Check for
Updates

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale

Kirtus G. Leyba
Arizona State University
Tempe, United States
kleyba@asu.edu

Steven Hofmeyr
Lawrence Berkeley National
Laboratory
Berkeley, United States

Judy Cannon
University of New Mexico
Albuquerque, United States
JuCannon@salud.unm.edu

shofmeyr@Ibl.gov

Melanie Moses
University of New Mexico
Albuquerque, United States
Melaniem@cs.unm.edu

ABSTRACT

Modern supercomputers rely on graphics processing units (GPUs) to
achieve unprecedented computational capabilities. Multi-node com-
putation with GPUs promises to accelerate and scale simulations
dramatically across many domains, and many scientific simula-
tions have been adapted to this new paradigm of supercomputing.
However, agent-based models (ABMs) are a class of simulations
that to date have seen little development for multinode, multi-GPU
supercomputers because their computation flow poses unique algo-
rithmic and communication challenges for effective performance
on GPU enabled supercomputers. In particular, many ABMs have
irregular and dynamic communication patterns, resource compe-
tition that causes race conditions, and unpredictable effects on
load balancing. We studied the Spatial Immune Model of Coron-
avirus, or SIMCoV, as a target ABM application for acceleration.
SIMCoV is a large-scale ABM which simulates the spread of viral
infection through the epithelial tissue of the lungs and models the
immune response with diffusing inflammatory signals and mobile T
cell agents. Our multinode, multi-GPU implementation of SIMCoV
achieves significant speedups over a competitive baseline version,
up to 11.9x with a ratio of 32 CPU cores to a single GPU. The paper
describes SIMCoV’s GPU-specific optimizations, reports empirical
results, and demonstrates effective solutions to the challenges of
accelerating ABMs on modern supercomputers.

ACM Reference Format:

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie
Forrest. 2024. SIMCoV-GPU: Accelerating an Agent-Based Model for Ex-

ascale. In International Symposium on High-Performance Parallel and Dis-

tributed Computing (HPDC °24), June 3-7, 2024, Pisa, Italy. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3625549.3658692

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

HPDC °24, June 3-7, 2024, Pisa, Italy

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0413-0/24/06...$15.00
https://doi.org/10.1145/3625549.3658692

322

Stephanie Forrest
Arizona State University
Tempe, United States
steph@asu.edu

1 INTRODUCTION

Computational models of real-world complex systems are found
across diverse scientific domains. Frequently, researchers are in-
terested in adaptive systems with many moving parts that feature
complex interactions, decision making, and communication. For
example, researchers have modeled the impact of different man-
agement strategies on forest fires [30], the flow of traffic in road
topologies [29], and the economic dynamics of demand shocks
impacting a supply chain [24]. These models are all categorized
as Agent-Based Models (ABMs). ABMs model agents that live in a
spatial environment, make decisions and interact with one another
and the environment. ABMs are an essential tool for researchers
because they can encode expert knowledge about components and
interactions within a system and then study its large-scale emergent
dynamics. In many cases, however, the utility of an ABM is limited
because it is too computationally expensive to execute at scale,
either because too many agents are required or communication
between computational units is prohibitively costly.

To improve their scaling and manage highly complex models,
ABMs are frequently parallelized, but they have rarely been de-
ployed at scale on multinode, multi-GPU systems. When ABMs
are implemented on GPUs, they tend to run on a single GPU, a
single node, or a single GPU per node [3, 28]. These limitations are
significant, because the current generation of supercomputers relies
on clusters of GPU nodes to drive their immense computational
capabilities. The supercomputer Frontier, for instance, achieved 1.1
exaflops in 2022 by relying on both CPU and GPU computation [1].
Realizing the potential of exascale supercomputers to run large
ABM:s is important: first, it can increase the size of ABMs that can
be executed (crucial for our application), second, it can increase
the number of simulations that can be performed (important for
exploring parameter regimes and repeating highly stochastic simu-
lations), and third, it can support models of increased complexity
to provide more salient results and better predictive capabilities.

In this work, we focus on a single ABM, SIMCoV [25], which
illustrates the need to run at scale and highlights many of the
complexities associated with implementing multinode, multi-GPU
ABMs. SIMCoV (Spatial Immune Model of Coronavirus) is a high-
performance computing (HPC) application that simulates a 2D or
3D voxel world of epithelial (tissue) cells that is used to spatially

https://doi.org/10.1145/3625549.3658692
https://doi.org/10.1145/3625549.3658692
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625549.3658692&domain=pdf&date_stamp=2024-08-30

HPDC ’24, June 3-7, 2024, Pisa, Italy

model the human lung, which has billions of individual cells. SIM-
CoV is an exemplar for multinode, multi-GPU acceleration because
of its large scale and dynamic computational landscape. SIMCoV
features mobile agents that compete for limited space, introducing
communication requirements to resolve the competition, as well
as diffusing concentrations from multiple initial locations, causing
the expensive to compute simulation regions to grow and vary
over time and between simulations. SIMCoV shares these computa-
tional challenges with other ABMs, which further motivates our
endeavour to accelerate it. Throughout this paper we refer to our
multinode, multi-GPU update to SIMCoV as SIMCoV-GPU, which
we distinguish from the baseline implementation, referred to as
SIMCoV-CPU. We focused on a specific HPC application, but are op-
timistic that our findings will provide helpful insight for researchers
seeking to develop other many-GPU simulations, particularly ABMs
where mobile agents induce expensive communication and dynamic
load balance issues.
The contributions of our work are as follows:

o A multinode, multi-GPU implementation of a large complex
ABM. Our development includes applying GPU and cluster
computing focused optimizations to address costly commu-
nication, mobile agents that compete for spatial resources,
and unpredictable load-balancing.

An empirical evaluation of performance improvement, demon-
strating 11.9x speedup over a competitive baseline imple-
mentation on a system with a ratio of 32 CPU cores to one
GPU, which ideally could provide at most 15.6x speedups.
Generality: ABMs are a class of computational models that
have yet to take advantage of state-of-the-art supercomput-
ers. The approaches outlined here present a road map for
the deployment of large-scale ABMs on exascale, multinode,
multi-GPU supercomputers.

The remainder of the paper is organized as follows:

e Section 2 provides details of SIMCoV and relevant back-
ground information necessary for accelerating ABMs with
multiple GPUs.

Section 3 describes our approach to developing SIMCoV-GPU
and where it necessarily differs from SIMCoV-CPU.
Section 4 reports on an empirical evaluation of SIMCoV-
GPU’s performance and compares it to a competitive base-
line.

Section 5 discusses relevant prior work, Section 6 discusses
our findings, highlights limitations and suggests future work,
and

Section 7 concludes the paper.

2 BACKGROUND

This section briefly reviews earlier efforts to accelerate ABMs and
then describes the baseline implementation of our target application,
SIMCoV-CPU and why it is an interesting target for many-GPU
acceleration.

2.1 Parallel Agent-Based Models

ABMs, which are sometimes referred to as individual-based mod-
els [14], are computational models that simulate large dynamic

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

323

systems by describing the behavior and interactions of their in-
dividual actors, referred to as agents. ABMs are specified by a
collection of agent types, rules for how agents interact with each
other and their environment (behavior), and a topology that con-
strains their movement in the environment and which agents they
interact with. Agent rules can be static or adaptive; in some cases,
all agents have identical rules and in others, each agent has its
own set of rules which it can update over time through learning
or evolution. For example, in a cancer simulation, different agent
types could correspond to different types of cells in the body; each
individual cell might behave differently, depending on how many
mutations it has suffered; and cell movement could be constrained
to a three-dimensional local neighborhood, representing nearby
physical space [16]. Once the component parts of an ABM are spec-
ified, the system can be studied, much like in a laboratory setting,
by running experiments with varied parameters and setups.

