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ANALYTIC STATES IN QUANTUM FIELD THEORY ON CURVED
SPACETIMES

ALEXANDER STROHMAIER AND EDWARD WITTEN

ABSTRACT. We discuss high energy properties of states for (possibly interacting) quantum
fields in curved spacetimes. In particular, if the spacetime is real analytic, we show that an
analogue of the timelike tube theorem and the Reeh-Schlieder property hold with respect
to states satisfying a weak form of microlocal analyticity condition. The former means the
von Neumann algebra of observables of a spacelike tube equals the von Neumann algebra of
observables of a significantly bigger region, that is obtained by deforming the boundary of
the tube in a timelike manner. This generalizes theorems by Borchers and Araki ([2,8]) to
curved spacetimes.

1. INTRODUCTION

A quantum field on d-dimensional Minkowski spacetime can be thought of as an operator-
valued distribution ® on RY. For a quantum field ® acting on a dense domain D c H in
a Hilbert space H with vacuum vector €2 the spectrum condition implies that in case a test
function f has Fourier transform f supported away from the backward light cone, the smeared
out field ®(f) annihilates the vacuum, i.e. ®(f)Q =0. More generally, if fi,..., f, are test
functions whose Fourier transforms fl, e fn have the property that supp fl + ...+ supp fn
does not intersect the backward light cone, we again have ®(f1)---®(f,)Q2 = 0. This is a
manifestation of the fact that only states with non-negative energy can be created out of
the vacuum, hence test functions that do not contain a positive energy component yield an
operator that annihilates the vacuum vector.

In a general curved spacetime (M, g), due to the absence of a translational symmetry, there
is no notion of energy or the Fourier transform. Positivity of energy in the above sense can
only be expected in an asymptotic sense. To explain this we consider families of test functions
fn that depend on a parameter h € (0,1]. As h N\ 0 these test functions need not converge,
but they will have localisation properties in phase space that transform covariantly under a
change of coordinates. In this paper we are interested in the analytic category, i.e. we assume
that the spacetime (M, g) has a real analytic set of coordinates with respect to which the
metric g is real analytic. Hence, we only need to consider analytic coordinate changes. The
notion of microsupport of the family f; captures the localisation properties of the family of
functions f;, as A \ 0 in a manifestly covariant way. Roughly speaking the microsupport
is the set of elements (z,£) in the cotangent space T*M with the property that the inner
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product
_d _@=w? i,
(agns f) = (xh) ™5 [ kO ()d

in local coordinates with a coherent state 1, ¢ 5 (y) = (7rh)’%e’i(w’yye’i(z’y){ localized at
the point (z,&) is not exponentially small as A N 0 (see Section 2.2 for the precise mathemat-
ical definition). Here we say a function is exponentially small if it is of order e for some
d > 0 in some appropriate norm or semi-norm. The observation at the heart of microlocal
analysis in the analytic category is that this notion is covariant under analytic change of
coordinates, and it therefore makes sense on an analytic curved spacetime. The microsupport
in this way becomes a subset of the cotangent bundle. Similar notions exist in the category
of smooth manifolds, but the exponential decay needs to be replaced by decay faster than
any power of h. The role of h is that of a scaling parameter. As h 0 the wave packet ¥, ¢

localizes at the phase space point (z,£) at a scale hi after a rescaling (z,£) — (z,h§) has
been applied. The physical intuition is that this corresponds to the regime of high energy in
which asymptotic localization in phase space is possible. This is ultimately the reason why
the corresponding notions make sense on manifolds.

For a quantum field in a curved spacetime it is therefore natural to hypothesize the existence
of states 2 for which

S(f1,n)@(fnn)

is exponentially small as soon the microsupport of the family fi 5 (x1)-fnn(2n) of functions
on M x...x M is contained only in a set that does not correspond to an allowed physical
process. To be more precise, if the microsupport of fij is contained in a region of phase
space that cannot be reached by classical scattering processes from the microsupports of
frnk =2,...,n the vector ®(f11):-P(fn,n)S2 should be exponentially small. In scattering
theory the set of admissible processes is restricted by Landau diagrams (see [22] and [26])
and one expects similar restrictions for correlations in curved spacetimes. For example it has
been conjectured [24] that for certain types of quantum fields in curved spacetimes analytic
singularities only propagate along null-lines and scatter classically. In the generality of the
Wightman framework this seems to be too strong and excludes various generalized free fields.
Another condition that is more likely to include general Wightman fields in Minkowski space
is that analytic singularities propagate along causal curves and scatter classically. Other even
weaker propositions have been stated in [11].

In this paper we are concerned with a very weak form of such a physical condition. Namely, we
call a state Q analytic if ®(f1 )P (fn,n)S? is exponentially small as soon as the microsupport
of fi has positive distance from the backward light cone, and the microsupports of the
frn,k = 2,...,n are contained in the zero section of the cotangent bundle in a uniform
manner. Roughly, it is not possible asymptotically to extract energy from such a state. The
name “analytic state” is motivated by analogy from properties of analytic vectors with respect
to group actions.

We show that for such states we have the timelike tube theorem and the Reeh-Schlieder
theorem. We give here informal versions of the two theorems, assuming there exists a cyclic
analytic vector.
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Timelike tube theorem, (Theorem 5.3): Let R(O) be the local von-Neumann algebra
associated to the space-time region O c¢ M. Let Or be a larger spacetime region obtained
from O by deforming timelike curves in O in a timelike manner with fixed endpoints. Then

R(O) = R(O7).

In case O is an infinite timelike tube then the set O is in some cases the entire spacetime.

Reeh-Schlieder theorem, (Theorem 5.1): R(O)Q is dense in the Hilbert space for any
non-empty open subset O c M.

Both theorems are of structural importance in rigorous treatments in algebraic quantum field
theory. The Reeh-Schlieder theorem is the basic result governing entanglement in quantum
field theory, that opened the path for the use of modular theory. The timelike tube theorem
shows that in defining a net of algebras associated to open sets, only open sets that are
their own timelike envelopes need to be considered. Combining this with relativistic causality
leads to further conditions, as originally discussed by Araki ([2]). We state and prove both
of the theorems as they are similar in nature, but note that the validity of the Reeh-Schlieder
theorem in this context has been known under similar conditions ([31]). To our knowledge
the validity of the timelike tube theorem has not been noted in this general context that is
thought to include interacting fields.

Whether or not the timelike tube theorem holds for even the free Klein-Gordon field on a
general non-necessarily analytic globally hyperbolic spacetime remains an open question. A
counterexample by Alinhac and Baouendi ([1]) shows that there exists a smooth complex-
valued potential V € C*°(R?, C) on three-dimensional Minkowski space, and a smooth function
u e C*(R3,C) with support supp(u) equal to the half-plane {(¢,z,y) e R* | 2 > 0} such that
Ou + Vu = 0 in an open neighborhood of zero. It is currently unknown if such an example
can also be constructed for the metric wave operator or a real potential. Under a partial
analyticity assumption the case of the Klein-Gordon field was treated in [32].

It is likely that all of our analysis carried out in the analytic category works also if one replaces
the class of analytic functions with the quasi-analytic Denjoy-Carleman class which is slightly
more general. A great deal of the geometric framework for this class has indeed been worked
out in [16].

The article is organized as follows. In Section 2 we discuss various notions of microlocal
analysis such as the FBI (Fourier-Bros-Iagolnitzer) transform, the microsupport, and the an-
alytic wavefront set. We briefly explain in Section 3 how these notions come up naturally in
quantum theory and link with the notion of analytic vectors for the time-evolution operator.
In Section 4 we give the mathematical framework for treating quantum fields in curved space-
times and introduce and discuss the notions of analyticity and tempered analyticity. Section
5 contains the statement and proof of the timelike tube and the Reeh-Schlieder theorem. The
appendices provide details of the mathematical framework.

2. MICROLOCAL ANALYSIS AND THE FBI TRANSFORM

Schrodinger quantum mechanics of a single particle on R? is described by the Hilbert space
H = L?(R?) and the Schrodinger time-evolution U(t) which is explicitly determined by the
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Schrodinger equation U(t) = exp(—itH ), where H is a self-adjoint operator, the Hamiltonian.
The Hilbert space is concretely realized here as space of square integrable functions which
encodes the quantum mechanical interpretation of a state ¥ e H, namely |¥(z)[>dz is a
probability measure that describes the probability distribution measuring the presence of the
particle in a space-region. The above is the position representation of the Hilbert space. Using
the Fourier transform F : L>(R?) — L2(R%), f = f, f(€) = (27T)_g [ra f(z)e™@4dx one can
pass to the momentum representation. The probability distribution |¥(&)[2d¢ describes the
probability distribution measuring the momentum of a particle in a region. Whereas precise
localisation in phase space is not possible due to the Heisenberg uncertainty relation there
are still various asymptotic notions of phase-space localisation. An example are the coherent
states
N 1
Voen(y) = (wh) de” 2 "en ,

which localize in a rescaled version of phase space at the point (x,€) as h \ 0. Here h € (0, 00)
serves as formal parameter which should not be confused with Planck’s constant. The idea
of asymptotic localisation in phase space has had a profound influence on the theory of
partial differential equations and the corresponding analysis is more commonly referred to
as microlocal analysis. It can be used to describe regularity properties of distributions in
phase space. There are various approaches to microlocal analysis which we review and link
in the appendix. We will focus here on an approach based on semi-classical analysis and
the FBI transform, which is motivated by developments in the theory of partial differential
equations. Remarkably the original ideas linking analyticity and the FBI transform were in
parts discovered in the analysis of the analytic properties of the scattering matrix in quantum
field theory (see e.g. [26]).

As usual we let S (Rd) be the space of Schwartz functions. Its topological dual is the space
S'(R?) of tempered distributions. As above it is convenient to let transforms depend on an
extra parameter h € (0,00). One defines the semi-classical Fourier transform Fj,, by

1 _ig.
_ fRdf(x)e g, (1)

(Fuf)(€) = )

For fixed h this defines a continuous map Fj, : S(R?) - S(R?) that continuously extends as
Fp,: S'"(R?) - S'(R?) and a unitary map Fj, : L>(R?) - L?(R?). Given a Schwartz function
f e S(R?), and a number h € (0, 00), one defines the semi-classical FBI-transform (T}, f)(z, &)
at the point (z,¢) e R? x R? as

D)) = [ B Dy, =2 ey, 2)

The FBI transform defines for every h > 0 an isometry L?(R%) - L?(R? x R?). We also have
the continuous mapping properties

T : S(RY) - S(RYxRY), Ty, :8'(RY) - S'(R? x RY),
Ty : S(RYxRY) - S(RY), Ty :S'(RYxRY) - S'(R?),
for fixed h. We have T;T}, = id on L*(R%),S(R?), and S'(R?) respectively. Moreover, one
2
checks directly that egT(Th f)(x,€) is holomorphic in z = z —i&.
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This transform is closely related to the Bargman transform and in fact achieves an expansion
of the state into coherent states. Indeed,

Yoen(y) = (h)~Te 3@ i -0)€,

is an L?-normalized coherent state centered at the point (z,¢) in phase space. For fixed h > 0,
the formula T, T} = 1 can be expressed as

u(y) = @) [ (Thu) (@, ) en(y)dads. 3)

In other words, the FBI-transform allows to superpose the distribution from a family of
coherent states. Another inversion formula that is useful in this context is

uw) =28yt [T (1+§-?gradz)(Thu)(x,f)dhdg, (4)

the proof of which can be found in [21, Sect. 9.6].

As h 0 the function e~ 26 @ %) +5 -2 Jocalizes more and more at the phase space point
(y,€). If a distribution u € S’(RY) vanishes near the point y in fact the FBI-transform is
exponentially decaying in h™! as h N\ 0. It is this localisation property that makes it useful
to study local properties of distributions. The FBI transform is also essentially the same as
the wavepacket transform of [12] introduced to study mapping properties of Fourier integral
operators.

2.1. Families of test functions and distributions. It will be convenient to work with
general h-dependent families of test functions and distributions. In case (f3) is a family of
Schwartz functions we say that this family is polynomially bounded if for every Schwartz
semi-norm p we have that p(fy) = O(h™") as h N 0 for some N > 0 potentially depending
on the semi-norm. We call a family (uy) of tempered distributions uy, € S’(R%) polynomially
bounded if there exists a continuous semi-norm p : S(R%) — [0, 00) such that for some N > 0
we have |uy(f)| < R Np(f) for all feS(R?),he(0,1].

The notions discussed here such as polynomial boundedness for families of distributions carry
over to families of distributions (uy),uy, € S'(R?, V) taking values in a Banach space V. We
do not write this out explicitly in an attempt to not overload the notation, but we write
[w(f)|| to remind the reader that these definitions carry over to Banach space-valued families
of distributions, where the norm | - || is the norm on V.

The two notions of polynomial boundedness are compatible as the pairing of a polynomially
bounded family of distributions and a polynomially bounded family of test-functions is a
polynomially bounded function of h.

We will denote by S,'L(Rd) the vector space of polynomially bounded families of tempered dis-
tributions and by Sj,(R?) the algebra of polynomially bounded families of Schwartz functions.
In the examples we have in mind the restriction to the class of polynomially bounded fami-
lies is not a serious one. The advantage of restricting to the class of polynomially bounded
functions is that it is stable under forming tensor products and does not change exponential
decay rates. We call a family of test function (fs) € S,(R?) exponentially small with decay
rate 6 > 0 if for every Schwartz semi-norm p we have p(fp,) = 0(6_5”1) as h \ 0. For ex-
ample, a sufficient condition for a family of the form f1, ® - ® f, 1 € Sh(]Rd X ... X Rd) to
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be exponentially small with decay rate é > 0 is that one of the tensor factors is exponentially
small with that decay rate. Similarly, an element in v € S}’l(Rd) paired with an exponentially
small test function results in an exponentially small function of A.

