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Computer-aided design (CAD) is a standard design tool used in engineering practice and by
students. CAD has become increasingly analytic and inventive in incorporating artificial
intelligence (AI) approaches to design, e.g., generative design (GD), to help expand design-

ers’ divergent thinking. However, generative design technologies are relatively new, we
know little about generative design thinking in students. This research aims to advance

our understanding of the relationship between aspects of generative design thinking and
traditional design thinking. This study was set in an introductory graphics and design
course where student designers used FUSION 360 to optimize a bicycle wheel frame. We col-

lected the following data from the sample: divergent and convergent psychological tests and
an open-ended response to a generative design prompt (called the generative design rea-
soning elicitation problem). A Spearman’s rank correlation showed no statistically signifi-

cant relationship between generative design reasoning and divergent thinking. However, an
analysis of variance found a significant difference in generative design reasoning and con-

vergent thinking between groups with moderate GD reasoning and low GD reasoning. This
study shows that new computational tools might present the same challenges to beginning
designers as conventional tools. Instructors should be aware of informed design practices

and encourage students to grow into informed designers by introducing them to new tech-
nology, such as generative design. [DOI: 10.1115/1.4064564]

Keywords: computer-aided design, creativity and concept generations, design education,

generative design

1 Introduction

Design is essential to engineering education and practice [1,2],
but it is hard to learn and arguably harder to teach [3]. Computer-
aided design (CAD) is a standard design tool used in engineering
practice and by students [4], and advanced design techniques are
now regularly available in CAD programs. One such design tech-
nique, generative design (GD), is an iterative design exploration
process “that leverages the power of computationally driven

artificial intelligence (AI) to automatically explore a wide design
space in order to identify the best design options” [5]. While
recent commercial successes tout the promise of generative
design in engineering design [6], because it is such a recent technol-
ogy, little research has been conducted surrounding how students
and designers learn to interact with it.
Advanced AI computational technologies have the potential to

greatly impact the design process [7] and impact design cognition
models and theories [8]. Recent research suggests that both design
process and design behavior are affected when designers use
generative design tools in early-stage design [9]. We have argued
that the paradigm shift in design methods due to the increased use
of generative design technologies will change the design thinking
mindset and must be addressed in the engineering education of the
future workforce [10].
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Due to this need to adapt to a future approach to engineering edu-
cation, our overall goal is to understand the relationship between
generative design thinking and traditional design thinking. In partic-
ular, this study investigates the relationship between one aspect of
generative design thinking, generative design reasoning, and two
core competencies of traditional design thinking, divergent and
convergent thinking. While divergent and convergent thinking are
only two core competencies of generative design, and while gener-
ative design thinking likely encompasses more than reasoning, our
current study seeks to make contributions to understanding these
features within a real-engineering classroom in order to set the
stage for future work. We employed a multi-method approach
[11] to answer the research question: What is the relationship
between students’ generative design reasoning and their divergent
and convergent thinking?

We define generative design reasoning as a cognitive concept
where a designer uses problem-solving to justify their thinking
and decision-making in a design activity. We elaborate on divergent
and convergent thinking in Sec. 2.3.
Because generative design tools produce an expanded outcome

space, we, as a team of design educators who incorporate genera-
tive design in our teaching and research, might expect proficient
designers toexhibit ahigh levelof convergent thinkingas thedesigner
must evaluate and converge on a solution. Additionally, we expect
that generative design might help students’ ideation as the designer
collaborates with advanced tools to create innovative and high-
performing products. Simply engaging students in the generative
design process does not necessarily ensure that students will develop
generative design reasoning. The study logic model is depicted in
Fig. 1.

2 Background and Motivation

2.1 Computer-Aided Design in Undergraduate Curricula
and Design Cognition. Design is included in all engineering
curricula, and the ability to apply engineering design is a required
outcome for a graduate of an ABET-certified engineering program,
regardless of discipline in the United States (e.g., aerospace, agri-
cultural, biomedical, chemical, civil, computer, electrical, environ-
mental, industrial, materials, mechanical, nuclear, systems) [12] and
is included in the European Network for Accreditation of Engineer-
ing Education (ENAEE) standards [13]. CAD is a technology used
by design professionals to create digital artifacts with the function-
ality of 2D drafting, solid modeling, and surface modeling [5].
Ivan Sutherland’s groundbreaking SKETCHPAD in 1962 was the earli-
est 3D representation program [14], but Autodesk’s 1982 launch of
AUTOCAD

