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Abstract1

Neural circuits – both in the brain and in “artificial” neural network models – learn to solve a remarkable2

variety of tasks, and there is great current opportunity to use neural networks as models for brain function.3

Key to this endeavor is the ability to characterize the representations formed by both artificial and biological4

brains. Here, we investigate this potential through the lens of recently developing theory that characterizes5

neural networks as “lazy” or “rich” depending on the approach they use to solve tasks: lazy networks6

primarily solve tasks by selectively modifying readout weights, while rich networks solve tasks by modifying7

weights throughout the network. We further elucidate rich networks through the lens of compression and8

“neural collapse”, ideas that have recently been of significant interest to neuroscience and machine learning.9

We then show how these ideas apply to a domain of increasing importance to both fields: extracting latent10

structures through self-supervised learning.11

Introduction12

When we learn and develop, from learning to play chess to learning to walk to learning a relatively controlled13

laboratory task, the brain undergoes changes that specialize neural circuits to certain functions. However,14

the degree of specialization, and the elements of the environment and task that are specialized for, vary15

significantly across the brain. There is evidence that some brain areas hold a potentially high-dimensional16

(high-d), possibly random mix of many sensory features and task variables, as in high-d mixed-selective17

representations [2,3]. There is also evidence for other brain areas holding information that is very exclusively18

focused on task variables, such as category identity in classification tasks [4]. However, a unifying perspective19

that explains these phenomena is still developing, and it is not clear when and where general-purpose,20
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Figure 1: a) Depiction of a context-dependent classification task, taken from [1]. Top: task is to classify
images based on leafiness. Bottom: task is to classify based on branchiness. b) An idealized schematic of the
lazy to rich, and perhaps beyond, spectrum of representations that can follow from task learning. Asterisks
denote items that are speculative or do not fit neatly into one place. ”Prefrontal cortex” data are taken
from [2] while other brain area data are taken from [1].
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task-agnostic representations should be found versus exclusive, task-specific representations, and what the21

implications may be.22

Artificial neural networks are proving a remarkably useful model system for addressing such questions23

[5]. In this approach, a neural network is trained to perform a task comparable to that performed by an24

animal in an experiment; the network is then analyzed to gain insight into plausible neural mechanisms25

and representations that support task execution. An obvious but appealing aspect of this approach is that26

representations in the artificial system can be measured with perfect completeness and precision. By studying27

the representations formed by neural networks, we can probe the functional role of representational structure.28

Moreover, by e�ciently simulating and comparing representations that arise in many di↵erent settings, or29

performing mathematical analysis of well-defined learning processes, we can ask explicitly whether and30

how structure in these representations depends on the underlying tasks, and on varied assumptions about31

the networks and their learning rules. Of course, how much this informs the underlying biology is a deep,32

classic [6] and still open question, but a still-growing body of recent evidence underscores that the underlying33

representational principles may as well be at work in animal brains [7–9].34

A striking finding that has recently emerged from theoretical investigations of neural networks is the35

large diversity of qualitatively di↵erent solutions these networks find, depending on initialization scheme,36

optimization procedure, and other details. These results belong to a sub-field that is often referred to as37

“feature learning.” A feature is simply an aspect of inputs in a particular domain; feature learning describes38

how learning systems might access or extract useful features that support performing tasks within this39

domain. In neuroscience, the closely related concept of a neural representation is more familiar, which40

ultimately refers to how the biological network represents specific aspects of the external world. Often it is41

the case that useful features are encoded in neural representations. For instance, edges are useful features of42

images that support image classification; it is plausibly for this reason that edge-detecting simple cells are43

often found in primate visual cortex.44

In this article, we highlight an intriguing set of recent findings about learned representations in artificial45

neural networks, and how they may shed light on biological neural representations and the underlying learning46

processes. In particular, we study:47

1. When are networks lazy, in that they learn to accomplish tasks without changing their representations?48

When are networks instead rich, in that they change their representations over the course of learning?49

2. In the case of rich networks, when does this richness reach the level of being exclusive, where their50

representations not just learn but also isolate task-relevant information?51

3. How do exclusive networks shape representations in self-supervised tasks, such as predictive learning,52

to uncover hidden task structure or variables?53

The third question has rapidly become of high importance to machine learning, as training regimens for54

artifical neural networks are increasingly dominated by a self-supervised initial stage, as well as in neuro-55

science, as self-supervised tasks are increasingly used as models to explain marquee neural representations56

such as place and grid cells.57

Reviewing these topics will carry us across a spectrum from less to more extreme examples of feature58

learning: from no feature learning at all to exclusive feature learning that actively removes from represen-59

tations any information inessential to the task at hand. Fig. 1a illustrates the concept of task-relevant and60

task-irrelevant features by showing a task where images of trees are classified either according to the tree61

leafiness or branchiness, according to a context signal. In the first context, aspects of the branchiness features62

are irrelevant to the leafiness features, and vice-versa in the second. Fig. 1b gives a rough schematic of the63

range of lazy to rich to exclusive learning by placing models, concepts, and brain areas along this spectrum.64

