
; revised .

Control of Linear-Threshold Brain
Networks via Reservoir Computing

Michael McCreesh Jorge Cortés

ABSTRACT Learning is a key function in the brain to be able to achieve the activity patterns required
to perform various activities. While specific behaviors are determined by activity in localized regions,
the interconnections throughout the entire brain play a key role in enabling its ability to exhibit desired
activity. To mimic this setup, this paper examines the use of reservoir computing to control a linear-
threshold network brain model to a desired trajectory. We first formally design open- and closed-loop
controllers that achieve reference tracking under suitable conditions on the synaptic connectivity. Given
the impracticality of evaluating closed-form control signals, particularly with growing network complexity,
we provide a framework where a reservoir of a larger size than the network is trained to drive the activity
to the desired pattern. We illustrate the versatility of this setup in two applications: selective recruitment
and inhibition of neuronal populations for goal-driven selective attention, and network intervention for the
prevention of epileptic seizures.

I. Introduction
When a function is performed by any part of the human
body, it is associated with patterns of activity in the brain.
Examples include actions such as eye movements, where
gaze direction is associated with particular cognitive pro-
cesses [1], recollection of memories, where stored memories
are associated with specific sequences of activity [2], and
motion planning and movement [3]. In dealing with network
models for brain dynamics, it is therefore important to
ascertain their ability to exhibit a given activity pattern
at a certain time. For mathematical models of neuronal
activity, such as Wilson-Cowan [4], Hodgkin-Huxley [5],
integrate and fire [6], sigmoidal or threshold-based firing-
rate models [7], among others which vary significantly in
scale and properties [8], [9], this ability translates into the
problem of reference tracking.

The classical approach to solving the reference tracking
problem for a controlled dynamical system is the com-
putation of an explicit input signal (that might be state-
dependent) such that the desired activity pattern is exhib-
ited by the network model. In the present context, this is
undesirable for various reasons. First, the brain functions by
processing the constant stream of information in the form of
electrical signals it receives to achieve the desired activity
pattern rather than a priori computing explicit control inputs.
Second, the actual computation of these explicit expressions
requires precise knowledge of the strength of synaptic in-
terconnections in the brain, which is both impractical and
challenging. Furthermore, the required conditions on net-
work structure for these inputs to work become increasingly
difficult to check with the scale of the model.

An alternative approach to tackle both of these problems
is using learning methods. Neural networks in various forms
have increasingly been used to model the way that the brain
learns from, and adapts to, its surroundings and stimuli [10]–
[13]. Machine learning techniques allow for the online
determination of controls that result in the desired activity
based on data, rather than computing explicit expressions,
matching the functioning of the brain by constantly process-
ing information, and also removes the requirement for exact
knowledge of the synaptic connections. These observations
motivate our study here of two brain functions that can be
modeled with reference tracking using learning methods:
selective inhibition/recruitment and seizure rejection.

Literature Review: We consider brain networks governed
by a linear-threshold rate dynamics. In the context of the
brain, linear-threshold network (LTN) dynamics form a
mesoscale model with each node in the network representing
the average firing rate of a population of neurons, whose
size could range from individual neurons to millions. The
dynamics have been used extensively for modeling neurons
for network models in the brain [7], [14]–[16]. In a controls
context, this model has also been used to study a variety
of behaviors such as memory [17], goal-driven selective
attention [18]–[20], and epilepsy [21], [22]. The properties
of LTN dynamics have been studied extensively, including
equilibria [17], [23], stability [18], [24], [25], and oscil-
latory and chaotic behavior [22], [26]–[28]. Additionally,
properties of controlling networks governed by the linear-
threshold dynamics have been studied using both model-
based control [20] and data-based control [29]. Due to the
typical lack of full knowledge of the network structure, we
are interested in using data-driven control methods. One of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

:

the major benefits of LTNs compared to other commonly
used brain models is that the dynamics is piecewise linear,
allowing for analysis of the model as a piecewise affine
system [30]. However, much of the analysis for these dynam-
ics is for networks with either constant inputs or discrete-
time models that do not directly reflect continuous-time
models. For the problem of reference tracking considered
here it is important to consider time-varying control inputs,
particularly in networks composed of multiple subnetworks,
where the interconnections are inherently time-varying.

Multiple forms of the reference tracking problem exist,
dependent on the available information and the problem goal,
including when the reference signal is known [31], [32]
versus when it is unknown [33], [34]. This work belongs
to the first class, where we wish for the network to exhibit
the behavior specified by a known reference signal. This
can be motivated by a variety of problems in the brain,
including memory recollection, where a memory is saved
as a given activity pattern and it is recalled by the brain
network exhibiting that pattern [2].

To learn controls in an online fashion that solve the
reference tracking problem for a brain network with a known
reference, we employ machine learning techniques, which
allow to consider large-scale complex networks, such as
those seen in the brain [35]–[37]. In particular, we use
reservoir computing [38], [39], which is based on training an
output vector (the readout) from a Recurrent Neural Network
(RNN), rather than its internal weights.

Reservoir computing has a variety of advantages over clas-
sical gradient-descent based RNN training, the main one be-
ing that the training process is faster and computationally in-
expensive compared to standard RNN training [40]. Further,
reservoir computing displays certain parallels with biological
activity. First, it gives an interpretation as to how arbitrary
cortical circuits without supervised adaptation are able to
perform purposeful computations [41]. Second, the ability
of a single reservoir to perform multiple tasks by training
multiple output vectors corresponding with each task mimics
neural circuits’ ability to have multiple purposes [40]. Due to
these parallels, reservoir computing has been used to study
a variety of phenomena, including connectivity and memory
tasks [42], cortical dynamics in monkeys [43] and seizure
detection [44]. Reservoir computing has also been used as
a controller for dynamical systems, in which the reservoir
output is used to determine an input such that the system
converges to a desired trajectory [45]. This has led to the
framework of next-generation reservoir computing (NG-RC),
proposed in [46], [47] for both prediction and control. In
Section IV we provide an overview of the RC and NG-RC
frameworks, but for more details we refer the reader to [40],
[46], [48], [49] and the references therein.

Statement of Contributions: We study brain networks with
behavior governed by linear-threshold dynamics with time-
varying inputs. Our first contribution relates to the ability
to achieve reference tracking for the LTN dynamics. We
begin by providing conditions for existence and uniqueness

of points such that the error dynamics vanish. Using this fact
we illustrate that under certain conditions on the reference
signal and the network structure, reference tracking can be
achieved for LTN networks and provide examples of controls
that result in tracking. Our second contribution relates to
achieving reference tracking using the data-driven machine
learning frameworks. Considering the problem of reference
tracking in the context of selective inhibition and recruitment
and seizure rejection, we use examples to show that the
reservoir computing and next-generation reservoir computing
frameworks can be used as controllers to achieve reference
tracking. Our contributions expand on state of the art results
by considering convergence to reference trajectories rather
than constant equilibrium points and applying a machine
learning approach.

Preliminaries: We let R, R≥0, denote the reals and nonneg-
ative reals, resp. Vectors and matrices are identified by bold-
faced letters. For vectors (matrices) x,y ∈ Rn (resp. Rn×m),
x ≤ y is the component-wise comparison. For two vectors
x ∈ Rn and y ∈ Rm, x ⊕ y ∈ Rn+m is the concatenation of
vectors x and y. The identity matrix of dimension n is In.
0n and 0n×m denote the n-vector and n×m matrix of zeros,
resp. For W ∈ Rn×n, we denote its element-wise absolute
value, spectral radius, and induced 2-norm by �W�,⇢(W),
and �W�, resp. Similarly, we let �x� denote the 2-norm of
a vector x ∈ Rn.

For x ∈ R and m ∈ R>0, [x]m0 denotes the threshold
operator, defined by [x]m0 = min{max{x,0},m}. For x ∈
Rn, m ∈ Rn>0, this operation is done component-wise as
[x]m0 = [[x1]m1

0 , . . . , [xn]mn
0]. A matrix W ∈ Rn×n is

● a P-matrix if all principal minors of W are positive
(denoted W ∈ P);

● totally Hurwitz if all principal submatrices of W are
Hurwitz (denoted W ∈H);

● totally L-stable if there exists P � 0 such that (−I +
W�⌃)P +P(−I + ⌃W) � 0 for ⌃ = diag(�) and all
� = {0,1}n (denoted W ∈ L);

● absolutely Schur stable if ⇢(�W�) < 1.

These matrix classes satisfy [18, Lemma II.3] the following
inclusions:

● if W is absolutely Schur stable then −I +W ∈H;
● it �W� < 1 then W ∈ L;
● if W ∈ L then −I +W ∈H;
● if −I +W ∈H then I −W ∈ P .

II. Problem Formulation
We start by providing details on linear-threshold brain
modeling following [7], [18], then formalize the problem
considered in this work. We consider a brain network com-
posed of n nodes whose activity are determined by a linear-
threshold rate dynamics. These dynamics represent a model
of the average firing rate of neuron populations, rather than
showing the action potentials of individual neurons. The

2 VOLUME

linear-threshold network (LTN) dynamics is given by

⌧ ẋ = −x + [Wx + c]m0 , (1)

where each component of x ∈ Rn represents the firing rate of
a population of neurons, W ∈ Rn×n represents the synaptic
connectivity between populations, and c captures any inputs
to the network. These inputs could be internal, representing
connections from neurons not in the model, or external, such
as either invasive or non-invasive neurostimulation signals.
The constant m provides a threshold on the firing rate of the
neurons, and ⌧ is a diagonal matrix defining the timescale
of the dynamics for each population.