®, the first commercially successful CAD program, helped

establish CAD as an essential tool for engineers and other design
professionals [5]. Traditional CAD programs are installed on
local, single computers. However, in recent years, cloud-based
CAD has gained popularity with cloud storage, collaboration capac-
ities, and greater computing power [5].
Engineering students are often taught to communicate their

design ideas through CAD and hand sketching [5,15]. CAD is a
useful tool in engineering education because, compared to hand
sketching, it allows a designer to show their design prototype
from multiple viewpoints and move their design artifact dynami-
cally. A fully constrained CAD model allows the designer to com-
municate details with others and use the model for powerful
simulations such as finite element analysis, generative design, and
motion analysis [5]. The benefits of teaching CAD at the undergrad-
uate level include improving spatial visualization skills [16], devel-
oping communication and problem-solving skills [17], exposing
students to design-based teamwork [18], and allowing better visual-
ization of initial designs [19]. Further, CAD assists in the creative
process by enhancing the ability of a team to visualize and commu-
nicate their ideas [18] and can promote the development of design
thinking strategies [20]. Through participating in group projects that
involve CAD, students improve their design and communication
skills [3,21,22].
Despite the utility of CAD, in an educational setting, CAD might

impact students’ creative cognitive processes [23], and CAD might
limit beginning designers’ ability to explore more creative solutions
[19,24,25]. Sreekanth and Viswanathan [19] observed that the pres-
ence of an example prevented full creative freedom because it led to
designers fixating on specific features in that example. Other studies
discuss the unintended consequence of CAD use, such as how CAD
might contribute to circumscribed thinking due to limitations of
what can be created in a CAD system [23], premature fixation
due to large amounts of detail being added to a drawing in
early stages [23], and a focus on CAD technology inhibiting full
incorporation of requirements (i.e., user perspectives in human-
centered design) [26]. Therefore, CAD is important in engineering
design education, but educators must use appropriate pedagogical
approaches to facilitate students’ growth in successful design
behaviors [1,23] and design thinking habits [20,27].

2.2 Generative Design. CAD programs are becoming increas-
ingly analytic and inventive. For example, one advanced simulation
technique is generative design, an iterative design exploration
process that utilizes user-input parameters and leverages computa-
tionally driven AI to generate a large pool of design options [28].
Generative design software programs take specified product criteria
and constraints to begin an evolutionary computation process that

Fig. 1 Study logic model
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efficiently explores the entire parameter space supported by the soft-
ware to find optimal solutions through multiple computational iter-
ations [10]. Designers review the outputs of a generative design
solution space to compare the solutions across multiple constraints
(e.g., mechanical, manufacturing, spatial, and cost) [10]. Generative
design software has numerous applications in aerospace, manufac-
turing, and consumer goods. For example, Airbus, a commercial
aircraft manufacturer, leveraged Autodesk FUSION 360’s generative
design program to reduce the weight of their planes, in turn, reduc-
ing the amount of fuel required, therefore saving cost, and leaving a
smaller carbon footprint [28]. They used generative design to engi-
neer a 45% lighter chair, requiring 95% less raw material to manu-
facture. The design requirements included reducing the weight of a
component, structurally supporting the passenger, and attaching it
to the plane in four locations. These design modifications saved
Airbus an estimated amount of 3180 kg of fuel per partition, per
year [28].
Generative design originates from topology optimization (TO),

which “helps engineers place material within a prescribed design
domain to obtain the best structural performance” [29]. Generative
design extends the function of TO further and allows designers to
control more objective variables (e.g., manufacturing method); it
is useful when the designer does not know the shape of the final
part and wants the computer to account for variables such as func-
tionality, manufacturing method, cost, and structural integrity. Both
TO and generative design can be used to optimize load-bearing parts,
but TO only provides a single optimized mesh model, whereas gen-
erative design leveragesAI to explore awider range of solutions [30].
In generating numerous solutions to a design question, the software
allows designers to explore solutions that are too vast for humans to
explore manually [31]. Therefore, using AI-assisted technology
might allow designers to iterate more efficiently and engage in
more divergent design thinking.
While generative design software helps designers come up with

an array of design possibilities, designers then weigh design criteria
and converge on a final design. Subjective variables such as aes-
thetic requirements are difficult to automate and require the designer
to weigh competing designs [6]. Generative design requires collab-
oration from both a human designer and algorithmic computation
[9]. Digital technologies have influenced design thinking and
created a new role for designers and their integration with digital
design media.

