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ABSTRACT: Conventional holographic tensor networks can be described as toy holo-
graphic maps constructed from many small linear maps acting in a spatially local way,
all connected together with “background entanglement”, i.e. links of a fixed state, of-
ten the maximally entangled state. However, these constructions fall short of modeling
real holographic maps. One reason is that their “areas” are trivial, taking the same
value for all states, unlike in gravity where the geometry is dynamical. Recently, new
constructions have ameliorated this issue by adding degrees of freedom that “live on
the links”. This makes areas non-trivial, equal to the background entanglement piece
plus a new positive piece that depends on the state of the link degrees of freedom.
Nevertheless, this still has the downside that there is background entanglement, and
hence it only models relatively limited code subspaces in which every area has a definite
minimum value. In this note, we simply point out that a version of these construc-
tions goes one step further: they can be background independent, with no background
entanglement in the holographic map. This is advantageous because it allows tensor
networks to model holographic maps for larger code subspaces. In addition to pointing
this out, we address some subtleties involved in making it work.
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1 Introduction

We would like the explicit form of some holographic map. Already, what we have
understood about their general structure has led to deep conceptual lessons, on topics
such as the emergence of spacetime [1] and the black hole information paradox [2].

Holographic tensor networks [3-5] are a useful tool in this endeavor. Described in
detail in later sections, these tensor networks can be understood as holographic maps
for toy models, involving finite dimensional quantum systems. What is nice is that
they share some of the striking features of real holography — such as a rudimentary
version of an emergent geometry with an extra spatial dimension, and something like
the quantum extremal surface (QES) formula [6-8]. Moreover, their simplicity makes
it tractable to prove precise statements, for example offering rigorous insight into why
a QES-like formula is inevitable in holography [3, 9, 10].

However, so far these toy holographic systems are unlike real holography in im-
portant ways. Hence the insight they can offer is limited. Two of the most glaring
shortcomings are that these models do not include time evolution! and typically have
rigid, fixed geometries. These problems are related: in gravity, the geometry is dynam-
ical.

1See e.g. [11, 12] for discussions of the difficulty of including it; c.f. [13, 14] for one approach to a
solution.



It seems worth thinking about whether these shortcomings can be improved, so
that tensor networks might continue to offer insight into the structure of holographic
maps. The goal of this note is to take a step in this direction. We will not add time
evolution, but we will construct a tensor network free from any fixed geometry in a
way that seems conducive to later adding time evolution resembling gravity.

Let us summarize the network now. First, how might we make a tensor network
without a rigid, fixed background? As a first guess, we might imagine a model in which
we consider more than just one tensor network, allowing (somehow) for a “superposition
of tensor networks”, each with a different geometry. This is a decent first step towards
modeling gravity. However, it fails to model the fact that in gravity we do not allow
arbitrary quantum states on a given geometry. There are constraints that the geometry
must satisfy. These constraints are important and related to having good time evolution
matching that of the dual theory. Really, we would like to construct a model akin to a
“superposition of tensor networks” but in which the geometries of the tensor networks
are required to satisfy some constraints.

A version of this has already been accomplished in [15-17].2 As reviewed in Section
3, these models add degrees of freedom that “live on the links”. This largely fixes the
problem, because different states of these link degrees of freedom can be interpreted as
different geometries, and the link degrees of freedom can be made to satisfy constraints
(such as Gauss’ law). Therefore these are indeed holographic tensor networks with
multiple geometries obeying constraints.

That said, these existing constructions arguably only go part of the way. They
involve a background geometry, in a manner we’ll explain. The main goal of this note
is to point out that a version of these constructions goes all the way, continuing to
work even without the background geometry, once we have incorporated link degrees
of freedom in the appropriate way. We explain this in Section 4. Thus we arrive at
our goal: a tensor network incorporating multiple geometries, possibly all very distinct,
and satisfying certain constraints. In Section 4.2 we address a subtlety in how to get
this to work in one spatial dimension.