The semi-classical Fourier transform Fj, and the FBI transform 7}, can be viewed as maps
T : Sp(R?) - Sp(RYxRY),  Tj, : S/ (RY) - S) (R? x RY),
Fn: Sp(RY) = Sp(RY),  F: S (RY) - S (RY)

by applying the maps pointwise, i.e.

— L (2=)2 i(z=y)-
(Tnfn)n(x,€) = an /Rde 2 W e n D f (y)dy.

2.2. Uniform microlocalisation of a family. For a polynomially bounded family of test
functions (up) € Sp(R?) consider the FBI transform (Tjuy). This is again a polynomially
bounded family of test functions in Sy (R? x R?).

Definition 2.1. We say (uy) € Sp(RY) is microlocally uniformly exponentially small in
U c R? x R? if there exists a § >0 such that for all N >0 we have the estimate

I((1+ 22+ N Thup) (2, €)| < Cne " for all (z,8) el

for some Cn > 0.

This definition is very natural when working with Schwartz functions as test functions, in
fact the decay requirements can be expressed in terms of Schwartz semi-norms, as we explain
in Prop. E.1. The complementary notion is that of being uniformly microsupported in a set
K, which essentially means we have microlocal uniform exponential smallness for all points
that have a positive distance to K.

Definition 2.2. We say that (up) € S(RY) is uniformly microsupported in K c R% x R? if it
is microlocally uniformly exponentially small in U, = {(z,€) e RExR? | dist((z, ), K) > €} for

all € >0. In this case we also say uy, is uniformly microsupported away from the complement
of K.

This is intimately related to the notion of microsupport of a polynomially bounded family of
distributions.

Definition 2.3. The microsupport uS(uy) of a polynomially bounded family of distributions
(up) € S,’l(]Rd) is the complement of the set of points (z0,&) € R? x R? such that we have

| Thun(x,€)| < Ce"

uniformly for all (x,&) near (xo,&).

The microsupport measures the (exponential) localisation properties of (uy) in phase space
as h N 0. As an example, one can consider the family of coherent states

Yao o () = (h) "G e 2 F770) gi (20060

which is a family of real analytic Schwartz functions. As an h-dependent family the micro-
support is given by {(z9,&y)} as the functions localize in phase space to this point as h \ 0.
Another example is X ()%, .¢.n(x) with { = 0 and x a compactly supported smooth test
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function that equals one near xy. As this example shows a family of smooth functions may
also have non-zero microsupport, and we can therefore investigate how the field operator
behaves on an h-dependent family fj of smooth compactly supported test functions.

The notion of being uniformly microsupported captures more than the notion of the micro-
support. As an example let

wzm{h,h(x) = (Wh)i%eii(xixh)zei(xth){h

be a family of coherent states with centered at a point (xp,&,) that also depends on h and
escapes to co at a fast enough rate as h — 0. Then the microsupport of 1, ¢, 1 (%) +%z, ¢0,0(x)
equals {(x0,&)} but the family is not microlocally uniformly exponentially small away in
the complement of any ball B.((z9,&)) and is therefore not uniformly microsupported at

{(20,&0)}-

If we pass to the test function space Cg°(R?) there is an inherited notion of uniform mi-
crolocalisation that generalizes to real analytic manifolds. To make this precise we need to
consider families of compactly supported h-dependent polynomially bounded test functions
fn. We do this for a general manifold M. We say a family (fy), fn € C5°(M) is polynomially
bounded if

e there exists a compact subset K ¢ M such that supp(f,) ¢ K for all values of the
parameter h,

e for any smooth cut-off function x € C$°(M) compactly supported in a chart domain
the family (xf5,) is polynomially bounded in S(R?) with respect to the local coordi-
nates of the chart.

The space of polynomially bounded families (f3) of test functions fj, € C§° (M) will be denoted
by S,Oh(M ). For such families of distributions the notion of being uniformly exponentially
small in a subset of the cotangent bundle make sense. The reason is that by Prop. E.5 the no-
tion of exponential smallness transforms covariantly under an analytic change of coordinates.
A mildly subtle point is that upon localisation into a chart domain using a cut-off function
x we can expect uniform exponential smallness only where the cutoff function is constant,
because outside this set it is not real analytic. This leads to the following definition.

Definition 2.4. Given a compact set K ¢ M and a subset N c 7-1(K) c T*M, we say (fp)
is uniformly microlocally exponentially small in N if for any analytic coordinate chart p: M >
O - p(0) c R%, any relatively compact open set U ¢ O and any test function x € C (M)
that equals one near U the family (x.fr) o p~! is uniformly microlocally exponentially small in

(p )" (x=U) N N).

Whereas this definition requires the function to be uniformly exponentially small with respect
to any coordinate charts, it is sufficient to check this in a system of charts as long as the sets
U cover K, again by Prop. E.5. By compactness it is therefore sufficient to check this in
finitely many coordinate charts. The notion of uniform microlocalisation and microsupport
for analytic manifolds and families in C’(‘]’f’h(M ) is therefore consistent with the notion on RY
as above. We note however that the requirement for all the test functions of the family to be
supported in a fixed compact set is essential here.
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Proposition 2.5. Let (uy) € S,Q(Rd) be a polynomially bounded family of tempered distribu-
tions, and let (z,€) e RTxRY. Then (x,-€) ¢ uS(up,) if and only if there exists an € >0 such
that the following holds. For all families (fp) € C(‘)’f’h(Rd), uniformly microsupported in the

ball Be(z,€&) about the point (x,£), we have |un(fn)| = O(e‘5h_1) for some 6 >0 as h \ 0.

Proof. Let x € C5°(R?) be a cut-off function that equals one in a neighborhood of x. Replacing
up by Xup we can assume that (uy) is supported near the point (z,-£). Note that by Prop.
E.3, if (f3) is uniformly microsupported at the point (z,£), then so is (X f). Assume first that
(x, =€) ¢ uS(up), or equivalently (z,€) ¢ uS(up). Then, for some e > 0 we have, uniformly for
all (y,n) € Bae(z,§), the estimate ||Txup(y,n)| < Ce"" for some C,6 >0 and all h e (0,1].
Suppose that (fp) € Cg°h(Rd) is microlocally uniformly exponentially small outside B.(z,&).
We have 7
un(fr) = ' Th(@n), Thfn)r2weay + (Thtn, X2 Th(fr)) L2 (r2a),

where x1,x2 are real valued cut-off functions with x1 + x2 = 1, with supp(x1) ¢ Bae(z,§),
and supp(x2) N Be(z,£) = @. Then x1T,(ay,) is uniformly exponentially small and compactly
supported, whereas T}, f, is polynomially bounded in S (Rd X ]Rd). Hence, the first term is
exponentially small. Similarly, T}, is polynomially bounded in S’(R% x R?) and x2T},(f1)
is exponentially small in & (]Rd X Rd). Therefore, also the second term is exponentially small.
Note that this proof also works when uy, takes values in a Hilbert space H, in which case the
L?-pairing above takes values in H.

Now assume conversely, that for all families (fy,) € Cgf’h(Rd), uniformly microsupported in the

ball B(z,£) about the point (x,&), we have |un(fn)| = O(e_‘sh_l) for some 6 >0 as h N 0.
We need to show that the FBI transform f5(y,n) = Th(ur)(y,n) of uy, is exponentially small
uniformly in (y,7) in a neighborhood U of (z,¢) e RY x RY. Here uy, is the complex conjugate
of the distribution u;. Note that in case wj, takes values in a Hilbert space wy, takes values in
the complex conjugate Hilbert space. In B (z,€&) we can pick for each h a point (zp,&) at

which the maximum of |Tup(x,¢)| on Be(x,€) is attained. Now define f,(2) =g, ¢, 1 ().
Then

(Thun)(xn, §n) = Un(Yay, g0.n) = un(fn)-

Since 14, ¢, .1 is microlocall uniformly exponentially small in the complement of B (z,&) this
shows that Tjuy, is uniformly exponentially small on B (x,€). O

This shows that the microsupport of a polynomially bounded family of distributions is a well
defined subset of the cotangent bundle, and in fact we can use it to define the microsupport
of a polynomially bounded family (us) € D; (M) on a general real analytic manifold (M, g).
We note that there are other coordinate independent approaches to the microsupport, in
particular the theory by Sjostrand that defines coherent states on manifolds by their analytic
properties ([30]).

Definition 2.6. Let (up) be a polynomially bounded family of distributions (up) € Dj (M).
Then pS(up) is the complement in T*M of the set of points (x,€) such that there exists
an open neighborood O ¢ T*M of (x,£) and a function x € C3°(M) that equals one near
7(0) ¢ M and the following holds. For all families (fy,) € Cg5, (M), uniformly microsupported

in O we have ||up(xfn)| = O(e‘6h_1) for some 6 >0 as h \ 0.
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The proposition above simply states that this can also be defined in local coordinates using
the notion of microsupport for Schwartz distributions by multiplying with an appropriate
cut-off function.

2.3. Analytic wavefront sets.

Definition 2.7. The analytic wavefront set WF,(u) of a distribution u € D'(M) is the set
of all (x,£) e T*M ~ 0 such that (x,€) € uS(u). Here u is considered as a constant family.

In fact, for a constant family of distribution the microsupport equals

uS(u) =supp(u) x {0} u WF,(u).

The analytic wavefront set is a conic set, just as the wavefront set ([25, Prop. 3.2.5]). The
above definition is part of a zoo of definitions that we review and link in Appendix B. Roughly
speaking the analytic wavefront set captures in which direction a distribution fails to be a real
analytic function. In particular, if the analytic wavefront set WF,(u) contains no points over
an open neighborhood of a point xg, then u is a real analytic function near xg. The analytic
wavefront set transforms like a subset of the cotangent bundle under analytic changes of
coordinates and is therefore well suited as a notion for distributions on real analytic manifolds.
We now refer to Appendix B and C for further properties of the analytic wavefront set.

The following lemma can be interpreted, intuitively, as showing that test functions with
compactly supported Fourier transforms carry asymptotically no energy and therefore are
microlocally exponentially small away from zero. This can be made quite precise as follows.

Proposition 2.8. If f ¢ S(Rd) 1s independent of h and f has compact support then f = fp
is uniformly microsupported in the set R% x {0} c R x RY,

Proof. Let ¢ > 0. The support properties of f and Ff = h_%f(h_lﬁ)_ imply that there exist
a ¢ > 0 such that Fj,f(&) = 0 when |&| > ch. We have Tj, f(x,€) = en® (T Fif) (€, —z), and
therefore

(6-¢

Tl €)= o [, e ek f 0 60)

(E-£? i R
a3 [ e f(h g ) dbo,
[€ol<ch

For multi-indices o, 5 € Ng integration by parts actually gives

(6-£9)?

T f (2,6) = P [ I ((hg) e H) F(h 6o}y

_(t-¢0)?

= gﬁahh_% 40|<C.h e‘%ﬂvfo (—lha&))a (6 2h f(h_lgo)) d€0

Using [€ — &| > [|€] - [€o|| this implies for || > +¢-h > c-h that
(gl=ch)?

_3d ol - .
|68 Ty f (2, )] < Capanh™2 (1+[g)IPHle™ =207 5™ 07 f| 11 gay.

Yo
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We have applied the product rule to the expression
. _E)? o
(-indg)” (¢ “H o))

and accumulated extra appearing factors into C, 3. This implies the claimed exponential
decay uniformly when |£| > e > 0. O

2.4. The algebra of zero energy functions. For a general analytic manifold we define
the space ng’h’o(M ) of families of compactly supported test functions that are uniformly
exponentially small away from any neighborhood of the zero section in T*M. Intuitively,
these test functions asymptotically do not carry energy. By Prop. E.3 the space ng’hyo(M ) is
a subalgebra of Cg5, (M). If M is compact the functions in Cgj, (M) that are independent
of h are precisely the real analytic functions. In case M is connected and not compact the
zero function is the only function in CgY, 5(M) that is independent of h. There are however
a lot of families of functions in Cg,oh,o(M ) that depend on h. Given a compactly supported
smooth function x € C§° (R?) that is one in a neighborhood of a point y € R? the family
x(@)e T

is an example of a family in Cg% o (R?). Using analytic coordinate charts one can use these
cut-off Gaussians to construct such families on general analytic manifolds M. More generally
we have the following.

Lemma 2.9 (Existence of bump functions). Let M be a real analytic manifold, and let K ¢ M
be a compact subset. Then there exists a family (xp) € CS?h,O(M) such that xp =1 in an open
neighborhood of K.

Proof. We first show this for M = R?. Since every compact subset is contained in a compact
ball it is sufficient to construct such a family for a closed ball centered at 0. To show this
we construct a family (yp) € C’gj’h’o(]Rd) such that x5, = 1 on a ball Bg(0) of radius R > 0
centered at zero. We choose a compactly supported bump function b € C’S"(Rd) that equals
one on Bp,s(0). We choose another bump function ¥ € Cg°(R?) such that Y is one near = = 0

w2
and supported in the ball Bs(0). Then the family x,(z) = )Z(x)(Qﬁh)’ge’ﬁ is supported in
B;s(0), and is an element of &"h’O(Rd). Note that

cp = .[Rd Xr(z)dz =1+7y,

with an exponentially small remainder term r,. Hence cﬁl — 1 is exponentially small. Now
define x}, as the convolution

Xh = cﬁl Xh *b.
This function will be one on Br(0). To see that (xz) € (‘f’hp(Rd) observe that the FBI
transform of the convolution is Ty, (xp)(2,€) = [ra(Thxn)(x -y, &)b(y)dy.