The LTN dynamics can be represented as a state-
dependent switched affine system, which has switching
regions defined by the threshold term [Wx + c]m0 . The
dynamics has 3N switching regions, each defined by a
switching variable � ∈ {0, `, s}N , and are defined as follows

⌦� = {x � (Wx + c)i ∈ (−∞,0]∀i s.t. �i = 0,
(Wx + c)i ∈ (0,mi)∀i s.t. �i = `, and
(Wx + c)i ∈ [mi,∞]∀i s.t. �i = s}. (2)

The threshold term can then be expressed over each of
these regions using diagonal matrices ⌃` and ⌃s. These are
defined, for q ∈ {`, s}, as follows: ⌃q

ii = 1 if �i = q and
⌃q

ii = 0 otherwise. This leads to the piecewise-affine form of
the dynamics (1) being defined as

⌧ ẋ = (−I +⌃`W)x +⌃`c +⌃sm, x ∈ ⌦�. (3)

We make the following assumption regarding the synaptic
weight matrix.

Assumption II.1. Assume the weight matrix W satisfies
1) det(W) ≠ 0;
2) det(−I + ⌃`W) ≠ 0 for each ⌃` corresponding to a

switching region ⌦�.

Note that this assumption does not come at the cost of
biological plausibility, since the set of matrices which do not
satisfy it has measure zero and is therefore not restrictive.
Assumption II.1 ensures that the right-hand side of the
piecewise-affine dynamics has unique solutions, allowing for
the existence of well-defined equilibria.

Leveraging the piecewise-affine form of the LTN dynam-
ics, one can identify conditions on the synaptic weight ma-
trix W that ensure existence and uniqueness of equilibrium
(EUE), and stability properties of the dynamics. For technical
details on these results and other properties of the LTN
dynamics we refer the reader to [18] for individual dynamics
and to [19], [20] for hierarchical dynamics. Of particular
interest to us are the following:

1) if W satisfies I −W ∈ P , then for each constant c the
dynamics (1) has a unique equilibrium;

2) if W ∈ L, then for all constants c, the dynamics is
globally exponentially stable to a unique equilibrium.

We note that the condition W ∈ L is sufficient for global
exponential stability (GES). In [18], it is hypothesized that

−I +W ∈ H is a necessary and sufficient for GES, which
is less conservative, however it is not proven. In such
cases, the piecewise-affine nature of the dynamics implies
that the equilibrium, as a function of the network input c,
can be described by a piecewise-affine map. These maps
are particularly useful, when considering the properties of
large interconnected linear-threshold networks, to express the
interdependencies of the equilibria of specific subnetworks
in terms of other subnetworks.

Beyond having the network converge to stable equilibria,
for many applications it is instead desirable to have the
network track a particular reference trajectory. This requires
non-constant inputs c(t), designed in a way that makes the
network activity converge to the desired trajectory. Due to
the complexity of brain networks and the fact that their
structure is not precisely known, designing such a controller
analytically is challenging. This motivates the use of a
data-driven learning techniques to determining appropriate
control signals to achieve trajectory tracking. Here, we
consider reservoir computing, which we discuss in detail in
Section IV. We formalize the problem as follows.

Problem II.2. Consider a network defined by the LTN
dynamics (1) with state x(t) ∈ Rn and reference signal
r ∶ R→ Rn. Determine a control signal such that the network
converges to the reference signal, i.e.,

lim
t→∞ �x(t) − r(t)� = 0.

Remark II.3. (Trajectory Tracking for Selective Inhibi-

tion): Our previous work [19], [20] has studied a version of
trajectory tracking for the LTN dynamics (1) in the context
of selective inhibition and recruitment of hierarchical multi-
layered networks. Selective inhibition means that a control
is defined such that the network converges to a trajectory in
which the state of a subset of nodes is driven to zero. In such
interconnected networks, the equilibrium map for each layer
of the network is described by a complex recursive combi-
nation of the equilibrium maps of the other network layers,
which significantly complicates the precise determination
of the control for tracking a specific trajectory. The data-
driven approach taken here addresses this by determining
the controls based only on the system output and desired
reference trajectory, requiring no knowledge of the input-
dependent equilibrium maps. ●

III. Linear Threshold Networks and Reference Tracking
In this section we show that, given a reference trajectory,
there exists a control that makes the LTN dynamics track it
asymptotically. This result sets the basis for our forthcoming
use of reservoir computing techniques to synthesize the
controller.

Given a reference signal r, consider the error with the
system state, e(t) = x(t) − r(t). The corresponding LTN
error dynamics is given by

⌧ ė = −e + [We +Wr(t) + c]m0 − r(t) − ⌧ ṙ(t). (4)

VOLUME 3

:

To show that reference tracking is achieved, our strategy
proceeds by establishing that the origin is the only equi-
librium of the error dynamics (4) and that it is GES. To
reason about this, we first note that the error dynamics (4)
is time-dependent, and therefore the set of points where the
vector field vanishes changes with time. The following result
provides conditions such that at each time, there is only
one point where this happens. To ease the exposition, given
c ∈ Rn, let

f(e, t) = −e + [We +Wr(t) + c]m0 − r(t) − ⌧ ṙ(t),
denote the time-dependent vector field defining the error
dynamics.

Theorem III.1. (Existence and Uniqueness of Points

where LTN Error Dynamics Vanishes): Given c ∈ Rn,
if I −W ∈ P , then for each t̄ ∈ R≥0, there exists a unique
point e∗(t̄) such that f(e∗(t̄), t̄) = 0.

Proof:
Let t̄ ∈ R≥0 be a fixed time and consider the associated time-
invariant dynamics ⌧ ė = f(e, t̄). Note that a point where this
vector field vanishes corresponds to an equilibrium point of
the time-invariant dynamics. Let us therefore show that for
each time t̄ ∈ R≥0, a unique equilibrium point exists. For
fixed t̄ ∈ R≥0, let d1 =Wr(t̄)+c and d2 = r(t̄)+⌧ ṙ(t̄). This
leaves us with the dynamics

⌧ ė = −e + [We + d1]m0 − d2. (5)

To show existence and uniqueness of an equilibrium of (5),
we note that this dynamics can be written in a similar
piecewise-affine form to the original LTN dynamics (3),

⌧ ė = (−I +⌃`W)e +⌃`d1 +⌃sm − d2,

defined over the same switching regions given in (2) and with
the same system matrix (−I+⌃`W). Then, by following the
proof of [18, Theorem IV.1], we have that this dynamics has
a unique equilibrium for any values of d1,d2 if and only if
I −W ∈ P .

Theorem III.1 implies that the curve t� e∗(t), which we
term nullcline curve, is well-defined. Note that a constant
nullcline curve in fact corresponds to an equilibrium of the
original time-dependent dynamics (4).

To achieve lossless reference tracking, r(t) must lie in
[0,m] for all t due to the bounding of the dynamics. We
begin by considering open-loop tracking before later pro-
viding a closed-loop control. Consider the control col(t) =
−Wr(t)+r(t)+⌧ ṙ(t). With this control, the error model (4)
becomes

⌧ ė = −e + [We + r(t) + ⌧ ṙ(t)]m0 − r(t) − ⌧ ṙ(t). (6)

The next result identifies conditions such that the dynam-
ics (1) converges exponentially to the reference trajectory
r(t) by showing that the nullcline curve is constant at the
origin, e∗(t) = 0 for all t ∈ R≥0, and that the origin is GES.

Theorem III.2. (Reference Tracking for LTN Dynamics

with Open-Loop Control): Consider the open-loop LTN

error dynamics (6). If W ∈ L and r(t) + ⌧ ṙ(t) ∈ [0,m] for
all t ∈ R≥0, the origin is GES under the dynamics (6).

Proof:
Since r(t) + ⌧ ṙ(t) ∈ [0,m], it is immediate that the origin
satisfies f(0, t) = 0 for all t ∈ R≥0. Then, since W ∈ L
implies I −W ∈ P , by Theorem III.1, the nullcline curve
is unique and therefore constant. To conclude the proof, we
show that the origin is GES under this dynamics, following
a similar argument to [50, Theorem IV.8].

Let Wi denote the i’th row of W. After some manipula-
tions, we can rewrite the error dynamics as

⌧ ė(t) = (−I +M(t)W)e(t),
where M(t) is a diagonal matrix given by

Mii(t) =
�������

[Wie+(r+⌧ ṙ)i]mi
0 −[(r+⌧ ṙ)i]mi

0

Wie
if Wie ≠ 0,

0 otherwise.

Since the threshold operator is monotonically increasing and
Lipschitz with constant one, we have Mii(t) ∈ [0,1]. There-
fore, M(t) lies in the convex hull of {⌃`(�)}�∈{0,`}n for
all t. Thus, there exists a time-varying convex combination
(↵�(t))�∈{0,`}n such that

M(t) = �
�∈{0,`}n

↵�(t)⌃`, t ≥ 0.

Now, since W ∈ L, there exists a matrix P � 0 and a scalar
� > 0 such that

(−I +W�⌃`)P +P(−I +⌃`W) ≤ −�I, ∀� ∈ {0, `}n.
Consider then the candidate quadratic Lyapunov function
V (e) = e�Pe. Its derivative along the dynamics satisfies

⌧ V̇ (e(t)) = e�[(−I +W�M(t))P +P(−I +M(t)W)]e
= e�� �

�∈{0,`}n
↵�(t)�(−I +W�⌃`)P +P(−I +⌃`W)��e

≤ −� �e�2 ≤ − �

⇢(P)
V (e(t)),

which ensures the origin is GES under (4), see e.g., [51,
Theorem 4.10].