2 Conventional tensor networks

Conventional holographic tensor networks are constructed as follows [3-5]. First we
define “bulk” and “boundary” Hilbert spaces, which starts by picking a graph I', com-

2See [18] for another idea to obtain a non-fixed geometry. Also see [19] for a model closely related
to the one in this paper. The difference between that paper and this one is in which aspects of the
model we study. We focus more on deriving a holographic entropy formula and related subtleties.



posed of vertices and links connecting pairs of vertices. We then select some of the
univalent vertices (connected to a single link) to be in the set of “boundary vertices”
denoted {zpary} and the rest to be in the set of “bulk vertices” denoted {xpux}. To
each bulk vertex (respectively boundary vertex), we assign the Hilbert space of a qudit
of dimension dpyx (respectively dpqary). Then the total bulk Hilbert space is

Hbulk - ® Haz ) (21)
z€{THuik}
and the total boundary Hilbert space is
Hpary = ® H, . (2.2)
Ze{xbdry}

As a definite example, consider this graph and vertex assignment:

o O O @
° O O ° (2.3)

The white (black) circles denote bulk (boundary) vertices. The thin blue links are
drawn just to represent I'; they have no Hilbert space associated to them.

Now we want to define a “holographic map”, which is just an approximate isometry?
V' : Hpuwik — Hpdary. Holographic tensor networks are a special kind of holographic map
whose typical construction proceeds as follows. To each link (zy) connecting vertices x
and y, associate a bipartite Hilbert space H,, ® H,y, with dim H,, = dim Hy, = Dyy.
Now, for each link pick a state |¢,,) € Hay @ Hye. Often one chooses |pg,) = [MAX) =
il Dy 1)y / /Dy for all links. This defines a special state on all the links that will
be important momentarily,

R 162) € R Huy ® Hy (2.4)
(zy)

(zy)

3An e-approximate isometry V satisfies |[VTV — 1| < e for € > 0, where || X/ is the operator norm
of X. This definition of holographic map can be generalized to allow non-isometric V' [2], but this
subtlety won’t be important for us.



We have used (ry) to denote the set of all links (zy). Finally we introduce the tensors.
For each vertex of I' we associate the following collection of Hilbert spaces:

,HTI =H,® < ® Hmy) s (25)

y nn

where “y nn z” is the set of all vertices y connected to vertex x by a link (y “nearest
neighbor” to z). For each bulk vertex, we pick a state (T,| in the dual Hilbert space
M7, . We call (T,| a tensor. This gives us the state

R e Q Hi - (2.6)

z€{Tpulk} z€{Tpuk}

We treat the boundary vertices differently.* Because we chose them to each have exactly
one associated link, it follows that for every z € {xpary} we have Hy, = Hy @ Hyy.
We now assume that dyq,y > Dy, for all zy and let W, : H,, — H, be some isometry,
possibly different for each x. Let W := T[] ¢, 4 Wa-

We can finally define the holographic tensor network: it is the linear map V :

Hpux — Hpary given by

vew | ® (7 <<X>>|¢xy> . (2.7)

r€{Tpulk }

We visualize this map for the example above as

(2.8)

Here the white squares denote the tensors (7|, the black dots denote® W,, the (vertical
and horizontal) black lines connecting them denote the states |¢,,), and the (diagonal)

4This is slightly more general than the usual constructions, which often just take Hpdry, to be
®m€{wbdry} Hzy. We can reduce to that case by setting W = 1.
®We abuse notation by drawing W, and H, for x € {Zpary} the same way.



black lines dangling from the tensors denote bulk inputs. Given some state |)) € Hpu,
we draw V' [¢)) as

Q Q

¢ L L ¢ (2.9)

Again the white circles each denote a bulk #,, and the dashed lines connecting them
to a bulk input denote acting that tensor on that H,. This completes the construction
of a conventional holographic tensor network.