To construct such a function on a general manifold we choose an analytic proper embedding
M - R% Such an embedding always exists (see [19]). The statement then follows from the
fact that restrictions of functions in Cg3, (R?) to M are automatically in C§%, ,(M). This
is an immediate consequence of Prop. E.5. v (]
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We also define the space C,‘:"O(]Rd) as the space of functions fj, in C}° (R?) with the property
that for any compact subset K ¢ M and any compactly supported smooth function x €
C§° (M) that equals one in an open neighborhood of K we have for any € > 0 the estimate

|1+ DN T (e fn) (2, 6)] < e

uniformly on K x (R?\ B,). Again, using local charts one can define the algebra Crro(M).
For fn e Cpp(M) and up, € CF, o (M) we then have frup € CF5, o (M).

Recall that a time function is a function whose gradient is everywhere timelike, and whose
level surfaces are Cauchy hypersurfaces.

Lemma 2.10. Let (M,g) be a globally hyperbolic analytic spacetime. Suppose that v : M —
R,z (11(x),...,tq(x)) is a proper analytic embedding such that t(x) = 11(x) is a proper
time function. Then, for any § > 0 there exists a family of functions (pp) € C’;;?O(M) such
that pp(z) =1 for all x € M with 11(x) >0 and pp(x) =0 for all x € M with 11(x) < -0.

Proof. We construct such a function on R? with the time function (z1,...,24) ~ 1, as in
the more general case this function can simply be restricted to M. The estimate

1+ 16DV T () (2, )| < Ce™

is easily checked to hold for the constant function v = 1. The FBI-transform of a function of
product type of the form f(x1,...,24) = fi(x1)--fa(xq) is the product of the individual FBI-
transforms. It is sufficient to construct the family of functions (pp) in the case d = 1. In the
higher dimensional case we simply take the pull-back under the projection map (x1,...,2q4) -
1. This results in a product-type function of the above form, with all the functions except
the first being the constant function one. Therefore, assume without loss of generality that
d=1.

Next we observe that the above estimate is local in the sense that if a function u vanishes
near a point x, then the FBI-transform satisfies the above estimate near that point. This
also implies that it is sufficient to check the estimate for an open cover. We now use a bump
function pp, € Cgy, o(R) as constructed in Lemma 2.9 that equals one on the interval [0,1]
and has support in [-1,2]. Now simply define

pn(x) = {ﬁh(w) vl

1 x>1"

By the above this function satisfies locally the above estimate, and therefore is in Cp°,(R).
This function satisfies the required properties with § = 1. A simple rescaling argument shows
that such a function exists for arbitrary § > 0. O

3. ANALYTIC STATES IN QUANTUM THEORY

We now look at time-evolution in quantum physics from a microlocal point of view. It is
instructive to look at the various wavefront sets that are naturally associated to this setting.
First consider a unit vector (state) ¢ € H in a Hilbert space. Let H be a self-adjoint operator,
the Hamiltonian that we think of as the generator of time-translations. A typical stability
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assumption of quantum physics is that H should be semi-bounded below, i.e. the spectrum
of H should be contained in the set [-C, 00) for some constant C. With

Utyy =e™y
we then have WF,(U(t)1) € R x (-00,0]. To see this note that by the spectral theorem for
self-adjoint operators we can pass via a unitary transformation to a Hilbert space on which
H is a multiplication operator by a function f on some measure space (X, ) that acts by
multiplication on the Hilbert space L?(X,p). Then, U(t)t is unitarily equivalent to the
Hilbert space valued function

e @y (),

and we can compute the FBI transform in the ¢-variable at the point %
Ti(e () (to, )
- ay, fR o~ 3 (410)° oitS (2) ) () o (to)n g

_ ah\/ﬁe—ﬁ(hf(:r)+n)(hf(w)+n+21to)+iton¢(x)’
and therefore
1T (7 @ ()) (to,m) | = anV/2rhl|e™ 2 BF@ 2 ()],

Since f(x) > —C' this is exponentially fast decaying independent of ¢y as h — 0 as soon as
n > 0. Consequently the analytic wavefront set is contained in R x (—o0,0]. Note that the
analytic wavefront set is however empty if and only if the vector ¥ is an analytic vector with
respect to the time evolution. It is a general result that there is always a dense set of analytic
vectors for any self-adjoint operator, and more generally for any Lie group represented in a
strongly continuous fashion on the Hilbert space. A generic vector is typically not analytic.

It is instructive to investigate the model of Schrédinger quantum mechanics, which we think
of as a quantum field in one space-time dimension. In the following let H be the Friedrichs
extension of the operator
-A+V(x),

on S(R), where V is a polynomially bounded smooth potential satisfying V(z) > az? for
some a > 0. It is easy to check, using the explicit description of the domain of the Friedrichs
extension, that

dom(H) = {p e L*(R) | p ¢ H*(R), V€ L*(R)},
and it follows from the variational principle that there is a spectral gap spec(H) c [og, o)
for some o > 0. Recall that a vector 1 is analytic for H¢ if and only if

Hna
Z H ¢||

converges for some ¢ > 0. Since the spectral measure dF) is supported on [op, c0) we have
for any « € (0,1] the estimate

gl = [ dBw) < og T [T, dBw) = og D )
oo g0

This shows that, for any a € (0, 1], the set of analytic vectors for the operator H® is contained
in the set of analytic vectors for the operator H. We will now refer to this set simply as the
set of analytic vectors without reference to € (0,1]. We note however that there is a dense
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set of vectors which is analytic for all positive powers of the operator H. Any analytic vector
1
1 is in the domain of the operator e*7* for s € (=6,d) and sufficiently small § > 0. This

1
implies that 1 = e %4 satisfies the elliptic equation (-92 + H )1, = 0 and therefore ¢¢(z) is
smooth in s and z. In case V is real analytic we can conclude, by the same argument, that
1 a real analytic L-function on R.
We now consider the time evolution U(t The case a = 1 corresponds to non-
relativistic Schrédinger mechanics, whereas the case o = 1 is a relativistic counterpart. Since

2
a will be fixed throughout we will suppress it in the notations.

) — e—itH"‘ )

The domain of z, regarded as a multiplication operator in L?(R), contains the domain of
H. Hence, the operator A = H'zH™! is a bounded self-adjoint operator. Given f € S(R)
we define Ay = [ f(s)U(-s)H 'aH 'U(s)ds as a Bochner integral. Since U(s) commutes
with H the unbounded operator defined by xy = HAyH defines the formal expression z; =
Jg [(s)U(=5)zU(s)ds avoiding the discussion of integrals of unbounded operators.

Proposition 3.1. If f € S(R) is a Schwartz function, then xy leaves the domain of smooth-
ness dom(H*) of H invariant. For any 1) € dom(H*) and m € N the map

S(R) » dom(H™), f = x 1)

is continuous and therefore defines a tempered vector-valued distribution. If in addition f has
a compactly supported Fourier transform f € Ci°(R), then xy leaves the set of analytic vectors
muvariant.

Proof. We first note that the group U,(t) and the operators H” leave the set of analytic
vectors and the domain of smoothness invariant for all o, 3 > 0. Therefore, we only need
to show that these sets are invariant under the action of A;. We prove first that the set of
analytic vectors is invariant under A; if f is the Fourier transform of a compactly supported
smooth function. Let ¢ be an analytic vector. We need to show that U(t) Ayt is real analytic
in ¢t near zero. We have

U(t)Afw:[Rf(s)U(—s+t)AU(s)dsa/;:([Rf(s+t)U(—s)AU(s)ds)U(t)«p. (5)

By assumption the function U(t)1) is real analytic in t. It is therefore sufficient to establish
that B(t) = [ f(s+t)U(-s)AU(s)ds is an analytic function of ¢ with values in the bounded
operators. Since |U(-s)AU(s)| = |A| is a bounded function of s, the integrand is Bochner-
integrable. Analyticity of B(z) now follows from the fact that f is entire and f(z + 2) is a
complex analytic family of L'-functions.

The invariance of the domain of smoothness is shown in a completely analogous way, replacing
analyticity by differentiability. In case of general f € S(R) the function B(t) is infinitely
differentiable. That x 1) is a tempered dom(H™)-valued distribution follows from the fact
that Ay is a tempered distribution taking values in the bounded operators from dom(H™) to
dom(H™). One infers this directly from

N dm m
|H™Agp| = ||dt—m|t:0U(t)Af¢|| < Cr (1 f lwwmay - |1 (H + 1)l 12wy )

for some constant Cy,, by (5) and the product rule. O
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The operator  corresponds to the physical measurement of position and x(t) = U(-t)zU (t)
is the time-dependent family of operators in the Heisenberg picture. For a test function
f € S(R) then zy plays the role of the smeared out field operator. Given 1 € L?(R) we
can think of z(¢)y as a distribution with respect to the t¢-variable on R and analyse its
analytic wavefront set. We claim that if ¢ is an analytic vector for the group U(t) then
WF,(2(t)1) =R x [0, 00). To see this note that U(t)1) is an analytic function in the variable
t taking values in the domain of H, and hence in the domain of z. Thus, U(-t)zU(t)% is the
boundary value of a holomorphic function near the real axis in the upper half space. This
implies, by Prop. B.3, that WF,(x(t)1) € R x [0,00). If the vector ¢ is not analytic x(t)
generically has wavefront set equal to R x R~ {0}. In this example we have a dense set of
states ¢ with the property that WF,(U(t)v) is contained in R x [0, c0).

A stronger statement is obtained by considering products of these operators and their analytic
wavefront sets. Given a vector in the domain of smoothness dom(H*) = npdom(H¥) the
formal expression
w(ty)-x(tm) Y

can be viewed as a Hilbert space valued distribution on R™. A priori, this expression does
not make sense pointwise because 1) may not be in the domain of z(¢1)---x(t,,). By Prop.
3.1 the smeared out operators xy leave the domain of smoothness invariant, and therefore the
expression is well defined as a tempered distribution. Assuming that 1 is an analytic vector
the analytic wavefront of x(t1)---x(t,,)1 can only contain vectors of the form

(t17£17t27£27 s 7tm7£m)

where the rightmost non-zero number &; is non-negative. This can be inferred from the
following proposition.

Proposition 3.2. Assume that v is an analytic vector. Then the analytic wavefront set of
the distribution x(t1)--x(tm) is contained in the set

{(t1,&1, st &m) [ E1 4+ +Em 20,8+ ...+, 20,...,&, >0}

Proof. 1t is convenient to change coordinates to
z1=t1,22=t2 —t1,...,2m =ty — tin-1.

This is a linear change and therefore induces a continuous map on Schwartz space. In this
coordinate system we have in the sense of distributions

2(t1) - x(tm) = U(=21)aU(-22)xU(=z3)x .. . U(=2p)xU (21 + . . . 2.

By assumption the function U(z1 + ... + zy,)% is an analytic functions in the variables
Z1,...,%2m taking values in the domain of H. We now consider the wavefront set of the
distribution U(-z1)aU(-22)xU(-23)x...U(-2p )z that we regard as a tempered distribu-
tion taking values in the bounded operators from dom(H) to dom(H). To do this consider
HU(=21)2U(~22)xU(=23)x ... U(~zm)xH ™! as a distribution with values in the bounded
operators on L?(R). This distribution can be written as the distributional derivative as
01+ Om K (21, ...,2m) of the distribution

K(z1,...,2m)=U(-21)BU(-22)BU(-23)B...U(-2m)B,

where B is the bounded operator xH~'. Since U(-z) is a bounded holomorphic function
of z taking values in the bounded operators in the region Im(z) > 0 we have that K is the
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distributional boundary value of a function, holomorphic in small region V around the real
axis intersected with

{(z1,.--y2m) | Im(21),...,Im(zy) > 0}.
Hence, by Prop. B.3, the analytic wavefront set is contained in

{(t1, €0, tmy Em) [ €1, -+ Em 2 0}

Pull back with respect to the above change of coordinates shows that the analytic wavefront
set is contained in the set

{(t1 80ty &) [ S04+ Em 20,82+ .. +€m 20,6 2 0}

The same must be true for all distributional derivatives of K. O

4. QUANTUM FIELDS ON SPACETIMES

In the following we assume that (M, g) is a connected n-dimensional spacetime (time-oriented,
oriented Lorentzian manifold). We assume further that M has a real analytic atlas with
respect to which the metric g is real analytic. The purpose of the metric g is two-fold. It
provides an analytic volume form which is needed to identify functions with distributions.
Secondly, it provides a causal structure in the form of a bundle of light cones. In principle it
is not strictly necessary to derive these structures from a metric, but we assume so here for
simplicity of the presentation.

We briefly explain the notations, assuming the signature convention is (+,—,...,—). First, for
a point x € M we denote by V, € T M the closed light-cone in cotangent space with respect
to the metric g, i.e. the set of covectors ¢ € T M with g71(£,€) > 0. Then V, \ {0} is the
disjoint union of the future/past light cone V; . A covector £ € Ty M is called causal if it is
in V; ~{0}. A causal covector is called future directed if it is contained in V7. We write V*
for the corresponding bundles, i.e. V* = u,V*. Therefore, (z,£) € V* will mean that ¢ is
a future directed causal covector. Recall that T*(M x ... x M) is canonically isomorphic to
T*M™ and we will write typical elements as (z1,£1,-. ., Tm,&m)-

4.1. Quantum field theory. A quantum field theory on (M, g) will be defined as an operator-
valued distribution ®, which we will call the field. To be more precise, let H be a Hilbert
space with a dense set D. Then @ is a map ® : C§°(M) — End(D) such that f — ®(f)v is
continuous for every v € D. The operator ®(f) can be unbounded. It is referred to as the
smeared out field. One requires that ®(f) is symmetric on D if f is real-valued. We will
assume for convenience and without loss of generality that D is complete with respect to the
locally convex topology induced by the family of semi-norms

pf1,...,fm(¢) = ||(I)(fl)¢)(fm)¢“7

where m € Ny and (f1,..., fi) is an arbitrary m-tupel of compactly supported smooth func-
tions. We refer to this locally convex topology as the graph topology, as it is generated by
the graph norms of all the elements of the algebra. Since the adjoints are densely defined the
operators ®(f1)---®(f,,) are closable. Therefore, one can always pass to the completion of
the domain, which is then still contained in H.

