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We consider a quantity that is the differential relative entropy between a generic Wigner function and a
Gaussian one. We prove that said quantity is minimized with respect to its Gaussian argument, if both
Wigner functions in the argument of the Wigner differential entropy have the same first and second moments,
i.e., if the Gaussian argument is the Gaussian associate of the other, generic Wigner function. Therefore,
we introduce the differential relative entropy between any Wigner function and its Gaussian associate and
we examine its potential as a non-Gaussianity measure. The proposed, phase-space based non-Gaussianity
measure is complex-valued, with its imaginary part possessing the physical meaning of the Wigner function’s
negative volume. At the same time, the real part of this measure provides an extra layer of information,
rendering the complex-valued quantity a measure of non-Gaussianity, instead of a quantity pertaining only to
the negativity of the Wigner function. We prove that the measure (both the real and imaginary part) is faithful,
invariant under Gaussian unitary operations, and find a sufficient condition on its monotonic behavior under
Gaussian channels. We provide numerical results supporting aforesaid condition. Additionally, we examine
the measure’s usefulness to non-Gaussian quantum state engineering with partial measurements.

INTRODUCTION to as the conditional state), unless the conditional state is

Non-Gaussian states of light have attracted the interest
of the broad quantum information community as they
possess properties which unlock quantum enhancement
in a series of protocols. Particularly, quantum systems
that do not exhibit negativity in their Wigner function
descriptions, can be simulated efficiently by a classical
computer’’ and it has been demonstrated that such states
do not enable a quantum computational advantage’®. In
the same context, non-Gaussian states are of fundamental
interest for quantum computers’ architectures, based on
all-photonic cluster states*2. Further, non-Gaussian states
play a central role in quantum communications®”, while
they are useful for all-optical quantum repeaters*>’-*!,

Past, recent, and contemporary
works2:3:510,18,20,21,36,40,44,45,50,52,54,59.60  have  stud-
ied the production of non-Gaussian states utilizing
conditional partial measurements. In such schemes a
subset of the modes of a multi-mode Gaussian state are
projected on non-Gaussian states (for e.g. Fock states,
which describe photon counting). This in turn projects
the undetected modes into a non-Gaussian state (referred
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a result of partial projection on vacuum states. Typically,
the task is to optimize the parameters of the Gaussian
resource state and to identify the photon counting
pattern(s), such that the generated non-Gaussian state is
a good approximation, as quantified by some figure of
merit, of a non-Gaussian target state.

Therefore, quantifying the non-Gaussian character of a
state is essential. This task can be separated into two dis-
tinct tasks: To work within the context of a resource the-
ory and establish a non-Gaussianity monotone, or to work
within the context of a non-Gaussianity measure. Mono-
tones and measures, are quantities that map a state p to a
number, i.e., the action of a non-Gaussianity monotone or
measure [[.] on the state p is p[p] = ¢ € C. Monotones
and measures are thus functionals of the state (ergo our
notation using square brackets), i.e., quantities that map
the state (written on some basis) or a quasi-probability of
the state to a complex number c. This number should be
informative on the non-Gaussian character of the state.

To explain the difference between monotones and mea-
sures, let us take a few steps back. A general resource
theory requires the definition of three things: the resource,
the operations that cannot increase the defined resource
(typically called free operations), and the states that do
not possess the resource (typically referred to as free
states). In the context of a non-Gaussianity resource the-
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ory, one can define the resource to be the negativity of
the Wigner function, i.e., Wigner-positive states, even if
they are non-Gaussian, are considered free states. The
other option is to define the overall non-Gaussianity of
the state as a resource, where free states are all Gaussian
states. For both approaches, the free operations are all
Gaussian protocols: Gaussian unitary operations, partial
trace, partial Gaussian measurements, tensor product with
a Gaussian state. A proper monotone evaluated for any
given state from both of the aforementioned approaches,
should then remain invariant under Gaussian unitary oper-
ations, should not increase on average under partial trace,
be non-increasing on average when part of the state is
measured by projections on Gaussian states, and remain
invariant when the state under question is composed (by
a tensor-product) with a Gaussian state. Further prop-
erties of a monotone may include faithfulness, i.e., the
monotone to be equal to zero if and only if the state for
which is evaluated for is a free state. Important works
considering the negativity of the Wigner function as a
resource include Refs.!’!. The literature on resource
theories considering all Gaussian states as free states, is
scarce with notable exception Ref.**. Another successful
parallel line of research has been defining experimentally
friendly sufficient conditions for a state to be considered
quantum non-Gaussian'’>?. Non-Gaussianity measures
are mathematically more relaxed than their monotone
counterparts, while still fully capturing and quantifying
the non-Gaussian character of the state under examina-
tion. Non-Gaussianity measures are generally expected to
be faithful, invariant under Gaussian unitary operations,
and non-increasing under Gaussian channels. The line of
research yielded interesting results''->3=>>%3 and in this
work, we follow the same path.

The phase-space description of quantum states of light,
and particularly the Wigner function, has enabled the
detailed study of quantum light. It is well known that
the Wigner function constitutes a complete description
of a state. Furthermore, the Wigner function can reveal
intrinsic properties of a quantum system pertaining to
its non-Gaussian character, i.e., exhibiting negative vol-
ume, shape of positive and negative regions. Of course,
examining the shape of Wigner function assumes that
we study single-mode states, which correspond to three-
dimensional plots of the corresponding Wigner function.
This last remark, motivates further our pursue of a non-
Gaussianity measure for generic, multi-dimensional state.
Then, the question we pose is if we can use the Wigner
function of a state to build a faithful non-Gaussianity
measure. It is true that some of the measures already ex-
isting in the literature, can be worked out in phase-space.
For example, the measure based on the Hilbert-Schmidt
distance”?*, essentially requires to calculate the trace of
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the product of two density operators; something that can
be done efficiently in phase-space by integrating together
the two corresponding Wigner functions (and taking into
account the proper constant in front of said integral, see'®).
Also, recent work has established phase-space based non-
Gaussianity measures™. In this work, we exploit the
recently introduced Wigner entropy”>®7 and we intro-
duce a complex-valued non-Gaussianity measure whose
imaginary part is the total negative volume of the Wigner
function corresponding to the state under examination.
The real part of the measure provides further informa-
tion on the non-Gaussian character of the state, and both
imaginary and real parts form a faithful non-Gaussianity
measure. When the imaginary part of our measure is zero
and the real part is non-zero, that is when the Wigner func-
tion of the state in question is positive but non-Gaussian,
one can further distinguish between states that are just
convex mixtures of Gaussian states and states that cannot
be expressed as such by taking into account the purity of
state.

This paper is organized as follows: In Sec. I we de-
fine the Wigner relative entropy, the Gaussian associate
state, and our measure. In Sec. III we prove that our
measure is faithful, i.e., it is equal to zero if and only
if the state under question is Gaussian. In Sec. IV, we
prove that our measure remains invariant under Gaussian
unitary operations. In Sec. V we give a sufficient con-
dition on the expected behavior of the measure under
Gaussian channels. We also provide numerical evidence
that our measure is monotonic under Gaussian channels.
In the subsequent sections, we examine further proper-
ties. Namely, in Sec. VI we employ functional methods
to minimize our measure. Section VII examines a few
non-Gaussian states of interest and the potential of our
measure as a computational tool to aid in quantum state
engineering based on probabilistic, heralded schemes. Fi-
nally, in Sec. VIII we outline the main findings of this
work and we discuss potential further research paths.

Il. DEFINITION OF THE MEASURE

In this work, we will only consider states with finite
first and second moments such that all displacement vec-
tors and covariance matrices are well defined. Gaussian
states are uniquely defined by their displacement vector
d and their covariance matrix V (see for example'®°").
Non-Gaussian N—mode states have a 2N —dimensional
displacement vector and 2N x 2N —dimensional covari-
ance matrix, whose definitions are identical to their Gaus-
sian counterparts. That is, for every state p, the elements
d; and V;; of the displacement vector and covariance ma-



trix respectively, are defined as,
di= Tr(fip) (D)
1
VijZETr({fi—difj—dj}P)y 2

where i, j=1,...,2N.