How do we choose each (T,|?7 Different answers to this question are different tensor
networks. One particularly nice option is the “random tensor network”, in which we
choose each independently at random [5]: pick some fiducial state (0| € H7, , and then
choose a unitary U, at random according to the Haar measure on the group of unitaries
acting on H7, , and let (T,| = (0| U,. The resulting tensor network is nice because it has
a number of properties resembling the AdS/CFT duality. For example, in the regime in
which Dy, > dyuy (for all zy), boundary entropies satisfy a quantum minimal surface
formula. This means the following. Let Hpz be an arbitrary auxiliary Hilbert space.
Say we are given a [1)) € Hpux ® Hp and resulting boundary state V' [¢)) € Hpdary @ Hp.
Let B C {xpary } be a subset of the boundary vertices. The normalized density matrix
of B in state V' [¢) is then

_ trgalV ) (] V]
WVIVIg)
where B denotes the complement of B in {@pay }. The von Neumann entropy of B in
state V' |¢) is defined as

(2.10)

S(B)viy) := —tr[plogp] . (2.11)
The quantum minimal surface formula satisfied by random tensor networks says that®
S(B)viyy = min ((WAG)[0) + SO ) - (2.12)

6This should really be an approzimate equality, with corrections suppressed by the ratio of various



where the minimization is over all homology regions b of B.” Here the area operator is

A= Y S(ay)p.1 (2.13)

(zy)€db

where 1 is the identity operator on Hy. and 0b denotes the set of links connecting
z € btoy € b (In the common case where all |¢,,) = |[MAX), it follows that
A(b) = > aycon 108 Dyy1.) The analogy to gravity comes from interpreting A(b) as the
operator measuring the area associated to the quantum extremal surface. This formula
then bears a strong resemblance to the quantum extremal surface (QES) formula in
gravity [6-8, 20, 21].

3 Link degrees of freedom

One could raise the following complaint with the tensor networks from Section 2: the
“area operators” A(b) are trivial: for a fixed b, every state is an eigenstate with the
same eigenvalue. This is not like gravity in which the geometry is dynamical and areas
fluctuate. To ameliorate this issue, a number of papers [15-17] have modified this
setup with two tweaks. First, they add to Hpux some degrees of freedom that can
be envisioned as living on the links, such as a bulk gauge field. Second, they add to
the holographic map (the tensor network) some rule for how these new link degrees of
freedom should be acted on by the tensors. The effect is to modify the area operator
to include a new positive term that depends non-trivially on the state of these link
degrees of freedom. We present one way to do this now.®

The bulk Hilbert space will be that of a lattice gauge theory, along with some
matter at the vertices. Let G be a compact Lie group (though finite groups also work),
and let Hg := L?(G) be the Hilbert space of a particle on that group manifold. This
Hilbert space admits the following decomposition (see for example Appendix A of [22]):

He=EPH.®Hye (3.1)
"

entropies in the problem. The approximation becomes increasingly good in the limit that all D, are
much bigger than the dimension of Hyu, and if the area of the minimal cut is much less than the
area of all other cuts. From now on we will ignore these corrections. Also note that the simplest thing
to compute in a random tensor network is the Renyi entropy S,,, which gives the formula (2.12) for
the von Neumann entropy from analytic continuation to n = 1.

"That is, we consider all cuts v in I that are homologous to B, denoting the vertices between -
and B by b. The minimization is over such ~.

