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Abstract—Node embeddings aim to associate a vector to every
vertex of a graph which can then be used for downstream tasks
such as clustering, classification, or link prediction. Many popular
node embeddings such as node2vec and DeepWalk are based
upon counting which nodes frequently co-occur in random walks
of the graph. In this paper, we show that the performance of such
algorithms can be improved by rewiring the edges of the graph
through a variety of network indices before running DeepWalk.
These rewirings effectively give the random walker an inductive
bias and increase the accuracy of a logistic regression classifier
applied to the node embedding on several benchmark data sets.

Index Terms—learning on graphs, node embeddings, skip-gram
methods

I. INTRODUCTION

Node embeddings aim to represent each vertex of a graph
by a vector in a relatively low dimensional space. Typically,
these vector representations are obtained in an unsupervised
manner and only rely on the network’s geometry, rather than
features or labels associated with each of the nodes.

Many popular algorithms for obtaining node embeddings
rely on the skip-gram framework. These skip-gram based
methods adapt algorithms designed for natural language pro-
cessing, such as Word2vec [4] to the network setting. Whereas
Word2vec aims to produce similar representations of words
that frequently co-occur in real-world sentences, algorithms
such as DeepWalk [5] and Node2vec [2] aim to produce
similar representations of nodes which frequently co-occur
in (possibly biased) random walks of the graph. A notable
advantage of these skip-gram based algorithms is that they
are able to learn representations of the vertices purely from
the geometry of the graph. In particular, they do not require
one to be given a matrix of informative node features.

In this paper we introduce WireWalk, a novel method for
producing node embeddings. Our method is based upon (i)
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rewiring the graph via a variety of indices from network sci-
ence and then (ii) running DeepWalk. Despite the simplicity of
this idea, we show that our method improves the performance
of DeepWalk on several benchmark datasets.

II. OVERVIEW OF METHOD
A. Notation

We let G = (V, E) denote an unweighted, undirected graph
with vertices V' = {1,..., N}. We let A denote the adjacency
matrix with entries a,, = 1 if (z,y) € E and a;y = 0
otherwise. For « € V, we let N(z) denote the neighbors of
z, ie., N(z) = {y: (z,y) € E}, and we let |N(z)| denote
the degree of x.

B. The WireWalk algorithm

The WireWalk algorithm is based upon rewiring the graph.
In particular, given an undirected, unweighted graph G =
(V,E) and a bias II : V x V — Rx, we define a new,
directed graph G’ with adjacency matrix (7, )z ey Where
ey = 1I(z,y). We then run the well-known DeepWalk [5]
algorithm on G’.

The DeepWalk algorithm is based on extracting information
about the vertices of G by running simple random walks on
the graph and counting which vertices frequently appear in the
same walk. In effect, WireWalk runs perturbed random walks
where the walker takes steps which are biased by II. In our
experiments, we use a variety of bias functions as described
below.

1) Common Neighbors:

Tay = |N(2) N N(y)]
2) Salton Index:

__ IN@NN()
v IN(z)[IN (y)|

3) Jaccard Index:
|N(z) NN (y)|
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4) Sorenson Index:

_ 2[N(x) N N(y)|

"IN @) + N (y)

5) Hub Promoted Index:

[N (z) NN (y)|

Tay = min{|N(z)|, |N(y)|}

6) Hub Depressed Index:
[N () " N(y)|

Method Macro-F1 | Micro-F1 | Fowlkes Mallows | Accuracy
Jaccard Index 0.0065 0.1380 0.2366 0.1380
Common Neighbors 0.0076 0.1359 0.2267 0.1359
Sorenson Index 0.0065 0.1380 0.2366 0.1380
Salton Index 0.0065 0.1380 0.2366 0.1380
Hub Depressed 0.0065 0.1380 0.2366 0.1380
Hub Promoted 0.0065 0.1377 0.2363 0.1377
Preferential Attachment 0.0072 0.1339 0.2274 0.1339
L.H.N. Index 0.0080 0.1337 0.2215 0.1337
DeepWalk 0.0179 0.1141 0.1514 0.1141