This bottom-up modeling approach has the advantage that the
simulations can reveal interesting emergent behaviors, which are
not predictable ahead of time, despite relatively simple agent rules.
In cases where a certain high-level behavior has been observed,
a plausible underlying mechanism can be discovered by testing
different ABM configurations to see which ones most closely mimic
the observed phenomenon. ABMs have been used to study a wide
variety of complex systems including those in environmental sci-
ences [30], social sciences [5-7], biological sciences [10], and other
domains. ABMs can divide their computation into discrete time
steps or discrete events [4]. In both cases, ABMs can be parallelized
by distributing the operations of agents to computational units
(threads, processes, GPUs, etc.).

Parallelization is necessary for ABMs when they are used to
simulate large populations of agents with many interacting com-
ponents. The emergent properties of ABMs can easily differ based
on population size, and it is often a worthwhile research question
itself to understand the impact of population scale on an ABM. In
the example we describe below, the environment is organized as a
volume of voxels, each five microns cubed, so billions of cells must
be modeled to achieve realistic scale simulations consistent with
the number of cells in a human lung. For large complex systems,
the ability to simulate efficiently at scale is essential for relating
model results to the real world. As mentioned earlier, this is compu-
tationally challenging due to the sheer number of agents, dynamic
workloads, and the communication overhead that arises from man-
aging agent interactions among themselves and their environment.

Each ABM agent has a location on a network topology which is
defined for the specific problem being studied. Nearby agents may
compete for some resource, e.g., two agents may both attempt to
move to the same spatial location in a discrete grid [27]. In a serial
implementation, such conflicts are resolved by random tiebreak.
In a parallel environment, however, extra care must be taken to
ensure that all relevant processes agree on the simulation state after
tiebreaks. This can be solved using random tiebreaks and commu-
nicating the result between the processes, but this communication
can be particularly costly on multinode, multi-GPU systems.

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale

HPDC ’24, June 3-7, 2024, Pisa, Italy

(A) (B)

(C) Active list of voxels

(v o
.].O O

Simulation Step

(1)

-
o o o Update T Cells

D—P. Update Epithelial Cells

. Update Concentrations
\L J

(4)

Figure 1: A diagram of the behavior of SIMCoV. (A) A 3D visualization of a small SIMCoV simulation seeded with a single FOI.
The spreading damage of the infection is shown. Apoptotic (red) and expressing (blue) epithelial cells are seen on the boundary
of the growing infection. The T cells (green) randomly walk searching for infected cells to bind to. (B) The simulation is
distributed to processes via either block (top) or linear (bottom) domain decomposition, which has impacts on communication
overhead. The processes are labeled 1 through 4 in this 2D example. (C) For a single simulation step, each process iterates over
its portion of the active list of voxels and performs updates: Moving and binding for T cells, updating epithelial cell states, and

diffusing concentrations.

2.2 SIMCoV

SIMCoV was developed as an ABM to simulate the spread of a vi-
ral infection (parameterized for SARS-CoV-2) throughout the lung
tissue of a host as well as a corresponding immune response. SIM-
CoV differs from earlier within-host infection models by including
spatial structure. These earlier models focus on the aggregate statis-
tics of an infection over time using ordinary differential equations
(ODEs) [18, 31]. In the earlier work, ODEs model populations of
cells, virus, and other entities as being well-mixed, which means
that all possible interactions between the entities are equally likely,
regardless of where the entities are located. However, because many
biological processes are localized to nearby cells, spatial effects can
be important. Examples in SIMCoV include the impact of how the
initial infection is distributed throughout the tissue and the spatial
distribution of immune cells that can fight the infection. In particu-
lar, SIMCoV can model varying numbers of FOI (foci of infection).

The spatial environment of a SIMCoV simulation is a 2D or
3D grid of voxels, and the hierarchical branching structure of the
lung can be overlaid on either the full 3D volume or a single slice
represented by a 2D grid. Each voxel can be empty or contain model
components, including epithelial cells, immune cells, and molecular
concentrations. Earlier results showed that SIMCoV can match
longitudinal patient data (spread of virus during an infection) by
fitting three key parameters of the simulation—parameters that are
expected to vary across individuals [25].

A detailed description of the SIMCoV model appears in [25], and
figure 1 illustrates the most relevant aspects of the model for the
high-performance computing (HPC) implementations. SIMCoV’s
agents consist of epithelial cells, which are stationary but can be in

324

multiple states (healthy, incubating, expressing, apoptotic, or dead)
and motile T cells that can trigger a process known as apoptosis
that kills infected epithelial cells. Epithelial cells transition stochas-
tically from an incubating state (producing virus while not being
detectable to T cells) to an expressing state (now detectable to T
cells) according to an incubation period which each epithelial cell
draws from a parameterized Poisson distribution. In the absence of
stimulation, T cells circulate through the vascular network of the
body, which is modeled implicitly as an available pool of T cells.
A high concentration of inflammatory signal triggers T cells to
leave the vasculature near infected regions of the simulation, and
when they encounter infected epithelial cells they bind to them and
initiate the death of the infected cell (apoptosis). A single voxel con-
tains a maximum of one T cell and one epithelial cell at any point
in time. Structure is defined for the simulation, such as branching
airways in the lung, by leaving some voxels empty without epithe-
lial cells, although in this paper we evaluate 2D simulations which
correspond to the simulations that fit best to patient data in [25].
In addition to discrete agents, where each instance is represented
explicitly in the simulation, the SIMCoV environment contains two
continuous quantities, which vary over time and affect the behavior
of agents: the virus itself and an inflammatory signal that indicates
the presence of infection. These are represented as concentrations
that diffuse through simulation space according to parameterized
diffusion rates. The virus infects epithelial cells as it spreads through
the simulation space, while the inflammatory signal increases the
chances of T cells extravasating at locations with high concentra-
tions. Each time a T cell has a chance to extravasate, a voxel in
the tissue is selected uniformly at random, and with a probability

HPDC ’24, June 3-7, 2024, Pisa, Italy

proportional to the concentration of the inflammatory signal at
that voxel, the T cell will enter the simulation at that location.

The original parallelization strategy of SIMCoV divided the sim-
ulation domain into subsets of voxels and distributed them to indi-
vidual CPU processes. The multiprocessing framework for SIMCoV
is UPC++ [8], which is a parallel computation library that uses a
Partitioned Global Address Space (PGAS) to enable interprocess
communication. UPC++ includes features such as remote procedure
calls (RPCs) and support for direct GPU-to-GPU communication.

SIMCoV-CPU can be parallelized by subdividing the simulation
space into subdomains using either linear, 2D, or 3D domain decom-
position. Some of the simulation work in SIMCoV can be performed
locally, such as virus infecting an epithelial cell. Other operations
require communication, such as moving T cells across process
boundaries. These communication instances are handled in the
CPU version of SIMCoV using RPCs in UPC++ which allow one
process to asynchronously queue the execution of a function on
another process.

This approach is convenient for CPU-based parallelism and re-
duces the development effort required to implement the model be-
haviors, but it is not efficient for exploiting the massive parallelism
available in GPUs. A multinode, multi-GPU SIMCoV should process
as much simulated space as possible within each GPU kernel and
minimize costly communication and other general purpose GPU
programming pitfalls. Necessary changes to the implementation to
create SIMCoV-GPU are described next in section 3.