Below, we begin with the regime in which features are not learned, known as the “lazy” regime in the65

feature learning literature. This regime has been important in the development of mathematical theories66

predicting the behavior of neural networks [10–13]. We then move to the regime in which feature learning67

occurs, known as the “rich” regime. Within the rich regime, we will investigate the di↵erent degrees of68

richness that can occur, which can be measured by the extent to which networks learn to exclusively repre-69

sent information required for a specific task while rejecting other incoming information.1 Throughout, we70

1
Note that this terminology can be confusing, as the “rich” regime can involve removing information. Here richness refers to

whether or not network representations are “enriched” (i.e. modified) over training in a way that reflects desired task outputs.
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highlight insights that underlying concepts can provide for neurobiology (see, e.g., [1, 14, 15]).71

The lazy learning limit: learning tasks without encoding them72

Lazy learning describes a lack of task-relevant changes in the representation of a neural network (see below73

for a more formal definition). The most basic way in which lazy learning occurs is in model networks where74

internal connection weights are simply held constant by design: they are never allowed to vary from their75

initial values, which are chosen before learning begins. In this case, the only connection weights that are76

changed during learning are the output weights linking a network’s internal activity to its final response. As77

a prominent example, networks whose internal connections are initialized with random internal connection78

weights may perform a su�ciently large number of transformations of their inputs in their internal layers79

(e.g. random nonlinear projections to a high-d space), so that the networks can solve many tasks by changes80

in readout weights alone. For example, in the illustration of Figure 2a, if the network is large, its neurons81

are nonlinear, and the internal (recurrent) weights W are su�ciently strong and random, then a vast set82

of input-output maps may be created by leaving W fixed and just tuning the readout weights. This is the83

approach taken by the related frameworks of support vector machines [16], random feature models [17],84

kernel machines [18], reservoir computers [19, 20], Koopman operators [21], and neural network Gaussian85

processes [22–25]. In particular, reservoir computers have featured prominently in the development of theories86

of neural computation [26]. This perspective of random nonlinear projections followed by learned readout87

weights is also prominent in circuit models for early sensory and cerebellar processing, e.g. [1, 27–29].88

Perhaps more surprisingly, even when we do allow synapses to be modified in both internal and readout89

layers (i.e., training the network “end-to-end”), lazy learning can still occur (cf. [11]). This phenomenon90

has come under intense focus in recent years. While networks will typically engage in some amount of task-91

relevant feature learning, it is theoretically convenient to consider limits in which feature learning either does92

or does not occur. One such limit is called the neural tangent kernel (NTK) limit. NTK theory says that93

if neural networks are initialized in a certain way, and if the size of each layer in the network is taken to94

infinity (as for neural circuits with vast numbers of internal neurons), then the evolution of the weights of95

the network through training – including the intermediate weights – can be described by a relatively simple96

mathematical object; namely, a linear system of ordinary di↵erential equations. The coe�cient matrix of97

this system is called the neural tangent kernel. This theory is enticing because the simple training dynamics98

allow theoreticians to analytically predict aspects of the behavior of the network through training, such as the99

error the network will have on held-out data after training a certain number of steps. These concepts have100

been applied to many network models, including convolutional neural networks as well as recurrent neural101

networks [31, 32]; however, simple unstructured feedforward networks are currently the best understood.102

Early evidence for the existence of a lazy regime for recurrent networks was also found in [33].103

In the NTK limit, the network before training is randomly initialized, and the network weights after104

training (excepting the output weights) remain close to this random initialization, such that the intermediate105

representations are still essentially random. For this reason, networks initialized according to the Neural106

Tangent Kernel theory are said to be in the lazy regime. Due to this lack of feature learning, networks107

in the lazy regime resemble the support vector machines, random feature models, and other related ideas108

described above. A precise definition of the lazy regime can be found in [11]; for our purposes it is su�cient109

to understand that the intermediate feature representations do not change in a task-relevant way.2 This110

said, many adjustments to the initialization scheme and other details can result in more substantial learning111

in internal representations [11]; in general much remains to be discovered (see [11–13,34–40]).112

Interpretations for neurobiology113

We pause to highlight three points important for relating the lazy regime to neurobiology. First, we reiterate114

that the scaling limits considered in these works are motivated mathematically, as they allow for a clean115

theory to be built, but that the ideas of rich and lazy can be used in a less formal way and applied to neural116

networks that are not infinite in size. In addition, while the formal theory as we have introduced it above117

2
To be a bit more precise, the training time would need to diverge to infinity along with the size of the network in order for