We define the Gaussian associate of p, denoted as pg,
the state that has the same displacement vector and co-
variance matrix as p. State p corresponds to a Wigner
function W (r), while state pg corresponds to the Gaus-
sian Wigner function,

1 1 Ty-1
We(r) = 7677(]‘7(1) Vi (r—ad) 3)
o(r) (2m)N/detV (
where N is the number of modes, r = (q,p) are the co-
ordinates’ vector, such that q = (g1,...,qy) is the vector
of canonical position and p = (p1, ..., pn) is the vector

of canonical momentum. We work in the ggpp represen-
tation of the state and we set 7 = 1. For the rest of this
Section and Section III the barred quantities refer to any
Gaussian state while the non-barred quantities refer to
generic non-Gaussian states or their Gaussian associates
when they also have an index G.

Typically, a non-Gaussianity measure (henceforth de-
noted as nGM) for a state p, is a distance-like measure
between the state under examination and its closest Gaus-
sian state, intuitively expected to be the state pg. For
example, the quantum relative entropy and a measure
based on the Hilbert-Schmidt distance between p and pg
have been studied in Ref.*=>%3%,

Using the quantum Wigner entropy, which is
fined as,

9,28,57 {e.-

h[W] = — / d*rW (r)InW (r), 4)

we define the Wigner relative entropy (WRE) between a
Wigner function W(r) and some Gaussian Wigner func-
tion of a quantum state W (r) as,

DIW|[W] = —h[W] — / ANW () nWe(r)  (5)
The Gaussian Wigner function W (r) is arbitrary, i.e. ,

— 1 L@V (r—d
W r) = 776‘_7(1‘_(]) \% (l‘—d) (6)
olx) 2V VdetV

is not assumed to be equal to W (r). Instead, we define
the quantity,

u[Ww] = min D[W||W], (7
Wge¥
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where the functional minimization with respect to W is
over the set ¢ of all Gaussian Wigner functions. Using
Egs. (3) and (6), Eq. (5) gives,

_ 1 _
DIW|[W¢] = —h[W] +NIn(2m) + 2 Indet V

1 — 1 e —
+5Te(VV N+ S@-a'v "(d—d). (8
In Eq. (8), the matrix V_l is positive definite (as it is the
inverse of a quantum state’s covariance matrix). There-
fore, we have the inequality,

@-d)’V '(d-d)>0 9)

with equality to zero if and only if d = d, which means
that W(r) and W (r) must have identical displacement
vectors. Therefore, from Eq. (8), we now have to mini-
mize the quantity,

_ 1 _
DIW|[We)] = —h[W]+Nn(27) + 5 IndetV
T
+5Te(VV h. (10)

We proceed to show that Eq. (10) is minimized if and only
if V = V. Using the right-hand side of Eq. (10) it suffices
to prove the following inequality,

IndetV+Tr(VV ") > IndetV+Tr(VV "))
& Tr(VV ') >Indet(VV ') +2N
& Tr(VIV 'VE) > Indet(VIV 'V2) 42N
< TrA > IndetA +2N. (11

When going from the second to the third line of (11), in
addition to to the cyclic property of the trace and determi-

1 1 .. .
nant, we use the fact that V= V2V2 for a positive definite
. 1. . - .
matrix V, V2 its self being positive definite as well. The

positive definite matrix A = ViV 'V? has eigenvalues
{A1,..., 8} with 4; > 0,Vi=1,...,2N. For any posi-
tive x, it is always true that x — 1 > Inx. Therefore, for the
eigenvalues of A, we have,

2N 2N
Y (Mi—1)>) I
i=1 i=1
2N 2N
<~ Aisz > lnHli
i=1 i=1
& TrA > IndetA + 2N, (12)

which is the desired inequality (11). Therefore,
DIW||W ] is minimized if W(r) is the Gaussian asso-
ciate of W(r), i.e., Wg(r) = Wg(r).



Hence, with the proof above Eq. (7) gives,

H[W] = DIW||We)

13)

We note that there is only one argument in p[.] as Wg(r)
has a functional dependence on W(r) and is uniquely

defined. Using Eq. (5), we write,
uW] = —h[w]— /dZNrW(r) InWe(r)
— _h[W]— / @ W () InWe(r)
= W] +1n <(27re)N detV) ,
where we have used the fact that,
InWg(r) = —In ((27:)” detv)

1 _
—E(r—d)TV Hr—a),

(14a)
(14b)

(14¢)

15)

rendering the integrals in Egs. (14a) and (14b) equal, i.e.,
only the first and second moments will play role in said
integrals. Equation (14b) is equal to Eq. (14c¢) as straight-

forward evaluation gives,

%/derWG(r)(r —d)IVir-d)=-N

It is of central importance to discuss how to deal with
Wigner functions that posses negative volume. We can

write any Wigner function as,
W(r) = |W(r)|/Zk+1)mo(ap)
where k € Z and,

1, W(r) <0
9(r)= { 0, Wg; So.

(16)

A7)

is the marker function which distinguishes between the
positive and negative functional values in the domain.
Therefore, InW (r) = In|W (r)| +i(2k+ 1)m¢ (r) where k
defines the branch of the complex logarithm. We choose

to work with k = —1 and we rewrite Eq. (14a) as,

uW] =Rep[W] +ilmp[W],

where,
(=]
ﬁ Rept[W] = —Reh[W] + h[Wg]
-E:' Imu (W] = fﬂ/dZNrW(r)(j)(r)
0 2 _
::._ = = 7'E|7/,|
‘l:"l- G—

FJ
P
.J"'D‘
i

(18)

19)

(20)

and

Reh[W] = —/dZNrW(r)ln|W(r)|, @1)

h[Wg] = — / d*™NrW (r) InWg(r) (22a)
—_ / PN Wo(r) InWo(r)  (22b)
—In ((2ne)N\/detV) , (22¢)

where |¥_| is the total negative volume of the Wigner
function W (r).
We note the following set of properties for the nGM

pwl,

Theorem 1. u[W] evaluates to zero if and only if W is a
Gaussian Wigner function.

Proof. See Section III for proof. O

Theorem 2. u[W] is invariant under Gaussian unitary
operations on the Wigner function W and its underlying
state.

Proof. See Section IV for proof and associated discussion.
O

Theorem 3. If Eq. (27) is satisfied, Rep[W|] decreases
under the action of a Gaussian channel on the Wigner
function W and its underlying state.

Proof. See Section V for proof and associated discussion.
O

Theorem 4. The Gaussian associate of any Wigner func-
tion is the only physical critical point and it corresponds
to a minimum of Rep[W].

Proof. See Section VI for proof and associated discussion.
O

. FAITHFULNESS

By faithfulness we mean that W(r) is Gaussian, if
and only if u[W] = 0. We clarify that the meaning of
WU[W] = 0 is that both its real and imaginary parts are
simultaneously equal to zero.

Proof of direct statement: Let W(r) = Wg(r), i.e., the
Wigner function under consideration is Gaussian, but not
necessarily equal to its Gaussian associate Wg(r). The
Gaussian associate of Wg(r) is equal to itself. Since



a Gaussian Wigner function is positive over its entire
domain, i.e., |Wg(r)| = We(r), we get,

Imp[Wg) = || =0. (23)
From said fact and Egs. (4) and (21), we get Reh[W | =

h[W ¢]. Hence using Eq. (19) we have,
Reu [WG] = —Reh[W(;] —|—h[WG] =0. 24)

Proof of converse statement: For some Wigner function
W(r),let u[W]=0,i.e.,

Reu[W]=0 (25a)
Imu[W] = 0. (25b)

Equation (25b) imposes that W (r) is positive over its en-
tire domain, which implies that W (r) is well-defined prob-
ability distribution function i.e. W(r) = W-¢(r) . Conse-
quently, W (r) can be analyzed using classical probabil-
ity theory, even if the state corresponding to W(r), is a
quantum state with no classical description. Therefore,
Re p1[W~] represents a classical relative entropy quantity
being equal to zero,

D[W=o|[Wg] =0 (26)

which necessarily implies that Wao(r) = Wg(r). It is
worthwhile to note that given the natural emergence of
Im pt[W] as the total negative volume of the W (r) ensures
the faithfulness property of the complex-valued p[W].