Given a spacetime region O € M one can form the *-algebra A(Q) generated by the elements
O(f), feCy?(O). In case (f) is essentially self-adjoint for any real-valued f e C5°(O) one



16 A. STROHMAIER AND E. WITTEN

can then consider the weak-*-closure of the set of all bounded operators generated by the
spectral projections of ®(f). By von-Neumann’s bi-commutant theorem this algebra can be
characterized as

R(O)={AecL(H)|VfeC(O),A commutes with (f)}'.

Here R' = {B e L(H) | VA € R,AB = BA} as usual is the commutant of R. Recall that
a bounded operator A commutes with a self-adjoint operator T' if and only if AT = TA as
an inequality of unbounded operators with equality of domains. In particular, A leaves the
domain of T invariant. If T' is essentially self-adjoint on a dense set D € H then an operator
A € L(H) commutes with T therefore if and only if for all v,w € D we have (Tw, Av) =
(w, ATv).

For a general symmetric unbounded operator T' defined on a dense set D we turn this into a
definition and say a bounded operator A € L(H) commutes (weakly) with 7" if for all v,w € D
we have (w, ATv) = (Tw, Av). The set of operators commuting with 7" is then a set that is
invariant under the map *. It is called the weak-commutant of T'. It is easy to see that if A
commutes with T then it also commutes with its closure. It is therefore sufficient to check
commutation on a subset of the domain that is dense in the graph norm, so that the closure
of the operator on this subset coincides with the operator. It is not sufficient to check this
on a dense subset of the domain. As an example consider the Laplace operator A on the real
line and the Laplace operator Ap on the real line with Dirichlet boundary conditions at the
point z = 0. If we take 7= A and A = (-Ap +1)7}, then T and A do not commute. However
we have the relation (w, ATv) = (Tw, Av) for all v,w in the dense set of smooth compactly
supported functions that vanish to infinite order at the point 0. The reason is here that A and
Ap restrict to the same operator on this space of functions, but the self-adjoint extensions
are completely different. This shows that one has to consider domain issues carefully when
using this definition and associated conclusions. For the functional analytic details we refer
to [27] as well as [10] for a discussion in the context of quantum field theory.

The von-Neumann algebra (weakly) associated with the algebra generated by ®(f),f €
C§°(0O) is then defined by

R(O) ={Ae LH)|V(f e CF(O),v,we D), {w, A®(f)v) = (®(f)w, Av)}'.

In this way every quantum field defines a net of von Neumann algebras, i.e. a von Neumann
algebra R(QO) associated to every spacetime region O. Due to the nature of the weak com-
mutant there are further technical conditions that ensure that this is again a local net, i.e.
that it satisfies Einstein causality and the algebras of causally separated regions commute.
We will however not discuss this here any further but refer to [13] for a detailed discussion of
this in the context of Wightman fields on Minkowski space.

We now discuss a mild assumption about the quantum field.

4.2. Physical conditions on states. Whereas on a curved spacetime there is no meaningful
notion of momentum and energy and hence no preferred vacuum state, the notion of energy-
momentum should still exist in an asymptotic sense as a scaling limit. The notion of uniform
microsupport for test functions is extremely well suited to capture this. On physical grounds
one expects from a reasonably passive state ) to not allow for non-physical energy transfer.
Assume that (fj,) localizes in phase space to a point (z,£) as ¢ N 0. For the moment we also
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allow families (¢p,) of states in D describing an asymptotic physical situation. We think of ¢y,
as a physical configuration that may become singular as h \ 0. In QFT we then expect the
following behaviour depending on where in 7% M the point (z,¢) is localized. If (x,&) € V'~
we expect the state ®(f;)Q to have added energy-momentum —h~'¢ near z in an asymptotic
sense. If (z,£) € V* we expect the operator ®(f},) to erase the energy-momentum h~'¢ near
x from the state ¢p. A state Q € D not asymptotically carrying energy should not allow for
asymptotic energy extraction. Hence, ®( f3,)2 should be exponentially small if (z,£) ¢ V™.

The mathematically precise statement depends on the space of test functions employed and
we would like to consider two versions.

4.3. Fields defined on compactly supported smooth test functions. Recall that

on.0(M) is the space of families of test functions that are uniformly exponentially small
away from any neighborhood of the zero section in T*M. Given (qi,h,---,qn,n) € Cg o (M)
we expect intuitvely that the state ®(q1 ) --®(gn,n)S2 contains no asymptotically extractable
energy. We therefore should have that

S(fr)®(q1,n) P (qn,n)

is exponentially small if f; microlocalizes uniformly at a point (z,£) ¢ V~. This motivates
the following definition.

Definition 4.1. A vector Q € D is called analytic if the following holds. If f, € Cy°(M) is
microlocally uniformly supported in a compact set K ¢ T*M with K nV~ = @& then, for all
families (g1 1)+, (Gnn) € Cg,oh,O(M)’ we have the bound

1)@ (qun)®(gnn)Q < Ce

for some C >0,6 > 0.
The subspace of analytic vectors will be denoted by D, c D.

Using Prop. 2.5 the above condition can be completely paraphrased in terms of analytic
wavefront sets.

Proposition 4.2. A vector Q € D is analytic if and only if for all n € N the Hilbert space
valued distribution ®(-)---®(-)Q2 on M™ defined by

f1©...8 frn=> O(f1)P(fr)

has its analytic wavefront set contained in the set of mon-zero covectors (x1,&1,...%n,E&n)
satisfying for all 1 < k < n that
(if & =0 for all j > k) then & e V™,

In other words the first non-zero covector from the right must be future directed and causal.

Proof. That the wavefront set condition for k = 1 implies analyticity is a direct consequence
of Prop. 2.5. We therefore only need to show that analyticity implies the analytic wavefront
set condition for any 1 < k < n. To show that the wavefront set condition is satisfied it
is sufficient, again by Prop. 2.5, to show that for families fip,... fn 4 € C53, (M) with the
properties ’

¢ (frn) is uniformly microsupported in a compact set of positive distance to V7,
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o (fix) € Cao(M) for all j >k,

we have that the family of vectors ®(f1.5) - ®(fr-18)P(fe,n)P(frr1.h) - P(fn,n)S? is exponen-
tially small in the norm as A ~ 0. This is equivalent to

(@(fr,) P(fr-1,0) @(fr,n) @ (fr,n) 2, P(f1,0) P (frm1,n) P(frn) P (fro,n)S2)
= (P (fr-1,0)@Cfrn) @ frn) @ (fo-10) @ frp )@ (frn) 2 @(frp) P (frn) )

being exponentially small. Since the family of test functions

Je-1h®. .. ®fin®fin®...8® fro1h® fra®...® fun

is polynomially bounded the Cauchy-Schwarz inequality shows that exponential smallness is
implied by exponential smallness of the family

O(frn) @ (fr,n)2

By Prop. 2.5 exponential smallness of this vector as h \ 0 is a consequence of analyticity. [

For a realistic quantum field we expect the set D, to be dense in the Hilbert space and in the
domain of the field in the following sense. For every v € D there exists a sequence v, € Dy,
such that for all f1,..., f, € C5°(M) we have in the Hilbert space norm

vp = v, and P(f1)P(frm)vn = P(f1)P(fim)v.

This means that D, is a dense subset in each of the domains of ®(f1)--®(f,,) with respect
to the graph norm.

Remark 4.3. We note that whereas we assume that D is invariant under ¢(f) this cannot
be assumed for D, as this is not compatible with Finstein causality. To illustrate this we
restrict this discussion to bosonic fields, for which the fields commute at spacelike separation.
Assume ¢ was a vector in Dy such that ®(f)¢ € D, for all f € C5°(M). Then the distribution
[®(:), ®(f)]¢ vanishes in the causal complement of the support of f and has its analytic wave-
front set in V*. Since V' is one-sided this distribution has the unique continuation property
and must therefore vanish (c.f. Prop. D.2). It follows that [®(-), ®(f)]¢ vanishes. Since
this is true for all f with sufficiently small support it follows for all compactly supported f.
Hence, [®(f1),®(f2)]¢ =0 for all test functions fi, fa € C§°(M). The existence of the dense
and invariant set of analytic vectors therefore implies that the field algebra is commutative.

To keep the notations short we write A for the algebra generated by ®(f), f € C5°(M). Given
an open set O ¢ M we write A(O) for the algebra generated by ®(f), f € C;5°(0O). Recall
that a vector ¢ € D is called cyclic for an algebra of operators B on D if the set B¢ is dense
in ‘H. In Minkowski theories, one usually assumes that the vacuum € is a cyclic vector for
the field algebra, and in fact that A€ is dense in D with respect to the graph topology. It is
also natural to assume that there are many vacuum-like states 2 € D, in the sense that there
is a dense set of cyclic analytic vectors.

The existence of an analytic vector Q € D, with AQ being dense in D with respect to the
graph topology is one of the weaker conditions one can make, and it readily implies two
important properties of the quantum field: the Reeh-Schlieder property and the timelike tube
property. The Reeh-Schlieder property means that the vector €Q is a cyclic vector for the local
algebra A(Q) for any non-empty open O ¢ M. The timelike tube property is that the local
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von Neumann algebra R(O) of region O coincides with the local von-Neumann algebra of
a potentially much bigger region, Er(0O), the timelike hull of O. We will state the precise
theorems in Section 5.1.

We will see below that in case the theory satisfies a certain temperedness assumption the
existence of a cyclic tempered analytic vector implies that there is a dense set of tempered
analytic vectors.

4.4. Tempered fields. In Minkowski space a good choice of test function space is the space
of Schwartz functions S (Rd). This space is particularly suited for spectral considerations as it
contains the space F(C{° (R?)) of functions that are localized in momentum space. Moreover,
this space treats configuration and momentum space on an equal footing.

To define an analogue of Schwartz space on a general analytic manifold (M, g) one needs to
specify some extra structure such as a special coordinate chart near infinity. We will choose
here a more flexible path, by embedding the spacetime analytically into R .

Any real analytic manifold (M, g) can be analytically embedded into R? in such a way that
the embedding is proper (see [19]). Given such an embedding, and restricting the space
of functions to M c ]Rd', we can define Schwartz spaces and spaces of analytic functions
on a general real analytic manifold. In the following we fix a proper analytic embedding
t: M — RY. We denote by S(M) the space 1*(S(R?)) of the restrictions of Schwartz
functions. We equip S(M) with the natural quotient topology. The resulting topology is
stronger than the C'*°(M)-topology of uniform convergence of all derivatives on compact
subsets. We have now constructed nuclear Frechét space S(M) in which C§°(M) is dense. Of
course, also S,(M) = L*(f(CSO(Rd,)) is dense in S(M). This space is subspace of the space
of real analytic Schwartz functions that arise from restrictions of entire functions to M.

It is worth noting that the map 7:R% - R defined as

i(x1,...,2q) = (x1exp(z?), ..., xq exp(:t?i,))

is also a proper analytic embedding and the pull back (*S (Rd) then consists of exponentially
decaying real analytic functions. This means the embedding can always be modified so that
S(M) consists of extremely fast decaying functions.

For Schwartz functions a uniform notion of localisation at the zero section can be defined
as follows. We say f, € Sh7o(Rd) if f, microlocalizes uniformly away from any tubular
neighborhood of the form {(z,&) e RIxR? | || < €}, > 0. Now define S, o(M) = L*Sh,o(Rd,)
and Sy (M) = 1*Sy(R?') by restriction. This definition is well behaved under various canonical
constructions.

e In case d' > d we have for the standard embedding ¢ : R? - R (z1,...,24)
(z1,...,24,0,...,0) that t*Sp o(R?) = Sp.0(RY).

e If N is closed (compact without boundary) then S, o(V) is independent of the em-
bedding and equal to Cg5, o (V).

The notion of (fy) € CF, (M) is defined with respect to local analytic coordinates, whereas

the notion of (fy) € Spo(M) is defined relative to an analytic embedding. However, for
families (f5) € Cg3, (M) we have (fn) € Sp,o(M) if and only if (fy) € Cgy, o(M). Hence, the



20 A. STROHMAIER AND E. WITTEN

notions by analytic coordinates and by embeddings coincide. In particular this also implies
that the dependence of the space S, o(M) on the embedding disappears upon restriction to

&"h’o(M ). The main purpose of the embedding is thus to control the microlocal properties
of the functions near infinity.

Example 4.4. The Schwarzschild-Kruskal spacetime is a four dimensional analytic spacetime
which is analytic-diffeomorphic to O x S%, where O is the region {(T,X) e R? | T? - X? < 1}
in R?. The equation

T2 - X2=(1- —)ezr
2M
implicitly defines a function r(T,X). Then the metric is given by

32M3 .
= e 2 (dT? - dX?) - 12 gge.

9

The above description is called the Kruskal-Szekerez coordinate system. We can embed this
spacetime analytically in R® as follows. We choose the canonical embedding p:S* - R3. We
embed O into R3 by the map

) T
p:O->R’, (T,X)m (=,T,X).
T

Then v = p @ p embeds the entire spacetime analytically into RS. A function in S(M) with
respect to this embedding is a function f: M — C that can be written in the form

f(T,X,y)=g(§,T,X,y)

where g € S(R®). One can check that the function 1y = % is a global time function whose level
surfaces are spacelike Cauchy hypersurfaces.

Definition 4.5. A vector Q € D is called tempered analytic if the following holds. If fp €
Sp(M) is microlocally uniformly supported in a compact set K ¢ T*M with KNV~ = @ then,
for all families (q1 1), --.,(qnn) € Sho(M), we have the bound

12 fn)@(q1,n)P(gn,n)82 < Ce%h™

for some C >0, >0. The subspace of analytic vectors will be denoted by Dy, c D.