Remark III.3. (Lack of Uniqueness of Input Map for

Reference Tracking): We note that, while the input col(t)
used for Theorem III.2 is sufficient for ensuring GES of the
origin for the error dynamics, and hence reference tracking,
it is not unique. For example, due to the thresholding of
the LTN dynamics, any (constant) reference trajectory that
lies on the lower or upper threshold can be converged to
using a higher magnitude control (either positive or negative,
depending on the network and which threshold) than the one
defined in col(t) in order to drive the signal to the boundary.
●

The open-loop control used for Theorem III.2 requires
the network to satisfy W ∈ L to achieve reference tracking.
However, this condition is not always met, as there exist
many brain networks that are not stable on their own, see

4 VOLUME

e.g., [18], [52]. Our next result shows that tracking can still
be achieved with unstable synaptic weight matrices using
feedback control of the form c(t) = Kx(t) + d(t), where
K ∈ Rn×n is the feedback gain. Note that K may have rows
entirely composed of zeros, corresponding to nodes in the
network that cannot be directly impacted by feedback. We
consider the control ccl(t) =Kx(t)− (W+K)r(t)+ r(t)−
⌧ ṙ(t), which gives the closed-loop error dynamics

⌧ ė = −e + [(W +K)e + r(t) − ⌧ ṙ(t)]m0 − r(t) − ⌧ ṙ(t).
(7)

The next result provides conditions for the dynamics (1) to
converge exponentially to the reference trajectory r(t) using
the closed-loop control ccl by by showing that the nullcline
curve is constant at the origin, e∗(t) = 0 for all t ∈ R≥0, and
that the origin is GES.

Theorem III.4. (Reference Tracking for LTN Dynamics

with Closed-Loop Control): Consider the closed-loop error
dynamics (7). If W +K ∈ L and r(t) + ⌧ ṙ(t) ∈ [0,m] for
all t ∈ R≥0, the origin is GES under the dynamics (7).

Proof:
The dynamics (7) corresponds to the open-loop error dy-
namics (6) with the synaptic weight matrix W +K = W̃.
By Theorem III.2, if W̃ ∈ L, the origin is GES under the
dynamics (6). Therefore, with the chosen feedback control,
the origin is GES under the closed-loop dynamics (7).

Remark III.5. (Reference Tracking in Under-actuated

LTN Systems): In the results above, we have assumed that
the network is fully actuated for the purpose of determining
a control such that reference tracking can be achieved.
For systems that are not fully actuated, i.e., the control
is of the form Bc(t), where B is a diagonal matrix with
zeros indicating components of the network that cannot be
actuated, it is generally not possible to achieve reference
tracking in all components. If W ∈ L, then the non-
actuated component follows a trajectory that depends on the
interconnection with the other network components rather
than the desired reference signal. The only case when the
under-actuated component i will converge to the reference
trajectory is if [Wir(t)]m0 = r(t) + ⌧ ṙ(t) for all t ∈ R≥0.
We note that the actuated components of the network will
still converge to their desired reference under the controls of
Theorems III.2 or III.4. ●

Having established reference tracking under the LTN dy-
namics with both open-loop (cf. Theorem III.2) and closed-
loop (cf. Theorem III.4) controls, we note that the imple-
mentation of the corresponding inputs, either as inputs from
other neuronal populations or through neurostimulation, is
challenging, and becomes increasingly unrealistic with larger
network dimensions, characteristic of brain modeling. First,
evaluating the controls provided is difficult because it re-
quires full knowledge of the synaptic weight matrix W.
Due to both the complexity of the brain and the difficulty
in measuring the individual impact of individual neuron

populations, particularly those deep in the brain [53], this
is unrealistic. Beyond knowledge of its structure, the results
require that W (or W +K) are in L. This becomes com-
putationally difficult to check as the network scales up, and
the known sufficient conditions to ensure being in L become
increasingly conservative. As such, for large networks, it is
preferable to divide the network into layers based on the
timescales, where each layer has an individual constant ⌧i.
In this case, dependent on the timescales, the results of
Theorems III.2 and III.4 are no longer directly applicable
due to the activity of the interconnection terms affecting
the dynamics of each layer. In such a case, one can use
a singular perturbation argument [19], but the recursively-
defined equilibrium maps involved make the determination
of the exact control signals particularly challenging.

Second, explicitly computing a direct control signal is not
a realistic representation of the way the brain is believed
to operate. However, implementing a data-driven approach,
where all that is needed is the desired reference signal and
the control is determined through internal dynamics, seems
more realistic and not as computationally expensive. In the
following section we provide an explanation of the reservoir
computing and next-generation reservoir computing frame-
works. We demonstrate both can be used to achieve reference
tracking in linear-threshold networks later in Sections V
and VI.

IV. Reservoir Computing
Here we provide an overview of the mathematical basis of
the reservoir computing framework, which we later apply
to control synthesis for reference tracking in LTN networks.
We begin by discussing reservoir computing for predicting
system outputs and for control before considering the same
problems using next-generation reservoir computing. We
finish by discussing parameter selection and comparing the
two frameworks.

A. Reservoir Computing for Prediction

We first overview the basic structure of a reservoir computer
for predicting the outputs of an unknown system. Assume
we have a dynamical system defined by

y(t) = f(c(t)) (8)

where y ∈ Rm is the system output, c ∈ C ⊆ Rn is the input
and the driving function f ∶ Rn → Rm for the system is
unknown. We define a reservoir as a dynamical system

ẋ(t) = F (Jx(t) + Jinc(t)), (9)

where x ∈ X ⊆ RN is the internal state of the reservoir, J ∈
RN×N is a matrix that provides the reservoir structure, and
Jin ∈ RN×n in an input matrix. We assume that N � n and
F ∶ X ×C →X is a nonlinear activation function. The goal
of the reservoir computing framework is to use the activity
of the high-dimensional reservoir dynamical system (9) to
estimate the outputs of the unknown system (8).

The output estimate is defined

ỹ(t) = Joutx(t),

VOLUME 5

:

where Jout ∈ Rm×N is an output vector trained to achieve an
accurate estimate of the unknown system.

The key component for the reservoir computing frame-
work to be able to provide a successful estimate is the
echo state property [40]. This property is dependent on the
activation function F and the reservoir matrix J. For the
activation function, we require [54] that F ∶ X × C → X
is defined on compact sets X and C. The compactness of
the state space X is given for the most commonly used
activation functions in machine learning, such as tanh or
the logistic sigmoid function, and importantly, also for the
linear-threshold function [⋅]m0 considered in this paper. We
assume the compactness of the input set C, which is realistic
in most applications.

To define the echo state property, we introduce the follow-
ing notations. We will denote the reservoir dynamical sys-
tem (9), which combines the activation function, F , and the
reservoir matrix, J, by F(x(t),c(t)) = F (Jx(t)+Jinc(t)).
Let X+∞ ∶= {x+∞ = {x(t)}∞t=0 � x(t) ∈ X, ∀t ≥ 0} and
C+∞ ∶= {c+∞ = {c(t)}∞t=0 � c(t) ∈ C, ∀t ≥ 0} denote sets of
right infinite state and input sequences. A right infinite state
sequence x+∞ is compatible with input state sequence c+∞
when ẋ = F(x(t),c(t)) for all t ≥ 0.

Definition IV.1. (Echo State Property [54]): A reservoir
F ∶ X ×C → X defined on compact sets X and C satisfies
the echo state property with respect to C if and only if
for any right infinite input sequence c+∞ ∈ C+∞ and any
two right infinite state vector sequences x+∞1 ,x+∞2 ∈ X+∞
compatible with c+∞, there exists a sequence {�t}∞t=0 such
that �x1(t) − x2(t)� ≤ �t, where limt→∞ �t = 0.

The echo state property relates to the asymptotic conver-
gence of the state of the reservoir, which is influenced by a
driving input. It can be thought of as the concept of fading
memory, in that trajectories of the reservoir should converge
to the same point given the same input, regardless of the
prior history of the reservoir.

Necessary and sufficient conditions for the echo state
property to hold are dependent on both the reservoir matrix,
J, and the activation function, F . Regardless of the activation
function, guaranteeing the echo state property depends on the
stability of the reservoir matrix1.

What remains is to train the reservoir computing frame-
work to get an accurate estimate ỹ of the output y. The
defining feature of reservoir computing is that we only
train the output vector Jout, rather than the internal weights
of the reservoir matrix, J. In order to train the reservoir
output matrix, we take a training input {cT (t)} and drive
the system (8) using this input, getting a driven training
output timeseries {yT (t)}. Then, using the training signal
{cT (t)}, we drive the reservoir (9) to get a timeseries of
driven reservoir states {xT (t)}. Compiling the set of training

1Much of the reservoir computing literature is in discrete time, which also
impacts sufficient conditions for the echo state property. In the discrete-time
case with F (⋅) = tanh(⋅), a sufficient condition for the echo state property
is that J is diagonally Schur stable.

outputs and driven reservoir states into matrices YT and
XT , we compute the output matrix Jout using a Tikhonov
regularization,

argminJout
�YT − JoutXT �2 + ��Jout�2 , (10)

where � > 0 is a regularization parameter. The performance
of the reservoir computer for predicting outputs can then
be measured by using the trained system to provide a
prediction of a second set of arbitrary inputs and comparing
the accuracy with the true outputs for this set. The main
parameter for how well the reservoir computer works is
the size of the reservoir, N . As N increases, the higher-
dimensional reservoir can then exhibit an increasingly large
number of possible behaviors, especially relatively to the
size of the system being predicted. Then, in the process of
training the system, we are able to relate these behaviors
to the system trajectories through the linear output operator
Jout. Based on this, with a randomly defined reservoir, by
increasing N sufficiently, the reservoir computer can achieve
good prediction of the system outputs. Parameters such as the
reservoir weight matrix J, the input matrix Jin, the training
input, and the regularization parameter � can also impact the
quality of the output prediction.

