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Abstract—Harnessing a range of modeling approaches like
Machine Learning (ML), Deep Learning (DL) ete. for analyzing
spatiotemporal traffic data facilitates precise forecasts, optimizing
transportation planning and congestion management for im-
proved efficiency. Numerous studies in prediction modeling dili-
gently incorporate spatiotemporal correlations into their analyses
but fail to account for epistemic uncertainty which arises from
incomplete knowledge across different spatiotemporal scales.
This study aims to address this issue by capturing unobserved
heterogeneity in travel time by considering distinct peaks in the
probability density function, which we refer to as multimodal
probability distribution while establishing causation through
physics-based principles. The information obtained from this
methodology is then employed in a new model called the Physics
Informed-Graph Convolutional Gated Recurrent Neural Network
(PI-GRNN). This DL model utilizes the inherent structure and
relationships within the transportation network for capturing
sequential patterns and dependencies in the data over time. The
dynamic graph-based approach can utilize data from different
locations and times to improve future travel time predictions
at distant non-contiguous unobserved locations. We employ the
PI-GRNN as the state-space model in the novel KF to obtain
the evolution of the state with time. This approach will help in
mitigating model drift caused by the data-driven approach by
periodically correcting the PI-GRNN predictions with Kalman
filter updates. To the best of our knowledge, this represents
the pioneering data-driven multimodal multivariate learning
approach to construct a dynamic graph of a traffic network.
Furthermore, no other study has used the physics-informed
data-driven technique as opposed to the mathematical model
for the prediction step within the KF framework. Extensive
experiments on real-world traffic data demonstrate that our
model consistently outperforms the benchmark models.

Index Terms—Kalman Filter, Physics-Informed, Graph Neural
Network, Uncertainty Reduction

I. INTRODUCTION

Advances in data intelligence and urban computing enable
the extensive collection of traffic data, serving as vital indica-
tors for assessing the state of the transportation system. This
abundance of data plays a pivotal role in predicting future
traffic conditions. Given the dynamic and unpredictable nature
of road traffic, influenced by factors such as road closures,
accidents, adverse weather conditions, it is imperative that any
predictive model possesses the capability to account for these
variables. This adaptability ensures the accuracy and reliability
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of traffic predictions, addressing the complexity of real-world
scenarios.

Traditional choice theory assumes bounded rationality
among travelers, leading to detour choices and increased
congestion (1). Long-horizon optimization simplifies traffic
states to unimodal distributions, neglecting the complexity of
real-world dynamics. Gaussian processes struggle to integrate
intricate prior knowledge (2). Recent advances like mixture
density networks (3), handle multimodal output distributions,
enhancing predictive accuracy. However, sequential learning
still relies on unimodal distributions. This study proposes a
novel information theory for actively sensing and learning
sequential information, offering a more comprehensive under-
standing of evolving traffic conditions.

(4) developed a data-driven model for forecasting distant
non-contiguous locations’ conditions alleviating uncertainty
and inter-traveler information transfer but fails to address
coincidental correlations introduced due to pure data-driven
approach. (5) addressed this issue using physics-regularized
approach. They developed a Kalman Filter (KF) model by in-
corporating physics-regularized multimodal, multivariate cor-
relations. But KFs use is limited to linear systems with white
noise. Since traffic state is highly non-linear in nature, KF
developed by (5) cannot account for it. To overcome this lim-
itation of KF, different variations like EKF, UKF (6) and CKF
(7) can be used but each has disadvantages associated with
them. EKF relies on linearization, which means it assumes
that the system dynamics and measurement models can be
approximated as linear within the vicinity of the current state
estimate. This assumption breaks down for highly nonlinear
systems, leading to errors. While the UKF is more robust
to non-linearities compared to the EKF, it may still struggle
with highly nonlinear systems, and the choice of sigma point
distribution can impact its performance. Like other nonlinear
filters, the CKF can be sensitive to model errors and deviations
from the assumed system and measurement models. If the
models are significantly inaccurate, the filter’s performance
may degrade. To overcome the shortcomings of these non-
linear filters, hybrid models that incorporate deep learning
techniques can significantly improve their performance.

