
Wire Before You Walk

Tesfa Asmara1,2, Dhananjay Bhaskar3, Ian Adelstein4, Smita Krishnaswamy3,5,6,7,8, Michael Perlmutter9†

1Department of Computer Science, Pomona College, Claremont, CA, USA
2Mathematics and Statistics, Pomona College, Claremont, CA, USA

3Department of Genetics, Yale School of Medicine, New Haven, CT, USA
4Department of Mathematics, Yale University, New Haven, CT, USA

5Department of Computer Science, Yale University, New Haven, CT, USA
6Program for Applied Mathematics, Yale University, New Haven, CT, USA

7Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
8Wu Tsai Institute, Yale University, New Haven, CT, USA

9Department of Mathematics, Boise State University, Boise, ID, USA
†Corresponding Author: perlmutter@math.ucla.edu

Abstract—Node embeddings aim to associate a vector to every
vertex of a graph which can then be used for downstream tasks
such as clustering, classification, or link prediction. Many popular
node embeddings such as node2vec and DeepWalk are based
upon counting which nodes frequently co-occur in random walks
of the graph. In this paper, we show that the performance of such
algorithms can be improved by rewiring the edges of the graph
through a variety of network indices before running DeepWalk.
These rewirings effectively give the random walker an inductive
bias and increase the accuracy of a logistic regression classifier
applied to the node embedding on several benchmark data sets.

Index Terms—learning on graphs, node embeddings, skip-gram
methods

I. INTRODUCTION

Node embeddings aim to represent each vertex of a graph

by a vector in a relatively low dimensional space. Typically,

these vector representations are obtained in an unsupervised

manner and only rely on the network’s geometry, rather than

features or labels associated with each of the nodes.

Many popular algorithms for obtaining node embeddings

rely on the skip-gram framework. These skip-gram based

methods adapt algorithms designed for natural language pro-

cessing, such as Word2vec [4] to the network setting. Whereas

Word2vec aims to produce similar representations of words

that frequently co-occur in real-world sentences, algorithms

such as DeepWalk [5] and Node2vec [2] aim to produce

similar representations of nodes which frequently co-occur

in (possibly biased) random walks of the graph. A notable

advantage of these skip-gram based algorithms is that they

are able to learn representations of the vertices purely from

the geometry of the graph. In particular, they do not require

one to be given a matrix of informative node features.

In this paper we introduce WireWalk, a novel method for

producing node embeddings. Our method is based upon (i)

D.B. was supported by a Yale-Boehringer Ingelheim Biomedical Data
Science Fellowship. S. Krishnaswamy received funding from the NIH
(grants R01GM135929, R01GM130847, and R01HD100035), National Sci-
ence Foundation Career Grant (2047856), and the Sloan Fellowship (grant
FG-2021-15883). This project has been made possible in part by grant number
2019- 202662 from the Chan Zuckerberg Foundation.

rewiring the graph via a variety of indices from network sci-

ence and then (ii) running DeepWalk. Despite the simplicity of

this idea, we show that our method improves the performance

of DeepWalk on several benchmark datasets.

II. OVERVIEW OF METHOD

A. Notation

We let G = (V,E) denote an unweighted, undirected graph

with vertices V = {1, . . . , N}. We let A denote the adjacency

matrix with entries axy = 1 if (x, y) ∈ E and axy = 0
otherwise. For x ∈ V , we let N(x) denote the neighbors of

x, i.e., N(x) = {y : (x, y) ∈ E}, and we let |N(x)| denote

the degree of x.

B. The WireWalk algorithm

The WireWalk algorithm is based upon rewiring the graph.

In particular, given an undirected, unweighted graph G =
(V,E) and a bias Π : V × V → Rg0, we define a new,

directed graph G′ with adjacency matrix (πx,y)x,y∈V where

πx,y = Π(x, y). We then run the well-known DeepWalk [5]

algorithm on G′.