2.3 Design Cognition Via Convergent and Divergent
Thinking. Design cognition combines the fields of cognitive
science and applied psychology to study the mental processes and
representations involved in design [8,32]. Design educator and
researcher Nigel Cross led some of the earliest research on design
as a discipline [33]. Cross has further suggested that the three
main areas of design cognition are formulating problems, generat-
ing solutions, and utilizing design process strategies [33].
Two notable elements of design cognition are divergent and con-

vergent thinking, both coined by psychologist, Guilford in 1956
[34]. Divergent thinking in creativity is generally defined as the
ability to generate ideas that are both novel and useful [35].
Researchers generally differentiate between fluency/frequency
(i.e., the number of ideas generated) and originality/novelty (of
the generated ideas) of divergent thinking [36]. These concepts
are closely related to the (respectively) Quantity and Novelty mea-
sures of engineering ideation effectiveness introduced by Shah
et al. [37]. In design contexts, divergent thinking focuses on gener-
ating potential solutions to a problem. Designers engage in diver-
gent thinking during the early stages of the design process which
require idea generation [38]. In contrast, convergent thinking gener-
ally focuses on quickly and accurately deriving a single solution to a
problem [39]. Compared to divergent thinking skills, convergent
skills are often better represented in engineering courses, but most
designs require one to both diverge and converge to a final solution
to a problem [40]. Although studies in design creativity have

traditionally focused on divergent thinking, designers frequently
shift between divergent and convergent thinking as “a hallmark of
creative thinking” [41]. Therefore, studies in design cognition
should consider assessing both types of thinking. For the current
study, both divergent and convergent thinking are key components
of design thinking required in engineering design and will represent
core design thinking competencies, although we recognize that they
are only two components that were relevant in this particular real,
classroom setting study.

3 Conceptual Framework

Crismond and Adams’ Informed Design Learning and Teaching

Matrix [1], referred to hereafter as “theMatrix,” is a meta-analysis of
over 50 studies of design behavior that contrasts beginning with
informed designers. They define beginning designers as those with
little or no experience in design and informed designers as those
with some design experience and competence between that of a
novice and expert designer. There are nine design strategies outlined
in theMatrix, but two patterns are of interest in this study: generating
ideas and making design decisions. In addition to contrasting pat-
terns in beginning and informed design behavior, the Matrix also
suggests learning goals and instructional strategies to help move
student designers from beginning to informed behaviors. We refer
back to these strategies for teaching implications related to genera-
tive design.
When beginning designers generate their ideas, they tend only to

devise a few concepts and fixate on them compared to informed
designers, who generate multiple concepts using divergent thinking
[42]. Beginning designers often begin their work with very few or
only one idea that they are unwilling to discard or revise. In con-
trast, informed designers come up with many ideas, use divergent
thinking to explore more designs, and do not favor a single solution
[1].
Weighing options or making design decisions is another area

where beginning and informed designers differ. Beginning design-
ers tend to pay little attention to design criteria and constraints and
focus on the bigger picture of the positives and negatives of the
design without considering the associated benefits and tradeoffs
[1]. Informed designers balance benefits and tradeoffs when they
make design decisions as well as justify them. Beginning designers
often cite the benefits of their preferred design choices while
neglecting to mention associated tradeoffs; they also highlight the
negative aspects of less favored approaches while passing over
potential benefits [1].
We use Crismond and Adams [1] as a conceptual framework to

understand two important design behaviors represented in the
Matrix (generating ideas and making design decisions) within a gen-
erative design paradigm and to discuss results in the context of
informed design practices. Generating ideas is of interest because
of the role of generative design in creating a multitude of possible
design solutions, and our goal of understanding any relationship
between the ability of humans to create many solutions and their
ability to reason through AI-generated solutions. Making design
decisions is of interest in understanding if making design decisions
in traditional design is related to reasoning through generative
design solutions.

4 Methods

4.1 Participants and Course Context. This pilot study was
conducted in a large, introductory design and graphics course at a
large, public Midwest University with 94 students (29% women
and 71% men) during the spring 2022 semester. Students were
not expected to have any prior CAD experience before taking this
course.
The course includes a whole-class lecture and a smaller labora-

tory section where students complete CAD modules and work on
their semester-long team project. The students at this university
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have access to FUSION 360 and can perform generative design at no
additional cost. Toward the end of the semester, the students com-
pleted a generative design module that asked them to optimize a
bike frame/wheel design by comparing computer-generated
designs and selecting one to analyze further. We received approval
from the university’s institutional review board (IRB) to analyze
data collected from consenting students in the course.

4.2 Data Collected. Data sources collected over the course of
the semester included: (1) a divergent thinking test, (2) a convergent
thinking test, and (3) a generative design reasoning elicitation
problem. Figure 2 shows the number of students who completed
each assignment. The divergent thinking test was also administered
to 82 students in a separate first-year design course that focuses on
building information design (BIM course) for comparison.