features to be learned.
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Figure 2: When do neural networks learn to represent task structure? Illustrating the influence
of initial connectivity. a) Illustration of neural network. Inputs arrive and are transformed in internal,
or “hidden,” layer(s): here, this is the recurrent layer in the central circle. This internal representation is
then read out, via readout weights, to become the output for the task. b) Cartoon comparing training from
a tabula rasa initialization and a random initialization. Initial connectivity strength is denoted by g. Tabula
rasa in this case corresponds to g = 0. Panels c)-g) taken from [30]: c) Depiction of an instance of the
“Mante task.” Here, the network receives two noisy input signals, one of which is relevant in a given trial of
the task and one of which serves as a distractor. The network also receives “context” inputs indicating the
relevant signal. The network is tasked with outputting whether the relevant signal was positive or negative
on average over the time course of the trial. d) Depiction of an instance of the “Romo task.”Here, the
network receives two input pulses separated by a delay, after which the network is tasked with outputting
which of the two pulses had the larger amplitude. e) Frobenius norm of the change in weights resulting from
training, as a function of initial connectivity strength. Colors denote di↵erent tasks. f) First 11 singular
values of the change in weights resulting from training on the Mante task. Color denotes initial connectivity
strength. g) As in f, but for the Romo task. h) - j) Adapted from [1]. See [1] for details. h) Compression
of task-irrelevant versus task-relevant information in a neural network with a single hidden layer trained
on a simplified version of the context-modulated classification task illustrated in Fig. 1a, as a function of
the initial connectivity strength g. More negative values indicate stronger compression of task-irrelevant
information which is indicative of rich feature learning. i) Representation analysis of BOLD signals during
human execution of the context-modulated classification task illustrated in Fig. 1a. Left panel: similarity of
BOLD signals with input-specific features (signifying a lazy representation). Right three panels: similarity
of BOLD signals with output/choice-specific features (signifying a rich representation). j) As in h, but
measured for activity (representations) in di↵erent human brain regions during execution of the context-
modulated classification task illustrated in Fig. 1a.

refers to entire networks as potentially being lazy, we can use this concept for individual layers, or individual118

representations. Finally, we note that while lazy learning is defined above in terms of network initialization,119

there are multiple ways that this the concept of initialization could apply in biological settings; we discuss120
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some possibilities in the section “Interpretations for neurobiology, revisited” below.121

Leaving room for learning: Rich learning of neural representations122

Above, we reviewed how networks that start with strong internal network weights can show lazy learning, in123

which no meaningful learning of task structure occurs in a network’s internal representations. The theoretical124

work underlying this phenomenon also suggests how networks may move away from this lazy learning as the125

(relative) strength of initial weights is tuned down (e.g., see [11]). Here we highlight some recent work from126

computational neuroscience that quantifies the type of learning that occurs in this setting.127

Rich learning from scratch – the tabula rasa regime128

The limit of taking very small initial weights is called the tabula rasa regime, and has played an important129

role in our understanding of network function. Here, the opposite of lazy behavior – termed rich learning –130

occurs: the task structure is strongly learned and represented in the underlying neural network. Fig. 2b shows131

an illustration which contrasts tabula rasa versus the strong and random initialization schemes similar to132

the NTK initialization discussed above. The behavior of the tabula rasa regime was made explicit in elegant133

mathematical studies of deep linear networks [35,41–43]. In this setting, the network picks up the structure134

of the task in a parsimonious fashion through training, with the modes of the input-output covariance matrix135

(the principal components) being transferred to the weights in order of their magnitude. In this way, network136

weights and activities clearly represent the structure of the task. With tabula rasa initialization, at least in137

the tractable case of linear feedforward networks, this is the only structure that weights represent.138

Titrating away from tabula rasa139

A recent study focused on recurrent neural networks explores the intermediate ground between larger and140

smaller norm initializations [30]. In this work, the tabula rasa behavior of the network is reconciled with a141

non-vanishing random initialization. This is done in the context of three tasks, two of which are shown in142

Fig. 2c and Fig. 2d. A key result is how random components of network weights present at initialization143

perturb the learning dynamics away from tabula rasa behavior. In particular, this random initialization is144

“sticky”, with the network weights retaining higher-rank components through training (Figs. 2e to 2g). In145

this case the network after training may assume a lower-dimensional structure more dominated by a single146

mode if the random component is small or a higher-dimensional structure if the random component is large147

at initialization (Figs. 2f and 2g). In general, the main story that emerges seems to be that changes induced148

by learning have a rank that matches that of the task; often this is low-rank. See also [12, 35, 40, 44, 45] for149

explorations beyond the tabula rasa regime, which find similar principles at work.150

In the cases explored in these studies, random components in the weights present at initialization tend151

to remain throughout training. In the section “Learning to be rich and exclusive” below, we will study the152

even more dramatic case of active compression of task-irrelevant information, where the random components153

present at initialization are significantly reduced through training.154

Interpretations for neurobiology, revisited155

We reiterate that both lazy and rich learning are defined above in terms of network initialization and how156

much the representation changes from this initialization. In biological circuits, what an initial network means157

is somewhat up to interpretation. For instance, a neural circuit may be considered tabula rasa at the outset158

of development (connections between neurons being weak or non-existent), and the learning process could be159

a mix of genetically-determined development along with synaptic modifications driven by experience in the160

world. Conversely, circuits that engage in learning a new tasks after a lifetime of learning other tasks may161

be considered to have stronger initial weights. Most settings will, of course, lie in between these extremes,162

and a great deal about the factors that control rich vs lazy learning outcomes doubtless remains to be163

discovered. In the meantime, the spectrum of representations that can arise in neural networks with the164

types of initializations studied to date form intriguing and testable hypotheses for experiments, as we review165

next.166
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Connections to experiments167

Theoretical work exploring lazy and rich regimes has counterparts in experimental neuroscience studies such168

as [1]. In this study, the authors design a context-dependent task that can be solved in two ways: random169

projections to a high-d space followed by a trained readout (corresponding to the lazy regime), or using170

intermediate weights to transform the representation to a compact form (corresponding to the rich regime).171