8The papers [15-17] present somewhat different constructions than ours below, but they end up
with the same principal result (3.17) and (3.18).



where ;1 indexes the irreducible representations (irreps) of G, #H,, is the Hilbert space
transforming under irrep p, while H,- transforms under the conjugate representation.
Both have finite dimension we’ll call d,,. We can therefore write an orthonormal basis
as
psig) = s @) @ [pj) € He (3.2)

where 11 indexes the irrep and ¢, j index the states in H,, H,~ respectively. We will
use many copies of this Hg momentarily. In addition, we will introduce a qudit at
every vertex, with Hilbert space H, = C%ux. For simplicity we will have these qudits
transform trivially with respect to G.°

To build our lattice gauge theory, we take I' and assign an orientation to each link.*°
Then to each link we assign a Hilbert space Hq, and to each bulk vertex we assign a
Hilbert space H,. This is our “pre-gauged” Hilbert space Hp. Our “physical” Hilbert
space is the subspace Hpnys € Hpre that satisfies Gauss’ law. A state satisfies Gauss’
law if it is invariant under a gauge transformation at each vertex. In the basis (3.2),
this means that at each bulk vertex we demand that the irreps fuse to the identity
irrep.

Let’s look at this in our example (2.3) for, say, the top left bulk vertex. There are
three links attached to this vertex, and so in the pre-gauged Hilbert space a complete
basis is given by states of the form

145 1) i)

Hpre basis: | T

p'i"
(3.3)

Once we impose Gauss’ law at this vertex, one index from each of the kets is completely

determined by the Clebsch-Gordan coefficients Cj’.‘f,‘]{,’f”, which ensure that those irreps
11

are fusing to the trivial irrep at that vertex."> Which of the two indices is involved

depends on the orientation. We will adopt the convention that for a link oriented

9We can of course allow this matter to be charged. This ends up allowing for an interesting interplay
between the state of the bulk matter and the geometry. We simply start with uncharged matter for
simplicity. We discuss charged matter further in Section 4.2.

10Djfferent choices of orientation will end up with the same physics.

UFor n-valent vertices with n > 3, there are generally many ways to fuse a given set of u to the
trivial irrep. That wouldn’t change anything about the discussion below, but if we wanted we could
simplify by always choosing the graph to be composed only of trivalent vertices.



towards a vertex it is the second index that is involved, so

145 1) 75"

/ 17

Hpnys basis: E Clilin
P il g1 1, 11 -1
Ji',J 54" ")

(3.4)

Furthermore, p,u/, and p” are related. For example if G = SU(2) and p = ¢/ = 1,
then p” can only be 0,1, or 2. No other choices can fuse to the trivial irrep. Once we
impose Gauss’s law at every bulk vertex we arrive at our physical Hilbert space,

/H(zy)
Hpue = ® He ®<M> , (3.5)

Gauss
r€{Tpuk}

where we have labelled each Hg by the link (zy) it lives on. Now all ¢, j indices are
fixed except for those associated to boundary vertices, and the irrep indices p are all
related to each other by which fusions are allowed. This completes our description of
our new bulk Hilbert space.

Now we turn to the holographic map. We would like a map composed of tensors
acting in a spatially local way like in Section 2, but modified to act on this new Hpy.
The trick is we’ll first define a new kind of tensor that takes as input a link state
in He and outputs a state in a factorized Hilbert space. Specifically, we define a
tensor S(ay) : HOY — HZ @ HY to implement the following factorization (the usual
embedding into the “extended Hilbert space” [23])

d
.. T 1 - . xT . xr
St + ImsiG" — —= X k) s ke (3.6)
P k=1

We will draw this as a triple intersection of black lines, so for example

|13 47)

ST i) e k)
Kok

(3.7)



This should be interpreted as follows. The top (oriented, blue) line represents the state
lp;ij) € ”H(Cf ¥} The solid black lines (forming a triple intersection) represent the map
(3.6). The dashed line indicates that the state |u;4j) is being input into this map. The
output is the state Y, |u; ik) |1; ki) //dy € He @ HE. We'll let

S = S(xy) (3.8)
(zy)

be the product of all link-factorizers.