3 ADAPTING SIMCOV TO GPUS

SIMCoV-GPU is implemented using NVIDIA’s Compute Unified
Device Architecture (CUDA) for GPU kernels and GPU library calls,
and relies on UPC++ to handle interprocess communication and
GPU-to-GPU copies. Implementing a computationally efficient ver-
sion of SIMCoV to run across multiple GPUs required substantial
changes to algorithms and data structures. SIMCoV-CPU was de-
signed to allow for communication within simulation iterations,
such as T cells binding to epithelial cells across process bound-
aries. Additionally, it relies on dynamic data structures and the
global address space provided by UPC++. These tools are either
not available within GPU kernels or would introduce prohibitive
overhead when implemented on GPUs. SIMCoV-CPU also reduces
the computational work on inactive regions by tracking the active
voxels in an active list. Maintaining a dynamic data structure that is
shared between GPUs would also incur a high communication cost.
These new requirements for SIMCoV-GPU motivated us to modify
the T cell agent algorithm, introduce memory tiling to manage
inactive regions, and take advantage of GPU shared memory to
reduce global memory accesses and atomic operations.

3.1 T Cell Algorithm

SIMCoV models Cytotoxic CD8 T cells explicitly as agents. SIMCoV
T cells move randomly from voxel to voxel and bind to any virally
infected epithelial cells they encounter, triggering programmed cell
death (apoptosis). In SIMCoV-CPU, this behavior is accomplished
by iterating over active voxels and executing movement and state
updates for the T cells found in those voxels. Since two T cells
cannot occupy the same voxel, collisions are resolved using RPCs; a

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

Choose x
Direction

Copy To
Ghost Voxels

()
Assign

Winners) 2

()
O
Set Flips

~~
2

Move Agents O O
" J | 1©

Figure 2: T cell movement algorithm in SIMCoV-GPU. Each
T cell chooses a random direction to try to move and stores
a randomly generated value at that location. After a copy
operation, tie breaks are resolved, voxels are set to flip the
presence of T cells on or off depending on if a T cell is enter-
ing or leaving (red diamond). Next, the moves are executed.
(Left) Blue rectangles indicate the order of kernels, and red
ovals indicate copies between GPUs. (Right) Diagram of the
memory layout for two adjacent GPUs, illustrating a repre-
sentative sequence of T cell operations. Gray regions indicate
ghost voxels.

T cell is prevented from moving if it tries to move into an occupied
voxel. A T cell can also fail to move if a different T cell wins a
tiebreak and to move into an unoccupied voxel. T cell binding
is treated similarly: multiple T cells attempting to bind the same
epithelial cell in one timestep resolve the resource competition in
the same way.

SIMCoV-GPU cannot use this approach because within a single
simulation timestep, one GPU cannot query the simulation state of
a particular voxel. Instead, GPUs acquire information about their
boundaries during communication waves placed between computa-
tion. During communication, the memory of a GPU’s boundary is
copied to its neighbors, and stored there in a halo of ghost voxels
that surrounds the simulation space. For epithelial cells which don’t
move and do not interact directly with their neighbors and for con-
centrations that diffuse according to a stencil code, this is sufficient
to compute all updates for a timestep. T cells are more interesting,
because they make independent pseudo-random choices of where
to move and where to bind every timestep. Simply knowing there

325

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale

is a T cell on the boundary of a GPU’s neighbor in simulation space
isn’t sufficient to know where that T cell is going to go, and even
worse there is no guarantee that a T cell completely unseen to one
GPU moves into a location that a local T cell has chosen as its target.
This problem arises due to the decision making nature of T cells,
and is a particularity of ABMs that is not shared with many other
HPC applications. While our T cells are random walkers, a similar
spatial resource competition challenge would arise in other ABMs
with adaptive agent behaviors such as evolved decision making.

One solution to this challenge is to first communicate the intent
of every T cell (where it chooses to move or to bind), perform
a communication call, resolve tiebreaks from T cells attempting
to move or bind to the same location, and then copy the results
back to let each GPU know what to do with their boundary T cells.
Fortunately, we can do better and avoid the second communication
call. Our approach is similar to that described in [27], where each
agent bids on the spatial resource that it is competing for. Our
T cell behavior is specialized, however, for the functionality of
SIMCoV because the preference for winners is random on each
timestep and T cells are not expected to try to move multiple times
in any iteration, i.e., T cells can and do run into each other. These
adaptations are necessary to match the behavior of SIMCoV-CPU.

The T cell movement algorithm of SIMCoV-GPU is visualized
in figure 2. First, the T cells within the sub-domain of each GPU
select a random neighbor voxel as a target. Second, each T cell
generates a pseudo random number from a large range of integers
(true ties where multiple conflicting T cells draw the same value are
possible but so unlikely that it is efficient and practical to ignore
them). They store that value at their own voxel, and if it is larger
than the current value at their target voxel they also store it at
the target. Now, a wave of communication between neighboring
GPU processes allows each voxel to determine the winning T cell
which may or may not be stored in local memory. Finally, T cells
that win the tiebreak (or had no competition) are moved in a local
computation step on each GPU where they are copied to their
destination voxels and erased from their source. Conveniently, if a
T cell has moved into the memory space of a GPU, that T cell can
safely be instantiated in memory without fear of duplication. Since
the tiebreak is deterministic in this regard, the GPU from which
the T cell came will erase it.

In the subsequent subsections 3.2 and 3.3 we introduce two GPU
focused optimizations used in SIMCoV-GPU.

3.2 Memory Tiling

There are many possible states that a SIMCoV simulation could
exist in, and the amount of actual activity in the simulated space can
vary drastically over time. For instance, a region of lung tissue that
does not have any virus or inflammatory signal does not change
from one timestep to the next. It is important to take advantage
of this to rapidly compute timesteps with low activity and not
waste computational resources with poor load-balancing. SIMCoV-
CPU addresses this with an active-list data structure to track which
voxels can possibly be changed each timestep. Each process in
SIMCoV-CPU maintains its own active list, and it is straightforward
to determine which voxels could possibly change from one timestep
to the next. This is true over process boundaries as well, because

326

HPDC ’24, June 3-7, 2024, Pisa, Italy

Yo

/
GPUTTGPU 2

GPU3| GPU 4

Figure 3: The memory layout of a SIMCoV-GPU run. This
example is a 2D simulation on four GPUs. (A) The GPUs
subdivide the simulation domain equally using 2D domain
decomposition. (3D domain decomposition is applied simi-
larly for 3D simulations). (B) A zoomed in view of GPU 1’s
voxel layout in memory. In this example, 3x3 memory tiles
are used, indicated by lighter and darker regions. Blue voxels
belong to the ghost halo. The order of voxels in memory is
shown by the zig-zag path that traverses the space.

when a process uses an RPC to communicate with its neighbor, that
RPC can add the affected voxels to the active-list. As previously
explained, in SIMCoV-GPU each GPU performs updates over its
space and communicates its boundaries in separate steps, so the
active-list would not be updated across process boundaries unless
this was handled during communication. An additional challenge
is that the memory footprint of tracking the active-list would have
to be proportional to the number of voxels or the active-list would
have to be a dynamic data structure which could at times be as
large as the total number of voxels anyway. Either approach is
unattractive for GPUs due to their restrictive memory constraints.