B. Reservoir Computing as a Controller

We are interested in applying a reservoir computer as a con-
troller for a dynamical system, with the goal of controlling
the system to a given reference trajectory [45]. Consider a
dynamical system

ẋ(t) = f(x(t),c(t)) y(t) = g(x(t)), (11)

where x(t),c(t) ∈ Rn are the state variables and inputs,
respectively, and y(t) ∈ Rm is the output of the system. The
functions f and g define the system evolution and measur-
able outputs, and potentially are unknown. Let r(t) ∈ Rm

denote a desired reference trajectory for the output. The
reservoir dynamics is defined as

u̇(t) = F (Ju(t) + Jiny(t) + Jrefr(t + �)), (12)

where u(t) ∈ RN is the reservoir state, J ∈ RN×N defines
the internal reservoir connections, Jin ∈ RN×m scales the
system output y(t) into the reservoir, Jref ∈ RN×m scales
the reference signal, and � > 0 dictates how far ahead we
provide a desired reference value. The function F is the
activation function, and we assume that F and J are chosen
such that the reservoir has the echo state property. We then
connect the output of the reservoir dynamics (12) with the
input of the system (11) by defining

c(t) = Joutu(t).
Figure 1 illustrates this setup.

To train the reservoir computer, we use an open-loop
version of the schematic shown in Figure 1 with a training
input and a delay on the output. Here, instead of inputting
the reference trajectory into the reservoir, we use the current
system output, y(t), along with the future output, y(t + �),
which is directly computable from the system and training

6 VOLUME

FIGURE 1: A reservoir computer steers the dynamical system (11)
to a reference signal r(t).
input. The future output acts in the role of the reference
signal, with the goal of determining how the training signal
moves the system from y(t) to y(t + �). The reservoir
training dynamics is then

u̇(t) = F (Ju(t) + Jiny(t) + Jrefy(t + �)).
Figure 2 illustrates this training setup. The output vector

FIGURE 2: Schematic for training a reservoir computer to steer
the dynamical system (11) to a desired reference trajectory.

for the reservoir computer, Jout, is then trained using the
Tikhonov regularization (10) to minimize the difference
between ctrain and the reservoir prediction, Joutudriven. This
setup can be extended by providing different information
to the reservoir, either about the reference signal r(t), or
the system output, y(t). A common choice is providing
the reservoir with ẏ(t). However, this is typically discretely
estimated from y(t) and as such it is just a transform from
providing y(t) [45]. Instead, in our treatment, we provide
additional information regarding the reference signal, in
particular ṙ(t), which we can compute since it is known in
advance. This leads to the final schematic for the reservoir
controller in Figure 3.

FIGURE 3: Schematic for using a reservoir computer as a con-
troller incorporating additional information on the reference signal
r(t).
C. Next-Generation Reservoir Computing

The observation, cf. [55], that the underlying equations of
the reservoir computing framework have similarities with

nonlinear vector autoregression (NVAR) and dynamic mode
decomposition led to the construction of the next-generation
reservoir computing (NG-RC) framework [46] based on
NVAR. We explain this framework below, both for prediction
and control.

1) NG-RC for Prediction

Similarly to the classical RC, we consider the dynami-
cal system (8). Instead of defining a reservoir, we define
two feature vectors, Olin,t and Onl,t, defined as follows:
Olin,t = c(t)⊕ c(t − i1)⊕ ⋅ ⋅ ⋅ ⊕ c(t − ip) is the linear feature
vector defined for p discretely sampled prior points of the
system inputs. Onl,t is a nonlinear feature vector that is
an arbitrary nonlinear function of the vector Olin,t. Any
nonlinear function can be chosen, albeit it is common [46]
to employ the monomials up to some order k. These feature
vectors are then used to predict the outputs of the unknown
system (8) in place of the activity of the reservoir (11).

The two feature vectors are concatenated, commonly with
an additional constant d ∈ R, to give Ototal,i = d ⊕ Olin,i ⊕
Onl,i and the output of (8) is predicted by ỹ(t) = JoutOtotal,t.
To achieve an accurate prediction the output vector Jout is
predicted with a Tikhonov regularization as

argminJout
�y(t) − JoutOtotal,t�2 + ��Jout�2 , (13)

which requires running the system with a minimum of ip+1
inputs in order to fully determine the vector Ototal,t. This
setup, with one prior time step and quadratic monomials, is
shown in Figure 4.

FIGURE 4: Schematic for using next-generation reservoir comput-
ing to predict system outputs with quadratic monomials used for the
nonlinearity. The matrix Jout is trained with a known input/output
sequence {(c(t),y(t))} with a minimum length of two points,
before being able to predict future outputs based on the input.

2) NG-RC for Control

Similarly to the RC, we are interested in applying the NG-
RC as a controller to bring a dynamical system to a desired
reference trajectory. To do so, we use an open-loop training
period followed by a closed-loop control period. To construct
the NG-RC controller we follow the approach in [47] and
consider an extension to employ multiple NG-RCs, which
we leverage in our simulations.

We consider the control system given by (11). We define
linear and nonlinear feature vectors Olin,t and Onl,i. Unlike
NG-RC for prediction, Olin,t is not dependent on prior time
steps and instead Olin,t = y(t), the observable outputs. The

VOLUME 7

:

nonlinear feature vector is then a function of the outputs,
where again we typically use polynomial expressions.

What differs between the prediction and control setups is
the definition of the total feature vector, Ototal,t. Rather than
just combining the linear and nonlinear feature vectors with
a constant, we also include the system input, giving Ototal,t =
c(t)⊕ d ⊕Olin,t ⊕Onl,t. With this feature vector, Tikhonov
regularization (13) is used to learn the output vector Jout in
an open-loop fashion such that the prediction is given by
ŷ(t) = JoutOtotal,t, as in the top schematic of Figure 5.

Then, for the purpose of defining a control, we split the
output and feature vector in the following way.

JoutOtotal,t = JX
out

�������

d
Olin,t
Onl,t

�������
+ Jc

outc(t) = JX
outOX,t + Jc

outc(t).

From here, a closed-loop system is created where the ma-
trices JX

out and Jc
out, along with the reference signal r(t),

are used to define the control term. With the error term
e(t) = x(t) − r(t), the control is defined by

c(t) = (Jc
out)−1[r(t + �) − JX

outOX,t +Ke(t)], (14)

where K is a proportional control matrix determined by trial-
and-error to optimize performance. The closed-loop control
period is shown in the bottom schematic of Figure 5. This
control is derived in [47] for a discrete-time system with the
control input entering linearly, i.e., of the form y(t + 1) =
F(X(t)) +Bc(t). While the LTN dynamics is not of this
form, our simulations in Sections V and VI show that this
control still achieves satisfactory performance.

We can also extend this approach to construct a controller
out of multiple NG-RCs rather than just one. In this ap-
proach each successive NG-RC is used to minimize the error
remaining from the control determined by the prior NG-RC.
The additional NG-RC layers are added by training output
vectors Jout,i for each layer with the feature vector Ototal,t
such that the output prediction is

ỹ(t) =
M

�
i=1Jout,iOtotal,t,

where M is the number of layers. The layers are trained
successively, with each layer being dependent on the output
of the layers before. Each successive layer is trained using
Tikhonov regularization on the error between the true output
and the predicted output by the sum of the layers before.
Formally, if we denote ỹ1∶i(t) to be the predicted output
from the first i layers, the output vector for layer i + 1 is
determined by the following

Ji+1
out = argmin �(ỹ1∶i(t) − y(t)) − Ji+1

out Ototal,t�
2 + ��Ji+1

out �
2
.

The control signal is then given by

c(t) = (
m

�
i=1J

c
out,i)−1(r(t + �) +

m

�
j=1(J

X
out,jOX,t) +Ke(t)).

We note that this process could be modified to use different
feature vectors across the multiple NG-RC’s. The process
for computing the output vectors would be the same, with

some differences appearing in the determination of the final
control signal.

Remark IV.2. (Comparison of Parameter Selection in RC

and NG-RC): The selection of parameters is of paramount
importance to the performance of the RC and NG-RC
algorithms. One of the benefits of RC compared to traditional
machine learning algorithms is that there are significantly
fewer parameters to optimize [48]. This is even more so for
NG-RC, cf. [46]. In comparing RC and NG-RC, one of the
biggest differences is in the number of parameters that need
to be selected, and the difficulty in their selection. In RC,
the parameters to be selected are the reservoir matrix, J, the
activation function, F, the input vector Jin, the regularization
parameter, � and the training signal, ctrain. Of these, the
most important is the selection of the reservoir matrix,
which is typically done randomly, and its relation with
the activation function to guarantee the echo state property.
Despite significant research into choices of the reservoir [48],
[49], [56], [57] an optimal choice is not known. In NG-RC
for control, the parameters to be tuned are the nonlinear
feature vector, Onl,t, the proportional control vector K, and
the training signal, ctrain. In NG-RC for prediction, one needs
to additionally choose the linear feature vector, Olin,t. ●

Remark IV.3. (System Output for Reference Tracking):

We note that in in this section we have defined the reservoir
computing framework for an arbitrary system output y(t),
while in Problem II.2 we aim for reference tracking of
the system state. As such, in the following applications we
consider the specific case of y(t) = x(t), which matches the
problem description.

V. Application to Selective Inhibition and Recruitment
In this section, we provide our first illustration of the use of
RC and NG-RC controllers to achieve reference tracking for
linear-threshold networks. We consider the problem of selec-
tive inhibition and recruitment, and illustrate the recruitment
of a subset of a network to a chosen reference signal for
a network structure motivated by the hierarchical nature of
the brain [58] and studies of selective attention [59]. We do
this with both the RC and NG-RC controllers and include a
comparison of their performance.