The studies developed algorithms that use Kalman filters
and neural networks in combination, either to train the state-
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space model’s equations or parameters with a neural network
(8) or to update the neural network’s parameters using a
Kalman filter (9). (10) replaces the Kalman Gain (KG) com-
ponent in KF with RNN but it may struggle with generalizing
to unseen or different situations, making it less robust com-
pared to traditional KF's KG computation, which relies on
predefined mathematical models. To address this shortcoming,
in our study, we replace the state-space model with a novel
physics-informed deep neural network technique. Since the
model has physics-informed component, it positively captures
domain knowledge and non-linearity in dynamic systems. This
modification in KF eliminates the need for accurate knowledge
and modeling of the underlying dynamics. We develop a novel
KF by incorporating these improvements which outperformed
the benchmarks.

In DL, data correlations are effectively captured using
techniques like RNNs (11), CNNs, and attention mechanisms.
RNNs excel in sequential data addressing vanishing gradient
issues through specialized versions like GRU and LSTM (12).
For spatial dependencies, CNNs, GNNs (11) and attention
mechanisms are employed. GNNs suited for graph-structured
data show promise in forecasting applications but often use
fixed graphs lacking adaptability to dynamic changes. This
study introduces a physics-informed multimodal, multivariate
approach for dynamic graph creation integrating spatiotempo-
ral correlations into GNN and GRU. This innovative mixture
algorithm ensures model training aligns with physical princi-
ples, offering a novel perspective on deep learning in traffic
prediction.

The main contributions of our paper are summarized as
follows:

« Our key contribution is the integration of a novel DL
algorithm with a KF mixture, minimizing information
uncertainty in traffic state estimation by leveraging a
DL prediction algorithm within the KF framework for
enhanced predictive accuracy.

« A novel DL model called Physics Informed-Graph Recur-
rent Neural Network (PI-GRNN) utilizes graph structures
to encode meaningful representations of node attributes
and their interactions. By capturing the temporal dy-
namics and evolution of graph data, PI-.GRNN enhances
information aggregation enabling more effective fusion
and propagation across the graph through consideration
of both current node states and historical contexts.

II. KALMAN FILTERING WITH PHYSICS-INFORMED DEEP
LEARNING STATE-SPACE MODEL

The distinguishable aspect of the physics-informed and -
regularized (PIR) model in the hierarchical update steps is the
use of new information obtained from Temporal Multimodal
Multivariate Learning (Figure 1). In this study, we employ
a predictive model rooted in deep learning methodologies, as
elaborated in the subsequent section, to anticipate the evolution
of a selected state variable at the forthcoming time increment
t + 1. This chosen state variable represents a quantifiable pa-
rameter of interest, and our objective is to leverage the inherent
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Fig. 1: Physics-informed and -regularized (P1r) KF in the
hierarchical update steps with PI-GRNN as a state-space
model

capabilities of deep learning techniques to generate accurate
forecasts for this variable’s values at future time points. In the
update step, the predicted state is corrected using the noisy
measurements at ¢+ 1. Clustering identifies similar travel time
distributions. The global correlation between non-contiguous
cells of an entire map is estimated by using Expectation
Maximization. The optimal distribution of the data over K
clusters is determined by maximizing the lower bound of the
log of the likelihood. We decouple the spurious correlations
first and then use the entropy method to estimate the mixture of
multimodal and multivariate distributions. Since, the mixture is
PDF with reduced entropy, providing an accurately estimated
distribution rather than just mean and standard deviation, will
increase the accuracy of updating the error covariance matrix.

A. Multimodal physics-informed deep learning as a state-
space model

This section outlines the creation and refinement of the
prediction model employed within the context of the KF
framework. A traffic prediction problem can be formulated as
a time-series forecasting problem with historical data and prior
knowledge. The prior knowledge used in Graph Neural Net-
work (GNN) is a pre-defined adjacency graph G = (V, £, A).
Here, V is a set of nodes that represent different locations
(e.g., road segments) on the road network; £ is a set of edges
and A € RV*N is the adjacency matrix.