It is clear that Dy, € D, € D. The condition of being tempered analytic seems to be a stronger
conditition than that of being analytic. In particular, the existence of a tempered analytic
vector readily implies that there are many other tempered analytic vectors. The following
theorem should be compared with Prop. 3.1.

Theorem 4.6. Suppose that there is a proper embedding ¢ : M — RY such that the quantum
field ®(-) extends as an operator-valued distribution to the test function space S(M). Assume
that Q c Dy, is tempered analytic. Then for any collection of test functions g1, . .., gm € Sa(M)
the vector ®(g1)--P(gm )2 is also tempered analytic.

Proof. This follows immediately from the inclusion S,(M) € Sy, 0(M) and Prop. 2.8. O
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This means the set of analytic vectors is invariant under the action of fields smeared out with
certain real analytic test functions. Since S,(M) is dense in S(M) the continuity assumption
implies that the sets

{@(91)@(gm) 2] 915+, gm € Sa (M)}, {P(91) = P(gm)2 | 91, - -, gm € S(M)}

have the same closure. In particular, if €2 is cyclic, the existence of a single tempered analytic
vector implies that there is a dense set of tempered analytic vectors. The counterexample at
the end of Appendix C shows the difficulty of proving such a statement based on a restriction
on the analytic wavefront set, as in Prop. 4.2, without a hypothesis of temperedness.

We now discuss the relation to Minkowski theories in more detail.

4.5. Wightman fields in Minkowski spacetime as an example. It is instructive to
understand the above assumption in the context of Wightman field theories on Minkowski
space, where it is automatically satisfied. Indeed, let (®,H, ) be a Wightman quantum field
theory on d-dimensional Minkowksi spacetime. In this case the invariant domain D would be
cyclically generated from the vacuum vector €2, i.e. is the graph-closure of the span of the set
of vectors of the form

q)(fl)q)(fn)97 flv"'vf’ﬂeS(Rd)'

This domain is invariant by definition. It is known that the set D, defined as the span of

O(f1). .. ®(fa)Q  fr..-s fn € Sa(RY).

is a dense set in the sense discussed before, and we have
WF(®()p) cV*, forall ¢ e D,.

The set of vectors D, can be interpreted as the set of the states with finite spacetime mo-
mentum. Of course functions that are compactly supported in Fourier (momentum) space
cannot be compactly supported in spacetime. It is therefore necessary to use Schwartz func-
tions rather than compactly supported smooth functions as test functions. In fact, a stronger
statement is true.

Theorem 4.7. Let (®(-),D c H,Q) be a (tempered) Wightman quantum field in d-dimensional
Minkowksi spacetime satisfying the spectrum condition. Then the vector € is a tempered an-
alytic vector.

Proof. We assume that the family (f) is uniformly microsupported in the zero section
RY x {0} if k = 2,...,n, and that (f1,n) is a family uniformly microsupported in a subset U
that has positive distance from the backward light-cone V™ = {(z, &) | g(£,£) <0,& < 0}. For
brevity we write N =n-d and we introduce the following sets

K={((z1,&),. .-, (2n,&)) eR*N | & +... + & eV},
K = {(2,) e R*Y | dist((x,€), K) <€},
Q=proy(K)={(&1,....6) e RN | &1+ ...+, e V),
Qc = {¢ e RY | dist((2,€),Q) < e}

Hence, the family (fi, ® - ® fy 1) is uniformly microlocally exponentially small on K. for
some € > 0.
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We need to show that
[2(fr.0)P(fo,n) P (frn)Q

is exponentially small. This is of course equivalent to

Wan (frhs fn-1hs o fLks fLhs fohs s ouh)

being exponentially small. We consider the following h-dependent family (up) € Sj(RY)
defined by

uh(.fh"'vfn) = an(fn_thnfl,hr"7f1_,hvf17~-'7fn)-

We need to show that cp = un(fih, fo,n,---»fan) is exponentially small. Now consider the
inverse semi-classical Fourier transform vy, = F;, ' (uy). We obtain
ch = (n)(Fnfips - Fnfnn)- (6)

By (3) we have the representation

frn = (QTF)_% fﬂw(Thfk,h)(ﬂ?,€)¢z,g,hd$d§a

which gives
h = Joon (Tnfrn)(@1,60) (T frn) (@ns &n) (vn(kagn)) dzrdéy--da,dé,,

where kj, 5 ¢ is the family of test functions in & (RY) defined by

_N
kvgn=(2m)"2 Fpthey 61,0 ® Frthey g0 ® -+ @ Fptha, 0,1

and we abbreviate (z,€) = (21,&1,...,%n,&,). Since the semi-classical Fourier transform
Fntbag,e0,n Of a coherent state 1., ¢ n equals

; (1-€0)°
Fittzo o (1) = (wh) ™50

the functions kj, ;¢ form a family of Gaussians localising at the point £ as h \ 0. Now recall

that vy, is a polynomially bounded family of tempered distributions. This means we have

the bound (vp,)(kzen) <h"p(kgpen),h e (0,1] in terms of a Schwartz space semi-norm p for

some m > 0. This implies that (vj)(kz¢ ) is a polynomially bounded function, i.e.

M
(00) ) < c(w) |

for some C, M >0 and all h € (0,1]. We can now split the integral (6) into two parts I; ,, and
I j,, inserting 1-x and x in the integral, using a smooth bounded cutoff function x € C>(R*V)
with bounded derivatives with the following properties.

e supp x has positive distance from K <
e supp(1 - x) has positive distance from the complement of K.

Since these sets have positive distance such a function always exists. The first integral I; 4,
is exponentially small because the family (T} f11)(z1,&1) - (Thfnn)(Tn,&n) is uniformly ex-
ponentially small in K.. To see that the second integral I is exponentially small as well
we note that, by the spectrum condition, vy is supported in K, and therefore we can re-
place the test functions k¢ by the family x(x,£)X(n)kzen(n), where x is another cutoff
function with bounded derivatives supported in ., and equal to one on Qe. Since vy is

2
polynomially bounded as a tempered distribution, we can estimate vy, (x(z,&)X(-)kz.en(-)) by



ANALYTIC STATES IN QFT 23

B Mip(x(2,€)X(-)kzen()) for some Schwartz semi-norm p. This shows that for k€ (0,1] we
have

~ _ 51
[on (X (2, )X (Vkiaen ()] < Crh™M2 (1 + |l + )Mo e
for some d1,C4, Mo, M3 > 0. The integral Iy is just the pairing of vy (x (2, &)X(-)kzen())
with the polynomially bounded family

(Th fi.n)(@1,81)(Th fr,n) (@, &n)

of test functions in S(R?"). We therefore obtain an exponentially small integral I . O

For fields satisfying the Wightman axioms with the cluster property and vanishing one-point
distribution the general form of the two-point function is given by the Kallen-Lehmann rep-
resentation

w2(f1,f2)=[w2,m(f17f2)dﬂ(m)7

where wo ., (2,y) is the two-point function of the free scalar field of mass m > 0, and dp
is a polynomially bounded measure supported on [0,00) that we refer to as the spectral
measure (see for example [29, Theorem IX.34]. This allows one to compute the analytic
wavefront set of wa( f1, f2). If the Fourier transform of the spectral measure is not analytic the
analytic wavefront set of wo can contain timelike vectors. Since one can construct polynomially
bounded measures, for which the Fourier transform is not analytic, this shows that the two-
point function cannot be expected to contain only lightlike vectors. An example is the spectral
measure

oY
e dm m>myg

dp(m) = {

for some my > 0 and 0 < a < 1. Then the Fourier transform of the measure is a Gevrey
function, but is not analytic at 0. This leads to elements in the analytic wavefront set of
the form (z,-& x,£), where £ is future directed and timelike. One can construct spectral
measures of the form o(m)dm with rapidly decreasing o such that points (x,-¢£,y,£) occur
in the analytic wavefront set where x # y is in the interior of the light cone based at y, and
such that £ is timelike.

0 m < my

4.6. The Free Klein-Gordon field as an example. In this section we will show that
under relatively mild assumptions any analytic Hadamard state for the free Klein-Gordon
field is in fact tempered analytic. We assume here that M is a globally hyperbolic spacetime
and we fix a mass m > 0. Then the Klein-Gordon operator 0+ m? admits unique retarded
and advanced fundamental solutions G /ay : Cg° (M) - C* (M ). These maps are continuous
and uniquely determined by the properties

o SUpP(Giret/avf) € J*(supp f) for any f e C§° (M),
o (D + mz)Gret/an = Gret/av(D + m2)f = f for any f € CSO(M)

Here J*(K) is the causal future/past of the set K < M. It is also convenient to define
the map G = Gyet — Gay, which maps C§°(M) onto the space of solutions of (O +m?)f =0
with space-like compact support, i.e. with support that has compact intersection with any
spacelike Cauchy surface. We will denote by G € D'(M x M) its integral kernel, so that the
distribution G(-, f) equals G'f for all f e C(M).
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The Klein-Gordon field algebra is the *-algebra A with unit 1 generated by symbols ®(f), f €
C§° (M) and relations

f = ®(f) is linear,
d((o+m?)f) =0, for all feC(M),

[©(f1), 2(f2)] = ~G(f1, f2)1, for all fi, f> € C§° (M),
O(f)" =d(f) for all feCg(M).
A state w: A — C then defines via the GNS-construction a quantum field theory.

Assumption 4.8. We now fix an embedding v : M — RY and make the following assumptions.

(1) The projection pryou to the first component is a global proper time function t : M — R
which induces a foliation of M into spacelike Cauchy surfaces, such that v equals the
projection of v to the first component.

(2) O extends to a continuous map S(M) - S(M).

(3) G extends to a continuous map from S(M) to S'(M)nC>(M).

(4) G maps Sp.o(M) to the set of families of distributions whose microsupport is contained
in the zero section.

Condition (3) is clearly a temperedness assumption which implies in particular that Gisa
continuous bilinear form on S(M) x S(M). To understand the meaning of (4) note that
analogous conditions automatically hold for compactly supported test functions. Namely,
if (fn) € Cgh.0(M) then Giepjayfr has its microsupport in the zero section. Indeed, this
follows from propagation of singularities, [25, Theorem 4.3.7 and Remark 4.3.10], as (O +
mZ)Gret Jav/n = frn and therefore any non-zero element in the microsupport would propagate
away from the support of f to the future and the past ( the assumption of a bounded L?-norm
in that reference can be replaced by a polynomially bounded L?-norm, by multiplying with
an appropriate power of h). The last condition is therefore also a temperedness assumptions
on the way singularities propagate. Checking assumption (4) in particular spacetimes would
involve showing some kind of uniform analyticity of the Green’s function when one of the
variables goes to timelike infinity.

One can check that all the conditions are satisfied for the free Klein-Gordon field on Minkowski
spacetime if ¢ is chosen as the time-coordinate of an inertial coordinate system.

We have the following theorem.

Proposition 4.9. Suppose the Assumptions 4.8 hold and let w be an analytic state for the
Klein-Gordon field. Assume further that for every n € N the n-point function w, extends to a
continuous map

wp:S(M)® ... S(M) - C.

Then w is tempered analytic.

Proof. We split the proof into two steps.
Step 1: Assume that (g;n) € Sh,o(M). Assume that fj, € Sp(M) is microlocally uniformly
supported in a compact set K ¢ T*M with K nV~ = @. We need to show that

1B fn)®(qup)B(gnn)R] < Ce™ .
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First we note that there exists a bump function x x which is smooth and compactly supported
and equal to one on K. Then we can write fr = xx fn + (1 — Xk ) fn- By Prop. E.3 the first
term is uniformly microsupported in K, and the second term is uniformly exponentially small
everywhere, i.e. in Schwartz space. By continuity

_sp-1
|21 = xK) 1) (q1,) @ (qnn)Q < Cre™™ .
We can therefore assume without loss of generality that fj € Cg,"hp(M ), simply by replacing
fn by Xk fh-

Step 2: We now proceed by induction in n. For n = 0 we are dealing with the vector ®(f;,)Q.
Since the state is analytic and fj, € C§5, 5 (M) this implies the estimate. By induction assume
the estimate is correct for n — 1. We now can write

O(fn)®(q1.0)®(np) = =G (frr q1,0)@(a2,0) P (Gn,n)Q + @(q1.)P(fn) @ (g2,0) P (qn1)

where we have used the relation [®(f1),®(f2)] = <iG(f1, f2)1. The second term is expo-
nentially small by the Cauchy-Schwartz inequality, the exponential smallness of the family
D(fn)2(q2,1n)P(qn,n)S2 and the fact that ®(q1,n)*®(q1,0)2(fn)P(a2,n) - P(¢n,n )2 is poly-
nomially bounded. The statement then follows if we show that G( frsq1,n) is exponentially
small, thus establishing the required estimate. Since the functions g 4, ... ¢y, are no longer
required for the argument we will write g3, for q; 5. We are thus left to establish that G (frsqn)
is exponentially small for all (f5) € Cg5, (M) with the required support properties. By Prop.
2.5 it is now sufficient to show that given gy, € S, 0(M), vg, = Ggp, has its microsupport con-
tained in V*. This follows from Assumption 4.8, (4), as in fact the microsupport is contained
in the zero-section. (I

For the Klein-Gordon field ground and KMS-states on analytic stationary spacetimes are
known to be analytic Hadamard states ([31]). It has also been shown recently that general
analytic globally hyperbolic spacetimes admit analytic Hadamard states ([18]).

4.7. Relation to the microlocal spectrum conditions. The existence of an analytic
vector 2 with AQ dense in D with respect to the graph topology has a natural interpretation
in terms of analytic microlocal spectrum conditions if the field is constructed in the usual
manner from its m-point functions. To understand this assume that we are given a family of
m-point functions, i.e. a family of distributions (wy, )men,wm € D' (M x...x M) =D'(M™) by

win(f1®...® fin) = (Q,2(f1)-P(fm)Q2).