Selective inhibition and recruitment is the problem of
reacting to stimuli by inhibiting task-irrelevant neuron pop-
ulations to zero, while recruiting the remaining task-relevant
neuron populations to a particular activity pattern. Due to the
hierarchical nature of the brain [58], this problem has been
studied in networks composed of subnetworks operating at
different timescales, and leads to the following formalization
of the network structure. Consider a network composed
of N subnetworks, each of composed of ni nodes and
with corresponding timescale ⌧i. We construct a hierarchy
by organizing the subnetworks such that ⌧N ≤ ⌧N−1 ≤
⋅ ⋅ ⋅ ≤ ⌧1 and each subnetwork is connected only to the
subnetworks directly above and below it in the hierarchy,
cf. Figure 6. Subnetworks at the bottom of the network,

8 VOLUME

FIGURE 5: The top schematic shows the open-loop learning component of using the NG-RC as a controller. The closed-loop control
component is shown in the second schematic, with the control given as in (14).

with fast timescales, represent regions in the brain that
operate quickly, such as sensory areas, while the top of
the network represents regions such as the prefrontal cortex,
which operate relatively slowly.

The problem of selective inhibition and recruitment is then
formalized as follows. For each subnetwork let x1

i ∈ Rri

denote the set of task-relevant nodes and x0
i ∈ Rni−ri denote

the set of task-irrelevant nodes. Then, determine a control
c∗i ∶ R≥0 → Rni such that the task-relevant nodes are
recruited to a non-zero reference trajectory r∗i ∶ R≥0 → Rni ,
i.e., x1

i = r∗i (t) and the task-irrelevant nodes are inhibited to
zero, i.e., x0

i (t) = 0.

⋮

⋮
Subnetwork i − 1

Subnetwork i

Subnetwork i + 1

FIGURE 6: Hierarchical brain network considered for selective
inhibition and recruitment. Nodes are divided between excitatory
(red), inhibitory (blue), and those to be inhibited (gray). Edge
colors match the direction of the node from which they originate,
indicating that they provide either an excitatory (red) or inhibitory
(blue) connection, while gray labels indicate that their node of origin
has been inhibited and the connection provides no activity.

This problem has been addressed in [19], [20] for constant,
recursively-defined reference trajectories r∗(t) = r. How-
ever, this involves the explicit computation of a control with

complexity that increases significantly with scale based on
the size and hierarchical nature of the network. Here, instead,
we show how the problem can be solved in a data-driven way
using the RC and NG-RC frameworks. Once the readout has
been learned, the reservoir computer determines a control
that produces the desired reference tracking behavior.

A. Setup

We consider a network composed of three subnetworks,
each one being an excitatory-inhibitory pair. We then aim
to recruit one node in each network, while inhibiting the
other to zero using reservoir controllers. In this example,
the controllers are representing the impact of other neuronal
populations, outside the explicitly modeled ones, that impact
behavior. The subnetworks considered are defined by the
following randomly generated synaptic weight matrices:

W1 = �
0.0112 −0.9903
0.4101 −0.5115� , W2 = �

0.4614 −0.7342
0.0950 −0.5115� ,

W3 = �
0.1136 −0.2110
0.7732 −0.0800� .

These networks are combined with the timescales ⌧1 = 4,
⌧2 = 1 and ⌧3 = 1�3 to create a hierarchy. The interconnec-
tions between the networks are also randomly generated, cf.
Section C.

When tuning the RC and NG-RC controllers, as the size
of the network increases, the number of parameters and
difficulty in tuning them all concurrently increases drasti-
cally. As such, instead of training an RC or NG-RC to
control the entire network at once, we begin by training
each subnetwork individually. Following the determination
of a controller for each individual layer, we train a second
RC on the error remaining from using the first controller on
the interconnected network.

We use a randomly generated 100-node reservoir, and
provide inputs related to both the reference signal and its
derivative. For the NG-RC, we use a nonlinear feature
vector composed of the unique quadratic monomials, and

VOLUME 9

:

the constant term in the feature vector Ototal,t is equal to
0.5. The training signals for the networks are created by
sampling a N (0,0.1) distribution.

In the following sections we illustrate that the with this
reservoir and NG-RC the proposed controllers provide suc-
cessful convergence to provided reference signals. The plots
in Figures 7-9 show this visually, with details and error
values in the text.

B. Individual Layers

We begin by training each excitatory-inhibitory pair individ-
ually to track a given reference signal without the intercon-
nections in the network. While training both RC and NG-RC,
we tune the regularization parameter � (RC and NG-RC)
and feedback vector K (NG-RC) for each layer. Figure 7
shows plots of both the RC and NG-RC converging to the
desired reference signal. In each plot, the system evolves
without control until t = 25 when the controller is turned
on. Control parameters are provided in Table 1, along with
the root-mean-square error (RMSE) between the reference
and actual signal, calculated from the point the controller
is turned on. Further parameters related to the training and
control of the systems are discussed in Section D.

For the top layer, we recruit the excitatory node to the
reference signal r∗(t) = sin(⇡t

100) + 2, while the inhibitory
node is inhibited to zero, cf. Figure 7(a). Here we see that
both the NG-RC and RC controllers track the reference
signal successfully, though the RC works slightly better in
terms of tracking, with a RMSE of 0.0293 versus a RMSE
of 0.0401 for the NG-RC.

NG-RC
Layer � K RMSE

Top 0.5 −5 0.0401
Middle 1.2 −1 0.0805
Bottom 0.7 −0.1 0.0752

RC
Layer � RMSE

Top 0.3 0.0293
Middle 0.5 0.0255
Bottom 0.1 0.0835

TABLE 1: The parameters and errors for the NG-RC (left) and RC
(right) controllers for each network layer. The NG-RC parameters
are the regularization parameter � and the proportional control K.
For the RC we consider only the regularization parameter. For
both controllers, the RMSE is between the reference signal and the
network state, including both the excitatory and inhibitory nodes.

For the middle layer, we again recruit the excitatory node,
this time to the reference signal r∗(t) = sin(2⇡t100) + 2, cf.
Figure 7(b). Again both the NG-RC and RC controllers
result in the tracking of the reference signal, though for this
network and timescale, the NG-RC fluctuates rapidly around
the desired values rather than following it exactly. This is
reflected in the RMSE, where the NG-RC takes a value of
0.0805 versus a value of 0.0255 for the RC controller.

For the bottom layer, we recruit the inhibitory node to
the triangle wave with frequency 1

100 Hz and amplitude 1,
centered at 2, while inhibiting the excitatory node to zero,
cf. Figure 7(c). Both the NG-RC and RC controllers result
in effective recruitment to the desired signal, with the NG-
RC (resp. RC) controlled system lying slightly above (resp.
below) the reference signal. Here the RMSE for the NG-RC
is slightly lower than for the RC, at 0.0752 versus 0.0835.

(a)

(b)

(c)

FIGURE 7: Selective inhibition and recruitment without consid-
ering interconnections between the layers using NG-RC and RC
controllers for the subnetwork in the (a) top, (b) middle, and (c)
bottom layers. Control parameters and the RMSE between the
system and reference signal are given in Table 1.

10 VOLUME

C. Interconnected Network

We now consider an interconnected system defined by the
subnetworks W1,W2, and W3. Due to the difficulty in
tuning the parameters as the network size increases, we do
this by using a multi-layer approach, as described for the
NG-RC in Section IV. We use the reservoir controller as
determined for the individual layers before training a second
layer to cover the error introduced by the interconnection.
Here we show that as the magnitude of the interconnection
weight increases it becomes more difficult to control the
overall network, and also illustrate that the NG-RC controller
is more robust to changes in the weights of the network
interconnections than the RC controller.

We consider a network W defined by Wlayers +
�Wconnections, with

Wlayers =
�������

W1 0 0
0 W2 0
0 0 W3

�������
,

Wconnections =
�������

0 W12 0
W21 0 W23

0 W32 0

�������
,

where W12,W21,W23 and W32 are interconnection matri-
ces between the layers, while � ∈ R≥0 weights the connection
strength. The interconnection matrices are randomly gener-
ated and scaled such that �Wconnections� ≈ 0.01. In this way,
small � values give a network that is close to having no
connections.

For a interconnection weight � = 20, Figure 8 shows that
the two-layer NG-RC controller tracks the desired reference
signals for each layer. This occurs after re-tuning weights,
in particular the regularization parameter for the deep layer
and the feedback parameter K. For the same interconnection

FIGURE 8: Selective inhibition and recruitment for all three layers
in the interconnected network with � = 20 using the two-layer
NG-RC controller. With this level of interconnection, the controller
provides performance similar to the single-layer recruitment, with
RMSE errors for each layer being 0.0433,0.0819, and 0.0572 for
the top, middle, and bottom layers, resp.

weight, Figure 9 shows the performance of the two-layer RC
controller, exhibiting general recruitment of the network to
the reference signal, but with worse performance than both
the individual-layer recruitment and the NG-RC controller.
In particular, we note that recruitment is not achieved as well
for the middle layer, with the network moving both above
and below the reference at different points.

FIGURE 9: Selective inhibition and recruitment for all three layers
in the interconnected network with � = 20 using the two-layer RC
controller. With this level of interconnection, the controller provides
similar levels of performance to the individual networks for the top
and bottom layers, while some additional error is introduced in the
middle layer. The errors for the top, middle, and bottom layers are
0.0308,0.1222 and 0.0716, resp.

To directly compare the performance of the NG-RC and
RC controllers, Figure 10 plots the RMSE of the signals
with the references for both controllers as the interconnection
weight � increases. The NG-RC controller is significantly
more robust to increasing interconnection weights compared
to the RC controller, which quickly moves away from satis-
factory recruitment of the network to the reference trajectory.
One explanation for this improved robustness by the NG-RC
controller is in the determination of the control input. For the
RC controller, the control input is determined strictly from
the output of the reservoir. Meanwhile, the NG-RC controller
additionally reconsiders the error between the reference sig-
nal and the system state, and modifies the control accordingly
using the parameter K. Therefore, despite the increasing
magnitude of interconnections adding additional error to the
attempted tracking, the NG-RC controller is able to control
these errors for longer due to its proportional control term.