4.2.1 Divergent Thinking Test. The alternative uses test (AUT)
[43] was used to measure divergent thinking. The test was adminis-
tered during the lecture and completed on participants’ electronic
devices via a Qualtrics survey. Students were asked to read the fol-
lowing instructions:

For this task, you’ll be asked to come up with as many original and

creative uses for a BOX as you can. The goal is to come up with cre-

ative ideas, which are ideas that strike people as clever, unusual, inter-

esting, uncommon, humorous, innovative, or different. Your ideas

don’t have to be practical or realistic; they can be silly or strange,

even, so long as they are CREATIVE uses rather than ordinary uses.

Participants were given 3 min to respond, and asked to generate
as many ideas as they could. Example responses could include:
“step stool” or “doghouse.”

4.2.2 Convergent Thinking Test. The VisAha! convergent
thinking measure was developed by one of the authors by modify-
ing the materials and procedure used by Ludmer et al. [44], in which
participants were first shown black and white “camouflage” images
of commonly recognized objects (e.g., sunglasses, shovel, fishing
pole; Fig. 3), and then briefly shown the “real” image to induce a
feeling of insight (an “Aha!” moment). Participants in the present
study were shown 60 camouflaged images for up to 12 s each and
asked to identify the object by typing their response. If a participant
responded to an image, they were asked to identify if they solved
the trial via insight (“… sudden and surprising, as if the answer
just comes to you while viewing the image”), analysis (“… more
deliberate, think of potential objects and try to find them in the cam-
ouflaged images”), or instantly (“The camouflaged image is not a
puzzle for you, you see the object immediately”). Each trial con-
sisted of one image and ended once the participant either responded
before the 12 s had expired or was unable to identify the object
within the time limit. The test was completed in a classroom
setting, in one session that was presented as an extra credit oppor-
tunity. A sample of responses was collected prior to the present
study which showed a normal distribution. While VisAha! was
originally used with a fMRI brain scan to understand brain mecha-
nisms, we used this test to understand convergent thinking in design
as these responses (i.e., insight, analysis, instantaneous) shared sim-
ilarities to how students approached generative design decisions in
previous studies [45].

4.2.3 Generative Design Module. Throughout the semester,
the students completed nine individual modeling assignments and
simultaneously worked on a team design project. In the final mod-
eling assignment (generative design module), students used FUSION
360’s generative design environment, learning a workflow to create
a generative design with given design constraints and load condi-
tions. FUSION 360 generative design environment requires the

Fig. 2 Student participation by assignment

Fig. 3 Convergent thinking test images (the above image is presented to students and the bottom image is the answer)
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designer to: (1) identify and create critical structures of the compo-
nent (i.e., the preserved geometry and the obstacle geometry), (2)
minimize the mass or maximize the stiffness of the structure, (3)
specify a material, and (4) choose a method of manufacturing
(e.g., two-axis cutting, additive). With the data input, the software
can generate a set of outcomes to explore. These outcomes can be
sorted by criteria (e.g., mass, minimum factor of safety, volume,
estimated cost), and the model of any outcome can be exported
for further iteration. In general, the assignment suggests that gener-
ative design tools can be incorporated in the early stages of product

design to help facilitate design alternatives and often require
thoughtful iterations.
In the assignment, students were asked to optimize a bike frame

using shape optimization and a wheel frame using generative design
(see Fig. 4). To begin using the generative design environment to
optimize the bike’s fork, students applied constraints (areas in
which the design is fixed) and loads (forces exerted on the bike).
After applying the design criteria (design objectives and manufac-
turing options), the students generated a set of outcomes to
explore through generative design. In the generative design envi-
ronment, the computer outputs a matrix of design solutions and
allows the designer to use checkboxes to filter through designs
(Fig. 5). Using the output matrix, they compared criteria such as
mass, volume, safety factor, and material to determine what they
considered to be the best design alternative. Students submitted a
screenshot of their chosen design, along with the response to the
three questions outlined in the Generative design reasoning elicita-
tion problem: “Why did you choose this as the optimum generated
design? What features made it stand out? What factors played into
your decision?” The generative design reasoning elicitation
problem was developed to investigate students’ design approach
to an open-ended scenario as they explained their reasoning in
selecting a design solution from a multiple solutions outcome
space. The students initiated the generative design module during
their 2 h lab period and completed it at home. The generative
design module was designed by an expert designer in the field.
There were 61 complete submissions from the 94 students

enrolled in the course. Many students opted out of this assignment
since it was the last assignment of the semester, and they were
allowed to drop one modeling assignment.

Fig. 4 Generative design module—optimize wheel frame using
generative design

Fig. 5 Generative design module possible outcomes
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5 Data Analysis

We employed a multi-method approach [11] in the quantitative
analysis of the divergent and convergent thinking tests and qualita-
tive analysis of the generative design reasoning elicitation problem.
These preliminary analyses are reviewed together to explore the
relationships between design thinking (i.e., convergent and diver-
gent thinking) and generative design reasoning.