Instead we use memory tiling to accomplish this optimization in
SIMCoV-GPU, an approach inspired by optimizations in computer
graphics [19]. In SIMCoV-GPU a tile is defined as the memory (in-
cluding epithelial cells, T cells, and concentrations) containing a
sub-domain of the simulation space. We require that the dimen-
sions of a tile allow for an integer number of tiles to subdivide the
simulation along each dimension. Note that this is a lower order
than the domain subdivision that distributes simulation regions to
GPUs. Each tile stores its voxels contiguously in memory, which
has an added benefit of data locality. For GPUs especially, global
reads and writes are expensive, and it is more likely that voxels
nearby are cached when using memory tiling. Tiles are tracked as
active or inactive and SIMCoV-GPU kernels perform computation
only on the active tiles. Tiles are activated when a check is exe-
cuted via a GPU kernel that sweeps the simulation space looking
for activity. To minimize the cost of this update, we choose to only
perform the check periodically. The maximum the period for active
tile checking can be set is to the size of the side of a tile, on the
condition that when a tile activates it also activates a buffer of tiles
around it one tile thick. We know this will safely encapsulate all of
the simulation activity because nothing in SIMCoV can move faster
than one voxel per timestep. We set tiles that contain ghost voxels
to active always to ensure that entities that enter from other GPU
memory spaces are updated correctly. Importantly, we find that

HPDC ’24, June 3-7, 2024, Pisa, Italy

the overhead of checking tiles is much smaller than the benefit of
skipping inactive regions. This suggests that this optimization can
be applied in other ABMs including those with fast moving agents
or agents that interact over long ranges that would increase the
rate of active tile checking. A visualization of the complete domain
decomposition of SIMCoV-GPU including memory tiling is shown
in figure 3.

3.3 Fast Reduction

SIMCoV collects a variety of statistics during execution, which are
used to interpret model output. These include aggregate quantities
such as the total count of virus molecules, the total number of T cells
in the tissue, and the total number of epithelial cells in each of their
possible states. These are collected each time step to enable time
series analysis of infection dynamics. In SIMCoV-CPU, each process
updates these quantities locally and then a UPC++ directive triggers
a reduction, with a single process logging the totals to a file on disk.
In SIMCoV-GPU each kernel is executed with thousands of threads,
so within a single process there would be memory contention and
race conditions when updating global values. One solution is to
use atomics to update simulation statistics within kernels. Atomics
in GPUs introduce considerable overhead, which gets worse when
launch configurations use more threads or larger block sizes. We
find, perhaps counterintuitively, that it is considerably faster to
perform a reduction over every single voxel in the simulated space
than include atomics throughout a single simulation update. We can
further enhance the reduction by using a tree-like parallel reduction
method to take advantage of device shared memory and reduce the
total number of atomic operations [17]. In this reduction, each GPU
thread first accumulates values for a subset of the voxels, and then
each thread block accumulates the values of its threads, and finally
the CPU process that manages each GPU reduces the globals across
all GPUs using a UPC++ directive.

These optimizations focused on GPU programming and multin-
ode operation, which is a lens that must be used in order for ABMs
to effectively take advantage of modern supercomputers. Next, we
investigate the impact these optimizations have on SIMCoV-GPU
in subsection 3.4.

3.4 Profiling Optimizations

The optimizations implemented for SIMCoV-GPU focused on sev-
eral efficiency aspects that are especially important in multinode,
multi-GPU programming: load-balancing, global memory access
patterns, data locality, and atomic operations. In order to evaluate
the performance impact of these optimizations we analyzed four
prototypes of SIMCoV-GPU with different stages of optimization.
Unoptimized SIMCoV-GPU iterates over the entire simulation space
each timestep without tracking active regions and and uses atomics
to accumulate values within GPU memory, Fast Reduction SIMCoV-
GPU includes only the tree-like reduction described in section 3.3,
Memory Tiling SIMCoV-GPU uses the memory tiling described in
section 3.2 but forgoes the fast reduction method, and finally Com-
bined SIMCoV-GPU uses both optimizations in conjunction. We
collected profiling information experimentally on the Arizona State
University (ASU) Agave supercomputer using 4 V100 GPUs on a
single node. We performed a simulation with dense activity (1024

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

foci of infection (FOI)) and accumulated the total time in two cate-
gories of work: updating agents and reducing statistics. The results
of this analysis are shown in figure 4.

These results first highlight that reductions take up a very large
portion of the computational workload, and are an important target
for performance improvement. We also see that both optimizations
provide some speedup on their own. Unsurprisingly, the fast reduc-
tion approach vastly outperforms the unoptimized version. Also
as expected, memory tiling reduces the runtime used on updating
agents. It is interesting that memory tiling also improves the per-
formance of reductions, likely due to the enhanced data locality
reducing slow memory accesses as the reduction kernel sweeps the
simulation space. Finally, we see that the optimizations combine
very effectively, which indicates that their speedups come from
mostly independent effects.

4 EVALUATION

We conducted an evaluation of the performance of SIMCoV-GPU
and compared it to a competitive baseline version of SIMCoV-CPU.
First, we conducted a correctness evaluation to verify that SIMCoV-
GPU and SIMCoV-CPU compute the same simulation. Next, we
evaluated how the two implementations of SIMCoV scale in three
ways: strong scaling, which highlights the benefit of more compute
resources for a static problem size; weak scaling, which reveals how
additional computational resources enable larger simulation do-
mains; and scaling foci of infection, which reveals how an important
variable of the simulation affects performance. The configurations
of our evaluations are shown in table 1. We chose these problem
sizes as a function of our available compute resources. We per-
formed three trials for each configuration, except in the FOI scaling
experiment where we only performed a single SIMCoV-CPU trial
at 512 FOI and no trials for SIMCoV-CPU at 1024 FOI. This was
due to limitations in the computational resources available for this
project.

The correctness evaluation was conducted on ASU’s Sol super-
computer [20] which features 61 GPU capable nodes, most com-
monly with 128 CPU cores and four NVIDIA A100s. The scaling
experiments were conducted on the NERSC Perlmutter supercom-
puter [2] which also has 128 CPU cores and four NVIDIA A100s
per node.

4.1 Correctness

Ideally, researchers can use either SIMCoV-CPU or SIMCoV-GPU
to investigate the same scientific questions without worrying about
semantic differences between the implementations. SIMCoV is in-
herently stochastic because many of its behaviors are generated by
pseudo-random number generators (PRNGs). These include which
epithelial cells become infected, when a T cell moves to a neighbor-
ing voxel, and many more. For modeling purposes, it is not critical
that the PRNG implementation in each version be identical—only
that they both provide the same long-term results on average.

We also note that the version of SIMCoV-CPU used for this paper
was slightly modified from the publicly available version referenced
by the original paper. We identified a source of nondeterminism
related to thread ordering in the original implementation and modi-
fied it for our experiments. T cells could sometimes be more mobile

327

SIMCoV-GPU: Accelerating an

Agent-Based Model for Exascale HPDC ’24, June 3-7, 2024, Pisa, Italy

SIMCoV-GPU Optimization Breakdown

Unoptimized

Work Category
I Update Agents
I Reduce Statistics

Fast Reduction

Memory Tiling

SIMCoV-GPU Version

Combined

200

300
runtime (seconds)

0 100 400

Figure 4: A breakdown of the runtime needed for components of a SIMCoV-GPU simulation broken down by the category of
the work being done. Four SIMCoV-GPU versions are plotted: an unoptimized version, a version that only implements fast
reductions with shared memory, a version that only implements memory tiling, and finally a version that implements both
optimizations.