IV. INVARIANCE UNDER GAUSSIAN UNITARY
OPERATORS

Reh[W] (and consequently #[W]) are proven to be in-
variant under symplectic transformations in Ref.”®. Equiv-
alently, Gaussian unitary operations acting on the state or
to the corresponding Wigner function W (r) leave ReA[W]
unchanged. Symplectic transformations also conserve
the negative volume of a Wigner function, i.e., Imu[W]
remains invariant when the corresponding state undergoes
a Gaussian unitary transformation. Therefore u[W] is
invariant under Gaussian unitary operations.

V. BEHAVIOR UNDER GAUSSIAN CHANNELS
A. Sufficient Condition

Intuitively, we expect the value of a non-Gaussianity
measure to decrease under the action of a Gaussian chan-
nel. Namely, we expect such channels to yield a more
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Figure 1. Plot of the trace of the Fisher information matrix Tr(J )
(blue) and Tr(V_I ) (orange) for the Fock states from n = 0 up
to n = 40.

Gaussian output compared to its input, since it has been
mixed with a Gaussian environment through some Gaus-
sian unitary. In our concern, we study a complex-valued
non-Gaussianity measure, and should then check sepa-
rately the behaviour of the real and imaginary parts. For-
tunately for us, the imaginary part of ©[W] is proportional
to the negative volume of W, which has previously been
studied and shown to be non-increasing under the action
of a Gaussian channel'~’'. This section will thus be de-
voted to the evolution of Reu[W] when W evolves in a
Gaussian channel.

In Appendix A, we present an equivalent condition
for the real part of the measure to decrease under any
Gaussian channel. The condition reads as follows,

v>Jlevicy (27)

where V is the covariance matrix of W(r) and J is the
Fisher information matrix corresponding to W (r). The
Fisher information matrix, typically defined with respect
to a parameter of interest in metrology, in this case is with
respect to the phase space variables r (See Eq. (Al4)).
The equivalent condition from which Eq. (27) stems from
is (see Appendix A),

UV -J)] <0, (28)

for all quantum covariance matrices U. For single-mode
channels, if U o I (with a positive constant), the channel
can be a Gaussian phase-invariant channel, i.e., the pure
loss channel or the quantum-limited amplifier. For said
case, Eq. (28) becomes,

Tr(Vh < Tr(J), (29)



which is what we plot in Fig. 1, for the special case
of Fock states |n), known to possess negative regions in
their Wigner representations for n > 1. The approach to
compute J for Fock states is given in Appendix B and is
based on computing the principal value of the involved
integrals when is necessary.

Interestingly, Eq. (27) corresponds precisely to the
Cramér-Rao bound'>*/, and is thus always satisfied for
non-negative Wigner functions, as they correspond to
genuine probability distributions. For Wigner functions
that take negative values, we were not able conclude that
Eq. (27) always holds, nor we have a reason to believe that
it does for all states. Nevertheless, our numerical study
is partially presented in Fig. 1 illustrating that Eq. (28)
is satisfied for Fock states under the action of certain
Gaussian channels, i.e., when U o I. Furthermore, in
Section V B we provide more numerical evidence on the
decreasing behavior of Rep[W] under Gaussian channels.

B. Numerical Evidence

In this section we show that u[W], for a set of ran-
dom d-dimensional states, is non-increasing under a ther-
mal loss channel. The action of a thermal loss channel
is to combine the input state, pp, and a thermal state
with mean photon number 7, represented by pw (7is),
on a beam-splitter of transmissivity 7. Tracing out the
environmental mode leaves us with the channel output,
py. Letting nip go to zero reduces the thermal loss chan-
nel to the pure loss channel and letting 7 go to 1 corre-
sponds to applying identity to pg . We choose to work
with the Kraus operators representation instead of check-
ing the vallidity of Eq. (27). The thermal loss channel
may be decomposed into a pure loss channel of trans-
missivity 7 = 7/G and quantum-limited amplifier with
gain G = 1 + (1 — 7)7i”". The thermal loss channel out-
put is then given by pr = Y7o B;kAlpOAlTI?Z where the
Kraus operators of the pure loss channel, A, and quantum-
limited amplifier, Ek, are defined as

oy
Al — (l l'n) nn/2aAZ (30a)
g — LI (G aiykgir
By = k!G( - )(a)G . (30b)

We prepare 100 random d-dimensional states for
d € {2,3,4}, ie. 300 states in total, by gen-
erating random diagonal states in generic basis
{|0)(0],|1)(1|,...,|d —1){(d — 1|} and then applying a
Haar-random unitary to them®>%*. By setting the basis
states to different Fock states we extend the total number

6

of unique states tested to 900. In Fig. 2, we plot u[W]
for a subset of the 900 random states transmitted through
a thermal loss channel of g = 0.001, as a function of
channel transmissivity 7.

For the states shown in Fig. 2 we see the action of the
thermal loss channel only serves to reduce both Rept[W]
and Imu[W] of the input states. This trend holds true for
all 900 Haar-random states supporting that our measure
is non-increasing under the thermal loss channel, for this
set of states.

As further numerical evidence that Rey[W] is non-
increasing under thermal loss, we study the evolution
of Schrodinger cat and GKP states (see Sec. VII) under
the thermal loss channel. For these more complicated
non-Gaussian states we utilize phase space methods to
simulate their evolution under the thermal loss channel.
Specifically, if we define the action of re-scaling operator
%, on a Wigner function as

zwim = 5w (%), GD)
then the Wigner function of any state which is subjected
to a thermal loss channel of transmissivity 7 and mean
photon number 715 can be expressed as the convolution
of the re-scaled original state Wigner function with the
re-scaled Wigner function of a thermal state. That is,

Wou(r) = 2,z Wil (£) % 2 i Wi ) (1), (32)

In Fig. 3 we plot u[Woy] as a function of 7 for input
odd (A1) and even (A2) cat states of varying coherent
amplitude o € R and input logical zero (B1) and one (B2)
GKP states of varying squeezing A.

As can be seen in Fig. 3, u[W] only decreases with ©
for the states in question. A more in-depth examination
of how the coherent amplitude of cat states and squeezing
parameter of GKP states effects the measure’s evolution
under Gaussian channels is the subject of future work.

Vl. MINIMUM VALUE OF THE MEASURE

In this paper we define a nGM which is complex and
therefore, proving that its real and imaginary parts are
strictly positive, is unnecessary; Indeed, one can rede-
fine the nGM as |u[W]|> which is by definition always
non-negative and all properties in previous sections and
numerical simulations in previous and next sections hold
without any qualitative difference. However, since we
explore a new quantity, i.e., essentially a relative entropy
between Wigner functions, we will undertake the task to
examine the minimum value of the real and imaginary
parts of u[W].
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A. Real part

We employ functional methods to find (local) minima
of the functional Reu[W], and show that they coincide
with Gaussian states. We consider the functional,

R[W] = Reu[W ]+11G(1>

N
+ Y G W
i=1

i,j=1

W]+ Z NG W

Wi

7

(33)

rq_1}, satisfy the inequality relations show in the insets.

where Rep[W] is given in Eq. (19), {A1, ui, Aij}, i,j =
1,...,2N are the Lagrange multipliers to impose con-
straints in a functional form. The first constraint requires
that the W (r) must be normalized to 1,

GIw] = /dZNrW(r) =1. (34)

The second set of constraints demand that W(r) and
Wg(r) have the same displacement vector with compo-
nents {d;}, i=1,...,2N,