5.1 Measure Analysis and Scoring. Once the semester was
completed, answers to the generative design reasoning elicitation
problem, divergent thinking tests, and convergent thinking tests
were compiled, and each student was given an identifier to maintain
anonymity.

5.1.1 Divergent Thinking Test (AUT). Responses to the AUT
were scored across two concepts: fluency/frequency (i.e., number
of ideas generated) and originality/novelty (i.e., average semantic
distance of responses). Semantic distance (or relatedness) quantifies
the novelty of a word or phrase in comparison to a larger sample of
words or phrases [46]. The SEMDIS software [46] calculates the
semantic distance of each AUT response in comparison to five
unique semantic spaces. The distance of a response compared to
the five spaces is then averaged for a single semantic distance
metric, ranging between 0 and 2. A higher score indicates a more
original response, and a higher average semantic distance score sug-
gests a higher ability in originality of divergent thinking ability, i.e.,
more original/unique idea generation. Because divergent thinking is
an essential aspect of creative cognition [41], we wanted to confirm
that our sample of students was similarly “creative” as compared to
a simulation population (e.g., first-year engineering students at an
R1 institution). We performed a t-test to determine whether there
is a statistically significant difference between the divergent think-
ing (AUT) of two sets of first-year design students, our sample of
students who use FUSION 360 for product design and a second set
of students who use Revit for Building Information Modeling.

5.1.2 Convergent Thinking Test (VisAha!). Each VisAha! sub-
mission was scored manually for correctness; every response was
given a binary value. Participants were given the benefit of the
doubt with spelling and grammar and marked correctly if they accu-
rately identified the degraded image. If “fruit” was submitted and
the correct answer was “strawberry,” they were marked incorrect,
whereas if they answered “pawn” and the answer was “chess
piece,” their response was deemed correct. Each student has an
overall score, and scores on identification via insight, analysis,

and instant. The responses of BIM course students were scored as
well.

5.1.3 Generative Design Reasoning Level. We performed a
content analysis to categorize students’ answers systematically to
the open-ended question which asked them to explain their decision
and reasoning for selecting the design among the generative design
outcome spaces. Using the foundation of our conceptual framework
in the informed design teaching and learning matrix, we coded the
level of understanding (low, moderate, and sophisticated) with
which students described the tradeoffs among design criteria perfor-
mance (see Table 1 for codebook). Two of the authors developed
the coding scheme. Then one of the authors and a second researcher
coded the open-ended responses. Inter-rater reliability averaged
90.2% agreement and discrepancies were discussed to reach full
consensus. Next, we performed a second content analysis to catego-
rize design elements that students referenced in their rationale.

5.2 Statistical Analysis. To test the relationship between stu-
dents’ generative design reasoning and their divergent thinking,
we performed a Spearman’s rank correlation. To test the relationship
between students’ generative design reasoning and their convergent
thinking, we performed a one-way between-subjects analysis of var-
iance (ANOVA) to test for differences in responses to the VisAha!
test of convergent thinking between designers with low, moderate,
and sophisticated generative design reasoning levels. Specifically,
four ANOVA tests were conducted based on the four accuracy
metrics gathered by the VisAha! test: total correct, total correct
answered via insight, total correct answered via analysis, and
total correct answered instantly. All analyses were conducted
using SPSS version 28.0.1.0.

6 Results

Results of this study are presented first for quantitative analysis of
the divergent thinking and convergent thinking tests and the quali-
tative analysis of open-ended responses to the generative design
reasoning elicitation problem. The second section provides the sta-
tistical results testing the relationship between generative design
reasoning and divergent and convergent thinking.

6.1 Intermediate Analysis Results

6.1.1 Divergent Thinking Test (AUT). The results of the AUT
indicated that students answered between 1 and 28 unique answers

Table 1 Coding scheme for students’ responses to the generative design reasoning elicitation problem

Codes Definition Example

Low The participant stated the design elements they considered but
didn’t weigh them or elaborate on their reasoning. They stated
aesthetic reasons for choosing a design but didn’t use tangible
things to weigh options.

“The smaller volume was the reason I chose that design. I think the
wheels and the design made it stand out as well as the cylinder at the
top. The design I choose had a lower safety factor as well”
(SP22B_075).

Moderate The participant weighed distinctive design elements and explained
some rationale.