[[Experiment | Min. Dimensions | Max. Dimensions | Min. FOI [Max. FOI | Min. {GPUs, CPUs} | Max. {GPUs, CPUs} ||

Correctness [10,000x10,000x1] [10,000x10,000x1] 16 16 {4,128} {4,128}
Strong Scaling | [10,000x10,000x1] | [10,000x10,000x1] 16 16 {4,128} {64,2048}
Weak Scaling | [10,000x10,000x1] | [40,000x40,000x1] 16 256 {4,128} {64,2048}

FOI Scaling | [20,000x20,000x1] | [20,000x20,000x1] 64 1024* {16,512} {16,512}

Table 1: Configuration of the performance evaluation of SIMCoV-GPU versus SIMCoV-CPU. Quantities that vary for an
experiment are indicated in bold. All varying quantities double from the previous trial starting from the minimum up to and
including the maximum. Computational units are reported as a tuple in brackets: {# of GPUs, # of CPUs}. “We were unable to
perform a 1024 FOI trial for SIMCoV-CPU due to computational resource limitations.

A) 1e7 Virus B) Tissue T Cells Q) Apoptotic Epithelial Cells
- — CPU 1000001 py 700001 p,
—— GPU —— GPU —— GPU
6 60000
80000
5 50000
€ S 60000 5
E., < 3 40000
o o (@)
@) © =
3 K] 8 30000
53 40000 2
w
2 20000
20000
1 10000
0 0 0
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
Timesteps Timesteps Timesteps

Figure 5: Comparison of aggregate statistics between SIMCoV-CPU (blue) and SIMCoV-GPU (orange) as time-series over the
course of a simulated infection. The shaded region shows the minimum and maximum of the statistics across five trials. Plotted
are (A) the total count of virus in the simulation, (B) the total count of T cells within the tissue, and (C) the total count of
apoptotic epithelial cells.

328

HPDC ’24, June 3-7, 2024, Pisa, Italy

[Stat (Peak) [Pct. Agree. | CPUSTD | GPUSTD
Virus 99.68 3.1x10° | 2.2x10°

T cells 99.01 715.82 648.05

Apop. Epi. Cells 99.42 201.09 355.81

Table 2: SIMCoV-GPU Correctness: We show the percent
agreement of simulation statistics at their peak as well as
the standard deviations of those statistics across five runs.
Presented statistics are peak virus count, peak tissue T cell
count, and peak apoptotic epithelial cell count.

than expected, and that behavior depended in part on the number
of parallel processes used. We standardized this for SIMCoV-CPU
and SIMCoV-GPU by enforcing a staged version of T cell movement
in which all the T cells first prepare their moves and bindings in
one wave of computation, and then in the next wave they execute
the queued behavior. This produces more deterministic behavior
overall and is more interpretable than the previous implementa-
tion. This modification did not affect the parallelization strategy of
SIMCoV-CPU which still uses RPCs to handle tiebreaks.

We measured correctness by comparing SIMCoV-GPU and SIMCoV-
CPU across five runs using the same parameter set. Both the SIMCoV-
CPU and SIMCoV-GPU evaluations were performed on the ASU
Sol supercomputer using 128 CPUs on a single node for SIMCoV-
CPU and 4 A100s on a single node for SIMCoV-GPU. We used a 2D
simulation of a slice of lung tissue 10,000 by 10,000 voxels in size
and ran each trial for 33,120 time steps. This duration equates to a
simulated time of approximately 23 days, which covers the most
common duration of a SARS-CoV-2 infection (and many others as
well).

We find that the long-run behavior of SIMCoV-GPU and SIMCoV-
CPU is very close given identical initial conditions. Over several
runs, the mean of important statistics, e.g., total quantity of each
possible epithelial cell state and total quantity of virus, track closely
throughout the simulation (figure 5). The percent difference of the
mean values of the most relevant statistics reported by SIMCoV
are shown in table 2. The peak quantities of virus and T cells are
two particularly important statistics for researchers using SIMCoV
in practice and the number of apoptotic cells depends highly on
the pseudorandom nature of the simulation, so we chose them to
study whether or not the two compute platforms produce similar
results. Specifically, no statistic was observed to vary more than
one percent between the two simulations over the course of their
runs, which is much tighter than overall precision of the model.

4.2 Strong Scaling

For our strong scaling experiment we selected a representative
problem size: a 10,000 by 10,000 2D slice of epithelial cells. We
chose this base problem configuration because it is approximately
the number of voxels (100 million) that fit into the A100s’ available
memory, and patient CT lung images are organized into multiple
2D slices. The simulation was instantiated with 16 FOI (spatially dis-
tinct seeds of the infection) and was executed for 33,120 timesteps.
The default COVID-19 parameters from Moses et al. [25] were used.
We started with 4 GPUs on a single node for SIMCoV-GPU and 128

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

Strong Scaling

—— SIMCoV-CPU Optimal Scaling
i SIMCoV-GPU Optimal Scaling
3 =] = SIMCoV-CPU
= i SIMCoV-GPU
ko] i
5103 fl.98
bt
2
£
= 1.38 T=L
€ 0.85
&
10?
8§ 2 3 N &
~ Y% Ea) S ’S
>) ©" N N
< = g & S
S S
Compute Resources {GPUs, CPU Cores}

Figure 6: Strong scaling performance of SIMCoV-GPU (or-
ange) versus SIMCoV-CPU (blue). We doubled the number of
computational units for each subsequent experiment while
maintaining the simulation size throughout. The number
of GPUs and CPUs is shown as a tuple in brackets on the
x-axis. The runtime of the simulations is plotted on the y-
axis in seconds. The plot is on a log-log scale. The speedup
of SIMCoV-GPU over SIMCoV-CPU is shown adjacent to the
black dashed-line separating the CPU runs and GPU runs.
Optimal scaling is approximated by starting with the mean
runtime of the smallest scale experiment, and halving it each
subsequent experiment.

CPU cores on a single node for SIMCoV-CPU. For each subsequent
trial we doubled the compute resources by doubling the number of
nodes. The measured runtime in seconds are reported in figure 6.

The results show that while SIMCoV-GPU significantly outper-
forms SIMCoV-CPU in the base case, it quickly saturates at this
problem size when more computational resources are allocated,
as seen by scaling curve deviating from optimal as the number of
GPUs increases. This is expected and highlights the limitation of
using more GPUs than is appropriate for a given problem size. Un-
surprisingly, it is more appropriate to use SIMCoV-GPU on larger
problems. A small number of GPUs can still greatly benefit small
simulations from their flat performance improvement over the cor-
responding amount of CPU cores. Such use cases include parameter
sweeps and data fitting for small simulations because they require
many runs with varied configurations.

4.3 Weak Scaling

Our base instance for weak scaling is identical to that for strong
scaling. Unlike strong scaling, however, each doubling of computa-
tion resources corresponds with a doubling of the problem size. At
each subsequent simulation configuration the FOI is also doubled
to fill the new space with proportional amounts of activity. Figure 7
shows the results of this experiment.