TABLE I

EVALUATION ON BLOGCATALOG GRAPH

Moy =
max{|N (), [N (y)|} ,
. Method Macro-F1 | Micro-F1 | Fowlkes Mallows | Accuracy
7) Leicht-Holme-Newman Index: Jaccard Index 0.0021 0.0483 0.1534 0.0483
Adamic-Adar Index 0.0042 0.0550 0.1289 0.0550
Moy = W Resource Allocation Index 0.0031 0.0447 0.1253 0.0447
[N (z)||N(y)| Common Neighbors 0.0033 0.0478 0.1377 0.0478
8) P al A h . Sorenson Index 0.0032 0.0504 0.1535 0.0504
) Preferential Attachment: Salton Tndex 00039 | 0.0463 0.1234 0.0463
- Hub Depressed 0.0029 0.0478 0.1454 0.0478
Tay = |N(2)||N(y)] Hub Promoted 00034 | 0.0416 0.1278 0.0416
. Preferential Attachment 0.0040 0.0478 0.1236 0.0478
9) Adamic-Adar Index: LHN. Index 0.0034 | 0.0491 0.1329 0.0491
Z 1 DeepWalk 0.0177 0.0288 0.0330 0.0288
Vo— JE—
ry log|N (z)] TABLE II
2€N(z)NN(y) EVALUATION ON PPI (HOMO SAPIENS)
10) Resource Allocation Index:
>
My = .
ry IN(2)] In all of our experiments, the parameters w, d, -y, and ¢ used
2EN(@NN () for WireWalk are chosen based on typical values used for
11) Tversky Index: DeepWalk [2]. Specifically, we set w = 10,d = 128,y = 10,
IN(z) N N(y)| and ¢t = 80. Moreover, for the Tversky index, we set @ =
Moy = IN(@) UN@)| +alN@) \N©)| + BIN@) \N@)| |N(z)| and 8 = |N(y)|. The node feature representations are
input to a one-vs-rest logistic regression classifier with L2
regularization. The train and test data is split using stratified
Algorithm 1: WireWalk(G, 7, w, d, v, t) 10-fold cross-validation.'
Input: Graph G = (V, Ed) IV. CONCLUSION
bias II, embedding size . . .
additional DeepWilk parameters w, -, £ We have introduced WireWalk, a novel method for im-
Output: Matrix of vertex represen t,ativons & c RNxd proving the performance of skip-gram based methods such as
1) Rewire G using the bias IT to obtain directed graph G DeepWalk by rewiring the graph in accordance to a variety of
2) DeepWalk(G, w, d, ,t) network-science indices and show that our method improves
P W& T the performance of DeepWalk on several benchmark datasets.
For the sake of simplicity, in our experiments, we simply run
III. RESULTS AND DISCUSSION DeepWalk on the transformed graph after the preprocessing
To evaluate WireWalk we consider the task of node clas- Code available at https://github.com/TesfaAsmara/wirewalk
sification on the BlogCatalog [6], PPI (Homo Sapiens) [1],
and POS Wikipedia [3] datasets and evaluate performance
. p [3] . p Method Macro-F1 | Micro-F1 | Fowlkes Mallows | Accuracy
according to Macro-F1 score, Micro-F1 score, the Fowlkes Taccard Tndex 0.0289 04702 05152 04700
Mallows index, and overall accuracy. The method column Common Neighbors 0.0300 0.4687 0.5141 0.4687
indicates the bias IT used before running DeepWalk (except S(S)“’insmi Igdex 88??2 833(1)(2) 82}22 83;(1)(2)
. . . alton Index . . . » .
for the .DeepWalk row which is the results without any pre- Flub Depressed 0.0089 0AT02 05152 0AT0R
processing). On all three datasets, we observe that the rewiring Hub Promoted 0.0289 04702 05153 0.4702
steps improve performance according to the Micro-F1 score, Preferential Attachment |  0.0289 0.4702 0.5155 0.4702
the Fowlkes Mallows index, and overall accuracy. Curiously, L.H.N. Index 0.0289 0.4702 05152 0.4702
f tually d ith t to the M Fl Tversky Index 0.0297 0.4656 0.5078 0.4656
performance actually decreases with respect to the Macro-F DeepWalk 0,037 04651 05070 04651
index indicating that our method may not be applicable in TABLE Il

settings where one is highly concerned about imbalances in
class sizes.
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step. However, we note that our method could also be com-
bined with other methods (after making adjustments to deal
with the fact that the transformed graph is directed). In this
work, so far, we have focused on relatively small datasets and
therefore allow the transformed graph to be dense. However,
in future work, one could develop a more scalable version of
our method by requiring the transformed graph to have the
same sparsity pattern as the original.
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