We combine this with the old tensors in the following way. After each link has
passed through this link-factorizing map, at each vertex we once again have a set of
naturally associated Hilbert spaces: the same as (2.5) but now also with H¢ factors,

Heyy = H, © < X ny> ® ( (09 Hgy) : (3.9)
y nn y nn x
Now as before, for each bulk vertex we pick a state (T;| in the dual Hilbert space H7,,

&R wle & M. (3.10)

r€{Tpulk} r€{Tpulk}

giving us a state

The boundary vertices we treat by similarly generalizing their W,. The holographic
map is then just

V=w| @ (Tl [Qlew) | S (3.11)

TE€{Tbulk} (zy)
We visualize this acting on (3.5) as in Figure 1. It is important to note the links of

the tensor network are now double lined, in contrast to the single lines of (2.8). This
is because every link still carries one line representing the background entanglement
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Figure 1. Example tensor network V from (3.11) acting on Hpyx from (3.5). At the
top is Hpulk, With the white circles representing the qudits H, and the oriented blue lines
representing the Hilbert space of the lattice gauge theory &) (@) Hg v) /Gauss. At the bottom
is the tensor network V', with the white squares representing one set of tensors (i.e. the
states (3.10)), the triple-intersection black lines representing the link-factorization tensors
(3.6), the black lines (adjacent to them) representing the link state (2.4), and the black dots
representing Hyqry (or more precisely, the map W). The vertical dashed lines indicate where
each part of Hyyuy is input into the tensor network.

(2.4), but now also carries the link-factorization tensor (3.7). That is,

O O

link-factorizing
tensor

background entanglement |¢zy) (3.12)

~10 -



Let’s now specialize to random tensors for the white boxes. We immediately run
into a problem: if G is a Lie group, then H¢ is infinite and therefore so is Hy,. It is not
so clear how to pick a random unitary acting on an infinite dimensional Hilbert space.
There are a couple ways to handle this. We will use a simple one, simply truncating
each Hq at some large value of p, say i1 (as in e.g. [17]).

This tensor network now has very nice properties that allow us to compute entropies
like before. Indeed, we can obtain a dramatic conceptual simplification by taking all
D,, to be very large, much larger than d;. Then nothing stops us from imagining
that this is really the original kind of tensor network from Section 2, with H, —
He ® (®y o m’Hgy) That is, for V from (3.11), we can let V = V.S for isometry

Vi SHpuk — Hbary- Given a state 1)) € Hpui, the state V' |1)) is equally well obtained
by acting VonS |t)). What’s nice is that V is a tensor network just like (2.7). This helps
because we can now import its equations like (2.12). Let’s see how this works. Say we
have some state 1)) € Hpuk, and we have picked some bulk subregion b C {zpui}. We
want to compute the entropy S(b)s)y) of this subregion in the state S'|¢). The relevant

density matrix is p on &), ., (Hm ® (@y S Hgy> ) Now let Ob denote the set of links

connecting ¥ € b to y € b. We know from S that the p in Hg for all (zy) € 9b are the
same for HY'. Therefore those p are decohered, and we can decompose p to be block
diagonal like

P = OuyPu Piuy (3.13)
where {1} denotes the set of 4 on the links in 0b and py,, are probabilities. These py,
are normalized density matrices in which the H¢/ are restricted to definite values of p

for xy € db. Importantly, there’s even more we can say about these py,3. The form of

S tells us that we can write
Lag,

iy
where 14, is the identity operator acting on ®xy€ab M, and py,y is a normalized
density matrix acting on the other factors. Therefore,

Py = Piuy © , (3.14)

S(b)sjy) = — trlplog p]
== puplogppy — Y P trlpgy 1og piu)

{1} {u} (3.15)
== puylogpyy — Y Py trlpgy 1og Al + D piy log gy -
{n} {n} {n}

Now we can use (2.12) to compute the entropy of boundary subregions:

S(B)p = min ((WISTAB)SIY) +S0)siw) (3.16)