These results are more favorable to SIMCoV-GPU. We see again
that in the early trials SIMCoV-GPU outperforms SIMCoV-CPU. As
the problem size and computational units used increase together,

329

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale

Weak Scaling
4x103 ===
F3x103 |4.91 4.38 13.53
£ |
8 —— SIMCoV-CPU Optimal Scaling
f/i 2x103 SIMCoV-GPU Optimal Scaling 3.48 3.82
o ={= SIMCoV-CPU
£ SIMCoV-GPU
= i
5 !
o} |
;2 H
103
& $ & N &
. N ~z S S
N
S~ S~

Compute Resources {GPUs, CPU Cores}

Figure 7: Weak scaling performance of SIMCoV-GPU (or-
ange) versus SIMCoV-CPU (blue). We doubled the number of
computational units, the simulation size in voxels, and the
number of FOI for each experiment. The number of GPUs
and CPUs is shown as a tuple in brackets on the x-axis. The
runtime of the simulations is plotted on the y-axis in seconds.
The plot is on a log-log scale. The speedup of SIMCoV-GPU
over SIMCoV-CPU is shown adjacent to the black dashed-line
separating the CPU runs and GPU runs. Optimal scaling is
approximated as remaining constant from the mean of the
smallest scale experiment.

there is a higher initial cost of parallelism in SIMCoV-GPU as indi-
cated from the increase in runtime from 4 GPUs to 16. Once this
initial increase in runtime is paid, however, SIMCoV-GPU’s per-
formance remains nearly constant while SIMCoV-CPU begins to
suffer performance loss. This is evidence that SIMCoV-GPU enables
larger scale simulations that SIMCoV-CPU, such as the future goal
of simulating a full lobe or the full lung.

4.4 Foci of Infection

SIMCoV-GPU and SIMCoV-CPU provide alternative approaches
for minimizing the time spent iterating over inactive regions. Ad-
ditionally the most expensive parts of a SIMCoV execution occur
when the simulation space is highly active (a wide distribution of T
cells and infection). We compare the performance of SIMCoV-GPU
and SIMCoV-CPU under these scenarios by varying the initial con-
ditions of the simulation, which in this case is controlled by the
number of initial foci of infection, or FOL Our FOI experiments were
conducted on 4 nodes (16 GPUs, 512 CPU cores) on a 2D slice of
epithelial cells with dimensions 20,000 by 20,000. This corresponds
to the 4-node weak scaling test. We leave all other parameters
identical to the baseline cases and present the results of the FOI
experiment in figure 8.

We find that increased FOI is SIMCoV-GPU’s strong suit. The
GPU implementation maintains sublinear increase in runtime, while
the CPU version does not. This sublinear increase in runtime is
explained by the fact that as the number of FOI increases the simu-
lation approaches a state of maximum activity. As this threshold is

330

HPDC ’24, June 3-7, 2024, Pisa, Italy

FOI Scaling
-} SIMCoV-CPU PR
SIMCoV-GPU JRad
7’
'l/
i 270
e g 3
S 104 ol 1
g /4 § 11.97
o -, i 37.68
£ <7 3
= s :
= Y i5.16
« i3.53 § :
103
102 103
FOI

Figure 8: Impact of increased foci of infection (FOI) on the
performance of SIMCoV-CPU (blue) versus SIMCoV-GPU
(orange). Experiments were performed on four Perlmutter
nodes with sixteen GPUs and 512 CPU cores total. We doubled
only the number of FOI for each experiment. The number of
FOI is shown on the x-axis. The runtime of the simulations is
plotted on the y-axis in seconds. The plot is on a log-log scale.
The speedup of SIMCoV-GPU over SIMCoV-CPU is shown
adjacent to the black dashed-line separating the CPU runs
and GPU runs.

approached, the impact of additional FOI is reduced. We see that
SIMCoV-GPU benefits from this threshold at fewer FOI indicat-
ing less overhead from massive parallelism versus SIMCoV-CPU.
SIMCoV-GPU appears to be highly effective at rapidly completing
large simulations with widespread infections.

5 RELATED WORK

Accelerating scientific codes has been an important focus of HPC
research throughout the field’s history. Recent work that deploys
scientific codes on multinode, multi-GPU systems emphasizes mod-
els such as particle-in-cell physics simulations or materials simula-
tions. These simulations generally do not face the challenge of local
entities in the simulation making arbitrary decisions (such as T cell
motion in SIMCoV), which simplifies the handling of communica-
tion boundaries. In this work we address that additional complexity
with a deterministic tiebreaking step during resource competition.
Related approaches to accelerate parallel ABMs use multithreading,
multiprocessing, or small counts of GPUs. Examples of work that
use multiprocessing, generally with MPI, include e.g., Care HPS [9],
the EMEWS framework [26], and Repast HPC [12]. In our work,
SIMCoV is deployed on many GPUs distributed across many nodes.
Aaby et al. investigated a latency hiding approach in ABMs for
multinode, multi-GPU setups, but they experimented with only a
single GPU per node [3]. Our work extends these earlier efforts by
considering more a more complex supercomputer deployment and
a performance evaluation on larger jobs using multiple GPUs per
node and with UPC++ for GPU-to-GPU communication.

HPDC ’24, June 3-7, 2024, Pisa, Italy

A related approach to report the experience of optimizing ABMs
is the work of Clasca et al. [11]. The authors describe optimizing
PhysiCell, an ABM that simulates cells, substrates, and their envi-
ronment using many computational threads. Their acceleration is
performed on multiple CPU cores in a single compute node. Our
work on SIMCoV-GPU builds on their work, extending ABMs to
multi-node supercomputer environments and to multi-GPU clus-
ters. Similarly, there is relevant work on ABM implementation for
GPUs. FLAME GPU is a framework that allows the modeling of
event based agent simulations on single GPUs [28]. Unlike these
previous works, SIMCoV-GPU includes considerations for scaling
on exascale supercomputers.

Other related work prepares other types of models besides ABMs
for exascale computing. Such models include particle-in-cell simu-
lations, chemical reaction simulations, thermodynamic flow simula-
tions, and many others. Recent developments for HPC simulations
in general include optimized octree construction for multi-GPU sys-
tems [22], adaptive-mesh refinement on fluid dynamics codes [13]
and various physics simulations across diverse compute architec-
tures [21, 32]. SIMCoV-GPU extends the field of HPC acceleration of
scientific codes by addressing the unique challenges of ABMs that
these other simulation frameworks generally do not face. In partic-
ular, SIMCoV-GPU reduces communication for autonomous agents
on communication boundaries during the resource competition
step.

6 DISCUSSION

Our performance evaluation shows that SIMCoV-GPU vastly out-
performs SIMCoV-CPU, particularly on large problem sizes when
the simulation has widespread viral/immune activity. In regards to
scaling, we see some mixed results due to performance plateaus
under certain conditions. In our strong scaling experiments we see
evidence that the cost of parallelism on GPUs outweighs the perfor-
mance gain of additional computational units when more than 16
GPUs are used. This can potentially be improved by optimizing the
memory footprint of SIMCoV-GPU to allow for larger simulations
to be executed on a small number of GPUs. We also see somewhat
poor weak scaling until more than 16 GPUs are utilized. This sug-
gests an initial cost of parallelism that requires sufficient problem
size and computational units to overcome. This is not a significant
issue for SIMCoV-GPU as it still out performs SIMCoV-CPU at all
the problem sizes in the weak scaling experiment, and achieves
a more healthy scaling behavior when many GPUs are used on
even larger problems. On the other hand, our FOI scaling results
are very promising. For a large simulation with many FOI causing
high levels of activity, SIMCoV-GPU provides an 11.9x speedup
over SIMCoV-CPU with a ratio of GPUs to CPUs of 32 to one. Ac-
cording to [2], the Perlmutter supercomputer has 32-bit floating
point performance of approximately 75TFLOPS on GPU nodes and
5TFLOPS of CPU nodes, equating to a maximum speedup of 15.6x.
Our weak scaling results show that as the size of the simulation
space increases, SIMCoV-GPU achieves and maintains a four-fold
advantage over SIMCoV-CPU. This result is encouraging for the
the future use of SIMCoV-GPU to study viral infections throughout
the lung. The total air volume of the average pair of healthy adult

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

human lungs is approximately six liters [15], which is a rough esti-
mate of the 3D space required for a true-scale simulation. With the
default configuration of SIMCoV using five cubic micron voxels,
this corresponds roughly to a simulation size of order 10'% voxels—
far larger than any SIMCoV simulation run to date. To achieve this
scale will require exascale supercomputers, and SIMCoV-GPU will
enable us to use those resources efficiently. Once that scale of 3D
space is achieved, other spatial topologies such as fractal branching
airways can be easily tested by overlaying the topology on the
voxels.