In line with the computational work reviewed above, the authors found that a neural network trained on the172

task would take on the rich or lazy solution depending on the strength of connection weights in its (random)173

initialization (see Fig. 2h). They then studied neural activity during this task, and found that early sensory174

brain areas represent information in a way consistent with the lazy regime, whereas higher order areas such175

as posterior parietal cortex have representations more consistent with the rich regime (Figs. 2i and 2j).176

Much work remains in charting out the strategies used in di↵erent brain areas across a range of tasks, and177

across di↵erent levels of functional hierarchy. To help address the need to understand brain representations178

across a large range of tasks, the authors of [46] compare across-task similarity matrices of brain represen-179

tations to those formed by neural networks in the rich and lazy regimes, and found closer matches with180

rich networks. The study [47] also observes that deeper brain areas have a rich-learning-like representation,181

and investigates the generalization properties of these representations. These studies indicate the power and182

importance of the theory of rich and lazy networks when modeling neural representations.183

Allied and very interesting concepts appear in the form of “mixed-selective” representations as observed in184

prefrontal cortex [2,3], which correspond to a high-d nonlinear mapping of sensory and task variables into the185

neural representation. We note that a mixed-selective representation is not necessarily equivalent to a lazy186

representation – the degree to which the representation is lazy depends on the degree to which the nonlinear187

mapping of input and task data is specifically tailored to the relevant tasks – a fully lazy representation will188

instead be random (see Fig. 1b for concrete examples). It is an interesting future direction to ascertain the189

degree to which mixed-selective and other neural representations are indeed random (see for example [48–50]),190

and to explore connections to mechanisms underlying lazy learning.191

Learning to be rich and exclusive: compressing away task-irrelevant192

information193

When networks operate outside the lazy regime, they change their internal representations in accordance with194

task demands. But do they become single-minded in this regard, compressing away input and information195

that is not directly relevant to the task at hand? This is a very strong way in which networks could196

encode tasks, since it isolates only the task-relevant information. It can involve the active removal of any197

information initially present but irrelevant to the task; signatures of this removal should be measurable198

in both experiments and model simulations. Such exclusive representations can also, in principle, have199

significant functional implications, such as enabling fast downstream learning and generalization on similar200

tasks [3,51–53], while limiting the ability of downstream networks to learn new tasks that require information201

that has been discarded [2, 54].202

Two complementary perspectives203

We next review two perspectives on the compression of task-irrelevant information from the recent neural204

network literature. We first describe neural collapse, as it takes a direct “geometric” description of this205

compression that is easy to visualize. We then return to the earlier, and inspirational, idea of the information206

bottleneck, which quantifies compression of task-irrelevant inputs using mutual information.207

Dimension compression and neural collapse208

Recent studies [40,52,55–59] have taken a geometrical view on how networks can learn to actively compress209

away aspects of inputs that are not directly relevant to the task at hand, a phenomeon elegantly described210

by Papyan, Donoho, and colleagues as “neural collapse” [56]. Here, the structure of the recurrent neural211

network activity at later timesteps – or of deep neural network activity in penultimate layers – becomes212

very low-dimensional, in certain cases even collapsing to a set of single points. This occurs even though213
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the network is initialized with weights that form high-d representations carrying both task-relevant and214

task-irrelevant information.215

In particular, for tasks with discrete outputs (or categories) into which inputs are grouped, the repre-216

sentation after training can become highly compressed around each category [52, 56, 59]. This behavior was217

observed in the context of change detection tasks [59] and discrete classification tasks [52], where it is referred218

to as dimensionality compression. Figures Fig. 3a-Fig. 3c, modified from [52], give an illustration of this219

phenomenon. Here, the task is delayed classification. First, an input arrives at timestep zero. A recurrent220

neural network then processes this input for some number of timesteps, until an evaluation time when the221

network activity is read out. Fig. 3b shows the phenomeon at hand: a network that has learned this task222

strongly compresses its inputs into clusters corresponding to the task categories. Here, the network at the223

initialization of learning approximately preserves the structure of the inputs; hence, arriving at a collapsed224

representation requires all of the task-irrelevant structure of the inputs to be quashed through learning [52].225

Note that in this example, the two categories of inputs are linearly separable in the input space. Thus, the226

inputs do not need to be reformatted by the recurrent network in order to solve the task, as they could be227

classified with 100% accuracy by the output weights alone. Rather, the highly structured representations228

that form are an interesting by-product of how the network learns to solve the task. As in the preceding229

section, the initial connectivity strength plays a role in the nature of this compression; Fig. 3c shows how230

stronger initial connectivity leads to the formation of chaotic attractors that, while still compressed, are not231

as compressed as in the case of smaller initial connectivity strength (here both initializations are far from232

the tabula rasa regime).233

Contemporaneously, a similar compression phenomenon was observed in convolutional neural networks234

trained on image recognition tasks [56] (Fig. 3d); see also [58, 60]. The work of [56] also discovered further235

very interesting aspects of the geometry of the representation relevant to the higher-dimensional output236

space, such as the compressed clusters lying on the vertices of a simplex, and mathematically analyzed237

consequences of the resulting representations. We note that [61] highlighted a limitation of early studies of238

neural collapse, in that the phenomenon was examined for representations of training data and in cases may239

not be as robust for testing data.240

Overall, we note that neural collapse adds additional structure beyond the low-rank representations that241

emerge in, e.g., linear networks trained in the tabula rasa regime [41, 42]. This is because the action of242

forming distinct localized clusters is highly nonlinear. This said, linearized analysis local to each separate243

cluster may still give insight into the underlying mechanisms [52, 58], especially if this linearization can be244

justified in some limit as is done in [45]. See also [40] for an in-depth analysis of compression in two-layer245

neural networks.246

Information Bottleneck247

The information bottleneck ideas and results by Tishby and colleagues preceded the papers above and played248

a highly influential role in showing how neural networks can compress task-irrelevant information overall249