— 11 —-



with <¢]STA(b)S]1/J> = D uyeor108 Dy (here for simplicity specializing to the case
|¢2y) = [MAX)). This is an interesting answer, but we would like the answer for
V instead of V. Fortunately, by construction S(B)vigy = S(B)yg,! All that’s dif-
ferent is the interpretation of the terms on the right hand side of (3.16). For V, the
factors H¢/ are not part of Hpuy, and so their entropy — the third term in the last line
of (3.15) — is not a part of S(b)}y). Instead, those terms must be interpretted as part
of the area term. We end up with

S(B)viyy = min (@A ®)[) + Sb)w)) (3.17)
where A
Ab) = > log(Duy)1+ Y piuylog(dyuy)lay,, - (3.18)
(zy)€ab {u}

and S(b)|y) is just the first two terms in the last line of (3.15).

This is a success! The area operator is no longer proportional to the identity. As
emphasized in [15-17], this is exactly what we would like for modelling a gauge field on
top of a given fixed background. The first term of (3.18) represents the area from the
fixed background, while the second term represents the contribution from the gauge
field. This is like the results of [15-17]. Indeed, while the construction of our tensor
network (3.11) differed in some details from [15-17], the main idea is similar pertaining
to these two terms. See equations (4.15) and (4.16) of [15], equation (2.26) of [16], and
equations (4.11) and (4.12) of [17].

4 Background independence

One can wonder: do tensor networks need this background entanglement? Could one
work if we took it away, D,, — 17 After all, this would be desirable for matching
AdS/CFT: in gravity we expect that given a QES, we can project onto states with
fairly arbitrary values of the area [24, 25]. In contrast, given area operator (3.18) there
is a minimum value of the area, Z(xy) cop 108 Dy That’s not terrible: it still models the
encoding of subspaces of the AdS Hilbert space Haqs in which all states have values of
the area larger than some minimum value, which happens if we have a fixed background
geometry. But it would be nice to have a tensor network without this minimal value,
to model the encoding of larger subspaces of Haqs without a common background.

At first, it might seem like we can’t remove the background entanglement. Indeed,
our derivation of (3.17) used that the D,, were very large. Nevertheless, it turns
out that this was just a convenient simplification, and not a necessary part of a good
tensor network! The point of this section is to explain carefully how we still get a good

- 12 —
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Figure 2. Example tensor network V' from (4.1) acting on Hpuy from (3.5). Everything
is the same as in Figure 1, except there is no background entanglement, i.e. we have set
Dz, = 1. This is depicted here by each white square tensor being connected by only one line
— the tensor (3.7).

holographic tensor network — with a quantum minimal surface formula — even without
the background entanglement. The entanglement necessary for the map to be suitably
isometric will instead come from the factorization of the link degrees of freedom with
(3.6). Certain states of the link degrees of freedom will be good and holographic.

4.1 Background independent tensor network

The tensor network we’ll consider will act on the same Hypyy as before, (3.5). All that
is different is that instead of (3.11), the tensor network is now

v=w | & (Tl]S, (4.1)
re{zpuc}
where these (77| are defined as in (3.10) with D,, = 1. We depict this graphically in

an example in Figure 2.
Let’s convince ourselves this works, with an example. Let’s say the (77| are random
tensors, and let’s specialize to G = SU(2) for definiteness. As a warmup, consider the

—13 -



following lattice gauge theory state:

L+r ~ L ~ L+1T
> O > O >
I 4 4T/
> O > O >
L+ 1 L L+L (4.2)

We have labelled the value of p on each link, here all definite numbers L, L', L + L'.
We have neglected the i, j indices of H,,, H,+ from (3.1) because they are unimportant
(and again the internal ones are fixed by gauge invariance). We’ll imagine the qudits
O HI) ® Hpg, where
R is some reference system introduced for generality to purify the qudits. Let the total
state of the lattice gauge theory, qudits, and reference be |1).

living on the vertices are all together in some state 1) € <®

Now take this |¢)) and act our tensor network (4.1). The first step is to apply 9,
which embeds each link into the factorized Hilbert space. Next we apply the random
tensors, which for each = € {xpui} was