Our results on performance scaling with FOI show how SIMCoV-
GPU will accelerate the scientific use of the model. An attractive
use case and validation for SIMCoV is to use patient CT scans to
initialize a simulation, then run the simulation and use it to predict
disease trajectories—first to validate the model, and ultimately, per-
haps for patient triage or to study possible interventions. CT scans
of diseased patients do not contain point-like initial infection loca-
tions, but instead feature large patchy lesions that are distributed
throughout the lung. Incorporating CT scans as initial conditions
requires that many (hundreds, thousands, or more) SIMCoV voxels
be initialized as FOI. In principle, with sufficient FOI, the simulation
will saturate, in the sense that adding additional FOI won’t degrade
performance, because most voxels will already be active. Our re-
sults show that SIMCoV-GPU reaches this point much sooner than
SIMCoV-CPU, demonstrating that SIMCoV-GPU reduces overhead
and achieves high levels of parallelism. These results also set the
stage for additional enhancements to the model, including new
behaviors and parameters. For instance, more detailed modeling of
the immune response, e.g., with additional immune cell and molec-
ular components, or modeling airway dynamics, all of which would
require additional computation per timestep.

SIMCoV is available as open source software and according to
forks of the public repository, it is already being used as a plat-
form for creating other ABMs. These ABMs include a simulation
of large populations of ant-like foragers and a large-scale model
of a coral reef ecosystem. SIMCoV-GPU will provide a straightfor-
ward path for these models to run on exascale supercomputers as
well. Adapting new models that use SIMCoV as a platform to use
SIMCoV-GPU instead will require developers to implement model
behaviors as kernels. The diffusion, T cell movement, and T cell
binding kernels cover a large range of possible behaviors that de-
velopers may need to implement from spreading concentrations
to spatial competition for resources. The most likely behavior that
would need a novel implementation is any kind of non-local inter-
action between agents. One idea for implementing this would be to
define the spatial topology and the interaction topology as separate
meshes which would allow the previous methods to work with-
out much adjustment to algorithms or communication techniques.
While our focus here was on large supercomputers, SIMCoV-GPU
also benefits ABM development by allowing runs to be executed
on personal computing GPUs on laptops or workstations. This
allows researchers to treat their personal hardware as a virtual
laboratory for developing smaller-scale ABMs that run efficiently.
The SIMCoV-GPU project is available publicly and open source at
http://bss.biodesign.asu.edu/projects/simcovgpu/.

331

http://bss.biodesign.asu.edu/projects/simcovgpu/

SIMCoV-GPU: Accelerating an
Agent-Based Model for Exascale

6.1 Limitations and Future Work

Despite the near-optimal speedups we report in our evaluations,
there is always the possibility of additional improvements, and in
the future we plan to conduct additional performance evaluations
across more nodes, which will likely reveal new opportunities for
optimization. The performance evaluations we report in this paper
are somewhat limited in the number of nodes tested, due to the
computational resources we were able to access.

One interesting prospect would be moving to asynchronous
agent updates, which would reduce the burden of communica-
tion within GPUs and across the GPU network. The T cell and
epithelial cell behaviors in SIMCoV-GPU loosely resemble earlier
cellular automata (CA) approaches to biological modeling which
can sometimes be effectively computed asynchronously in paral-
lel [23]. SIMCoV-GPU could also potentially benefit from dynamic
domain decomposition, which would leverage interactions between
CPU cores and GPUs. Large empty regions could then be quickly
computed on the slowest hardware, using CPU processes for in-
stance, while the available GPU workhorses rapidly compute the
complex, activity-filled regions. Finally, regions of the simulation
could be approximately computed when they are light on agent
or environment activity. For instance, adaptive mesh refinement
(AMR) could be applied such that regions without much activity can
be computed at coarser scale, if the error cost was permissible [32].

7 CONCLUSION

This work presents SIMCoV-GPU, a simulation of viral lung infec-
tion that is deployed on multinode, multi-GPU supercomputers.
Several GPU-focused algorithms and optimizations were required
to achieve acceleration of the ABM, due to complexities arising
from unpredictable load balancing, resource competition among
agents, and the unique programming requirements of fast GPU
codes. Our performance evaluation of the multinode, multi-GPU
implementation reveals that as simulations become larger and more
complex, the scaling performance of SIMCoV-GPU significantly
dominates SIMCoV-CPU and achieves near-ideal speedups for the
ratio of CPU-to-GPU that we studied. Beyond its relevance for SIM-
CoV itself, we hope that this work will pave the way for many other
ABM:s that can profit from running at exascale.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the partial support of NSF
(CCF2211750, CICI 2115075, I0S-8044276), ARPA-H, and the Santa
Fe Institute. The authors acknowledge Research Computing at Ari-
zona State University for providing HPC and storage resources
that have contributed to the research results reported within this
paper. The authors acknowledge the support of the UPC++ devel-
opers group for their helpful advice and support. Authors from
Lawrence Berkeley National Laboratory were supported by the
Applied Mathematics and Computer Science Programs of the DOE
Office of Advanced Scientific Computing Research under contract
number DE-AC02-05CH11231. This research used resources of the
National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

332

HPDC ’24, June 3-7, 2024, Pisa, Italy

REFERENCES

[1] Frontier supercomputer debuts as world’s fastest, breaking exascale bar-
rier. https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-
breaking-exascale-barrier. Accessed: 2023-10-23.

Perlmutter architecture. https://docs.nersc.gov/systems/perlmutter/architecture/.
Last Accessed January 25, 2024.

AABY, B. G., PERUMALLA, K. S., AND SEAL, S. K. Efficient simulation of agent-based
models on multi-gpu and multi-core clusters. In 3rd International ICST Conference
on Simulation Tools and Techniques (2010).

ANDELFINGER, P., AND UHRMACHER, A. Optimistic parallel simulation of tightly
coupled agents in continuous time. In 2021 IEEE/ACM 25th International Sympo-
sium on Distributed Simulation and Real Time Applications (DS-RT) (2021), IEEE,
pp- 1-9.

AXELROD, R. The dissemination of culture. Journal of Conflict Resolution 41, 2
(1997), 203-226.

AXELROD, R., DAYMUDE, J. J., AND FORREST, S. Preventing extreme polarization of
political attitudes. Proceedings of the National Academy of Sciences 118, 50 (2021),
€2102139118.

AXTELL, R. L., AND FARMER, J. D. Agent-based modeling in economics and finance:
Past, present, and future. Journal of Economic Literature (2022).

