

While the literature reviews underscore the diverse methodologies
and visualization techniques employed in UM studies, a common theme
emerges, the need for a cohesive and dynamic representation of the
outcome and methodological standardization. The limited integration
of UM with Industry 4.0 technologies, particularly DTs, as evidenced
in review 2, further underscores this challenge.

The results of this literature review highlights the importance of
advancing dynamic visualization methods and integrating Industry 4.0
technologies to bolster UM analyses and urban sustainability endeav-
ors. By fostering the development of innovative visualization tech-
niques and promoting the integration of emerging technologies, such
as DTs and Industry 4.0 technologies, new insights into urban dy-
namics and optimized resource management strategies can be un-
locked. Additionally, standardizing UM analyses holds the potential to
streamline research efforts, facilitate cross-study comparisons, and fos-
ter collaboration among researchers and practitioners (Stephan et al.,

2022a).
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The results of this review emphasized the need to improve visual-
ization methods and integrate Industry 4.0 technologies in UM analyses
for sustainable development. Enhancing visualization techniques and
adopting technologies like DTs can yield new insights for optimizing
resource management. Standardizing UM analyses can streamline re-
search, enable comparisons, and foster collaboration among researchers
and practitioners.
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