The Wightman reconstruction theorem states roughly that the field theory can be recon-
structed from the set of m-point functions. This is based on the very general and robust
GNS construction that provides a Hilbert space representation for every state on an abstract
*-algebra.

Spectrum conditions have been postulated in this context for quantum field theory on curved
spacetimes. The introduction of microlocal spectrum conditions in quantum field theory on
curved spacetimes started with the realisation by Radzikowski ([28]) that the Hadamard con-
dition for the two point function of the Klein-Gordon field can be formulated in a microlocal
manner, as described by Duistermaat-Hérmander ([14]) in terms of the wavefront set of the
two point function. Since then there were several attempts to find a condition for interacting
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fields that imposes a similar condition as the spectrum condition for Wightman fields at least
microlocally.

One version of a smooth microlocal spectrum condition was introduced by Brunetti, Freden-
hagen, and Kohler ([11]) as condition on the wavefront set of the n-point functions. It is
satisfied by any Wightman quantum field in Minkowski spacetime. The analytic version of
this microlocal spectrum condition on real analytic spacetimes was introduced in [31] and
it was shown that it implies the Reeh-Schlieder property. Hollands and Wald in [20] give a
slighlty different condition, allowing for interaction vertices on the spacetime, however requir-
ing the vectors to be lightlike. Their condition excludes certain generalized free fields and is
stronger than the condition imposed by Brunetti, Fredenhagen, and Kohler. The precise form
of microlocal spectrum condition is perhaps still not final and may depend on the type of the-
ory one wants to consider. Microlocal spectrum conditions restrict the (analytic) wavefront
set of the m-point distribution to a closed conic set I';;, € T*M™ \ 0.

Definition 4.10. A state w given by a family of m-point distributions is said to satisfy the
analytic microlocal spectrum condition with respect to Ty, if WF o (wp,) € T

All proposed microlocal spectrum conditions have the following property in common.

o If (z1,&1,22,&,...,2j-1,&5,2541,0,2541,0,.. ., 2, 0) € I'yy, then & must either vanish
or be future directed and causal.

This also implies that I'y, n (-I'y,) = @.

As shown in [31] any Wightman field theory in Minkowski spacetime satisfying the usual
Wightman axioms satisfies the analytic microlocal spectrum condition with respect to certain
T

Proposition 4.11. Assume the analytic microlocal spectrum condition holds with respect to
Ty, satisfying the above condition. Then € D, i.e. Q is analytic.

Proof. Given a Hilbert space valued distribution u(-) on a real analytic manifold X one can
form the complex valued distribution (u(7),u(-)) on X x X. The observation (Prop 2.6, 2),
Equ. (12) in [31]) is that (z,€) is in the wavefront set of w if and only if (z,-¢§,z,€) is in
the wavefront set of (u(%),u(:)). We apply this to the vector-valued distribution ®(-)---®(-)Q.
Assume that (21,&1,...,2,§,%+1,0,...,2m,,0) is contained in the analytic wavefront set of
u. By the above we know that

(xm707xm—17 07 s 707$j—1707xj7 _gju sy X, —51,.’1,'1,51,%'2,52, o 7$j7£j>xj+1707 s 7:I:m70)
is in the analytic wavefront set of wo,,. By the microlocal spectrum condition the covector ¢;
must be in the closed forward lightcone. O

Remark 4.12. In the same way as analytic vectors are defined one can also define smooth
vectors by replacing the analytic wavefront set by the usual smooth wavefront set. Hence,
a vector Q) € D is smooth if and only if for all n € N the first non-zero covector from the
right in the wavefront set of the Hilbert space valued distribution ®(-)--®(-)2 on M" is future
directed and causal. It is clear that any analytic vector is also smooth. It is easy to see that
the set of smooth vectors is invariant under the action of fields ®(f), f € C5°(M). For any
smooth vector ¢ the wavefront set of the Hilbert space-valued distribution ®(-)¢ is contained
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in the lightcone. This has two immediate consequences. Since the wavefront set does not
intersect the normal of a timelike curve, the distribution ®(-)¢ can be restricted to such a
curve. This reproduces results in [23] in a natural framework. Secondly, this also allows to
generalize to curved spacetimes a result by Borchers ([7]) that field operators becomes smooth
when smeared out in timelike directions. Indeed, let t be a global time function that induces a
diffeomorphism M 2R x ¥. Then, for any smooth vector ¢ and any function h € C§°(R) the
distribution f - ®(h® f)¢ on ¥ is a smooth Hilbert space valued function. This means that
smearing the field operator only in the t-direction results in a strongly smooth operator function
on the domain of smooth vectors. This can be seen immediately from the computation rules
for wavefront sets summarized in Appendiz C: since the covectors in T*M 2 TR x T*% of
the form (t,0,y,n) are not in the wavefront set, the wavefront set of the distribution ®(h®-)¢
on X is empty.

4.8. Internal degrees of freedom. In the above description the field is scalar-valued. In
general one would like a description of fields with spin or of several different types. This
can be done by twisting with a vector bundle as follows. One fixes a complex real analytic
vector bundle £ — M. We assume that FE is equipped with a non-degenerate real analytic
sesquilinear form that identifies the dual bundle E* with the complex conjugate bundle E.
Using this identification the bundle F' = E @ E* then has a complex conjugation ~ defined by
(v,w) = (w*,v*). The space of distributions D'(M; F') taking values in F' are identified with
the dual of C5°(M; F*). The field would then be defined as a map ® : C5°(M; F*) - End(D)
with the requirement that ®(f) is symmetric on D if f = f. The paper can be read in this
more general context if one thinks of the bundles as being suppressed in the notation.

5. THE TIMELIKE TUBE THEOREM

Given two points p,q € M and a smooth timelike curve-segment v : [0,1] — M connecting p
and ¢, we let Ip(p,q,~y) be the set of points that can be reached via continuous deformations
~s of smooth timelike curves with fixed endpoints p,q. The restriction to smooth curves here
is merely for convenience and the definition can also be stated with C!-curves.

FIGURE 1. The set Iy(p,q,y) with v contained in a timelike tube.
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The timelike tube envelope E7(O) of an open set O is defined as the smallest set A containing
O with the property that for any smooth timelike curve-segment ~ : [0,1] - M lying in the
interior of A with endpoints p, ¢ also the set Ip(p,q,v) is in A.

In addition we can also form that causal envelope £.(O) as the smallest set A containing O
such that both &r(O) and the domain of dependence of O are contained in A.

5.1. The Reeh-Schlieder theorem and the timelike tube theorem.

Theorem 5.1. Suppose that (&, D c H) is a quantum field theory and assume that Q) is an
analytic vector such that ASQ is dense in D with respect to the graph topology. Then, for any
non-empty open subset O the set A(O)QY is dense in H.

Proof. Tt suffices to check that the orthogonal complement of A(O) is the zero vector. As-
sume that ¢ is a vector in the orthogonal complement of A(O)€2. This means the distribution

W 5= {6, () B())
vanishes on O x ... x O c M™ for any m € N. Since {2 is analytic the wavefront set of this
distribution w, satisfies WFy(w.,) N =-WF,(w,,) = @. By unique continuation, Prop. D.2,
this implies that w,, vanishes everywhere. Hence, ¢ is orthogonal to the dense set D. It
follows that ¢ = 0. (I

Remark 5.2. The minor modification of the proof actually shows that a stronger statement
holds. Namely, for any countable collection (Ok)reny of non-empty open subsets O ¢ M the
span of the set

{2(fe)®(fr-1) .- ®(f1)R] keN, [ e G5 (0;)}

is dense in H.

Theorem 5.3. Suppose that (P, D c H) is a quantum field theory and assume that Q0 is an
analytic vector such that A is dense in D with respect to the graph topology. Then, for an
open subset O let, as above, be R(O) be the local von-Neumann algebra associated with the

quantum field. Let Ep(O) be the timelike tube envelope of O. Then R(Er(O)) = R(0O).
Of course, if in addition the time-slice axiom is satisfied we have R(&E.(O)) = R(O).

Proof of Theorem 5.3. We show that R(O) = R(Er(O)) by establishing the equality

{AeLH) [ Y(f e CF(O), v,we D), {w, A®(f)v) = (D(f)w, Av)}
={Ae L(H) | ¥(f € CF°(E7(0)),v,w € D), {w, A®(f)v) = (2(f)w, Av)}. (7)
Consider an operator A € £(#H) such that (w, A®(f)v) = (®(f)w, Av) for all v,w € D and
feC5(0O). This is equivalent for the distribution
(A%, B()0) - (®()w, Av)

to vanish on O for all v,w € D. This in turn is equivalent to the distributions defined by

W' ' h® f1®...0 [n®h1®...8 hyy

(A" (1) (fin)Q, (R)D(h1)-+@(hp )2) = (@ (R)P(f1) @ (frn )2, AR (1 )+ @ (i )2) (8)
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to vanish in the set O x M™™ for all m,m’ € N. We will show below that if wy, ,, vanishes
in O x M™™ it automatically vanishes in E7(O) x M thus showing the equality (7).

Let S ¢ M be any co-dimension one timelike hypersurface in M then S x M mm’ s g hy-
persurface in M™™*+ with its conormal at (&, 21, ..., Tm, Y1, - - - Ymr) € S x M spanned
by (2,&,21,0,...,2m,0,91,0,...,Ym,0), & being any non-zero spacelike co-normal vector to
x € S. We will show below that the conormal of S x M™™ does not intersect WE o (Wi, m?)-
By Prop. D.1 we have unique continuation for wy, s across any such S x M mm’ - We will
now use a deformation argument to show that that wy,4m vanishes on Ep(O) x M m . We
argue by contradiction. Assume that there exists a point (zg,%0) € E7(O) x M?™ in the sup-
port of wy,+m/. Then there exists a continuous family 5 of smooth timelike curves such that
7s(0) = ¢,7s(1) = p, such that ¢ is in O, and such that 7, passes through the point z5. We
introduce a complete Riemannian metric g on M. Since K = {~s(t) | (s,t) € [0,s0] x [0,1]}
is compact so is the closure of the set Ky = Uz B1(x), where Bi(zx) is the closed unit ball
centered at x with respect to the complete metric §. Let N5 be the normal bundle of v, in
T M. The bundle of balls of radius r in N+, will be denoted by N,7s. Its boundary dN,~; is
the bundle of spheres S,7vs in the normal bundle. For sufficiently small 7 > 0 the exponential
map of the metric g then is a local diffeomorphism from N,~, to a neighborhood of v5((0,1))
for every s € [0, s9]. We now choose 0 <d <1 and 0< 4’ <1 such that the following hold.

(1) Vte[0,1]V5¢€[0,0'], Bs(vs(t)) € O,
(2) for every s € [0, so| the exponential map defines an immersion Ssys - M with timelike
image.

Such a choice of § exists uniformly in s € [0, so] by compactness of K;. The image of Ngvs then
defines a family of tubes T with boundaries 07 that form a continuous family of immersed
timelike hypersurfaces. By assumption the open set I = {s € R | 3(z,y) € supp(wWmsm), z € Ts}
contains T and is bounded below by §’ > 0. Let s = inf I. Then 75, x M?™ does not intersect
the support of wy,.ms, but its boundary S x M?™ = OTsy x M 2m does. If there is unique
continuation across S x M?™ we obtain a contradiction.

It now only remains to show that indeed the conormal of S x M™™ does not intersect
WEF o (W, m) as claimed. We must prove that (z,£,21,0,...,2m,0,y1,0,...,ymn,0) with non-
zero spacelike £ is not in the wavefront set of wy, y,». By Prop. 4.2 the Hilbert space valued
distribution ®(h)P®(h1)--P(hy ) does not have (z,£,y1,0,...,ym,0) in its wavefront set.
Similarly, the Hilbert space distribution ®(h)®(f)--®(f)? taking values in the conju-
gate vector space does not have (z,-¢£,x1,0,...,Ty,,0) in its wavefront set. Essentially by
the Cauchy-Schwarz inequality we have therefore (see Prop 2.6, 2), Equ. (13) in [31]) that
(,&,21,0, ..., Zm,0,91,0,...,ym,0) is not in the wavefront set of either term in (8) and
therefore not in the wavefront set of wp, . O

Remark 5.4. The above proof shows that requiring the analytic wavefront set to be contained
in the set of lightlike vectors rather than causal vectors implies the time-slice axiom. This is for
example the case in generalized free theories if the spectral measure p on [0, 00) is exponentially
decaying. This is consistent with the conditions on the spectral measure for generalized free
fields to satisfy the time-slice axiom identified in [17]. Even though the time-slice axiom is
expected to hold also for reasonable interacting quantum field theories the wavefront set of the
m-point functions will in general be expected to contain time-like vectors.
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6. THE ALGEBRA OF A TIMELIKE CURVE AND RESTRICTIONS OF THE FIELD OPERATOR

Given any subset S ¢ M such as a hypersurface one can define the algebra of observables R(.S)

as the intersection M R(S) of the field algebras of all open subsets containing S. Given a
(=)

timelike curve v : [0,1] — M let us denote by ~° the image v((0,1)) of the corresponding
open interval, i.e. the curve without its endpoints. One consequence of the timelike tube
theorem is that for a timelike curve 7° the corresponding algebra R(~°) is that of the open
set £(7°) obtained by deforming the curve in a timelike manner, with the fixed endpoints
removed. There is however another way to define the algebra of observables of a timelike
curve based on the fact that the field operator and its derivatives can in fact be restricted to
the curve in the sense explained in Remark 4.12. Namely, on can consider what is essentially
the double commutant of the fields restricted to timelike curves. To be more precise, recall
that A commutes with the field operator in O if and only if

(A" w, ®(-)v) = (P()w, Av)

vanishes in O for all vectors in the domain D c H. One can now define the algebra R*(~°)
as the commutant of the set of operators A with the property that

(A%w, @(-)v) - (@()w, Av)

is flat on . Here a distribution is called flat on ~ if its wavefront set does not intersect the
normal bundle of v and the restriction of of all its derivatives to « vanish. It was conjectured
in [23] that the two definitions give the same local algebra, i.e. R*(7°) = R(7°). Our
arguments imply this conjecture if v is analytic.