(Tl € (M, © HEY @ HE @ HEP)' (4.3)

What’s important now is that we have specialized to particular irreps on each link. So
for example, at any given vertex we have

(T € H:® (Hy @ Hp)' ® (Hy @ Hur ) @ (Hosw @ Hpwy)™ . (44)

Recall that (77| will act on the state S |¢)). Let’s investigate the structure of S'|¢) on
these factors. In (4.4), within each of these parentheses we have two factors. In the
state S |1), one factor from each is fused together by the Clebsch-Gordan coefficients
into a definite state, say |7 1/ 1+1/). So the only part of (77| that matters is the part
that looks like (t5E"L+E' | (Q 1/ 11|, where say

A e H oWy @ H, @ Hy

(Qruriv| € HL @ Hi @ Hipirry

and (tLF L+ is random within that Hilbert space. The part of (T”| outside the sub-
space where those three factors are in (€2, 1/ 141/| just has zero overlap with S |¢), be-
cause |1)) satisfies Gauss’ law. And with extraordinarily high probability over the choice

— 14 —



of random unitary, (77| will overlap this subspace. (Alternatively, instead of picking (77|

o0

completely at random, we could just choose to define (77| = 7 KO

A
with just (#-##"| random, similar to [16]. The end result is siﬁffaf.)
The other factor from each is maximally entangled with factors associated to other
vertices, e.g. H' is maximally entangled with HZ™. As a result, this (¢,| is exactly
like the random tensors from the original tensor network (2.7), with H,, replaced by
this p-sector of Hg'. In other words, this tensor network, acting on this state with
fixed irreps, encodes the state of the qudits exactly like a tensor network from Section

2:

L+

: D:2L+L’+l’_#“‘ Lo D—2L41 FH T
P P ( ) : D=L+l +1g

D=2L'+1 : D=2L'+1 :

' D=2L+L)+1 D=2L+1 D=2L+L)+1
P ® ( ) ( l+lg

(4.6)
This is the main result of this section. Let’s say it differently using equations. We
recall S' maps each link

1 & 1 &
14325 ) p — \/@;!w@ac |15 KT = 118527) <\/@;!u7kk>m) (47
where we have labelled each H,,, H,~ factor by a, b, c,d to help keep track of them. The
second factor is a p-dependent maximally entangled state that was just added by S.
The first factor is the part of the Hilbert space that was already there in Hyuy, and
it remains in the original bulk state. It is the second factor that effectively plays the
tLL L | play

the role of the (T,|. It follows from all of this that the entropy of boundary subregions

role of the |¢,,) of the conventional tensor networks in Section 2. The (

satisfies a quantum minimal surface formula,'? but we will delay discussing it because
its nicest features will become clearer.

Given this match (4.6), what have we gained? The advantage happens when we
consider more general lattice gauge theory states. For example, consider the superpo-

12To get a nice formula with small corrections now requires that L and L’ are sufficiently big.

—15 —



sition

L+ 1 Ly L+ L Ly+ L Lo Ly+L
L L + L L
L+ L L L+ L Lo+ L L, Lo+ L

for Ly # Lo. Our tensor network (4.1) acts linearly, and so by (4.6) the boundary state
can be thought of as the superposition of the states prepared by two tensor networks
with different background geometries:

© o o o

POEERYARS D=l MTpesnerag PR VAEVAES L D=2, 1 D:g:(L2+L’)+1.

D=2L'+1 : D=2/ +1 : =+ D=20+1 D=20'+1 :

‘):2([4\+,-/j+1 D=2L+1 =2(Li+L)+1 ‘7:2(L2—l,’)+1 D=2L,+1 :g(Lz.L/)H.
L] L] o

(4.9)
This lesson generalizes. States in Hyp,y with definite values of p on each link can be
understood in terms of a conventional tensor network with background entanglement
determined by the gauge theory state. Superpositions of these gauge theory states can
be understood as superpositions of conventional tensor networks.