/ &N W (r)r = d;. (35)



Publishing

|

I (A1) Odd Cat 1 'l (A2) EvenCat 1 300
— 0.8 4 08 -
B B
S 06 06 )
2] G.J
~o04r 1 EO04r 1
2,50
02} 1 o2f /
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Channel Transmissivity 7 Channel Transmissivity 7 a
08f ‘ 08l ‘ 150
506 £06) 1
= =0 i
g 04f 504
— —
0.2 02r ; 1M,
01 02 03 04_ 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Channel Transmissivity 7 Channel Transmissivity 7
1 — 1 = ;
(B1) GKP |0) (B2) GKP|1) 8.0
0.8 g 08l
S 2 Eosf
3 3
o 04r 4 ©04r
~ ~ 6.6
0.2 02r
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 A
Channel Transmissivity 7 Channel Transmissivity 7
| } ; N EE
= 05 | o5
s | s 1.0

01 02 03 04 05 06 07 08 09
Channel Transmissivity T

Figure 3. Non-Gaussianity measure of (A1) odd cat, (A2) even

01 02 03 04 05 06 07 08 09
Channel Transmissivity 7

cat, logical zero GKP (c), and logical one GKP (d) states after

traversing a thermal loss channel of transmissivity T and mean photon number 77p = 0.001.

The last set of constraints are functionals ensuring that
W (r) and Wg(r) have the same covariance matrices with
elements V;;, i,j=1,...,2N,

3
GYW] = [ Wy, =V +dd;.  G6)

We impose a fourth constraint,
lim W (r) = W(rp),¥rg € RY, (37)
r—ro

i.e., W(r) must be a continuous function, as a necessary
criterion for W (r) to correspond to a physical state*>. This
last constraint is not imposed in the form of a Lagrange
multiplier, instead, it will be used to filter out non-physical
critical points.

Equations (35) and (36) ensure that W (r) is indeed the
Gaussian associate of W(r). Setting up said relation be-
tween W (r) and W (r) through the constraints allows one

to treat Wg(r) in Eq. (33) as being any Gaussian Wigner
function, i.e., not necessarily the Gaussian associate of
W(r); the constraints will impose the desired relation
between W (r) and Wg(r). Therefore, when performing
the functional derivative on Eq. (33), all terms containing
only Wg(r), will disappear. Therefore, we can rewrite
Eq. (33) as,

R[W] = —Reh[W]+1,GV[W]

N 2N
+ Y wGP W+ Y MG wl. 38)
i=1 ij=1

In Appendix C we perform the first functional derivative
and we find all critical points, (i.e., functions W (r)) that
respect the constraints of Eqs. (34)—(36). These critical
points are the Gaussian associate of W(r), i.e., Wg(r),
and the partially flipped Gaussian associate. The par-



tially flipped Gaussian associate is any function W,y (r)
that takes on positive and negative values but in such a
way that |W,6(r)| = Wg(r) is the Gaussian associate
of W(r). W,sc(r) can be ruled out by enforcing the con-
straint of Eq. (37), as it must be discontinuous somewhere
for |[W, 6 (r)| = Wg(r) to hold. Note that the completely
flipped Gaussian associate, W, (r) = —Wg(r), had al-
ready been ruled out prior to enforcing the constraint of
Eq. (37), since it violates the normalization condition of
Eq. (34). Therefore, the only critical point that corre-
sponds to a physical state is Wg(r).

Subsequently, we calculate the second functional
derivative of Eq. (38), and we find that Wg(r) corre-
sponds to a minimum for Eq. (38). When the functional
of Eq. (38) is evaluated for Wg(r), gives Rep[Ws] = 0.
The partially flipped Gaussian Wigner functions do not
correspond to neither minima nor maxima.

From these observations, we conclude that the Gaus-
sian state with first and second order moments defined
by (35)-(36) is the only local minimum of the functional
Rep[W]. If we were to consider only Wigner-positive
states, we could at this point establish that it is also a
global minimum, from the concavity of Re/ over Wigner-
positive states (which follows from the concavity of
¢(x) = —xInx over R). However, we cannot use that
argument anymore when Wigner-negative states come
into the picture, as the functional Re/ then becomes nei-
ther concave nor convex (since ¢(x) = —xIn |x| is neither
concave nor convex over R). Having a single physical
minimum, does not exclude the possibility of Reu[W]
being unbounded from below. However, we expect (from
numerics of Sections VII and V B, where all Rept[W] are
non-negative) that some physicality condition, which is
non-tractable to include in the analytic functional opti-
mization, could render Reu[W] bounded from below by
zero.

B. Imaginary part

From Eq. (20), the imaginary part is always non-
negative, i.e., Im u[W] > 0, as it is proportional (with
a positive constant) to modulo the negative volume of the
Wigner function. It is worthwhile to note that this is a
direct consequence of choosing a negative k as the branch
of the complex logarithm in Sec. II.

VIl. APPLICATIONS

Bosonic quantum states that satisfy the requirements of
being a qubit are of particular interest in tasks of quantum
information processing. Various photonic encodings of
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the qubit find applications in quantum communication and
computation. We analyse (1) the single rail qubit encod-
ing®, (2) the Schrédinger cat state based qubits'>*¢, and
(3) the Gottesman-Kitaev-Preskill (GKP) qubits”® which
have seen renewed interest due to their error correction
properties.

A. Single-rail photonic qubits

We study the behavior of the measure for the single-rail
encoded photonic qubit defined as |0) = |0) and |1) = 1),
where |0),|1) are Fock states. In the chosen basis, the
logical-0 has a zero nGM, whereas the logical-1 has a
non-zero nGM. Exploration of the complete set of states
can be done in a parameterized way as follows: we start
with a qubit density operator, parametrized as p(r) =
r0)(0] 4 (1 —r)|1){1| where r € [0, 1] and apply the qubit
rotation gate given as,

[ cosB/2 €'?sin6/2
CH (ei‘PsinG/Z cosG/Z) ’ (39)

where varying 6 € (0,7) and ¢ € (0,27), in principle let
us explore the complete space of quantum states spanned
by these basis vectors. Since states of varying purity are
allowed (i.e. by tuning r € [0, 1]) the state space may be
thought of as a Bloch ball. We simplify the analysis by
considering only ¢ = 0, i.e. density operators that fill a
hemispherical slice of the Bloch ball. This simplification
does not harm generality since states lying at the same
radial and azimuthal position of the Bloch ball (i.e. same
r, 0) are equivalent up to a rotation in phase space. Con-
sequently, they evaluate to the same value of the nGM.
Therefore, we write,

U,p0)=U(0). (40)

Figure 4(a) depicts tracks in the Bloch ball’s hemi-
sphere corresponding to varying r (marked by differ-
ent colors). The corresponding values of the measures
are shown in Fig. 4(b) where each p(r);r € [0.5, 1] with
U(0);0 € (0,n] applied has the corresponding colored
line. Hence starting from p(r), the final state under the
present choice of evolution is p(1 —r) since U(7/2) is
the Pauli X gate. Since r € [0.5,1] for some values of
6 yields passive states (i.e. Fock-diagonal states whose
eigenvalues are in non-increasing order), their measures
are real-valued (marked as Wigner positive states). The
measures of the |1) state (purple diamond) and the maxi-
mally mixed state (red cross) are marked for clarity.

We note an upper envelope to the set of the evalu-
ated measure values which corresponds to the pure states
(black line). The set also has a right envelope which
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The logical-1 state (purple diamond) and completely mixed state (red cross) are marked as well.

corresponds to states of the form p = r|0)0| + (1 —
r)[1)Y(1];r € [0,0.5] (red dashed line). As highlighted
earlier, the complementary cases, i.e. r € [0.5, 1], yields
passive states. Similar trends are observed for the case
where we assume |1) = |2) in Fig. 4.