Theorem 6.1. Assume that v :[a,b] > M is a real analytic timelike curve. Then R*(~°) =
R(°)-

Proof. The proof is based on the proof of Theorem 5.3 and we will use the notation from this
proof. A bounded operator A is in the commutant of R*°(v°) if the distribution wy, ;s in the
proof of Theorem 5.3 is flat on 7° x M. By a theorem of Boman [3] (see also [4] for a
generalization to the Denjoy-Carleman class) flatness of the distribution implies its vanishing
in an open neighborhood of v° x M™*™' Hence, A is in the commutant of R(~°). Of course
a distribution vanishing near v° is flat on v° and therefore R*(7°) and R(~°) have the same
commutant. (]

APPENDIX A. WAVEFRONT SETS AND MICROLOCAL CONCEPTS

A.1. The wavefront set. As usual the space of distributions D’(R?) is the topological dual
of the space of compactly supported smooth test functions Cj° (]Rd). We will use the formal
notation

(u.9) = [ u(@)p()ds

for the distributional pairing if u € D'(R?) and ¢ € CF(R?). The space of tempered distri-
butions S’(R%) is the dual of the Schwartz space S(R?). Finally recall that a distribution of
compact support can be paired with a test function in C*°(R%) and this identifies the dual of
ce (Rd) with the space of compactly supported distributions.
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The Fourier transform can be used to analyse distributions locally in phase space. We recall
some basic properties of the Fourier transform. If uw € D’ (Rd) is a compactly supported
distribution then its Fourier transform is a holomorphic function in the complex plane of
uniform exponential type. Such a distribution is a smooth function if and only if its Fourier
transform is decaying faster than any power. This means

uwe CP(RY) < VN €N, sup [€[V]i(€)] < oo.
£eRd

This statement can of course be localized by saying that a general distribution u € D’ (Rd) is
smooth near the point xg if and only if there exists a function y € C5°(R?) with x(zq) = 1
such that

sup [¢["[xX"(8)] < oo
£eRd

for any n € N. The purpose of the cut-off function is to turn v into a distribution of compact
support and localize the statement at the point xzg. The notion of wavefront set seeks to refine
the notion of singular support, i.e. the set of points where the distribution is not smooth. It
singles out the directions in which a distribution may fail to be smooth by analysing in which
directions in the £ Fourier transform of x - u fails to decay faster than any power.

Definition A.1. The wavefront set WF (u) of a distribution u € D'(R?) is the complement of
the set of points in (z9,&) € RExRIN{0} such that there exists a cut-off function x € CS°(R?)
with x(xo) =1 and an open conic neighborhood T' of & such that

sup [¢]"[X~u(§)] < oo
&el

for all n e N.

This additional asymptotic localisation of the singular support property is sometimes called
microlocalisation. One of the key observations relevant to general relativity and geometry is
that the wavefront set transforms like a subset of the cotangent bundle under smooth change
of coordinates. Hence, the notation of the wavefront set makes sense on smooth manifolds
in the absence of a global and invariantly defined Fourier transform. It is customary to
introduce a semi-classical parameter h > 0 as an energy scale and reformulate this in terms of
the semi-classical Fourier transform JF}, which is defined as

1 _ig
FDO = g [ r@eietas, (9)

Therefore, (20,&0) € RY x R? \ {0} is not in the wavefront set of u € D'(R?) if and only if for
some cut-off function x € C$°(R?), with x(zo) = 1 we have for each n € N a constant C, > 0
such that

|Fh(x - u)(§)] < Cuh”
for all n e N, h € (0,1], and all £ in an open neighborhood of &. This is just a reformulation
of the above, where the semi-classical parameter h is being used to rescale the momentum
&. This definition is sometimes more flexible and also allows to define the wavefront set of
an h-dependent distribution. This is sometimes called the frequency set or semi-classical
wavefront set WFj. This is introduced for families of distributions that are polynomially
bounded in h. More precisely, we say an h-dependent family of tempered distributions (uy,)
is polynomially bounded if there exists a continuous semi-norm p : S(R%) - [0, c0) such that
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for some N > 0 we have uy(f) < A" Np(f) for all f € S(R?),h € (0,1]. The semi-classical
wavefront set WF},(uy) is then defined as the complement in R? x R? of the set of points
(w0, &) such that there exists a cut-off function y € C$°(R?), with (o) = 1 so that we have
for each n € N a constant C}, > 0 with

[Fr(x - un)(§)| < Cph™

for all n e N, h e (0,1], and all £ in an open neighborhood of &y. For an h-independent family
we have WFj, (u) = supp(u) x 0u WF (u).

APPENDIX B. ANALYTIC WAVEFRONT SETS

Recall from the main body of the text that we define the analytic wavefront set of a distri-
bution u € D'(M) as the elements in T*M \ 0 of the microsupport of (up) = (u), regarded
as a family of distributions independent of h. For the analytic wavefront set WF, there are
several other equivalent definitions, which we now review. Each has their own advantages
and disadvantages. In the following we assume that u € D'(R% H) is a distribution taking
values in a Hilbert space H. We will suppress the H to keep the notations short. All integrals
will need to be understood as distributional pairings, and we will use this convention without
further explanation.

B.1. The classical FBI transform. One can use another localized version of the Fourier
transform 7,u, which is also sometimes referred to as the FBI transform. It is defined as

Tou(z, &) = fRd 6_%($_y)2u(y)e_ig(y_m)dy'

This only differs from its semi-classical counterpart by an irrelevant pre-factor and the lack
of the extra scaling in the &-variable. The distribution u can also be recovered from the
transforms 7¢ of u and zu. This is done by the inversion formula (see [21, (9.6.7)] or [15, (3.36)]
in the one dimensions case)

1 1 1
uw) = Gy fou T .0+ g [ (TaH) . dc

Here f(x) is the vector-valued function f(x) = —%i(m —yu(z).

Proposition B.1. A wector (xg,&) € R x RY\ {0} is not in the analytic wavefront set if
and only if the following holds: there exists a cutoff function x € C§° (]Rd) which is equal to
one near o and an open conic neighborhood O of (xg, &) in R xRN {0} such that for some
C,0 >0 we have

[(Tig Ocu)) (2, ) < CeFl.

The condition of Prop. B.1. is satisfied if and only if the semi-classical FBI-transform
T, (w)(z, &) is exponentially decaying in h~! for all unit vectors ¢ in an open neighborhood of
|€07&o in the unit sphere. The proof of the equivalence can be found in [21, Section 9.6, in
particular Theorem 9.6.3] with a slighlty different notation.
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B.2. Hormander’s approach. The following provides a criterion that is used by Hormander
([21]) as a definition of the analytic wavefront set. This is also the approach favored in [31]
in the analysis of quantum field theory and the Reeh-Schlieder property.

Proposition B.2. A vector (z9,&) € RY x R\ {0} is not in the analytic wavefront set if
and only if the following holds: there exists an open neighborhood O of xy, an open conic
neighborhood T' of &y, and a bounded sequence u, of distributions with compact support that
equals to u in O such that for some C' >0 we have

" @ ()| < C(C(n+1))",
forall £ el.

One can choose the sequence uy always in such a way that u, = x,u, where x,, is a sequence
of suitably chosen cut-off functions that are equal to one on O and with the property that for
each multi-index « there exists a constant C, > 0 such that

(0P x) ()] < Ca(Ca(n + 1)),

Such a sequence always exists. The sequence y, plays a similar role here to that of the
Gaussian factor in the FBI-transform and is used to provide an n-dependent localisation.

B.3. Boundary values of analytic functions. Another characterisation of the analytic
wavefront set is based on boundary values of analytic functions. We state this here as in
[15, Th. 3.38] but refer to [21, Section 8.4, and Th. 8.4.15] for proofs.

Proposition B.3. A vector (z9,&) € RYxR4\ {0} is not in the analytic wavefront set if and
only if the following holds: there exists an open complex neighborhood W of xo in C?, and
open convex convex cones I'1,..., Ty in {y € R? | y-&o <0}, functions ui, ..., ux, where uj is
holomorphic in W n R +1 I'; so that u can be written as the sum of distributional boundary
values of the u;.

For tempered distributions on R? there is a direct way to achieve the above decomposition
and give an explicit criterion for the analytic wavefront set. To understand this let us discuss
this in one dimension first: .

The function K (z) = {sech(%z) = (4cosh(%32))  is holomorphic in the strip [Im(z)| <1 and
decays exponentially along the real axis. We have [ K(x +iy)dz = 7 for all |y| < 1. Moreover,
the family %Re K(z +1iy) is a d-family as y — +1. Given a tempered distribution u € S’(R)
we can convolve with K to obtain a function

Ko(z) = f K(z - 2)u(z)dz = (K *u)(2)
which is holomorphic in the strip Im(z) < 1. Moreover,
u(x) = li\r‘% (Ky(z+i-ie)+ Ky(z—1i+1i€)) = uy +u_.
This decomposes u as the sum of two distributions, that are one sided boundary values of
holomorphic functions. Therefore, if £ > 0 then (z,&) ¢ WF,(u) if and only if u, is real

analytic near z. Similarly, if £ <0 then (z,£) ¢ WF,(u) if and only if u_ is real analytic near
x.
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This construction can be generalized to higher dimensions as follows. One defines

1©)= ], e dw,

The analogue of the above decomposition is
u@)= [ K +ig)dy.
o=

where as before K, = K * u. The function K,(z) is holomorphic in |Im(z)| < 1.

K(z)=

Proposition B.4. Let u e S’'(RY). Then, given a direction y € R with |y| = 1, we have that
(z,y) ¢ WF(u) if and only if K, is complex analytic in x + iy near (x,y).

The above statements and proofs can be found in [21, Theorem 8.4.11].

APPENDIX C. COMPUTATIONAL RULES FOR THE ANALYTIC WAVEFRONT SET

Here we summarize some computational rules for analytic wavefront sets. We will be mostly
concerned with distributions defined on an arbitrary analytic manifold M, but occasionally
will also encounter different dimensionalities. In the latter case we let M7, My be different
analytic manifolds of dimensions d; and ds, respectively.

We start with some simple rules that are easy to see directly from the definitions. Given
u,v e D'(M),

WF,(u+v) c WFg(u) u WFy(v).
Given uy € D'(M;) and ug € D'(M>) the tensor product uj ® ug is a distribution on My x Ma.
We have

WF,(u; ® ug) € (WF4(u1) x 0) U (0 x WFy(u2)) U (WFq(u1) x WE(us2)).
Given a smooth map f: My - My the conormal Ny of f is defined as the set of (z,&) € T* Mo
such that z is in the range of f and the pull-back f*(£) vanishes.

Pull-backs and products of distributions may not necessarily be well defined. The wavefront
set provides a useful criterion for pull-backs and products to exist in a reasonable way. If
Ny nWF(u) = @ then the pull-back f*u exists. If f is real analytic then

WFq(f"u) € f*(WFq(w)).

This means the wavefront set has good functorial properties under analytic maps. The condi-
tion Ny n WF(u) = @ simply makes sure that f*(WF(u)) does not intersect the zero section.
Note that this condition is always satisfied if f is an analytic submersion.

The product uv of two distributions u,v € D'(M) is not always well defined. There is a similar
restriction on the wavefront sets to ensure existence of a product. Namely, the product is well
defined as a distribution if WF(u) + WF(v) does not intersect the zero section in 7M. In
that case
WF(uv) € WF(u) + WF(v),
WF,(uv) € WF,(u) + WFE,(v).
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Again, the restriction makes sure there are no zero-vectors appearing on the right hand side
of this formula. The formula for the product is actually a special case of the formula for
pull-back and tensor products. This is because the product uv can be seen as the pull back
of u® v under the diagonal embedding = +~ (z,2), whose co-normal consists of covectors of
the form (z,&,z,-£).

If P is a partial differential operator on M with analytic coefficients and Pu = f, then
WF,(u) € WF,(f) uchar(P),

where char(P) ¢ T*M ~\ 0 is the characteristic set of P, i.e. the zero set of the principal
symbol of P.

The above statements are summaries of results that can be found in Hérmander’s book [21]
in Sections 8 and 9.

Another operation is to formally integrate with respect to a subset of variables or smear a
subset of variables with respect to test functions. If w € D'(M; x My) and f € C§°(M2) we
can define a distribution uy € D'(M7) by ui(-) = u(-® f). Formally one can write this as

w(@)= [ )@y
We have then
WF (uy) € {(x,£) e T*" M1~ 0] (x,&,y,0) € WF(u) for some y € Ms}.

Such a statement is certainly not correct for the analytic wavefront set when f is a general
compactly supported test function. When w is compactly supported the above holds for the
analytic wavefront set in case f is a real analytic test function [21, Th. 8.5.4]. This statement
is however not true in the context of tempered distributions on R?. Indeed, the function

1
uw(z,y) = —5——

T2+

defines a tempered distribution. Since it is a real analytic function its analytic wavefront set
1
is empty. Pairing in the y-variable with the real analytic Gaussian e 3Y’ gives the function

1,2

— -3y
g(l’)— 2 1 e 2 dy
R 22 + —
y4+1

The derivatives at zero are therefore given by

1 2 k+1 k+1
g™(0) =5 fRe e L ((—?f -1) 7 - (—VA2-0) )dy
k 1 k+5 1
= /T cos (W—) Tk+1)U (—, _—, —) ,
2 2" 2 2
where U is the Tricomi confluent hypergeometric function. The radius of convergence of the
Taylor series at zero is therefore zero and the function is not real analytic. The mechanism
in this example is that the radius of convergence of the Taylor series in the z-variable is not
positive uniformly in the y-variable.
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APPENDIX D. UNIQUE CONTINUATION AND THE MICROLOCAL HOLMGREN UNIQUENESS
THEOREM

Let S ¢ M be a codimension one hypersurface. If z € S then there exists a small neighborhood
U of x such that S divides U into two connected components U_ and U,. For a class of
distributions V ¢ D’'(M) we say that we have unique continuation across S in U if whenever
u € V vanishes in U_ it also vanishes in a neighborhood of S in ¢. We say unique continuation
holds across S if for every point x € S there exists a neighborhood U such that unique
continuation holds across S in U. This is clearly a local definition.