“I decided to choose this design as my optimal generated design
because I felt that it was able to significantly decrease the volume. One
reason I chose this version is because of its aesthetics of it; I
specifically liked the web design of the left side of the object.
However, one drawback of this generative design is that it
significantly decreased the safety factor which may be a bad sign. On
the other hand, it also decreased the volume which indicates that it
uses less material and will be cheaper to manufacture” (SP22B_035).

Sophisticated The participant weighed design elements using context and
considered the design as well as connected the study to reality.

I chose this mainly the fact that it had one of the highest factors of
safety measurements. In comparison to the other designs, it was a little
heavier and contained a higher volume, but it had a high amount of
stress that could be endured before failure. This is important when
designing this part of the bike because this part of the bike may
undergo a high amount of stress and it is important to keep the rider
safe. That is why I chose this specific design. (SP22B_012).
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to the prompt, with a mean frequency (i.e., number of responses) of
5.6, as shown in Table 2. The semantic distance is normally distrib-
uted, while the frequency is not. No significant difference was
found between the average semantic distance of AUT responses
from the participants in our study (M= 0.93; SD= 0.07) and the stu-
dents from the BIM course (M= 0.95; SD= 0.07), t(147)=−1.781,
p= 0.077 (Table 3).

6.1.2 Convergent Thinking Test (VisAha!). The results of
VisAha! indicated that, on average, students got 20.8 correct
responses out of 60, with a maximum score of 46. More students
cited that they made their decision instantly compared to through
insight or analysis.

6.1.3 Generative Design Reasoning Elicitation Problem. The
results of the generative design reasoning elicitation problem indi-
cate that there is a relatively even distribution of level of generative
design reasoning among the class, with 26.2% demonstrating low,
39.3% moderate, and 34.4% sophisticated level of understanding.
Students in all three generative design rational group levels cite
reasons such as volume/mass, the factor of safety, appearance,
cost, material, manufacturing process, stress analysis, and reproduc-
ibility/functionality (see Table 4). Students tended to cite reasons
such as volume, safety factor, and appearance, which were terms
used in the assignment, to reasons such as more abstract concepts,
like the Von Mises criterion, or less technical concepts like product
functionality. As students could cite as many reasons for their
chosen design as they wished, these categories are not mutually
exclusive.
Using our conceptual framework, we also reviewed how students

discussed the pros and cons of their chosen design. Table 5 summa-
rizes how students weighed the design criteria: 43% only cited the
positive(s) of their chosen best design and 52% compared a positive
element(s) of their chosen design to the disadvantage(s) of another
design. Only three students weighed the advantages of their final
design with the disadvantages of that same, suggesting very few stu-
dents behaved as beginning designers as they made their design
decisions.

6.2 Statistical Results. A Spearman’s rank correlation was
computed to assess the relationship between the average creativity
of the divergent thinking test (SEMDIS average) and generative
design reasoning. The correlation coefficient, ρ, ranges from −1
to +1. There was no statistically significant correlation found
between the two variables, Spearman’s ρ (46)=−0.062, n= 48,
p = 0.676.
A one-way between subjects ANOVA test was run to test for dif-

ferences in responses to the VisAha! test of convergent thinking
between designers with low, moderate, and sophisticated generative
design reasoning levels. Specifically, four ANOVA tests were con-
ducted based on the four accuracy metrics gathered by the VisAha!
test: total correct, total correct answered via insight, total correct
answered via analysis, and total correct answered instantly. See
Table 6 for the means and standard errors of each group for these
metrics.
An ANOVA found a significant difference in the total number of

VisAha! correct answers (using any method) between designers of
low, moderate, and sophisticated generative design reasoning
levels, F(2,29)= 4.17, p= 0.03, η2= 0.22. Tukey’s post-hoc analy-
ses showed that a significant difference was found between the
groups with moderate (M= 24.46, SE= 1.98) and low (M=

14.63, SE= 3.22) generative design reasoning, p= 0.02.
A second ANOVA found a significant difference in the number of

VisAha! correct answers (instant) between designers of low, moder-
ate, and sophisticated generative design reasoning levels, F(2,29)=
4.62, p= 0.02, η2= 0.24. Tukey’s post-hoc analyses again showed
that a significant differencewas found between the groupswithmod-
erate (M= 15.15, SE= 1.53) and low (M= 8, SE= 1.76) generative
design reasoning, p= 0.01.
No statistically significant differences were found in the number

of VisAha! correct answers (insight) between designers of low,
moderate, and sophisticated generative design reasoning levels,
F(2,29)=0.23, p= 0.79, η2= 0.01.Additionally, no significant differ-
ences were found in the number of VisAha! correct answers (analysis)
between designers of low, moderate, and sophisticated generative
design reasoning levels, F(2,29)= 1.47, p= 0.24, η2= 0.9.