It is important to note that states with non-diagonal
density matrices might have a real u[W] since the set
of Wigner positive states has elements which are non-
passive. The ability to distinguish between Gaussian,
positive non-Gaussian (passive), and non-Gaussian states
with negative volume simultaneously is unique to our
measure. One would need to take into account multiple
other non-Gaussianity measures concurrently to achieve
the same discern-ability as our measure.

B. Application to engineering Schrédinger cat states

In this section we showcase our measure’s potential as
a computational tool to aid photonic state engineering,
by comparing the values of our measure for a target state
and a state produced in the engineering protocol of Ref.**.
In this engineering protocol, a collection of single-mode
squeezed vacuum states are sent through a general pas-
sive Gaussian unitary made of beam-splitters and phase
shifters. At the output of the unitary all but one of the
modes is detected by a photon number resolving detector.
The squeezing parameters of the input states as well as the
transmissivities and phases of the general passive unitary
are numerically optimized with respect to the final sin-
gle mode output state’s fidelity to a target state. For this

example, the target states are Schrodinger cat states' >,
o)E|—-o
of) = | LEED (41)
2(1£e2loP)

Here |+o) ~ e tlaf X, (i\r/%?" |n) is a photon number-

truncated coherent state with a cutoff Fock number, n, =
40 is chosen such that for a coherent amplitude up to |a| =
3, the state is supported with high precision. Without loss
of generality, we work with o € R as the phase arg o for
o € Cis imparted by Gaussian unitary operation which
ensures the invariance of the nGM.

In Fig. 5 we plot u[W] for even, |®;"), and odd, |®; ),
cat states. It is straightforward to show from Eq. (41) that
ata =0, |®;) =|0) and |®, ) = |1). This fact is reflected
in Fig. 5 by the even (odd) cat state’s zero (non-zero) value
for the real and imaginary parts of u[W]ata =0. As o
increases the even and odd cat states’ measures become
progressively indistinguishable.

In Fig. 6a we plot u[W] for the “circuit" states gener-
ated by the scheme in Ref.** with the highest fidelity to
their corresponding target states |®,") (see Ref.**, Fig. 4
therein) along with p[W] for these target states. In Fig. 6b
we plot the difference in the target and circuit states’ val-
ues for Rep[W] and Imu [W] as functions of the coherent
amplitude of the target state ¢¢. Listed next to each plot
point is the fidelity between the target and circuit state.
Keep in mind we chose our target and circuit states to be
pure, so that any non-Gaussianity reflected in the measure
must arise from quantum effects and not a non-Gaussian
mixture of Gaussian states.
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Figure 5. The (a) real and (b) imaginary parts of u[W] evaluated
for even (solid blue) and odd (dashed orange) Schrodinger cat
states as defined in Eq. (41).

From the two plots in Fig. 6 we see that the higher the
fidelity between the target and the circuit states, the closer
in u[W] they are. Now, it must be pointed out that high
fidelity between target and circuit states does not always
mean similar pt[W] values and our results in Fig. 6 should
in no way be taken as evidence to a wider connection
between fidelity and our measure. Fig. 6 does provide ev-
idence that fidelity performed well as a figure of merit for
engineering these cat states. That is, not only do the target
and circuit states have high fidelity, they also have a simi-
lar shape in phase space. The scenario where fidelity does
not perform well as a figure of merit is where our measure
should prove most valuable, something we briefly address
in Section VIII and leave futher exploration of to future
work.

C. Application to engineering photonic
Gottesman-Kitaev-Preskill states

The Gottesman-Kitaev-Preskill (GKP)2° states are well
known for their utility in quantum communication, error
correction and computing. Here we focus on the finite
squeezed square-grid GKP states*®?, which do not have
singularities and infinite extent on the phase space. We
choose the following definition for the GKP logical states,
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Figure 6. (a) u[W] evaluated for target even Schrédinger cat
states |<I>,+ ) (blue diamonds) and “circuit" states (orange circles)
generated by the scheme in Ref.** with the highest fidelity
to their corresponding target state. Each circuit state point is
connected to its corresponding target state point by a black
line and listed next to each circuit-target state point pair is the
coherent amplitude of the target state «. (b) Difference in the
target and circuit states’ values for the real(imaginary) part of
our measure ARept[W] (AImu[W]) vs. the coherent amplitude
of the target state o.. Listed next to each plot point is the fidelity
between the target and circuit state for that particular o. We
note that while the fidelities are listed next to the points on the
line for ARep[W] (solid blue) they are meant to apply to the
complementary point on the line for Almu [W] (dashed orange)
as well.

oo = Y, e 3 DVDSE)0)  (420)

t=—o0
Maw= Y, e 32 C D2 1 1)ymS(E)[0).
o (42b)

where D is the displacement operator, § is the single-
mode squeezing operator, and & = —InA is the squeezing
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parameter. The corresponding Wigner functions may be
derived by calculating the symmetrically ordered char-
acteristic function xw (n,n*) = tr[D(n) |LXL|], L= 0,1,
and evaluating its Fourier transform. The detailed deriva-
tion of the state Wigner function is given in Appendix D.
The nGM of these states are shown in Fig. 7.

We note the following trends for the evaluated nGM—
(1) the imaginary part of u[W] is upper bounded for both
|0)kp and |1)gkp, showing numerical equivalence for
A 2 10 dB and, (2) the real part of the measure mono-
tonically increases with A for both logical states show-
ing numerical equivalence for A 2 15 dB. The upper
bound to Imu[W] arises due to the Wigner functions
having equivalent negative regions. The upper bound
(= m/2) is a result of the maximum negative volume of
the GKP state which is shown to be 1/2°?. For A~ 0 (low
squeezing limit) we note that |0) gxp = |0) (vacuum) and
Makp = |1B) + |-B) ;B = V& (Schrodinger cat state).
Hence the measure is non-zero for |1)xp. For the A > 15
dB regime (high squeezing), the states are expected to
be displacement invariant (i.e. |1)gxp = D(v/7) |0)gxp)-
thus evaluating to the same value of the measure. While it
is clear that the measure for the two logical states should
deviate as A — 0, since the states no longer differ by a
displacement, minimal insight about the physical implica-
tions of real part of the measure is currently available so
the exact functional dependence of Reu[W] on A in the
low squeezing limit is not intuitive. In Ref.” the authors
introduce a photonic state engineering system that con-
sists of sending N displaced squeezed states through an
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N-mode interferometer and preforming PNR detection on
N — 1 of the modes. They denote the PNR measurement
pattern by 7. For a given 7 they optimize the displacement
and squeezing of the input states and the parameters of
the N-mode interferometer to target “approximate” GKP
states. The authors define “approximate" GKP states to be
those of Egs. (42) but with Fock support truncated at some
number 7,,,. In Table II of Ref.”> the authors provide
the fidelity between their target, approximate logical zero
GKP states with A = 10dB, and circuit states for varying
nmax, IV, and 71. The Fock coefficients of these target and
circuit states can be found in Ref.’°. We restate the results
of the ny.x = 12 section of aforementioned table in Table
I with the difference in the target and circuit states’ val-
ues for Rep[W] and Imu [W] listed as well. Once again,
our measure acts as a sort of sanity check, confirming
that not only do the engineered states have high fidelity
to the target but also have the desired GKP phase space
characteristics.

Nmax = 12
N  1-Fidelity = AReu[W]  Almu[W] il
2 0.35 1.33 -1.43 12)
3 3x1073 —0.001 0.032 5.7
4  4x10°8 8.62 x 0.003 (3,3,6)
1074
2%x107° 8.59 x 0.001 (2,4,6)
—4
10
5  7x107° 7.69 x 0.003 1,1,3,7)
10~4
7x1078 7.87 x 0.003 (1,2,3,6)
1074

Table I. Results for optimizing the state engineering system
in Ref.> to target approximate logical zero GKP states with
A =10 dB and npax = 12 which is equivalent to Eq. (42a) with
Fock support truncated at 12. Listed for each case of number of
input modes, N, and PNR measurement pattern, 7, is the fidelity
between the target and circuit state, presented as 1—Fidelity, and
the difference in the target and circuit states” values for Re [W]
and Im u[W].