If unique continuation holds across S for distributions u € V' this means that the support of
u cannot touch S from only one side. The following two propositions follow from the very
general statement of [21, Th. 8.5.6’], but we discuss them here separately. The first is a
microlocal generalisation of Holmgren’s uniqueness theorem for partial differential equations
with analytic coefficients.

Proposition D.1. Suppose that S ¢ M is a codimension one hypersurface. Then unique
continuation holds across S for all distributions whose analytic wavefront set WF, does not
intersect the conormal bundle of S in M.

In particular this implies that in case M is a spacetime we have unique continuation across all
timelike hypersurfaces for the class of distributions whose analytic wavefront set is contained
in the light-cone. If a distribution contains only lightlike covectors in its analytic wavefront
set we have in addition unique continuation across any spacelike hypersurface.

The second is a microlocal version of a form of the edge of the wedge theorem.

Proposition D.2. Unique continuation holds across any hypersurface for the class of distri-
butions u € D'(M) satisfying WFq(u) n =WF,(u) = @. In particular, if M is connected and
such a uwe D'(M),WFy(u) n—=WF,(u) = @ vanishes on a non-empty open subset of M, then
u must vanish identically.

We have used here that unique continuation across any hypersurface implies in particular
unique continuation across any ball. By a standard argument this implies that the support
is open and closed and therefore the unique continuation property.

APPENDIX E. PROPERTIES OF MICROLOCALLY UNIFORMLY EXPONENTIALLY SMALL
FAMILIES

In this section we provide some statement about uniform microlocalisation that were used in
the main part.

Recall that a polynomially bounded family (uy,) € Sp(R?) of Schwartz functions is uniformly
microsupported in K c R? x R? if we have that for every e > 0 there exists a § > 0 such that
for any N > 0 there is a constant Cy > 0 with

11+ + €)Y Thun(z, €)| < C’Ne_‘s}fl, for all (z,¢) e R? x R? with dist((x,€),K) > e.
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We first remark that this definition is equivalent to the T} f, being exponentially small in
S(RY x RY) after localisation to the complement of K. To explain this let K, be the set of
points {(z,£) e R x R | dist((z, &), K) < €}.

Proposition E.1. The family (uy) € Sp(R%) is uniformly microsupported in K c R% x RY
if and only if for any cut-off function x € C§°(Rd x R?) that equals one on K. we have that
(1 = X)Thuy, is exponentially small in Sp,(RY x R?) in the sense that there exists a § >0 such
that p((1 = x)Thup) = O(e*‘shfl) for any Schwartz semi-norm p.

Proof. The statement about the Schwartz semi-norms already includes the estimate in the
definition of being uniformly microsupported in K. We therefore need to show the corre-
sponding bound for the other Schwarz-seminorms, i.e. derivatives in x and £. The proof is

52
based on the fact that e2n (Tpu)(xz,§) is holomorphic in z = x — i and we apply the usual
principle that derivatives of holomorphic functions at a point can be bounded by localized
2

L*-norms. We therefore denote Rj(z) = egT(Thuh)(x,ﬁ), where z = x —i¢ is holomorphic.
The bound we have is therefore

_ On Im<z>2 _sh1
R < 2%
H h(Z)H (1 | |2)N €
outside K <. The bound we seek is
Saof CN Im(z)2 _sh-1
Haz aZRh(Z)H < (1 | |2)N 2h e

outside K.. This is however immediate by differentiating the Bochner-Martinelli formula
applied to a small enough polydisc. Note that the left hand side vanishes unless 5 = 0. We
then obtain

- C, Im(z)2 13,—1

00‘8’3 Rp(2)]| <« — __e72n ¢ 0h
outside of K.. Localisation with the test functlon gives extra terms in the derivative that can
be bounded by repeated application of the product rule. O

For p > 0 define a modified FBI-transform 7}, , changing the standard deviation in the
Gaussian weight,

() (@,) = 2 3 (en) ™ [ e HOD u(@)e t O Edr =y 73T, (2 07'6),

Lemma E.2. If (uy) € S, (RY) is uniformly microsupported in K c R x R? this implies that
for fized >0 and every e >0, N >0 there exist C,h >0 such that

11+ |22+ 1€2)N T pun(,€) | < ce™ ™" for all (z,€) € K with dist((z,£),K) > e.

Proof. As in [25, Proof of Prop. 3.2.5] one then has

2mh i dpmry oy @) 1 (&
(T o) = (T2 o [ e k5000 5 S8 S 1)

Given € > 0 let K. = {(,¢) | dist((z,£),K) < €} and assume (z,§) ¢ K.. To estimate
(1 +|z* + €N Lo (2, &) T pun(x, &) we use this integral representation and split the result
into two parts I1(x,&) and Iy(x,£). One is obtained from integrating over the ball B (z,8)
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of radius § centered at (,&), and the other is obtained by integrating over the complement

of that ball. Then Iy(z,£) satisfies the bound
[ (Lt + )™ La(2, )]
2h /11 ST CT) R )
TNk el S () )y

1+
T wo-lumbs
2mh _ a—y)?
(TRt BT [ Qe g ldydy

for any h € (0,1]. Here o > 0 is chosen so that o < mln(4 T 4 1+ ). The right hand side of
this is exponentially small, as the integral is polynomially bounded Recall that convolution
with a Gaussian kernel is a continuous map on the space of Schwartz functions and Thuy, is
a polynomially bounded family of Schwartz functions on R? x R?. The first term L(x,8) is
bounded as follows

wh
P o) RO s (TP )i [ el I U)o )
[(2,£)~(y,m)I<5

apCae®® sup  (1+ ] +nl+e)*™ [ (Thun) (y.n)|-
(ymeK g

()

1+up

We have used that since (x,§) ¢ K. the integration domain is contained in the complement
of K <. The right hand side is exponentially small by assumption. O

Proposition E.3. Assume (uy) and (vy) are in Sp(R?). If K, K' ¢ RIxRY, (uy,) is uniformly
microsupported in K, and (vy) is uniformly microsupported in K', then (up-vy) is uniformly
microsupported in

K" ={(x,&) + (z,n) [ (x,€) € K, (z,m) e K'}.

Proof. We can write e T}, (u)(z,€) = (wh)~ (]—'h)y_,g(e o u(y)) We then have for the

semi-classical Fourier transform Fj(up) * Fp(vp) = (27h) 2.7-'h(uhvh). We can therefore write
the FBI-transform of a product as follows

Ti(unen) (@, €) = (4eh) ™8 [ () @6 =) ((Tuon)(o,m) do

Now note that if (z,€) is in the complement of K" and 7 is arbitrary, then either (z,7) is in
the complement of K% or (x,€ —n) is in the complement of K <. The statement then follows
2

immediately from Petree’s inequality

(L+ 1™ <2V (@ +le =n)™ (1 + )Y

and using the fact that the individual factors in the integral are polynomially bounded in
Schwartz space, and Lemma E.2. O

Proposition E.4. Assume that K c R? is compact and u € S(R?) is analytic in a neighbor-
hood of K. Then, for any € >0 we have that u is microlocally uniformly exponentially small
in K x{€eR| €] > e} c RExRY.
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Proof. The above follows from ITagolnitzer’s characterisation of analytic functions by their
essential support, namely [26, Lemma 1,p. 122]. Tt is proved by a simple contour deformation
argument. O

Recall that if F: RY - R? is a smooth map, then the pull-back F*uy, is defined by (F*up,)(z) =
up(F(z)). If (up) € Sp(RY) the pull-back will in general not be in Sy (R?) unless decay
conditions on all partial derivatives of the map are imposed. One can however multiply by
any compactly supported smooth cut-off function x to obtain a map

Sh(RY) = Sp(RY) s up = x - (Fuy).
Proposition E.5. Assume (up) € Sp(RY) is microlocally uniformly exponentially small in
K c RY xRY. Assume that F : R > RY is a smooth map that is real analytic on the open

subset Q c R, Let x € O (R?) be a cut-off function that equals one on Q. Then x - (F*uy)
is microlocally uniformly exponentially small in any set K' with the following properties

e the projection pry(K') = {x e R | (x,&) e K'} of K' to R? is compact and contained
m Q.
e we have K! ¢ {(x,(dF(x))Tn) e R xR | (F(z),n) € K} for some € > 0.

Proof. Using (3) we write
un(F@) = [, [ @rh) ™ (Thun) (9. (F (@) dydn
Therefore, T, (xF*up)(z,&) = [ [ Kn(x,&,y,m)(Thun)(y,n)dydn, where

_(@=a"h?  (y-F(')?

Kn(x,€,y,m) =27 (xh) % fRd X(@)e e T en @t (D -wngy,

Repeated integration by parts gives
k
(1+ &) Kn(w, & y,m) =
_@=a")? _(-F@))?

\/]Rd qk(%l’,,y,hﬂ?)e 2h e 2h e%(x—z')f(i%(F(l")—y)ndl,/’ (10>

where g, is a polynomial expression in x, 2/, y, h™!, and the partial derivatives of F(z') and
x(z"), as well as in 1. The order of the polynomial in 7 is at most 2k. Moreover, ¢ vanishes
outside the support of y and extends analytically to a complex neighborhood of () in the
a'-variable. For every £ > 0 there exists r, C > 0 such that

(z-2)? _(y-F(z)?

[ st bl ST S A < OB (1 ) (L )

supp(x)

for h € (0,1], where we have used that integration is over a compact set. We therefore get

(L+ ] +y*) (1 + €)Y K (2, &, y,m) < (1+[n]*)FCph ™. (11)
We split the integral
Th(XF*Uh)(I,S)=fKKh(m,&y,n)(ThUh)(y,n)dydn

+\[de\KKh(x7€7y7n)(Thuh)(y7n)dydn:Il(xaf)+‘[2(x7£)‘
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Since Tj(up) is uniformly exponentially small in K the estimate (11) shows that
[(1+ 2%+ )L (2,6) ] < Cpe™

We therefore only have to establish a bound of this form on Iz(z,§) for (x,&) € K'. To do
this we will need to find an estimate for Kp(x,&,y,n) in the set K’ x K¢ where K¢ is the
complement of K in R2?. In fact in this set the kernel is exponentially small. To see this
define a phase function

1 1
pla, ey, &m) =ig(z - z')? + i5(y- F(2'))’ + (z =) + (F(z") - y)n.
and write the integral (10) as

f qk($7xl’y7hqn)e;,;(f)(mvw,vy?g’n)dx, = f qk(x7$,7y7h777)e%<p($7x’7y7§7n)dx,

supp(x) pri (K')e
+ / qk(xaxlayahvn)eigo(:r,l‘/,yyfﬂ?)dx,: kl(x,f,y,mh) +k2('r)€ay>na h)
supp(x)\pry (K')e

Here € > 0 is chosen small enough so that pry(K’): is contained in Q. In particular this
means on pry (K”)¢ the phase p(x,2',y,£,n) and the amplitude ¢(z,z’,y, h) extend to complex
analytic functions of ' in an open neighborhood of pr; (K”)z in C.

If (2,€) € K’ the point x therefore has distance at least € > 0 from supp(x) \ pry(K’)e. The
second integral therefore satisfies

€2
|k2(£€, 57 y,n, h’)| < Cke_ﬂ

For the first integral we use analytic non-stationary phase. For a point to be stationary with
respect to 2’ we need —¢ + (dF (2'))Tn =0 and (z-2') + dF(2")(y - F(z")) = 0. If we assume
that (z,&,y,m) € K' x K¢, then we have either |y - F(z)| > § or [¢ - (dF(z))"n| > 5. Fix
a small ¢ > 0. Let U be the set of points z’ such that Im(p(z,2’,y,£,7)) < (¢')? for some
(z,&,y,m) € K' x K¢. For such a point we must have |z — 2'| < ¢’ and |y - F(2')| < €. This
implies that |y — F/(x)| < ce’ for some fixed ¢ > 0 that depends only on F'. In particular we can
choose € small enough so that [y — F(z)| < § and | - (dF(2"))"n| > §. This means U does
not contain any critical points for the phase function ¢. All the assumption of analytic non-
stationary phase are fulfilled (see for example [30] or [5, Prop. 1.1] for a nice presentation)
when integrating over U. When integrating over the complement we have exponential decay.
Summarising, this means our assumptions imply that we have the uniform estimate

| aeal iy ho)er O < e

supp(x)

for some § > 0, independent of gg. This in turn gives

(L+ [P P+ ) " Kn(z, &, y,m) < Cre™®

on K’ x K¢. Since Tjuy, is polynomially bounded in S(R? x R?) this finally gives the required
estimate ) »

[(1+ 22+ )P Ia(x, )| < Cpe®"
and the proof is finished. O
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If (up) € gf’h(Rd) then there exists a compact set in which all the u;, are supported. If F' is
an analytic diffeomorphism than (F*uy) is also in (‘;j’h(Rd) and the above Proposition simply
says that if (uy,) is uniformly microsupported in K ¢ R¥xR? = T*RY, then (F*uy,) is uniformly
microsupported in (d®)*K c T*R?. In other words being uniformly microsupported in a
subset of the cotangent bundle is a well defined concept on an analytic manifold.
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