7 Discussion

Educators have identified challenges in learning and teaching
design thinking skills [3,47]. This study contributes to understand-
ing any relationship between divergent and convergent thinking
and generative design reasoning. The ability to practice idea
fluency and make tradeoffs are essential parts of engineering
design and exist among a continuum between beginning and expe-
rienced designers [1]. Researchers have stressed the need to under-
stand how design tools, such as CAD, impact ideation, and idea
evaluation [48], and more recently, others have noted that genera-
tive design tools may impact the overall design process [9].
Because generative design explores a wide design space in order
to identify design options [5], we expect that generative design
might help students’ ideation as the designer collaborates with
advanced tools to create innovative and high-performing products.
Further, we expect that the ability to make tradeoffs becomes even

Table 3 AUT semantic distance descriptive statistics by course

M SD Min. Max.

BIM course (n= 82) 0.931 0.070 1 1.085
Study participants (n= 65) 0.952 0.067 1 1.093

Table 4 Design criteria referenced in reasoning counts (n=61)

n

Volume/Mass 41
Safety factor 41
Appearance 35
Cost 16
Material 9
Von Mises 5
Manufacturing process 5
Reproducibility/Functionality 5

Table 2 Descriptive statistics for the AUT

M SD Min. Max.

AUT: Frequency 5.6 5.2 1 28
AUT: Semantic distance 0.94 0.07 0.76 1.09

Table 5 Number of students by method of weighing pros and
cons of the chosen design

Listed
positives of
the chosen
design

Weighed the
positives of the

chosen design and
the negatives of
another design

Weighed the
positives and

negatives of their
final design

Count 26 32 3
Percentage
of total

42.6% 52.5% 4.9%
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more critical when using generative design tools that produce
many design alternatives. The generative design module in this
study aims to scaffold the use of generative design tools in a famil-
iar context and allow students to reflect on their design strategies.
In analyzing students’ approaches to their generative design rea-
soning in conjunction with results from psychological tests mea-
suring divergent and convergent thinking, we can better describe
engineering student design thinking in this emerging field of gen-
erative design and propose educational practices to encourage stu-
dents to grow into informed designers.

7.1 Informed Design and Generative Design Tradeoffs.
Results from analysis of the generative design reasoning elicitation
problem suggest that students act as beginning designers [1] when
using generative design tools. Students tended only to cite positive
design elements of the solution they selected (42.6%) or positives of
their chosen solution paired with negatives of another solution
(52.5%) in their design reasoning when weighing design criteria
in the generative design environment. While this behavior is consis-
tent with the way beginning designers make design decisions [1], it
is concerning because when using generative design tools, design-
ers need to develop their ability to make tradeoffs in a large solution
space. In addition, students are apt to make important science con-
nections when they articulate tradeoffs between different solutions
[49], which are important from a teaching and learning perspective.
Therefore, engineering educators must consider how to develop
generative design reasoning, further described in this section.
In addition, students tended to cite reasoning with arguably

easier understood quantitative design criteria such as volume and
factor of safety and were less likely to cite more advanced quanti-
tative concepts such as Von Mises stress or holist design concepts
such as overall functionality. Students tended to cite reasoning
using language from the design module and within the particular
generative design tool the students were using, which might have
limited the concepts they discussed. Previous research suggests
that engineering students grow in their ability to support design
decisions as they advance through their programs. For example,
research from McKenna and team found that students build
design process knowledge in order to understand design solutions
[50], and that capstone students were more likely to use computa-
tional and analytical evidence as support for their design decisions
than first-year students [50].
Engineering education implications: Results from this study, in

conjunction with teaching strategies from Crismond and Adams’
Matrix, suggest that asking students to justify their design decision
is beneficial to students and should be further scaffolded by regu-
larly asking them about both the positives and negatives of
designs, not just in generative design scenarios. In addition, the
Matrix recommends prompting students with questions that will
connect the rationality of design with their emotions so that they
can articulate their values, such as in human-centered design.
Other studies have concluded that many beginning designers
demonstrate a technology-centered understanding of human-
centered design, meaning they described the technical elements of
the design (e.g., volume/mass and safety factor), and few beginning
designers demonstrate human-centered design behavior by using
the context of the product to consider how it will be used [51]. In
our example, such questions might ask, “Which design would be
easier for a human to use?” allowing students to consider and

articulate a more comprehensive set of criteria in their generative
design reasoning.