VIIl. CONCLUSIONS

In this work we ventured to give an application-flavored
interpretation of the recently introduced quantum Wigner
entropy”’. To this end, we introduced the WRE and de-
fined u[W] such that under the condition of Eq. (27) be-
haves as a proper non-Gaussianity measure. Our measure
can serve as a computational tool to aid in assessing the
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quality of non-Gaussian states, generated by partial non-
Gaussian measurements on Gaussian states. Indeed, the
nGM introduced in this work holds information on the
negative volume of the Wigner function in a naturally
emerging way. At the same time, Rey[W] provides an
extra layer of information on the non-Gaussian character
of the underlying state. One would need the combination
of negativity and a relative entropy measure, such as the
quantum relative entropy”>, to simultaneously distinguish
between Gaussian states, non-Gaussian states with zero
negativity, and non-Gaussian states with non-zero neg-
ativity. The novelty of our measure is that it is able to
distinguish between these three types of states on its own.

As pointed out in Section VII B, high fidelity between
a circuit and target state does not always mean the circuit
state will possess the desired phase space characteristics
of its target. It is in these circumstances where we think
our measure will flourish. Specifically, we anticipate that
our work will spark interest in non-Gaussian state engi-
neering in the following way: Optimizing the Gaussian
state under partial photon detection and the (partial) pho-
ton number pattern®’, to generate a state whose u[W] is
close to U[Wgkp], where Wgkp is the Wigner function of
the physical (i.e., finite squeezing) GKP state. Exami-
nation and comparison of the error-correcting properties
of the measure-optimized states (in contrast to fidelity-
optimized states) is an open question for forthcoming
work.

Moreover, for future theoretical endeavors, complete
understanding of the properties and physical meaning of
Rep[W] is of potential interest. It is worthwhile to ex-
amine the potential use of u[W] within the context of a
non-Gaussianity resource theory (i.e. from the point of
view of monotones). Lastly, we believe that the condi-
tions of Eqs. (27) and (28) are interesting in their own
right; non-negative Wigner functions are known to satisfy
them, however it is interesting that a plethora of partialy-
negative Wigner functions (e.g. cat states and GKP states
under thermal loss) also seem to numerically satisfy them,
as the strong evidence presented in this work suggests.
Therefore, a complete understanding of which states un-
der the action of which Gaussian channel, respect said
conditions is another possible future research path.
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Appendix A: Evolution of the non-Gaussianity measure in Gaussian channels

In this Appendix, we derive a sufficient condition for the non-Gaussianity measure to decrease under the action of
any Gaussian channel. The condition is then shown to be always satisfied for states with non-negative Wigner functions.
Note that it is proven in'~! that the negative volume can only decrease under the action of a Gaussian channel, so that
we only condiser the real part of the non-Gaussianity measure here, i.e. Rep[W].

1. Multimode bosonic Gaussian channels

The mathematical description of multimode Gaussian channels is provided in Ref.®. In Wigner space, multimode
Gaussian channels act as the succession of a rescaling operation and a convolution with a Gaussian distribution (for
completeness we should also include a displacement, but we omit it here since it has no effect on our measure). We
define the multimode rescaling operator .5 and the convolution as follows:

(A+B)(r) = / / A(r—1)B(r' ). (A1)
1

Zs [W](r)

_ —1
= et SIW(s r) (A2)

Note that when the rescaling matrix is proportional to the identity (so that S = sI), we will simply note the rescaling
operator as .Z; (in place of Z1). Using these two operations, we can then express any Gaussian channel .Z as:

MW = L5 W], (A3)

where S is the rescaling matrix and % is some multimode Gaussian distribution. Note that in order to ensure the
physicality of the channel ., S and % should satisfy some conditions (see®). As an example, a noisy lossy channel (with
transmittance 1 and thermal environment of 7 photons) corresponds to choosing § = /NI, and % = ¥ J—mm [Wi]

where W; = exp(— (x> + p?)/(2ii+ 1))/(m(27+ 1)) is the Wigner function of a thermal state. Similarly, a noisy
amplifier corresponds to S = /gl and % = . \/m[W,—,].
It is a simple derivation to show that the rescaling operator adds a constant to the differential entropy of W:

h[Zs[W]] = h[W] +In(|detS)). (A4)

Since the non-Gaussianity is a difference of two entropies (and since the rescaling acts identically on W and its Gaussian
associate), it directly follows that the non-Gaussianity measure is invariant under rescaling:

U[Ls W] = h[Ls W]] — h[.ZLs [Wg]] = h[W] — h[Ws] = u[W]. (A5)

As a consequence, the evolution of the non-Gaussianity measure under a Gaussian channel is solely affected by the
convolution with the Gaussian distribution.

2. Infinitesimal Gaussian convolution

We are now going to show that it is sufficient to prove that the measure is decreasing under an infinitesimal Gaussian
convolution. Indeed, let us observe that any Gaussian distribution %/ (with covariance matrix U) can be decomposed
into an arbitrary number of convolutions (assuming 1/& € N):

U=\ U LU L |U). (A6)

1/€ times

This is a consequence of the fact that covariance matrices add up under convolution, and that the rescaling operator
Z /& applies a Gaussian distribution with covariance matrix U onto another Gaussian distribution with covariance
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matrix €U. As it appears, when € tends towards zero, the Gaussian distribution %/ can be decomposed into (an infinite
number of) convolutions of arbitrarily narrow Gaussian distributions (with covariance matrices €U). Proving that the
non-Gaussianity measure increases in the limiting case € — 0 would then imply that it increases for any multiple of €U,
and in particular for % (having covariance matrix U). The limiting case € — 0 corresponds to taking the derivative of
the measure, i.e.:

<0. (AT)

%Reu {W*g\/g [%]} o

We are going to focus on the latter condition in the following of this Appendix.

In the following, we use the fact the the convolution of two Gaussians is a Gaussian and that covariance matrices add
up under convolution. We use the notation 4g[W| to denote the entropy of the Gaussian associate of W.

HIW * 2 s [U]) = halW » 2 e [2)) ~ hW L, | (AB)
— hWe L, [U]) — h{W L, (%] (A9)
:Nln(27re)+%ln(det(V+8U)) —hW x 2 5] (A10)

We now take the derivative with respect to € on both sides.
4 wez ) =14 (det(V +€0)) — L hw+ 2 ]
aeH" vl = 5 g de ve

d

L det(V +eu)) ! 1= det(V 4 £U) - %h[W « 2 )]
d

(det(V+€U)) " det(V+€U) Tr [(V +eU)! i

(V4eu)| - %h[w*zﬁ[%]]

W2 e[%]]

N = = N

d
Tr |(V+2U)'U = =
r|(V+eU) de
where we have used Jacobi’s formula for the derivative of the determinant of a matrix. Finally, we need to evaluate that
expression in the limit case € = 0, which yields:

w24 2)

_Llv-ig o 4
P _2Tr[V U] deh[W*fﬁ[%]] . (A11)

e=0

e=0

3. De Bruijn’s identity for Wigner functions

The second term in the RHS of Eq. (Al1) corresponds to the increase of entropy of W when it undergoes an
infinitesimal Gaussian convolution. If W was a genuine probability distribution, that quantity would be related to the
Fisher information through the so-called De Bruijn identity*’. In this section, we show that De Bruijn’s identity can be
extended to Wigner functions, even when they take negative values. We provide here a concise proof, which closely

follows the the usual derivation of De Bruijn’s identity'*3?.
g:' Let us first observe that solutions of the heat equation dW /de = (1/2)AW (where A = ¥;(9/dr;)?) have the form:
L
7] Wg:WO*g\/E[N]7 (A12)
oo . o . . .
—a where N is a standard Gaussian disitribution of covariance matrix I. Then, we can compute the derivative of Res(W;)
<10