[51, 62]. The key quantity here is mutual information.250

The authors demonstrate a very interesting phenomenon that can occur in deep neural networks: deep251

layers form representations which learn to maximize mutual information about task outputs, while mini-252

mizing overall information about network inputs. This is illustrated via the “learning curves” in Fig. 3g,253

from [51, 63]. For a given layer T , these curves track two quantities over the course of network learning.254

The first, I(X,T ), is the mutual information between representations in layer T and the network inputs,255

X. The second, I(T, Y ), is the corresponding information for the task outputs, Y . A key point is that,256

as learning evolves across epochs and I(T, Y ) continues to increase, eventually I(X,T ) begins to decrease.257

Thus, task-irrelevant mutual information is gradually compressed over the course of learning.258

Remarkably, the authors also show that this compression can follow a precise optimization relationship,259

in which the mutual information about task inputs is minimized, subject to preserving mutual information260

about task outputs. This connects directly to earlier analytical work on the broader concept of an information261

bottleneck [64]. Moreover, the authors develop a mechanism by which this bottleneck may develop through262

the course of learning in neural netowrks. This stochasticity is inherent in incremental learning processes, in263

which network weights are incremented step by step based the successive examples (or “batches” of examples)264

on which the network is trained. Because each is randomly selected, there is a deviation on each step from265
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the true task gradient. Intriguingly, the authors show how this can, at least under certain assumptions,266

result in the same selective compression of task-irrelevant input information that leads to the information267

bottleneck found in their simulations and broader theory.268

Robustness of exclusive representations269

As in the results reviewed above showing that the emergence of rich vs. lazy representations is not depends (at270

least) on network initialization, the emergence of representations that compress task-irrelevant information is271

also far from automatic. Rather, it depends on many variables including network architecture, initialization272

scheme, loss function, and optimization procedure. In fact, for some tasks that lead to highly compressed273

representations in some settings, even changes to the loss function and details of gradient learning algorithm274

(“optimizer”), can eliminate compression. As a striking example, the compression seen in Figs. 3a and 3b275

vanishes when the optimizer is changed from RMSprop to “vanilla” stochastic gradient descent [52], and the276

network instead uses a lazy strategy to solve the task.277

Given this possibility, when does neural collapse actually occur? The study [52] highlights three mecha-278

nisms that encourage neural collapse: the combination of loss functions that encourage scaling up outputs279

(such as categorical cross entropy) with saturating nonlinearities in the intermediate layers, large variability280

during the training process, and weight decay (in which additional terms are added to the network cost281

function to penalize large weights during training). The underlying theory generally uses a geometric de-282

composition of the learning dynamics into task-relevant and task-irrelevant directions [52,57,58]. In Figs. 3e283

and 3f, we provide supporting evidence for this theory in the context of the deep convolutional neural net-284

work Resnet18 [65] trained on the image recognition task CIFAR-10 [66]. Here, we find that variability285

induced by dropout – where neurons are randomly silenced, similar to a decrease in firing rate caused by a286

biological neuron’s failure to spike – results in more compressed representations (Fig. 3e for the RMSprop287

optimizer, and Fig. 3f for stochastic gradient descent with momentum). This suggests that noise inherent in288

biological neural circuits may drive neural collapse. We use a simple measure of task-irrelevant compression,289

which is simply the average within-class distance divided by the average across-class distance of points in290

representation space. This collapse is measured on testing data, with mean squared error as a loss function291

(compare with [61] where categorical cross-entropy loss is used).292

Similarly, not all networks, tasks, and training processes lead to information bottlenecks. For example,293

[63] argue that this result can be limited to networks with double-sided saturating nonlinearities such as the294

hyperbolic tangent functions, again limiting the universality of the phenomenon (Fig. 3h).295

Titrating the representation: partial compression across time and across layers296

A highly interesting aspect of the compression of task-irrelevant information in neural networks is that, even297

in fully trained networks, it is not necessarily an all or none process. Rather, several studies have shown that298

this compression can occur gradually across layers of deep networks, or gradually across time in recurrent299

neural networks. This gradation has potentially important implications in neuroscience: downstream brain300

areas with access to the neural network at di↵erent stages (layers or timesteps) would have access to di↵erent301

levels of stimulus information. This could be useful in driving di↵erent learning, memory, or behavioral302

systems downstream ( [67] and John Maunsell, personal communication).303

The graded nature of information compression is clearly evident in the information bottleneck formulation,304

where learning occurs in a two-phase process. In the first stage, intermediate layers first gain information305

about inputs and outputs (with input information dominating in the earlier layers and output information306

dominating in later layers). In the second phase, information about inputs is progressively lost (at a rate307