Part of this was said before: It has already been said that adding link degrees of
freedom can be understood as allowing superpositions of tensor networks, see e.g. [17].
What is new here is that the conventional tensor networks in the superposition need
not have any similarities in their geometry. We can make this new feature especially
striking: nothing stops us from considering an all-to-all Hyy, in which all pairs of
vertices are connected by a link. Then the “background geometry” of the corresponding
conventional tensor networks can look completely different: some states of Hyp, might
have the topology of a (triangulation of a) disk, while others are (triangulations of)
higher genus surfaces. This is because the trivial irrep pi is one dimensional, d,, = 1,
and so a link assigned that irrep has no entanglement across it, hence contributing zero
area, and we might as well regard it as not even being there.

It follows from the above that for many gauge theory states (with e.g. sufficiently
large p on the links), these background independent tensor networks (4.1) satisfy a
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quantum minimal surface formula,

S(B)viy) = min ((SAD)1) + SO (4.10)
where A
Ab) = piwy log(dgy) 1y, (4.11)
{u}

with {u} the set of irreps on the links in 9b (as in (3.13)) and S(b))y the first two terms
in the last line of (3.15). This is exactly what we wanted: the area of any given surface
is determined completely by the state of the gauge field, with no extra term providing
a minimum.

4.2 1d and background independence

Here’s an interesting subtlety. Let’s try to use a background independent tensor net-
work like (4.1) with a 1-dimensional version of Hyp,y from (3.5), like

A4

)
-

A4

)
N\

A\ 4

(4.12)

The problem is that gauge invariant states have exactly the same p on each link; that’s
what Gauss’ law says. To see why this is bad, let’s again specialize to G = SU(2),
where we find that

L L L

¢ ‘ m ‘ m ‘ d o 2=+t m D=2L+1 m Dol g

(4.13)
Now let’s try to compute the entropy S(B) for B either of the two black circles. All
bond dimensions are equal, so the minimal b in the formula (4.10) can have many
problems. For example, it can be maximally degenerate, with every cut an equally
minimal surface, say if the qudits are in a product state. More problematically, if any
bulk legs are in a mixed state, then neither boundary region will include that leg in
its minimal b. (Though the entire boundary might still include the entire bulk in its
minimal b.) This is not like what we expect in 1-dimensional versions of AdS/CFT,
where small amounts of bulk entropy are not enough to greatly change the position of
the quantum extremal surface of the left or right boundary.
We can improve this model by incorporating charged matter. Here is an example.
Let’s add to our Hpyy from (3.5) an additional degree of freedom at every bulk vertex
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x, with Hilbert space H,. = ®,H,. Here p labels the irreps of G, just like in (3.1).
Gauss’ law now requires that at every vertex, the two gauge field links and this charged
matter fuse to the trivial irrep. So now we can have bulk states like

O 0 > (4.14)

where again the L, L’ label the irreps, and now we have included vertical lines on
each bulk vertex to represent the new charged degree of freedom. The (appropriate
generalization of the) tensor network (4.1) now satisfies

r r r r
e 11 | |
7 ; >

D=2L+L =2 p F L) 4
') 2(L+L)+1 D=2L+1 D=2(L+L" 1.

(4.15)
On the right hand side, the charged matter is labelled L’ to remind us that its state is
related to the dimension on the bonds. This is better, because the bond dimensions of
each link can be different from one another.

5 Conclusion

We have shown that there is a straightforward way to build holographic tensor networks
that include geometries that are completely distinct, but nonetheless all must satisfy
some constraints. This is a step towards adding time evolution in a way that resembles
gravity. There, the constraints play a key role in having the bulk dynamics match those
of the dual CFT. It will be interesting future work to incorporate different constraints,
beyond just Gauss’ law, making the bulk theory more like gravity and the holographic
map more realistic.
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