FJ
P
.J"'D‘
i
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with respect to € as follows:
d d N
< Reh[W,] = f/£ (We () n We(r)] ) @2

de
:_/(ln|Wg(r)|+l)%Wg(r)d2Nr

— _;Z/ (1n|Wg(r)| + l)aa;Wg(r)dZNr

__;; {(ln|Wg(r)|+l> <;riwe(r))]:°° +;;/(;riln|wg(r)|) (;r,-wf(r)) 2N,

o

= ;Z/ (w:m ;W(r)ng(r)‘l% A

Here, we have used integration by parts. Then, from a similar argument as presented in'#, we concluded that the term in
square brackets is zero. The next step of the proof is then to generalize to Gaussian distribution which are non-standard
(going from N to any Gaussian % ). To that purpose, we introduce the Fisher information matrix J, which is defined
from W as follows:

Jij = (J),-,:/ (Wl(r) ;HW(r)) (Wtr) ;er(r)> W (r)d*Nr. (A14)

Then, following a similar argument as the one presented in’”, we extend the proof to the case of non-standard
Gaussian distributions, which gives us:

d 1
~oReh [W*zﬁ [62/]] ‘8:0 = 5 Tr[UJ]. (A15)
where J is the Fisher information matrix of W and U is the covariance matrix of the Gaussian %/ (note that if U =1 we
find Eq. (A13)). Eq. (A15) is precisely the multivariate De Bruijn identity'**!, and we have shown here that it holds
even for distributions that take negative values (under the condition that we extend usual entropy to the real part of the
complex-valued entropy). Using this relation, we can finally rewrite Eq. (A11) as:

1 -
=T [ov'-n]. (A16)

d
—Reu [ W2 [02/]}

If we want the latter expression to be negative for any Gaussian channel (and thus for any covariance matrix U), we
need the matrix (V! — J) to be negative semi-definite.

4. A proof for non-negative Wigner functions with the Cramér-Rao bound

In the particular case of Wigner-positive states (having non-negative Wigner functions), we can prove that Eq. (A7)
always holds. First, we will use the fact that the Fisher information matrix is always positive semi-definite (for genuine
probability distributions). Then, we will use the multivariate Cramér-Rao bound®, which states the following:

V>, (A7)
and should be understood as (V —-J ’1) being a positive semi-definite matrix. Then, since V> J~! > 0 we have that

J > V!> 0and thus (V! —J) <0, negative semi-definite.”” (Corollary 7.7.4 (a)). From (A16) we find:
=]

d 1 -1
ﬁ —Ren [W*gﬁ[%]} =5 T[U(v =) (A18)
@ = T [UE (v U] (A19)
0 2
=3 <0, (A20)
*:'IH&
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P
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where we have used the fact that the matrix U2 (V’l - ) Uz is negative semi-definite, and that the trace of a negative
semi-definite matrix is non-positive.

In conclusion, we have proven that if a state has a non-negative Wigner function, then its non-Gaussianity measure
Rep[W] can only decrease when the state evolves in a Gaussian channel. However, if the state has a Wigner function
that takes negative values, we couldn’t use the Cramér-Rao bound to conclude our proof.

Appendix B: Numerical Methods

The Wigner function of a Fock state |n) is,
ei(q2+p2) ) 2
Wa(g:p) = ————(=1)"Ln(2¢" +2p"). (BD)

2

In polar coordinates g = rsin6, p =rcos 0, i.e., r- = q2 +p2, we can write,

2

Wo(r,0) = Wi (r) = eﬂ (—1)"Ly(22), (B2)

where L, (.) is the Laguerre polynomial of the n—th order. From the definition of Fisher information J we get,

/ T W () (¥ I W (1) 2rdrd (B3a)
=2r | (e ((;r )2+ (laaelmw,,(r))z) rdr (B3b)
—or O+°° r( ) <‘9V;"r(r)> (B3c)
_ /+oo —1)e f2r3(LL,1n((22rr23)+2L,g1(2r2))2dr B30
_ /+m 1)e " ([Zn((er:Z))JrZL}l1(2r2))2d(2r2) B3)

By letting x = 2% we can write,

Tr(J):/()*"" (=1)"e” 3x(Ln(x) +2L,;, 1(X))2dx (B4)

Ly(x) ’
where L%(.) are the associated Laguerre polynomials with L)(.) = L,(.). The main challenge of Eq. (B4) is that the

denominator can be equal to zero. Therefore, we calculate the principal value of said integral. To this end, we rewrite
Eq. (B4) as,

f/“" (—1)"e 2x((Ln(x))? +4La(x) L), (x) + (2L} (x))?)
Ly(x)

= / +°° "¢ 3 x(Ly(x) +4L) | (x))dx (B5b)
(

Tr(J) dx (B5a)

e n _x 2
+/+ e ix-4(LL (%) )dx. (B5c)

Ly(x)
Now, we consider the two terms separately,
foo +oo
(B5b):/0 (—1)"e™ 2xLy( dx—l—/ "e~ix-AL} | (x)dx (B6a)
o0

oo
:(—1)"/ e*fon(x)dx+4(—1)"/ e 3xL! (n)dx. (B6b)
JO JO
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We find that,

_T(B+DI(a+n+1)

e st Bro d
- L7 (t)dt
/o ¢ L0 aT(a+1)

1
S_ﬁ_12Fl(7naﬁ +1,0t+ 13}) Ef(n7ﬁ7aas)
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(B7)

where 2F) (.) and I'(.) are the confluent hypergeometric function and the gamma function respectively. Therefore,

(B5b) = (—1)”f(n,1,0,%)—1—4(—1)”]‘(11—1,1,1,%)

Next, we consider the term (B5c). The Laguerre polynomials can be written as,

Lw=% () Cy
L) =k=; (k " 1) S

For the term x(L!_, (x))? in (B5c) we write,

n—1

where,
n—1 '
p(x) =Y px,
k=0

n—1
q(x) = Z Qkf‘
k=0

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

To calculate py and g, we can use the commands PolynomialQuotient, PolynomialMod and CoefficientList

in Mathematica. Then, we can separate (B5c) into two parts,

e 73 (p(x)La(x) +q(x))

(B5e) = 4(-1)" [ e

— 4(—1)"/0+mp(x)e_%dx

+4(=1)" /0+°° If’n(g) e dx

Now, (B14b) is rendered manageable. By virtue of (B12), we get

4oon—1 .
pkxkeffdx
k=0

(B14b) :4(—1)"/
0

n—1 o0 .
=4(-1)" Z Dk A *e 2dx
k=0

_ n—1 o0
REZAg )Y /0 (26)%e"d(21)
k=0

n—1 o0
— (_l)n Z pk2k+1 / lkeitdl‘
k=0 0

n—1
=4(=1)" Y p 2 Tk + 1)
k=0

n—1
=4(=1)" ) p2 k!
k=0

(B14a)

(B14b)

(Bl4c)

(B15a)

(B15b)

(B15¢)

(B15d)

(B15e)

(B15f)
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Now, we consider the term (B14c). To compute said term, let us rewrite 1 using (B9),

Ly (x)
1 1 1
= = 5 (B16a)
L, (x) ao (n\ ok, aox? . agxt
Yicolg ) mm>
- ! (B16b)
an(x—x1)...(x —xp)
14 1
- (B16¢)
A 1 X—X;
where x; is the root of L, (x) = 0, and ay, . .., a, are the coefficients of increasing powers of x of the polynomial L, (x).
Therefore,
_(n\ (=D _(=D)"
n= (n) o (B17a)
1
a=—=(-1)"n!, (B17b)
an
1 LN |
=a B17¢)
Ly(x) II:le X;
Next, we recast the product into a summation,
n 1 n b
[[—=Y— (B18a)
L1x—x Hx—x
L | " b
B emm) [ o= = B =) o= (B180)
lim [] — lim *—%p,, (B18c)
X—rXj i1 X —X; X=X X — _Xk
ik
a 1
by = (B18d)
g IIJ Xk — Xi
i£k
Therefore,
1 b
=da B19
Ly(x) l; X —X; (B19)
Now, using Eq. (B19), term (B14c) can be written as,
Ry .
(Bldc) = 4(4)”/ ay 4 -5 g (B20a)
U=
n +oo
glx) _x
=4(—1)"'a b-/ e 2dx B20b
vrayn [ (B20b)
1 °° i x
:4(—1)"61219,-/ LISOIRS N (B20c)
i=1 JO X — X
n o0 _ .
+4(=1)"aY b / 90 =4 -5 4 (B20d)
i=1 0 X=X