7.2 Traditional Design Thinking Might Not Indicate
Generative Design Thinking. Using the results from Spearman’s
rank correlation, we found no statistically significant relationship

between students’ divergent thinking and level of generative
design. Inotherwords, thosewhoare creative (divergent) haveno sta-
tistically significant relationship with how well they reason through
generative design solutions. This finding might not be surprising, as
the design competency of reasoning through alternatives might not
have much in common with the competency of idea fluency. More-
over, recent research has pointed to generative design as constraint-
driven design, leading to a different type of design process creativity
compared to traditional design [9].
Using a one-way between subjects ANOVA, we found a statis-

tically significant difference between students’ convergent thinking
and level of generative design reasoning between groups with mod-
erate and low generative design reasoning.While the group of stu-
dents who exhibited a sophisticated level of generative design
reasoning scored higher than the low reasoning group, the differ-
ence was not enough to be statistically significant. The statistically
significant finding might not be surprising, as we would expect
student designers who proficiently converge on one solution in a
generative design space also to exhibit traditional convergent think-
ing. In traditional design, beginning designers “can be oblivious” to
the intricacies of design decisions [1], while informed designers
“are practiced at weighing and articulating” solutions [1]. Recent
research suggests that designers evaluate generated design tool-
generated outcomes in many ways, such as visually and analyti-
cally, before further iterating on a particular solution [9]. Further,
experienced designers use criteria beyond performance objectives
in their design decision, considering many factors “when selecting
from the results created by the generative design tool” [9]. There-
fore, it is an important engineering practice and generative design
practice to evaluate and reason through design solution alternatives.
Results suggest that students who exhibit at least a moderate level of
generative design reasoning might also exhibit more traditional con-
vergent thinking abilities.
Engineering education implications: Results from this study, in

conjunction with teaching strategies from Crismond and Adams’
Matrix, suggest that in addition to the recommendations from
Sec. 7.1., (i.e., asking for students to justify their design decision,
prompting students with questions that will connect the rationality
of design with their emotions so that they can articulate their
values) educators take into account the (potential lack of) relation-
ship between divergent and convergent thinking and generative
design rationale in beginning designers. We still have much to
learn about how students develop generative design competencies
and if these competencies are related to any other traditional
design competencies.

8 Limitations and Future Research

While this study makes progress in studying generative design
thinking in an undergraduate engineering context, it has limitations.
In particular, this study is set at one institution in one course with
students who have self-selected into the study based on attendance,
willingness to complete an extra assignment, and commitment at the

Table 6 Means and standard error of VishAha! by generative design reasoning level

Generative design reasoning level n Total correct mean (SE)
Total correct;
insight M (SE)

Total correct;
analysis M (SE)

Total correct;
instant M (SE)

Low 8 14.63 (3.22) 2.38 (1.17) 4.25 (1.13) 8 (1.76)
Moderate 13 24.46 (1.98) 2.87 (0.89) 6.46 (0.57) 15.15 (1.53)
Sophisticated 11 21.55 (1.69) 3.45 (1.02) 5.18 (0.98) 12.91 (1.31)
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end of the semester. Future research could expand this study and
assignment to a broader population to better understand overall var-
iation, and to substantially increase the sample size. Our divergent
thinking test measure compares students to peers in the same
dataset rather than to a global standard. However, we have
attempted to show that the students in this study do not significantly
differ from the second set of students in a class with a very different
design context. Future work could assess divergent thinking in a
way that compares students with other designers of varying
amounts of experience. While our convergent thinking measure
(VisAha!) has not been validated, we conducted preliminary analy-
ses with an unrelated sample check for a normal distribution in par-
ticipant responses. Future analyses should be conducted to correlate
the VisAha! to other measures of convergent thinking. VisAha! is
relatively time-intensive. As such, we had a small sample (n= 32)
which limits generalizability and calls for future work with a larger
sample. Finally, this study used Autodesk’s FUSION 360 as the
design platform. While FUSION 360 is one of the industry leaders in
the generative design space, the usability of generative design soft-
ware could impact the user’s understanding and comprehension of
generative design.

9 Conclusions and Teaching Implications

While engineering design has been a part of the curriculum for
decades, research into how beginning designers approach AI-driven
CAD, such as generative design is still new. In this study, we ana-
lyzed the relationship of students’ generative design reasoning with
their performance on two tests measuring divergent and convergent
thinking to understand any relationships. While we did not find a
statistically significant relationship between generative design rea-
soning and divergent thinking, we did find a statistically significant
relationship between generative design reasoning and convergent
thinking. One of the key contributions of this paper is to advance
how we think about the relationship between traditional design
behaviors with those of generative design in order to inspire
future research. Our findings, in conjunction with the conceptual
framework of Crismond and Adams’ informed design teaching
and learning matrix, can help position design educators to support
engineering students to move from beginning to informed design-
ers, even when engaging with new computational techniques and
tools, including generative design.
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