Given the graph G = (V,£, A) and its observed P step
graph signals X;_p)., to learn a function f which can
map X;_py,; and G to next @ step graph signals Xc:(c+Q),
represented as follows:

[X(t—P):tn g] L Xt:(t+Q):

where X pyy = (Xi—p, Xi—py1y---5 Xem1) €
RE*NxD 1) is the number of features of heach node
(e.g., traffic volume, traffic speed, etc.) and X;.(;1q) =

(f(a,f(tﬂ, ‘e ;}A(tJerl) € RYxNxD
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As shown in Figure 2a, Recurrent Neural Networks (RNN)
are used in the case of sequential data as they retain the
previous states in memory while accepting the current state.
Therefore, it becomes a suitable means to solve time-series
predictions. However, RNNs are capable of capturing only
short-term temporal dependencies and have the issue of van-
ishing gradient. These limitations of RNN can be overcome by
Long Short Term Memory (LSTM) (13) and Gated Recurrent
Unit (GRU) (14). GRU has a less complex structure than
LSTM as it has less number of gates, is easy to modify, and
is faster to train. Therefore, we choose GRU for extracting
temporal correlations from traffic time series data. We replace
the matrix multiplications in GRU with the Graph Convolution
(GC) module which is described using the following equations.

2 = 0(Wy[GO(DAs, A), he_1] + b)

re = 0(Wy.[GC(DAg, A), he_1] + by)

¢ = tanh(W..[GC (DA, A), (re * hi—1)] + be)
hy=zxh_1+(1—2z)*¢

D

Where o(.) and tanh(.) are the sigmoid functions, W and

b are the weights and biases in the training, respectively. *
represents the matrix multiplication. D A; denotes a dynamic
adjacency graph at time interval ¢ and A represents a pre-
defined adjacency graph based on geographical locations.
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Fig. 2: The architecture of PI-GRNN

B. Weighted Dynamic adjacency matrix

The probability distribution function (PDF) is computed for
individual road segments within a defined area of interest and
for each designated time interval. This analysis is conducted by
leveraging historical speed data, with the PDF derived through
the utilization of a histogram. This methodology allows for a
comprehensive understanding of the speed distribution across
various road segments over time, providing valuable insights
into the traffic dynamics within the specified geographical
area. The obtained distribution is discerned to exhibit a
multimodal nature indicating the presence of multiple peaks.
This phenomenon is attributed to the diverse traffic patterns
prevalent on the road.

To assess the semantic adjacency among road segments,
it is imperative to evaluate the similarity of their PDFs.
Various distance metrics, including KL divergence, Jensen
Shannon entropy, Hellinger distance, and Wasserstein distance
are considered. Notably, Wasserstein distance or Earth mover’s
distance (EMD), emerges as the most adept for assessing
similarity in multimodal distributions. This metric captures
differences in shape, location and spread between modes,
making it particularly suitable for analyzing the multimodal
distributions. This distance parameter preserves the distribu-
tional information of the data and hence can capture com-
plex structure of multimodal distribution. It does not impose
specific assumptions or constraints on the shape or type of
the distributions being compared. This flexibility allows the
Wasserstein distance to be used for comparing multimodal
distributions that can exhibit various forms and structures. All
these advantages make Wasserstein distance the most suit-
able parameter to measure the similarity between calculated
speed distributions. A larger distance is assumed to indicate
lower similarity, signifying reduced correlation between the
road segments. The weighted adjacency matrix employing
this assumption is calculated following given process. The
Wasserstein distance is calculated using following equation.

min Z’Yﬁj : d(ﬂfnyj) (2)

Wb Q) =, iy —
J
where, Wj (P, Q) represents the Wasserstein distance between
distributions P & Q, W1 (P, Q) € [0,inf), I is a transportation
plan that defines the amount of mass to be moved from each
point in P to Q. It satisfies the constraints of being a valid joint
distribution with marginals P & Q, denoted as y € I'(P, @), z;
& y; represent individual points (samples) from distributions
P & Q, respectively, d(z;,y;) is a distance metric (e.g.,
Euclidean distance or any other suitable distance measure)
between z; and y;. Then, the distance matrix is normalized
between values of 0 and 1 using the following formula. After
that, the following equation is used to generate a weighted
adjacency matrix. The adjacency matrix is a square matrix
providing a succinct representation of semantic adjacency
between pairs of road segments.