D. Comparison between the RC and NG-RC Frameworks

From the results and plots above, we see that the RC and
NG-RC frameworks both have scenarios where they more
successfully selectively recruit the system to a reference. In
particular, for smaller networks, the RC framework produces
a similar, or slightly improved, quality recruitment. Mean-
while, the NG-RC controller is more robust to increasing

VOLUME 11

:

FIGURE 10: Comparison of recruitment error between the NG-
RC and RC controllers as the magnitude of interconnections in the
multilayer network increases. The NG-RC controller maintains a
smaller error for significantly larger interconnections than the RC
controller, before both become unsuccessful with large interconnec-
tions.

the magnitude of interconnections between layers. However,
these comparisons are made only on the error between the
reference signal and predicted signal. Depending on the
situation, further metrics may be important in comparing the
two controllers, such as training signal length, training time,
and control signal and magnitude. In Table 2, we compare the
training parameters and times, listed for the single-layer NG-
RC controller, the single-layer RC controller, the multilayer
NG-RC, and multilayer RC controller2.

Network
Signal

Length

Training

Time

Control

Time

NG-RC Single 500 0.0093 1.1543
NG-RC Multi 500 0.0655 1.6158

RC Single 80000 4.9564 6.0179
RC Multi 80000 26.18 18.17

TABLE 2: Comparison of training parameters and times.

Table 2 shows that the NG-RC framework allows for
a much shorter training signal, and results in much faster
times, both for the learning and controlling portion of the
simulation. This aligns with the discussion of the frameworks
in Section IV and illustrates that, if training time is important
when using these frameworks, NG-RC performs significantly
better. We note that the training signal lengths for both
frameworks was determined after experimentation, with the
lengths chosen to be the minimum lengths ensuring that
performance in terms of recruitment error were acceptable.

Figure 11 shows the control signal being generated by
the RC and NG-RC controllers for the bottom layer without
any interconnections, and compares it with the one obtained
in Theorem III.2. It is clear that while the two frameworks
use similar controls to achieve selective recruitment, for
selective inhibition they use significantly different controls in
terms of magnitude (this is consistent with our observation
in Remark III.3). In particular, both frameworks apply a
control to the node being inhibited that is significantly higher

2Simulations were all computed in MATLAB r2023a on a 2019 MacBook
Pro with a 2.8GHz Quad-Core Intel Core i7 processor.

FIGURE 11: The control signals generated by the RC and NG-RC
controllers when recruiting the bottom layer of the network individ-
ually. Both the RC and NG-RC controllers generate control inputs
that match the analytically determined control in Theorem III.2 for
the recruited node, in this case the inhibitory node. Meanwhile, the
excitatory node is inhibited to zero using excessive inhibition, with
significantly more inhibition being used by the NG-RC controller.
Both result in high-performance tracking.

magnitude (more inhibitory) than the analytically determined
control from Theorem III.2. Further, the NG-RC control is
significantly higher magnitude than the RC control. Due
to the observed difference in generated controls, depending
on physical system constraints (such as those on control
magnitude), the RC controller could be preferred, despite
the longer training time.

VI. Application to Seizure Rejection
In our second application of reference tracking for LTN dy-
namics using reservoir computing, we consider the problem
of epileptic seizure rejection. Epilepsy is a disease which
impacts 50 million people worldwide and up to 30 percent
of those have drug-resistant epilepsy [60], which instead can
be treated with neuromodulation [61]. Data-driven methods
have been been used in seizure detection [62] to predict
seizure activity based on electroencephalogram (EEG) data.
During epileptic seizures, brain activity becomes highly
synchronized in a pathological manner, which results in the
seizure symptoms. A key problem in epilepsy research is
the detection of seizures in the early stages before symptoms
begin to appear. This is desirable as then an interjection could
be made in order to prevent the remainder of a seizure, and
ideally, prevent most or all of the associated symptoms. Here
we wish to look at how the reservoir computer controller
network design, representing an external neurostimulation
device, can be used to apply the control action to prevent
seizure behavior upon detection through having the network
track a desired ‘safe’ signal.

We first train a LTN model of a brain network with
input and output restrictions to track EEG data that includes
seizures. Then, we use the reservoir controller so that, when

12 VOLUME

a seizure is predicted, the network activity is brought to a de-
sired pattern that does not exhibit seizure symptoms. In this
work we utilize an arbitrary ‘safe’ signal that does not predict
seizure activity using a synchrony-based approach. However,
in clinical application the desired reference trajectory during
intervention would be carefully determined by physicians to
avoid any other possible pathological behaviors. Following
the intervention we then allow the brain network to return to
normal function without additional input from the controller.

A. Overview of the Approach

We consider EEG data taken from the “CHB-MIT Scalp
EEG Database” [63], [64]. In the data, the seizure locations
are noted and are also predicted in [65]. The seizure pre-
diction method in [65] is based on the synchrony measure
weighted phase lag index (WPLI) [66], which we also
use here. Other seizure prediction approaches are discussed
in [67].

WPLI is defined to measure synchrony between two
signals, and is used in particular to compare electrophys-
iological signals. In [65], this is used comparing channels
of an EEG for the purpose of seizure prediction. While
their prediction technique involves further analysis on top
of computing the WPLI, what is important to note is that
the metric attains a high value (excessive synchrony) before
a seizure. In our seizure rejection approach, we aim to have
the network track a signal that reduces the WPLI between
the brain regions as determined by the EEG data, in order
to move away from seizure activity. In particular, whenever
the WPLI is computed and determined to be above threshold
mintervene, we will intervene with a control term, computed
using a RC, for a predetermined amount of time tintervene,
that drives the network to a safe activity pattern, rsafe. After
this, the intervention will be stopped and only begin again
if the next computation of the WPLI is above the threshold.
This procedure is summarized in Algorithm 1.

B. Weighted Phase Lag Index and Data Processing

The WPLI measures synchrony between two signals based
on the instantaneous phase of the two signals over a given
time window. We compute the instantaneous phase through
the Hilbert transform of a signal [68]. In particular, the
instantaneous phase of a signal x(t) with Hilbert transform
x̂(t) is given by

�(t) = arctan� x̂(t)
x(t)
� .

For a time window �t containing N points, the WPLI
between signals x1(t) and x2(t) is then defined as:

WPLI�t =
� 1N ∑

N
p=1 sin(�1(t) − �2(t))�

1
N ∑

N
p=1 � sin(�1(t) − �2(t))�

. (15)

The WPLI takes values in the interval [0,1], with low values
corresponding to no coupling between the signals or a phase
difference equal to 0 (mod ⇡), while stronger phase locking
gives higher values for the WPLI. If the signal is phase-
locked with a non-zero difference, then the WPLI is equal
to 1.

Algorithm 1 Seizure Rejection with RC Controller
Input: T,mintervene, t0, tintervene, rsafe

1: Train RC on brain network model
2: Initialize control v(t0) = 0
3: Initialize counter k = 1
4: while t ≥ t0 do

5: if t = kT + t0 for k ∈ Z and not intervening then

6: Compute and update WPLI
7: k = k + 1
8: end if

9: if WPLI >mintervene and t < (k − 1)T + tintervene then

10: Compute control v(t) with RC to drive system to
rsafe

11: Propagate brain network model with control v(t)
12: else

13: Do not intervene and set v(t) = 0
14: Propagate brain network model with control v(t)
15: end if

16: end while

Using the WPLI to compare to EEG signals on raw data
fails to capture any trends due to the artifacts and noise
characteristic of EEG. We therefore take two steps to process
the raw signal and reduce noise. First, the data is filtered
using a bandpass filter on a specified, typically small, band.
These are typically experimentally determined and we use,
following [65], the range of 8−13 Hz. Second, the signal is
differentiated with respect to time and the absolute value
is computed. This is done to flatten the basic noise and
emphasize the peaks of the signal [69].

C. Reproducing the EEG Data

As seizure activity is based on synchrony between brain
regions, and the WPLI is computed between two signals,
we consider a network with two outputs, each representing
a channel of the EEG. In particular, we consider an 6-
node brain network governed by linear-threshold dynamics,
with two outputs. In addition, to match neurostimulation
constraints due to implanting electrodes, we also limit the
inputs to two of the nodes. Here, we consider the second
seizure of patient 3 in the MIT EEG database, which is
clinically found to occur at time t = 730 seconds within
the EEG file and lasts 65 seconds. Following [65], we let
the network outputs represent channels F4-C4 and T8-P8 of
the EEG. We use a NG-RC setup as in Figure 5 to learn a
control signal, c ∶ R → R2, such that each network mimics
the EEG data of channels F4-C4 and T8-P8.

The synaptic weight matrix of the randomly generated
network is given by

W =
�������

0.3711 0.0642 0.3530 −0.2614 −0.2079 −0.0668
0.1369 0.03837 0.1442 −0.0067 −0.1887 −0.3239
0.1001 0.1440 0.2700 −0.1189 −0.1174 −0.0091
0.2363 0.0310 0.0015 −0.2568 −0.1436 −0.1791
0.0542 0.0760 0.1080 −0.557 −0.0440 −0.3020
0.2213 0.1887 0.1996 −0.2418 −0.3127 −0.0345

�������
, (16)

VOLUME 13

:

with inputs in nodes 1 and 3. The outputs are defined by

�yF4−C4

yT8−P8
� = �1 0 0 0 0 1

0 0 1 0 1 0
�x, (17)

and actuation is limited to the first and third nodes. The
replication of the EEG data is done using an NG-RC
controller with a 500-point training signal sampled from a
N (0,0.1) distribution. Figure 12 illustrates the replication
of the EEG data, along with the original data, shown for a
9-second time period preceding the seizure by tracking the
original data with the NG-RC controller. For the purposes
of computing the WPLI and seizure rejection, we consider
the data from t = 490 seconds to t = 855 seconds, which
corresponds to four minutes before the seizure and one
minute after the seizure. On this timescale, it is more difficult
to visually observe the success of the replication of the EEG
data using the NG-RC. Figure 13 shows the EEG replication
over the extended time period along with the WPLI over this
time. The WPLI computed from the original data is also
included to illustrate accuracy of the replication. For both
the replicated and original data, the WPLI is computed with
a time window of 6 seconds and overlap of one second as
in [65]. It is evident that as the seizure approaches the WPLI
is increasing, reaching the maximum value of 1 prior to the
seizure (which begins at t = 730), before dropping to a low
level during and after the pathological behavior.