The DeepWalk algorithm is based on extracting information

about the vertices of G by running simple random walks on

the graph and counting which vertices frequently appear in the

same walk. In effect, WireWalk runs perturbed random walks

where the walker takes steps which are biased by Π. In our

experiments, we use a variety of bias functions as described

below.

1) Common Neighbors:

πxy = |N(x) ∩N(y)|

2) Salton Index:

πxy =
|N(x) ∩N(y)|
√

|N(x)||N(y)|

3) Jaccard Index:

πxy =
|N(x) ∩N(y)|

|N(x) ∪N(y)|

714979-8-3503-2574-4/23/$31.00 ©2023 IEEE Asilomar 2023

20
23

 5
7t

h
As

ilo
m

ar
 C

on
fe

re
nc

e
on

 S
ig

na
ls,

 S
ys

te
m

s,
an

d
Co

m
pu

te
rs

 |
 9

79
-8

-3
50

3-
25

74
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IE

EE
CO

NF
59

52
4.

20
23

.1
04

77
08

9

Authorized licensed use limited to: Yale University Library. Downloaded on September 30,2024 at 18:58:30 UTC from IEEE Xplore. Restrictions apply.

4) Sorenson Index:

πxy =
2|N(x) ∩N(y)|

|N(x)|+ |N(y)|

5) Hub Promoted Index:

πxy =
|N(x) ∩N(y)|

min{|N(x)|, |N(y)|}

6) Hub Depressed Index:

πxy =
|N(x) ∩N(y)|

max{|N(x)|, |N(y)|}

7) Leicht-Holme-Newman Index:

πxy =
|N(x) ∩N(y)|

|N(x)||N(y)|

8) Preferential Attachment:

πxy = |N(x)||N(y)|

9) Adamic–Adar Index:

πxy =
∑

z∈N(x)∩N(y)

1

log|N(z)|

10) Resource Allocation Index:

πxy =
∑

z∈N(x)∩N(y)

1

|N(z)|

11) Tversky Index:

πxy =
|N(x) ∩N(y)|

|N(x) ∪N(y)|+ α|N(x) \N(y)|+ β|N(y) \N(x)|

Algorithm 1: WireWalk(G, π,w, d, γ, t)

Input: Graph G = (V,E)
bias Π, embedding size d

additional DeepWalk parameters w, γ, t

Output: Matrix of vertex representations Φ ∈ R
N×d

1) Rewire G using the bias Π to obtain directed graph G′

2) DeepWalk(G′, w, d, γ, t)

III. RESULTS AND DISCUSSION

To evaluate WireWalk we consider the task of node clas-

sification on the BlogCatalog [6], PPI (Homo Sapiens) [1],

and POS Wikipedia [3] datasets and evaluate performance

according to Macro-F1 score, Micro-F1 score, the Fowlkes

Mallows index, and overall accuracy. The method column

indicates the bias Π used before running DeepWalk (except

for the DeepWalk row which is the results without any pre-

processing). On all three datasets, we observe that the rewiring

steps improve performance according to the Micro-F1 score,

the Fowlkes Mallows index, and overall accuracy. Curiously,

performance actually decreases with respect to the Macro-F1

index indicating that our method may not be applicable in

settings where one is highly concerned about imbalances in

class sizes.