that is faster for later layers) [51, 62] (Fig. 3g). The authors of [52, 58, 60] also study collapse over layers,308

or timesteps in the case of recurrent neural networks. They find that compression occurs progressively over309

the timesteps of the recurrent network (or over layers of a feedforward network). However, when trained310

on low-dimensional input data, the network first lifts the representation into a higher-dimensional space311

in the first few timesteps, reminiscent of the kernel machine approach, before potentially compressing the312

representation back down in later timesteps ( [52], see also [68]).313
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Figure 3: When do neural networks compress task-irrelevant inputs and information? Illustrat-
ing neural collapse and the information bottleneck. a) Illustration of a recurrent network solving a
delayed classification task with high-d, and hence linearly separable, inputs; see text. The network’s cost
function is defined via categorical cross-entropy, with no additional penalty terms added. b) Visualization
of the trained network representation’s top two principal components as it evolves through time. c) As in b,
but for stronger initial connectivity strength. d) Illustration of the representation of the penultimate layer
of a convolutional neural network (adapted from [56]), projected onto the top 3 principle component axes
(axes not shown). Green spheres denote axes of a 2-dimensional simplex, red balls and sticks represent the
normal vectors for classifying hyperplanes, blue balls and sticks denote class means, and small blue spheres
represent last-layer features. Top is before training, middle is at an intermediate stage of training, and
bottom is after training. Note that this representation is induced by the training set, not the test set. e)-f)
Plots of average intra-class divided by inter-class distances over training in the penultimate layer of Resnet18,
where dropout is applied during training (but not during evaluation of distances). Lower values indicate
more task-irrelevant compression. Loss used is mean squared error. Shading denotes amount of dropout
applied. e) Optimizer used is stochastic gradient descent with momentum value of 0.9, a common optimizer
choice in training neural networks. f) Optimizer is RMSprop without momentum, another common choice.
g) Mutual information between a convolutional neural network layer’s representation T and the inputs X
(x-axis) as well as the outputs Y (y-axis) in a convolutional neural network with tanh nonlinearities (taken
from [51,63]). Each curve corresponds with a di↵erent layer T and color denotes training time (epochs). h)
As in g, but with ReLU nonlinearities (taken from [63]).

Connections to experiments314

Many studies have observed neural representations that are highly compressed when compared to nonlinear315

high-d representations. These include [1, 4, 47], which show that particular brain areas such as posterior316

parietal cortex are relatively compressed (see Figs. 2h to 2j). In addition, [4] shows that lateral intraparietal317

(LIP) neurons form a highly-compressed representation that reflects the structure of task outputs, and that318

adapts to new task structures. In contrast, the middle temporal areas have a lazy representation that reflects319

the structure of the inputs and does not adapt to changing task structure320

Less is known about whether certain brain areas/representations truly compress away information that is321

irrelevant to the task at hand, or at what temporal scale information is lost. To quote [4], “The exact nature322

of the role of LIP during learning, and whether changes in the ... representations of LIP are stable or vary323

dynamically with the demands of the task, remain to be determined.” While these questions still await more324

final answers, they can be approached by experimental paradigms that track learning over time. Indeed, the325

work of Stern and colleagues [59] both identified compression of representation dimension computationally326

and found evidence for this compression gradually emerging over days of task learning in widefield activity327

patterns of mice. The degree to which the process of compressing task-irrelevant information – or “learning328

to forget” – can be tracked dynamically in the brain has important implications for our understanding of329

brain function, and remains an exciting direction for further experimental studies.330
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Figure 4: Learning to represent information in the absence of labeled data: Predictive learning
in navigation tasks and emergent latent variables. a-c adapted from [69]. a) Illustration of the
network architecture for a navigational predictive learning task. b) Illustration of the task environment for
a navigational predictive learning task. c) The top three principal components for the representation of a
neural network after training the predictive task, colored by position and orientation, and compared with
other versions of the task. Left: predictive learning. Center: non-predictive learning. Right: predictive
learning without the action information. d) Emergence of grid cells in a recurrent neural network trained
to path integrate. Note that path integration is a form of prediction – velocity signals (actions) are used to
predict future positions. Taken from [70] (reproduced with permission from Nature).

Exclusive network representations in self-supervised tasks331

Above, we have focused on supervised learning tasks, in which every input is paired with an intended output332

– for example images and their labels. However, a vast and rapidly growing field studies neural networks333

trained on data without labels beyond that provided by the inputs themselves – a class of tasks known as334

semi-supervised or self-supervised (see, e.g., [71–74]). Importantly, this setting likely corresponds to much335

of the learning that occurs in neurobiology as well, as in the real world there is usually no explicit “teacher”336

constantly defining correct task outputs but rather sustained exposure to a richly informative sensory world.337