D. Rejecting Seizure Behavior

Medical interventions will seek to prevent the seizure be-
havior displayed in Figure 13. In this section, we apply
the seizure rejection method described in Algorithm 1 to
accomplish this by interjecting in the model to keep the
WPLI between the channels F4-C4 and T8-P8 below a
threshold. To do so, we run the system with the base control
c learned in the prior section using the NG-RC, so that the
network exhibits the same behavior as the EEG data. Then,
we interject the system with an additional control v ∶ R→ R2

each time the computed WPLI reaches or exceeds a threshold
of 0.8, so that the WPLI is reduced by utilizing the NG-RC
controller to have the network track a pair of signals that do
not exhibit excessive synchrony.

In our simulations we use a control (determined by the
NG-RC controller) that modulates the network to a pre-
determined safe signal for a period of 60 seconds, a du-
ration based on the average length of a generalized tonic-
clonic seizure [70]. We define our safe signal based on two
sinusoids with different frequencies to guarantee a lack of
synchrony and add white noise to match the noisy nature
of EEG measurements. Figure 14 illustrates the application
of Algorithm 1 to the EEG with a first rejection at t = 625,
when the WPLI first meets the threshold of 0.8, and a second
intervention at t = 700. We see from here on that, with the
intervention, the WPLI stops increasing towards the upper
limit of 1 (which is the expected marker for leadup to seizure
behavior [65]).

VII. Conclusions and Future Work
We have tackled the problem of control design for refer-
ence tracking in linear-threshold firing rate network models
through the reservoir computing framework. We first for-
mally designed explicit open- and closed-loop controllers
that achieve reference tracking under suitable conditions
on the synaptic connectivity. To overcome the difficulty
of determining precisely the strength of interconnections
in the brain, required by these controllers, and the fact
that the identified conditions become increasingly difficult
to check with network size, together with considerations
of biological implausibility, we have proposed the use of
reservoir computing to synthesize the control signals. We
have shown how the RC and NG-RC frameworks can be
used as controllers for the problem of selective recruitment
and inhibition of LTN networks, allowing for an arbitrarily
chosen reference trajectory. We have also used an NG-RC
controller to replicate EEG data as well as reject epilep-
tic seizure activity. Future work will apply the reservoir
computing control framework to larger networks, with the
limiting factor being the determination of optimal parameters
for learning. Another direction for future work is the study
of how the composition of the network and reservoir, and
symmetries between them due to their structure as linear-
threshold networks, could be exploited to achieve improved
control performance. Finally, we will investigate how dif-
ferent reservoir or feature vector structures can improve
performance and explore reference tracking with limited
sensing.

REFERENCES
[1] M. Marconi, N. D. C. Blanco, C. Zimmer, and A. Guyon, “Eye

movements in response to different cognitive activities measured by
eyetracking: a prospective study on some of the neurolinguistics
programming theories,” Journal of Eye Movement Research, vol. 16,
no. 2, 2023.

[2] A. P. Vaz, J. H. Wittig Jr., S. K. Inati, and K. A. Zaghloul, “Replay of
cortical spiking sequences during human memory retrieval,” Science,
vol. 367, no. 6482, pp. 1131–1134, 2020.

[3] G. Ariani, J. A. Pruszynski, and J. Diedrichsen, “Motor planning brings
human primary somatosensory cortex into action-specific preparatory
states,” eLife, vol. 11, p. e69517, 2022.

[4] H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions
in localized populations of model neurons,” Biophysical Journal,
vol. 12, no. 1, pp. 1–24, 1972.

[5] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952.

[6] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological Cybernetics, vol. 95, pp. 1–
19, 2006.

[7] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. Computational Neu-
roscience, Cambridge, MA: MIT Press, 2001.

[8] E. M. Izhikevich, Dynamical Systems in Neuroscience. Cambridge,
MA: MIT Press, 2007.

[9] E. Nozari, M. A. Bertolero, J. Stiso, L. Caciagli, E. J. Cornblath,
X. He, A. S. Mahadevan, G. J. Pappas, and D. S. Bassett, “Macroscopic
resting-state brain dynamics are best described by linear models,”
Nature Biomedical Engineering, vol. 8, no. 1, pp. 68–84, 2024.

[10] M. Khosla, G. H. Ngo, K. Jamison, A. Kuceyeski, and M. R. Sabuncu,
“Cortical response to naturalistic stimuli is largely predictable with
deep neural networks,” Science Advances, vol. 7, no. 22, p. eabe7547,
2021.

14 VOLUME

FIGURE 12: Illustration of the replication of the EEG data from the second seizure of patient 3 over the timeframe t = (506,515)
seconds for channels F4-C4 and T8-P8 using a NG-RC with network matrix (16) and outputs (17). This precedes the beginning of the
seizure at t = 730. The replication achieves a root-mean-square error (RMSE) of 0.0310 for the F4-C4 channel and 0.0316 for the T8P8
channel on this time interval.

FIGURE 13: The replicated EEG from four minutes prior to and
one minute after the second seizure of patient 3 (t ∈ (490,855)).
The first panel illustrates the activity of the F4-C4 electrode while
the second panel is the T8-P8 electrode. Over this time frame the
RMSE on the replication for the F4-C4 electrode is 0.0737, while
for the T8-P8 electrode it is 0.0896. The third panel shows the
WPLI for both the replicated EEG and the original data, which has
a RMSE of 0.0474. We note that the WPLI increases and peaks
prior to the seizure, the start and end of which are indicated by the
red lines.

[11] F. Shao and Z. Shen, “How can artificial neural networks approximate
the brain?,” Frontiers in Psychology, vol. 13, p. 970214, 2023.

[12] N. Kriegeskorte, “Deep neural networks: a new framework for model-
ing biological vision and brain information processing,” Annual Review
of Vision Science, vol. 1, pp. 417–446, 2015.

[13] Y. Li, H. Yang, and S. Gu, “Upgrading voxel-wise encoding model
via integrated integration over features and brain networks,” BioRxiv,
2022.

[14] P. Blomquist, A. Devor, U. G. Indahl, I. Ulbert, G. T. Einevoll, and
A. M. Dale, “Estimation of thalamocortical and intracortical network
models from joint thalamic single-electrode and cortical laminar-
electrode recordings in the rat barrel system,” PLoS Computational
Biology, vol. 5, no. 3, p. e1000328, 2009.

[15] T. Heiberg, B. Kriener, T. Tetzlaff, G. T. Einevoll, and H. E. Plesser,
“Firing-rate models for neurons with a broad repertoire of spiking
behaviors,” Journal of Computational Neuroscience, vol. 45, pp. 103–

FIGURE 14: The EEG in channels F4-C4 and T8-P8 from t = 490
to t = 855, with two interventions, at t = 625 and at t = 700, when
the WPLI reaches the threshold of 0.8. The controlled portions
of the EEG are shown in red. We see that after interventions the
WPLI moves below the threshold of 0.8, and does not exhibit the
drastic drop in WPLI at the beginning of the seizure. During normal
periods, a low-magnitude control (of average amplitude 100) is
applied to track the base EEG activity, before an additional high-
magnitude control (of average amplitude 4000) is applied during
the seizure rejection periods to modulate to a safe signal. These
controls are of high amplitude due to the high-frequency EEG
activity requiring fast changes in value.

132, 2018.
[16] F. Ratliff and H. K. Hartline, Studies on Excitation and Inhibition in

the Retina. Rockefeller University Press, 1974.
[17] C. Curto, J. Geneson, and K. Morrison, “Stable fixed points of combi-

natorial threshold-linear networks,” Advances in Applied Mathematics,
vol. 154, p. 102652, 2024.

[18] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part I: Intra-layer dynamics and selective
inhibition,” IEEE Transactions on Automatic Control, vol. 66, no. 3,
pp. 949–964, 2021.

[19] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part II: Inter-layer dynamics and top-down
recruitment,” IEEE Transactions on Automatic Control, vol. 66, no. 3,
pp. 965–980, 2021.

VOLUME 15

:

[20] M. McCreesh and J. Cortés, “Selective inhibition and recruitment
in linear-threshold thalamocortical networks,” IEEE Transactions on
Control of Network Systems, vol. 11, no. 1, pp. 375–388, 2024.

[21] A. Allibhoy, F. Celi, F. Pasqualetti, and J. Cortés, “Optimal network
interventions to control the spreading of oscillations,” IEEE Open
Journal of Control Systems, vol. 1, pp. 141–151, 2022.

[22] F. Celi, A. Allibhoy, F. Pasqualetti, and J. Cortés, “Linear-threshold
dynamics for the study of epileptic events,” IEEE Control Systems
Letters, vol. 5, no. 4, pp. 1405–1410, 2021.

[23] K. P. Hadeler and D. Kuhn, “Stationary states of the Hartline-Ratliff
model,” Biological Cybernetics, vol. 56, no. 5-6, pp. 411–417, 1987.

[24] J. Feng and K. P. Hadeler, “Qualitative behaviour of some simple
networks,” Journal of Physics A: Mathematical and General, vol. 29,
no. 16, pp. 5019–5033, 1996.

[25] Z. Yi and K. K. Tan, “Multistability of discrete-time recurrent neural
networks with unsaturating piecewise linear activation functions,”
IEEE Transactions on Neural Networks, vol. 15, no. 2, pp. 329–336,
2004.