BAacHAN, ., BADEN, S. B., HOFMEYR, S., JACQUELIN, M., KamiL, A., BONACHEA, D.,
HARGROVE, P. H., AND AHMED, H. Upc++: A high-performance communication
framework for asynchronous computation. In 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (2019), IEEE, pp. 963-973.
BORGES, F., GUTIERREZ-MILLA, A., LUQUE, E., AND Suppr, R. Care hps: A high
performance simulation tool for parallel and distributed agent-based modeling.
Future Generation Computer Systems 68 (2017), 59-73.

CHUMACHENKO, D., DOBRIAK, V., MAZORCHUK, M., MENIAILOV, I, AND
BaziLevycH, K. On agent-based approach to influenza and acute respiratory virus
infection simulation. In 2018 14th International Conference on Advanced Trends in
Radioelecrtronics, Telecommunications and Computer Engineering (TCSET) (2018),
IEEE, pp. 192-195.

CrascA, M., GARCIA-GASULLA, M., MONTAGUD, A., CARBONELL CABALLERO, J.,
AND VALENCIA, A. Lessons learned from a performance analysis and optimization
of a multiscale cellular simulation. In Proceedings of the Platform for Advanced
Scientific Computing Conference (2023), pp. 1-10.

COLLIER, N,, OzIK, J., AND MAcAL, C. M. Large-scale agent-based modeling
with repast hpc: A case study in parallelizing an agent-based model. In Euro-
Par 2015: Parallel Processing Workshops: Euro-Par 2015 International Workshops,
Vienna, Austria, August 24-25, 2015, Revised Selected Papers 21 (2015), Springer,
Pp. 454-465.

Davis, J. H., SHAFNER, J., NicHOLS, D., GRUBE, N., MARTIN, P., AND BHATELE, A.
Porting a computational fluid dynamics code with amr to large-scale gpu plat-
forms. In 2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (2023), IEEE, pp. 602-612.

DEANGELIS, D. L., AND GRimM, V. Individual-based models in ecology after four
decades. F1000prime reports 6 (2014).

DELGADO, B. J., AND Bajaj, T. Physiology, lung capacity. StatPearls [Internet]
(2022).

GERETY, R., SPENCER, S. L., PIENTA, K. J., AND FORREST, S. Modeling somatic
evolution in tumoregenesis. PLoS Computational Biology 2, 8 €108 (2006).
HARR1s, M., ET AL. Optimizing parallel reduction in cuda. Nvidia developer
technology 2, 4 (2007), 70.

HERNANDEZ-VARGAS, E. A., AND VELASCO-HERNANDEZ,]. X. In-host mathematical
modelling of covid-19 in humans. Annual reviews in control 50 (2020), 448-456.
Iceny, H., ELDRIDGE, M., AND PrROUDFOOT, K. Prefetching in a texture cache
architecture. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware (1998), pp. 133—ff.

JENNEWEIN, D. M., LEE, J., KurTz, C., D1zON, W., SHAEFFER, 1., CHAPMAN, A.,
CHIQUETE, A., BURKS, J., CARLSON, A., MASON, N., ET AL. The sol supercomputer
at arizona state university. In Practice and Experience in Advanced Research
Computing. 2023, pp. 296-301.

Katz, M. P., ALMGREN, A., SAZo, M. B., EIDEN, K., GoTT, K., HARPOLE, A., SEXTON,
J. M., WiLLcox, D. E., ZHANG, W., AND ZINGALE, M. Preparing nuclear astrophysics
for exascale. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis (2020), IEEE, pp. 1-12.

KELLER, S., CAVELAN, A., CABEZON, R., MAYER, L., AND C10RBA, F. Cornerstone:
Octree construction algorithms for scalable particle simulations. In Proceedings
of the Platform for Advanced Scientific Computing Conference (2023), pp. 1-10.
L1, J., KOSTER, T., AND GIABBANELLL P. J. Design and evaluation of update schemes
to optimize asynchronous cellular automata with random or cyclic orders. In
2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real
Time Applications (DS-RT) (2021), IEEE, pp. 1-8.

Lu, L., NGUYEN, R., RAHMAN, M. M., AND WINFREE, J. Demand shocks and supply
chain resilience: an agent based modelling approach and application to the potato
supply chain. Tech. rep., National Bureau of Economic Research, 2021.

[o

(10]

[11

[12

(14]

[15

[16

(17

(18]

[19

[21]

[22

[23

[24]

https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://docs.nersc.gov/systems/perlmutter/architecture/

HPDC ’24, June 3-7, 2024, Pisa, Italy

[25] Moses, M. E., HOFMEYR, S., CANNON, J. L., ANDREWS, A., GRIDLEY, R., HINGA,
M., LEYBA, K., PRIBISOVA, A., SURJADIDJAJA, V., TAsNIM, H., ET AL. Spatially
distributed infection increases viral load in a computational model of sars-cov-2
lung infection. PLoS computational biology 17, 12 (2021), e1009735.

[26] Ozik, J., COLLIER, N. T., WOzNIAK, J. M., MAcaL, C. M., AND AN, G. Extreme-
scale dynamic exploration of a distributed agent-based model with the emews
framework. IEEE Transactions on Computational Social Systems 5, 3 (2018), 884—
895.

[27] RicumoND, P. Resolving conflicts between multiple competing agents in parallel
simulations. In Euro-Par 2014: Parallel Processing Workshops: Euro-Par 2014 Inter-
national Workshops, Porto, Portugal, August 25-26, 2014, Revised Selected Papers,
Part I 20 (2014), Springer, pp. 383-394.

[28] RicHMOND, P., WALKER, D., COAKLEY, S., AND RomaNo, D. High performance
cellular level agent-based simulation with flame for the gpu. Briefings in bioin-
formatics 11, 3 (2010), 334-347.

333

Kirtus G. Leyba, Steven Hofmeyr, Judy Cannon, Melanie Moses, and Stephanie Forrest

[29

(30]

(31]

(32]

SEWALL, J., WILKIE, D., AND LIN, M. C. Interactive hybrid simulation of large-scale
traffic. In Proceedings of the 2011 SIGGRAPH Asia Conference (2011), pp. 1-12.
SpiEs, T. A., WHITE, E., AGER, A., KLINE, J. D, BOLTE, J. P., PLATT, E. K, OLSEN,
K. A, PaBsT, R. J., BARROS, A. M., BAILEY, J. D., ET AL. Using an agent-based model
to examine forest management outcomes in a fire-prone landscape in oregon,
usa. Ecology and Society 22,1 (2017).

WANG, S., PAN, Y., WANG, Q., M1ao, H., BROWN, A. N., AND RoNG, L. Modeling
the viral dynamics of sars-cov-2 infection. Mathematical biosciences 328 (2020),
108438.

ZHANG, W., MYERs, A., GotT, K., ALMGREN, A., AND BELL, J. Amrex: Block-
structured adaptive mesh refinement for multiphysics applications. The Interna-
tional Journal of High Performance Computing Applications 35, 6 (2021), 508-526.

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Agent-Based Models
	2.2 SIMCoV

	3 Adapting SIMCoV to GPUs
	3.1 T Cell Algorithm
	3.2 Memory Tiling
	3.3 Fast Reduction
	3.4 Profiling Optimizations

	4 Evaluation
	4.1 Correctness
	4.2 Strong Scaling
	4.3 Weak Scaling
	4.4 Foci of Infection

	5 Related Work
	6 Discussion
	6.1 Limitations and Future Work

	7 Conclusion
	References