(Twe;ghted)a =1-z 3)
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Ii — Tmin

C)]

Zi =
Tmaz — Tmin

where, z; is the value in square matrix to be normalized,
and Tmin & Tmaz 1S the minimum & maximum value in
the matrix, respectively. This matrix is determined for each
10 minutes of time interval within 24 hours. These dynamic
matrices helps to capture wide-range of spatial correlations.
Figure 3a and Figure 3b shows the weighted adjacency matrix
using multimodal data during time intervals 8-8:10 am and 8-
8:10 pm, respectively. The spatial correlation patterns exhibit
variability across different time intervals, as evident from the
two figures.

As the weighted adjacency matrix as described above is
entirely data-driven, it may exhibit spurious correlations due
to the nature of its derivation. These coincidental correlations
can negatively affect the prediction accuracy of the model,
hence it is crucial to remove them. This research paper uses
LWR (Lighthill-Whitham-Richards) which is a fundamental
traffic flow theory to establish causal correlations and remove
spurious ones. LWR is a macroscopic model that represents
traffic flow based on the conservation of vehicles and the
fundamental relationship between traffic density, flow rate, and
speed. Mathematically, it can be expressed using the following
equation:

dp  Oq
ot " Ox
where, p represents the traffic density (number of vehicles per
unit length of the road), t is time, x is the spatial coordinate
along the road and q is the traffic flow rate (number of vehicles
per unit time). The LWR describes the evolution of traffic
density and speed over time and space. If the parameters of
the LWR are similar for two road segments, it signifies that the
relationship between traffic density and speed is comparable
for both of them. It suggests that drivers on these road seg-
ments experience similar congestion patterns, speed variations,
flow characteristics and traffic flow capacities. Similar LWR
parameters may indicate that congestion propagation between
the two road segments is likely to be similar. Congestion in one
segment may impact the traffic conditions in the other segment
comparably. Hence, in this study, we compared the parameters
for all segments using speed and density data collected using
loop detectors over a year.

This study retroactively determines LWR traffic flow model
parameters using a method of characteristics. The process in-
volves solving differential equations backward in time from as-
sumed initial conditions, utilizing collected speed and density
data. Parameters include fundamental diagram parameters and
traffic demand/supply parameters. Employing a least squares
optimization method, the LWR equations are traced back in
time, allowing for the determination of parameter values.
Derived parameters for each road segment are compared
using F-statistics and resulting F-values serve as weights in
the adjacency matrix. These weights reflect the strength and
significance of connections between segments, providing a
quantitative measure of the relationship based on LWR pa-
rameter comparisons. Normalization is applied using equation

0 (5)

4 to ensure values in the adjacency matrix fall within [0,
1]. Figure 3c represents weighted adjacency matrix calculated
using F-values between LWR parameters using multivariate
data.

The spurious correlations are removed from data-driven
matrix using the Graph Fourier Transform (GFT) method.
GFT is computed using a physics-based adjacency graph,
transforming the graph signal from the vertex domain to the
graph frequency domain. The Laplacian matrix is constructed
for data-driven adjacency matrix for each time interval. Eigen-
values and eigenvectors of the Laplacian matrix are computed,
yielding the graph frequency signal. Thresholding is then
applied to denoise the signal, with a threshold value of 0.01.
The Inverse Graph Fourier Transform (IGFT) reconstructs the
denoised graph signal in the vertex domain. This process
is repeated for each of the 144 time intervals, resulting in
denoised adjacency matrices used as input for the prediction
algorithm.

1II. BENCHMARK ANALYSIS

The proposed model is developed using Pytorch 1.1.0 on a
virtual workstation with an NVIDIA Quadro P2200 GPU. The
model is trained using Adam optimizer. The learning rate is
set to 0.001. The hidden state size is kept at 64. The batch size
is set to 64 and the number of epochs is set to 100. To avoid
overfitting, early stopping criteria are enforced. MAE is used
as the loss function and if this metric doesn’t improve for 5
number of epochs, the training is stopped. It takes 3 hours to
train the model.

A. Evaluation Metrics of the Prediction

We evaluated the model performance based on three evalu-
ation indicators, namely the mean absolute error (MAE), the
mean absolute percentage error (MAPE), and the root mean
square error (RMSE). These metrics are defined as follows.