Method Macro-F1 Micro-F1 Fowlkes Mallows Accuracy

Jaccard Index 0.0065 0.1380 0.2366 0.1380

Common Neighbors 0.0076 0.1359 0.2267 0.1359

Sorenson Index 0.0065 0.1380 0.2366 0.1380

Salton Index 0.0065 0.1380 0.2366 0.1380

Hub Depressed 0.0065 0.1380 0.2366 0.1380

Hub Promoted 0.0065 0.1377 0.2363 0.1377

Preferential Attachment 0.0072 0.1339 0.2274 0.1339

L.H.N. Index 0.0080 0.1337 0.2215 0.1337

DeepWalk 0.0179 0.1141 0.1514 0.1141

TABLE I
EVALUATION ON BLOGCATALOG GRAPH

Method Macro-F1 Micro-F1 Fowlkes Mallows Accuracy

Jaccard Index 0.0021 0.0483 0.1534 0.0483

Adamic-Adar Index 0.0042 0.0550 0.1289 0.0550

Resource Allocation Index 0.0031 0.0447 0.1253 0.0447

Common Neighbors 0.0033 0.0478 0.1377 0.0478

Sorenson Index 0.0032 0.0504 0.1535 0.0504

Salton Index 0.0039 0.0463 0.1234 0.0463

Hub Depressed 0.0029 0.0478 0.1454 0.0478

Hub Promoted 0.0034 0.0416 0.1278 0.0416

Preferential Attachment 0.0040 0.0478 0.1236 0.0478

L.H.N. Index 0.0034 0.0491 0.1329 0.0491

DeepWalk 0.0177 0.0288 0.0330 0.0288

TABLE II
EVALUATION ON PPI (HOMO SAPIENS)

In all of our experiments, the parameters w, d, γ, and t used

for WireWalk are chosen based on typical values used for

DeepWalk [2]. Specifically, we set w = 10, d = 128, γ = 10,
and t = 80. Moreover, for the Tversky index, we set α =
|N(x)| and β = |N(y)|. The node feature representations are

input to a one-vs-rest logistic regression classifier with L2

regularization. The train and test data is split using stratified

10-fold cross-validation.1

IV. CONCLUSION

We have introduced WireWalk, a novel method for im-

proving the performance of skip-gram based methods such as

DeepWalk by rewiring the graph in accordance to a variety of

network-science indices and show that our method improves

the performance of DeepWalk on several benchmark datasets.

For the sake of simplicity, in our experiments, we simply run

DeepWalk on the transformed graph after the preprocessing

1Code available at https://github.com/TesfaAsmara/wirewalk

Method Macro-F1 Micro-F1 Fowlkes Mallows Accuracy

Jaccard Index 0.0289 0.4702 0.5152 0.4702

Common Neighbors 0.0300 0.4687 0.5141 0.4687

Sorenson Index 0.0289 0.4702 0.5152 0.4702

Salton Index 0.0313 0.4710 0.5163 0.4710

Hub Depressed 0.0289 0.4702 0.5152 0.4702

Hub Promoted 0.0289 0.4702 0.5153 0.4702

Preferential Attachment 0.0289 0.4702 0.5155 0.4702

L.H.N. Index 0.0289 0.4702 0.5152 0.4702

Tversky Index 0.0297 0.4656 0.5078 0.4656

DeepWalk 0.0324 0.4651 0.5070 0.4651

TABLE III
EVALUATION ON POS WIKIPEDIA GRAPH

715

Authorized licensed use limited to: Yale University Library. Downloaded on September 30,2024 at 18:58:30 UTC from IEEE Xplore. Restrictions apply.

step. However, we note that our method could also be com-

bined with other methods (after making adjustments to deal

with the fact that the transformed graph is directed). In this

work, so far, we have focused on relatively small datasets and

therefore allow the transformed graph to be dense. However,

in future work, one could develop a more scalable version of

our method by requiring the transformed graph to have the

same sparsity pattern as the original.

REFERENCES

[1] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher,
Ashton Breitkreutz, Michael Livstone, Rose Oughtred, Daniel H Lackner,
Jürg Bähler, Valerie Wood, et al. The biogrid interaction database: 2008
update. Nucleic Acids Research, 36:D637–D640, 2007.

[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 855–864,
2016.

[3] Matt Mahoney. Large text compression benchmark, 2011.
[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781, 2013.
[5] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online

learning of social representations. In Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 701–710, 2014.
[6] Lei Tang and Huan Liu. Relational learning via latent social dimensions.

In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 817–826, 2009.

716

Authorized licensed use limited to: Yale University Library. Downloaded on September 30,2024 at 18:58:30 UTC from IEEE Xplore. Restrictions apply.