[26] M. McCreesh, T. Menara, and J. Cortés, “Sufficient conditions for
oscillations in competitive linear-threshold brain networks,” IEEE
Control Systems Letters, vol. 7, pp. 2886–2891, 2023.

[27] E. Nozari, R. Planas, and J. Cortés, “Structural characterization of os-
cillations in brain networks with rate dynamics,” Automatica, vol. 146,
p. 110653, 2022.

[28] K. Morrison, A. Degeratu, V. Itskov, and C. Curto, “Diversity of
emergent dynamics in competitive threshold-linear networks,” SIAM
Journal on Applied Dynamical Systems, vol. 23, no. 1, pp. 855–884,
2024.

[29] X. Wang and J. Cortés, “Data-driven control of linear-threshold net-
work dynamics,” in American Control Conference, (Atlanta, Georgia),
pp. 114–119, June 2022.

[30] D. Liberzon, Switching in Systems and Control. Systems & Control:
Foundations & Applications, Birkhäuser, 2003.

[31] J.-P. Laumond, Robot motion planning and control, vol. 229. Springer,
1998.

[32] J.-C. Latombe, Robot motion planning, vol. 124. Springer Science &
Business Media, 2012.

[33] A. Tsiamis, A. Karapetyan, Y. Li, E. C. Balta, and J. Lygeros,
“Predictive linear online tracking for unknown targets,” arXiv preprint
arXiv:2402.10036, 2024.

[34] Y. Xu, Z. Wu, W. Che, and D. Meng, “Reinforcement learning-based
unknown reference tracking control of HMASs with nonidentical
communication delays,” Science China Information Sciences, vol. 66,
no. 7, p. 170203, 2023.

[35] G. Baggio, D. S. Bassett, and F. Pasqualetti, “Data-driven control of
complex networks,” Nature Communications, vol. 12, no. 1, pp. 1–13,
2021.

[36] Y. Qin, T. Menara, S. Oymak, S. Ching, and F. Pasqualetti, “Represen-
tation learning for context-dependent decision-making,” in American
Control Conference, (Atlanta, GA), pp. 2130–2135, 2022.

[37] V. Narayanan, J. T. Ritt, J. Li, and S. Ching, “A learning framework for
controlling spiking neural networks,” in American Control Conference,
pp. 211–216, IEEE, 2019.

[38] J. Z. Kim and D. S. Bassett, “A neural machine code and programming
framework for the reservoir computer,” Nature Machine Intelligence,
vol. 5, no. 6, pp. 622–630, 2023.

[39] L. M. Smith, J. Z. Kim, Z. Lu, and D. S. Bassett, “Learning continuous
chaotic attractors with a reservoir computer,” Chaos, vol. 32, no. 1,
2022.

[40] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI-Künstliche Intelligenz, vol. 26, pp. 365–371, 2012.

[41] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–
2560, 2002.

[42] F. Damicelli, C. C. Hilgetag, and A. Goulas, “Brain connectivity meets
reservoir computing,” PLoS Computational Biology, vol. 18, no. 11,
p. e1010639, 2022.

[43] P. Enel, E. Procyk, R. Quilodran, and P. F. Dominey, “Reservoir
computing properties of neural dynamics in prefrontal cortex,” PLoS
Computational Biology, vol. 12, no. 6, p. e1004967, 2016.

[44] C. Merkel, Q. Saleh, C. Donahue, and D. Kudithipudi, “Memristive
reservoir computing architecture for epileptic seizure detection,” Pro-
cedia Computer Science, vol. 41, pp. 249–254, 2014.

[45] D. Canaday, A. Pomerance, and D. J. Gauthier, “Model-free control
of dynamical systems with deep reservoir computing,” Journal of
Physics: Complexity, vol. 2, no. 3, p. 035025, 2021.

[46] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa, “Next
generation reservoir computing,” Nature Communications, vol. 12,
no. 1, p. 5564, 2021.

[47] R. Kent, W. A. S. Barbosa, and D. J. Gauthier, “Controlling chaotic
maps using next-generation reservoir computing,” Chaos, vol. 34,
no. 2, 2024.

[48] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[49] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent advances in
physical reservoir computing: A review,” Neural Networks, vol. 115,
pp. 100–123, 2019.

[50] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part I: Intra-layer dynamics and selective
inhibition,” arXiv preprint arXiv:1809.01674v2, 2019.

[51] H. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ: Prentice
Hall, 2002.

[52] S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B. Chklovskii,
“Highly nonrandom features of synaptic connectivity in local cortical
circuits,” PLOS Biology, vol. 3, no. 3, p. e68, 2005.

[53] U. S. Bhalla, “How to record a million synaptic weights in a hippocam-
pal slice,” PLoS Computational Biology, vol. 4, no. 6, p. e1000098,
2008.

[54] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state
property,” Neural Networks, vol. 35, pp. 1–9, 2012.

[55] E. Bollt, “On explaining the surprising success of reservoir computing
forecaster of chaos? The universal machine learning dynamical system
with contrast to VAR and DMD,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 31, no. 1, 2021.

[56] S. Haeusler and W. Maass, “A statistical analysis of information-
processing properties of lamina-specific cortical microcircuit models,”
Cerebral Cortex, vol. 17, no. 1, pp. 149–162, 2007.

[57] Y. Xue, L. Yang, and S. Haykin, “Decoupled echo state networks with
lateral inhibition,” Neural Networks, vol. 20, no. 3, pp. 365–376, 2007.

[58] J. T. Serences and S. Kastner, “A multi-level account of selective
attention,” The Oxford Handbook of Attention, p. 76, 2014.

[59] R. Desimone and J. Duncan, “Neural mechanisms of selective visual
attention,” Annual Review of Neuroscience, vol. 18, no. 1, pp. 193–222,
1995.

[60] J. W. Sander and S. D. Shorvon, “Epidemiology of the epilepsies,”
Journal of Neurology, Neurosurgery, and Psychiatry, vol. 61, no. 5,
p. 433, 1996.

[61] M. Abouelleil, N. Deshpande, and R. Ali, “Emerging trends in
neuromodulation for treatment of drug-resistant epilepsy,” Frontiers
in Pain Research, vol. 3, p. 839463, 2022.

[62] P. Buteneers, D. Verstraeten, P. van Mierlo, T. Wyckhuys,
D. Stroobandt, R. Raedt, H. Hallez, and B. Schrauwen, “Automatic de-
tection of epileptic seizures on the intra-cranial electroencephalogram
of rats using reservoir computing,” Artificial Intelligence in Medicine,
vol. 53, no. 3, pp. 215–223, 2011.

[63] A. H. Shoeb, Application of Machine Learning to Epileptic Seizure
Onset Detection and Treatment. PhD thesis, Massachusetts Institute
of Technology, 2009.

[64] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov,
R. Mark, and H. E. Stanley, “Physionet: components of a new research
resource for complex physiologic signals,” Circulation, vol. 101,
no. 23, pp. e215–e220, 2000.

[65] P. Detti, G. Z. M. de Lara, R. Bruni, M. Pranzo, F. Sarnari, and G. Vatti,
“A patient-specific approach for short-term epileptic seizures predic-
tion through the analysis of EEG synchronization,” IEEE Transactions
on Biomedical Engineering, vol. 66, no. 6, pp. 1494–1504, 2018.

[66] M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, and
C. M. A. Pennartz, “An improved index of phase-synchronization for
electrophysiological data in the presence of volume-conduction, noise
and sample-size bias,” Neuroimage, vol. 55, no. 4, pp. 1548–1565,
2011.

[67] R. Cherian and E. G. Kanaga, “Theoretical and methodological anal-
ysis of EEG based seizure detection and prediction: An exhaustive
review,” Journal of Neuroscience Methods, vol. 369, p. 109483, 2022.

16 VOLUME

[68] A. Zygmund, Trigonometric Series, vol. 1. Cambridge University
Press, 2002.

[69] K. K. Majumdar and P. Vardhan, “Automatic seizure detection in
ECoG by differential operator and windowed variance,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 19,
no. 4, pp. 356–365, 2011.

[70] P. Meritam Larsen, S. Wüstenhagen, D. Terney, E. Gardella, H. Au-
rlien, and S. Beniczky, “Duration of epileptic seizure types: A data-
driven approach,” Epilepsia, vol. 64, no. 2, pp. 469–478, 2023.

Michael McCreesh received his B.A.Sc and
M.A.Sc degrees in Mathematics and Engineering
from Queen’s University, Kingston, Canada in
2017 and 2019, resp. He received his Ph.D. degree
in Mechanical Engineering from the University of
California San Diego in 2024. His current research
interests include control theory and its applica-
tion to theoretical neuroscience, in particular the
application of dynamical systems to model brain
networks.

Jorge Cortés (M’02, SM’06, F’14) received the
Licenciatura degree in mathematics from Uni-
versidad de Zaragoza, Zaragoza, Spain, in 1997,
and the Ph.D. degree in engineering mathematics
from Universidad Carlos III de Madrid, Madrid,
Spain, in 2001. He held postdoctoral positions with
the University of Twente, Twente, The Nether-
lands, and the University of Illinois at Urbana-
Champaign, Urbana, IL, USA. He was an Assistant
Professor with the Department of Applied Mathe-

matics and Statistics, University of California, Santa Cruz, CA, USA, from
2004 to 2007. He is currently a Professor in the Department of Mechanical
and Aerospace Engineering, University of California, San Diego, CA, USA.
He is a Fellow of IEEE, SIAM, and IFAC. His current research interests
include distributed control and optimization, network science, nonsmooth
analysis, reasoning and decision making under uncertainty, network neuro-
science, and multi-agent coordination in robotic, power, and transportation
networks.

VOLUME 17