18 .
EIAE:E;g;lE—E|

n

1
MAPE = = Z
i3

(6)

where n is the length of the time series, Y; indicates the
actual measurement, ¥; represents the predicted value from the
model, and "1 | |Y: — f’;‘ denotes the forecast error. MAE
reflects the absolute error of the prediction result. MAPE is a
measure of the prediction accuracy of a forecasting method in
statistics. RMSE can more accurately reflect the ability of the
model to predict the values.

B. Benchmarks for PI-GRNN & KF models

The performance of the PI-GRNN model is compared with
basic statistical models and with the latest hybrid GNN models
using evaluation metrics. The prediction is determined for two
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Fig. 3: Adjacency matrices from data-driven and physics-informed approaches

TABLE I: The evaluation metrics of the developed model and
benchmarks

Model 30 minutes 1 hour

MSE MASE RMSE MSE MASE RMSE
HA 4.20 7.85 13.05% 4.20 7.85 13.05%
ARIMA 5.18 10.5 12.75% 6.95 13.25 17.50%
DCRNN 3.20 6.50 B.85% 3.63 7.64 10.52%
AGCRN 3.25 6.70 9.03% 3.64 1.53 10.40%
DGCRN 2.99 6.05 8.02% 346 T7.25 9.75%
PI-GRNN 274 5.50 7.70% 3.38 7.19 9.68%

horizons, 30 minutes (three time intervals) and 1 hour (six time
intervals). The baseline models are as follows & Table I shows
evaluation results. noitemsep

« HA: The Historical Average (HA) method predicts the
future speed using an average of historical data.

« ARIMA: An autoregressive integrated moving average
(ARIMA), is a statistical analysis model that predicts
future values based on past values.

« DCRNN (15): Diffusion Convolutional Recurrent Neural
Network is a fusion model of GCN with GRU for traffic
data prediction.

« AGCRN (16): Adaptive Graph Convolutional Recurrent
Network is a model that combines GCN with GRU
employing an adaptive graph structure.

« DGCRN (17): Dynamic Graph Convolutional Recurrent
Network model employs dynamic graph in GCN for
spatial correlations and then uses the GRU model to gain
temporal dependencies.

The performance of the KF-PIR & MIXTURE model is com-
pared against the basic statistical model, traditional KF, KF-
TML (4) data-driven model and hybrid KF-deep learning model
KalmanNet (10). We used Mean Absolute Percentage Error
(MAPE) as the measure of uncertainty. We assumed that lower
value of MAPE implies lower uncertainty. The percentage

uncertainty reduction is calculated against the ARIMA model
using the following formula.

MAPEsrrvia — MAPEfier
MAPEArrma
(7

where, M APE arima tepresents MAPE after applying the
ARIMA model while MAPE, ., is MAPE following the
application of the model under consideration to calculate the
percent reduction in uncertainty.

The above formula is employed to calculate the percent
reduction in uncertainty for each model. Figure 4 shows
the significant percent reduction in uncertainty of predictions
when the PIR + Mixture model is employed. Table II shows
the percent uncertainty reduction of all the models. The
results presented in the table show that our model performs
significantly better than benchmarks.

% uncertainty reduction =

TABLE II: Performance evaluation of the developed model
and benchmarks (Part 2)

Model Percent reduction in uncertainty
KF-PIR & Mixture 19.3%

KF-PIR 14.1%

KalmanNet (10) 13.5%

KF-TML (4) 5%
KF-traditional 2.1%

IV. CoNCLUSION

This study addresses the limitation of suboptimal route
suggestions by enhancing travel time predictions. Enhanced
traffic predictions are attainable through data-driven models
that capture unobserved heterogeneity by analyzing a mix-
ture of multiple PDFs. However, the statistical transition of
this knowledge across different times and spaces remains
unexplored in prior studies. Additionally, the incorporation
of physics knowledge serves to regularize potential spurious
correlations within data-driven models.
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This study develops advanced statistical deep learning
model enriched with physics-informed regularization and
cross-entropy-based mixture estimation that exhibit superior
performance in minimizing travel time predictions compared
to the author’s earlier work (5). This paper introduces model
that has ability to capture changing dynamics in system and
utilize it to gain comprehensive spatiotemporal correlations. It
unveils research prospects in physics-informed, information-
theoretic statistical deep learning algorithms.
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