Rather than attempting to cover the vast literature on semi-supervised learning and representations, we338

ask the specific question that ties most immediately to the above: what are the consequences of rich and339

exclusive representations for self-supervised learning? We leave the possibility of lazy solutions to predictive340

learning as an interesting topic for further exploration.341

We focus on the prominent self-supervised setting of predictive learning. In predictive learning inputs342

occur as a time series and networks are trained to predict their future values. Here, the target output of343

the network is a temporally-shifted version of the input, which the network is trained to predict. Thus,344

task-relevant features are features that bear predictive power over future inputs. Conversely, task-irrelevant345

features do not influence future inputs.346

Collapsed representations and the extraction of latent variables347

A prominent example of a predictive learning task is navigation. In one recent study [69], a recurrent network348

was trained to predict future visual observations of an agent moving through an environment (Figs. 4a349
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and 4b). Here, the agent’s actions were part of the input but not the output of the network, thus reflecting350

the agent’s internal knowledge. In such a task the agent’s field of view, and thus its visual observations,351

are completely determined by its state in the environment, the (x, y) location and orientation ✓, so that352

(x, y, ✓) are the underlying latent variables or latent states. This means that if the network could infer353

the current latent state (x, y, ✓) from the visual inputs, it could in principle apply the agent’s actions and354

anticipate future observations, through a downstream mapping from the latent space to observations. The355

work [69] showed that predictive learning extracts such latent states, through activity patterns that emerge356

in a trained recurrent neural network. Moreover, such latent states are less apparent in control networks357

trained to encode, but not predict, their inputs (Fig. 4c).358

In this sense, the predictive network learns a parsimonious model of the structure of its world, and rules359

for how to update the states defining that world based on its actions. In the process, detailed visual scene360

information is compressed. This results in relatively low-dimensional neural representations of the latent361

states. Recall that the task-relevant features here are those that enable the prediction of future inputs – that362

is, the latent states. Thus, the network has learned an internal representation that is compressed around363

these task-relevant features.364

The above gives a concrete illustration of how the ideas of representing task structure and compressing365

task-irrelevant inputs can be applied to the setting of predictive learning: the sole distinction from the366

supervised cases above is that the concept of task-relevant structure has been replaced by the concept of367

latent-state structure [69]. Recently, biologically-inspired Hebbian learning rules have also been derived that368

perform predictive learning [75,76], and the network behavior (and extracted latent variables) analyzed.369

In theory, networks in the lazy regime will not form structured representations such as these. As far370

as we are aware, whether or not networks in the lazy regime are able to satisfactorily perform predictive371

learning remains an open avenue for future work.372

Connections to neuroscience373

Several influential lines of work propose that predictive learning is a major driver of neural representations374

across the brain [77–79]. This said, the modeling approaches proposed for di↵erent brain areas can di↵er.375

Models focusing on the visual stream (i.e. sensory prediction) have historically been decoupled from those376

focusing on hippocampal dynamics (i.e. memory-based prediction). Moreover, the former models have placed377

emphasis on spatial prediction (e.g. completing missing elements of an image), and the latter on temporal378

prediction (similar to that discussed above). In the first instance, predictive models have been found to379

extract representations that reproduce visual receptive fields [80] and other properties of how sensory systems380

encode information [75,81]. In the second, the majority of research has centered on navigation, demonstrating381

that during predictive learning neurons begin to tile location and orientation in their activations [69]. This382

is similar to place cells and head direction cells in navigation-related brain circuits [82].383

The case of grid cells merits special consideration. In [70], the authors trained a network to directly predict384

the next (x, y) location based on the current location, orientation and the action the agent takes (a calculation385

known as path integration) (Fig. 4d). The authors found that many of the units in the trained network386

functioned as grid cells, thus adopting a well-known encoding of spatial latent variables. While a theoretical387

accounting of this phenomenon was provided by [83], the sensitivity of grid cells’ emergence to choice network388

architectures, and training rules, and allied hyperparameters is a topic of ongoing research [70, 84, 85]. As389

one example, the authors of [70] note dropout as an important mechanism in the appearance of grid cell390

representations, perhaps connecting to work on the principles of neural collapse reviewed above.391

Discussion392

The prevalalence of task-trained neural networks as models of the brain is exploding. This makes un-393

derstanding the robustness and universality of neural network behavior essential, so that we can properly394

contextualize the insights these behaviors may provide for neural circuits in the brain. In this spirit, we395

began our review with a fundamental but remarkably subtle question: When do such networks learn to396

encode tasks in an observable way? First, we introduced multiple regimes to determine when neural net-397

works learn task features in their internal representations. Then, we investigated the allied phenomenon of398
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forming compressed representations that isolate information that is relevant to the task at hand. Finally, we399

demonstrated how these principles arise in semi-supervised learning.400

The emergence of task-relevant features in neural representations is not a given401

While both feature learning and compressed/exclusive representations occur widely, they do not occur all402

the time. This is a major takeaway from our review: the details of learning algorithms and network structure403

matter. It may not be su�cient to train a neural network and examine the learnt solutions; rather, it is404

necessary to verify, and illuminating to explore, the robustness of the findings about network representa-405

tions with respect to a number of factors, including initialization and optimization schemes. One extreme406

example is that neural networks can sometimes learn to solve tasks by merely updating output weights dur-407

ing training, or by updating weights in a manner that does not truly lead to learning task-driven features408

(such as with NTK initialization). At another extreme, they may begin with no structure and learn task-409

driven features alone (tabula rasa), or begin with task-irrelevant structure that is removed through training410

(compression/neural collapse). Intermediate outcomes are also possible.411

As such, training a single network as a model of a brain circuit is unlikely to bear definitive results.412

Rather, we will need to evaluate the spectrum of responses that neural networks can exhibit, or clearly413

justify specific choices of their initialization, architecture, and learning rules. Theory can help guide the way414

here. As we reviewed, some of the mechanisms that appear to encourage task-structured representations415

include weight decay, “noisy” optimization processes such as RMSprop and ADAM, saturating nonlinearities,416

and added sources of network noise such as dropout. This said, much remains to be understood about the417

role of these and other network and learning mechanisms.418

Reinforcement learning, and the revenge of the “hand-built” model419

While we have focused this review on the behavior of trained neural networks, there are many other domains420

in which the distinction between lazy and rich solutions is highly relevant. One example are networks trained421

via reinforcement learning algorithms. It is still very much an open challenge to delineate the two regimes422

in this domain, and to work out the functional consequences of the di↵erent approaches.423

Another important example are networks where many components are not trained, but “hand-built” with424

a given functionality in mind. In this approach, typically a theorist has in mind a desired network function,425

and uses geometrical and mathematical reasoning to build networks that fullfill it. In some instances only426

the output weights are trained, and in others there is no need for training at all. An example of the latter427

are attractor networks hand-built to integrate velocity signals in order to track position, such as models of428

head-direction cells [82] and grid cells [86]. Indeed, linking network models of brain circuits provided by429

gradient descent training procedures and those that could be, at least in principle, built by hand, provides a430

fruitful path toward interpreting and understanding how the trained networks actually work (cf. [87]). While431

hand-built models tend to resemble networks in the rich regime, some models, such as reservoir computers,432

are designed to be in the lazy regime.433

Predictive learning in language models and beyond434

We end our review with a discussion on the burgeoning area of self-supervised predictive learning. Prediction435

forces a learning agent to learn how operations and actions influence the world. Such an understanding is436

likely best supported by an e�cient representation that reflects the relatively low-dimensional structure of437

the latent variables, though this remains to be proved. Here, we discussed likely connections to feature438

learning and information compression. However, theory describing the structure (or lack thereof) extracted439

by predictive learning, especially under the wide possibilities of di↵erent initializations, optimization schemes,440

and other hyperparameters, is still in its infancy.441

Language models are a particularly topical example of the ability of predictive models to extract latent442

space information. While we make no attempt to review the tremendous advances made in natural lan-443

guage processing (NLP) over the past decade, we note that the underlying models have employed multiple444

prediction-based techniques to extract language structure. For instance, the famous project word2vec [88]445

reveals that neural networks trained to predict omitted words acquire a representation of these words that446
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forms a latent space map corresponding to word meanings. With this representation, word-based manipula-447

tions appear meaningful (e.g. King - Man + Woman = Queen). Recent theoretical work has enhanced our448

understanding of such vector-symbolic operations [89–91]. The e�cacy of allied models [92] in extracting the449

fundamental structure of languages has led to breakthroughs such as ChatGPT and crosslingual translation450

between any two languages [93–95].451

This said, while predictive training has been a cornerstone in developing language models, experimental452

tests of whether the underlying representations also appear in biological brains have been limited by the453

di�culty of conducting language-based studies in nonhuman animals. Nevertheless, recent research indicates454

that human-level language comprehension involves predictive processing [96, 97]. Finally, we note that455

implicit in the above is our speculation that the emergence of latent variable structure in the representation456

of language is driven, at least in part, by the same factors reviewed above that promote the compression of457

task-irrelevant information. Verifying or rejecting this speculation is an intriguing target for future modeling458

and theoretical work.459
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Reference Annotations710

• ** [1] Investigation of whether the brain performs lazy or rich learning of task structure, in which711

internal representations do and do not learn task structure.712

• ** [30]: Study of the dependence of the learning dynamics of a recurrent neural network on initial713

coupling strength. Includes a mathematical analysis of training on simple tasks predicts changes in714

weight structure through learning.715

• ** [52]: Study of the change in representation induced by training a recurrent neural network on716

a classification task. Depending on initialization and task, the network expands or compresses its717

representation, or a combination of both; factors that encourage compression are identified empirically718

and through some analytical approximations of learning dynamics.719

• ** [56]: Empirical study of geometric compression that occurs in the penultimate layers of image720

classification networks, with rich mathematical analysis of consequences. This work introduced a721

formal definition of compression, called neural collapse, which has inspired many follow-up studies.722

• ** [11]: In-depth study of the (lack of) feature learning that occurs in the neural tangent kernel723

regime and beyond. This study parameterizes neural network initializations and shows how the feature724

learning behavior changes through a large range of these parameterizations.725

• ** [69]. Study of the representations that emerge in recurrent neural networks trained to predict the726

future of their inputs. In this study, an agent moves randomly through an environment, and the727

network is trained to predict the agent’s next observation. This results a spatial map of the agent’s728

location emerging in the network representation over the course of learning.729

• * [44] Study of the learning dynamics for deep linear neural networks, taking into account various730

possible initializations. This theory sheds light on the transition of networks from rich to lazy learning,731

in which internal representations do and do not learn task structure.732

• * [35] Study of neural network learning that proposes that the evolution of the neural tangent kernel733

occurs in two phases. This assumption holds under tabula rasa initialization, but is shown to also be734

approximately true beyond the tabula rasa regime.735
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