19



where we made the poles to become apparent in (B20d). We simplify (B20c) as,

n —+o0 e—%
B20c) =4(—1)" biq(x; / d
( C) ( ) ai:ZI iq(x:) 0 X—x; X
n
—1)'a Z big(x;)E;i(x;
i=1
Where E;(x;) is,
oo =3
E,’(xi) :/ ¢ dx
0 X—x
and represented by ExpIntegralEi in Mathematica.
Using Eq. (B13), term (B20d) gives,
+oo .
(B20d) — aZb / Ticol =xi) 4,
X—X;

— oo xk kb

=4(=1)"a’) b; / Le 2dx
( ) 1:21 zk;)% 0 X—x;

n n—1 400 xk _xk .

"a) b; / Le"2dx
) ; lkgl qk 0 X—x;

0 x

n Yoo
_1y b~/ ~3dx.
raf b [ 2o tas

Term (B23d) is equal to 0. Therefore, we focus on term (B23c). To this end, we first observe that,

d—b = (a—b)(d ' +d P+ . 4 abk 4P,

Therefore,
k—1
= (x—x) Y xfmmyn,
m=0

Using Eq. (B25), the term (B23c) gives,

L e () Eh 1

_X
e 2dx

(B23c) =4(— aZb qu/

_l)nazbiiqkifiﬂ/Jr“’xk,

X — X

_ _X
1=me=32 dx

AlP
Publishing

Cm———

2

letx =21y aZb Z " Z o / (20)5 e ()
ke .
:4(—1)”aZb,~ Z ik Z ko / ol tdr
i=1 k=1 m=0 0
n n—1 k—1
—1)"aY b Y qi Y 2K (k—m)
i=l k=1 m=0
n n—1 k—1
—1)"aY b Y q Y 2 (k—m—1)!
i=1 k=1 m=0

20

(B21a)

(B21b)

(B22)

(B23a)

(B23b)

(B23c)

(B23d)

(B24)

(B25)

(B26a)

(B26b)

(B26¢)

(B26d)

(B26¢)

(B26f)
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Finally, we write Tr(J) =(B8)+(B15f)+(B21b)+(B26f) based on Egs. (B11), (B12), (B13), (B17b), (B18d), (B22),
(B9), and (B10). That s,

Tr(J) = —8n+4 (B27a)
n—1
+4(=1)" Y pr2 k! (B27b)
k=0
+4(=1)"a i biq(x;)Ei(x;) (B27¢)
i=1
n n—1 k—1
+4(=1)"aY. b Y q Y 2 k—m—1)! (B27d)
=1 k=1 m=0
where,
P)Ln(x) +q(x) = x(Ly_ (x))? (B28a)
n—1
p(x) =Y pet (B28b)
k=0
n—1
q(x) =Y gt (B28¢)
k=0
a=(—1)"n! (B28d)
noo
by = E o (B28e)
ik
Eilx) = /+°° e, (B28f)
W)= 0 X — X .
n (71)1(
Ly(x) = kgo (Z) P (B28g)
n—1 k
(=1
Ly (x)= k;) (kj_ 1) P (B28h)
x; is the i—th root of L, (x) =0 (B28i)

Appendix C: Critical points of u[W]

Let us revise some basic elements of functional derivatives (for a concise overview see also'’ (Appendix C therein)).
The functional we will consider is of the following integral form,

_ 2N & ()
F[W(r)]_/d rg(W(r))+;7L,G [W(r)], (C1)

where g(W (r)) is not a functional, but rather a form that involves W (r), e.g., g(W(r)) = =W (r)In|W (r)| and GO [W (r)]
are functionals representing K constraints, i.e., to find the critical points of F[W (r)] over normalized Wigner functions
the constraint G [W (r)] = [ d*NrW (r) = 1 should be included.

Let us assume that the functionals G;[W (r)] are in an integral form and therefore Eq. (C1) can be written as,

FW () = [ rf(W(x)). ©)
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The functional derivative is defined through the (usual) derivative,

(SF[W(I')} — /d2Nrdf(W(r) +8h(l‘))

Te ) (C3)

e—0

where A(r) is any function. After performing the derivative with respect to € and taking the limit € — 0, if Eq. (C3)
assumes the form,

SF[W(r)] = /derdf(W(r) + €h(r))

- - / () LW ()] (C4)

£—0

i.e., if the function A(r) factors out, then the term multiplying /(r), denoted as nggﬂ , is called the functional derivative

of the functional F[W (r)] with respect to the function W (r). Otherwise, the functional derivative cannot be defined.
Setting Eq. (C4) equal to zero, and solving for W (r) will give the Wigner functions that serve as critical points of the
functional F[W (r)]. We have,

SFIW(r)] / N ri( )5;[‘;/&;” —0=
SFW(r)]
Wi O ©

where the last step is valid since A(r) is any function. The critical points will depend on A;. To identify the A;, one takes
the solutions of Eq. (C5), and plugs them into the constraints which are typically given by taking the (usual) derivatives
of F[W (r)] with respect to each A;.

Similarly, we can define the second functional derivative by starting with,

2
h
erW) = [ 2, (W(Z; ehr)) (C6)
=0
If Eq. (C6) can be written as,
d>f(W(r) +eh(r)) 8>F[W(r)]
2 _ 2N _ ON 2 O W AT)]
S2F[W(r)] = / aNy . _ / V) g (C7)
=0
then the second functional derivative exist and is equal to 52;,[%;)] .
Applying this recipe to Eq. (33) (or Eq. (38)) we find,
6R W 2N 2N
7[ (r)] :1+),1+1n|W(r)|+Zu,r,+ Z A,-jr,-rj (Cg)
OW(r) b

=

Setting Eq. (C8) equal to zero and using vector-vector and vector-matrix multiplication (for compactness), we get,

1
WP (r)| = s [— (" Ar+p'r)], (C9)

where A is a matrix with elements A;;, p is a vector with elements y;, and |k| = ¢M*1. Equation (C9) gives the Wigner
function that are the critical points the functional of Eqgs. (33) and (38). The set of solutions satisfying Eq. (C9)
includes non-physical Wigner functions. To see this, we observe that the right hand side of (C9) is always positive as it
is an exponential function of real numbers. To remove the absolute value we have two options: we either remove it
by equating W (r) to the right hand side, or we equate W(r) to a partially flipped version of the exponential, i.e., an
ﬁ exp [— (r" Ar+ p”r)] for some phase space regions (or even individual points) and — ﬁ exp [~ (r" Ar+ p'r)] for
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the complementary regions (or points). We demand that any physical Wigner function must be continuous, therefore the
only extremal Wigner function which is also physical, is the Gaussian solution,

w(r) = |—Ilc|exp [— (" Ar+p"r)]. (C10)

Using the constraints of Eqs. (34), (35), and (36), we get,

A= %V*l, (C11)

p=-vld, (C12)
1

k| = (2m)NvdetVexp | =d"V~ld]|. (C13)
2

Therefore the only physical critical point is,

W(r) = —l(r— d)TvIir— d)] = Wg(r), (C14)

1
—F————=¢€X
(2N /detV p[ 2

which is the Gaussian associate of W (r). For said critical point, Eq. (19) gives Reu[Ws]] = 0.
The second functional derivative of Eq. (33) or (38) is evaluated using Eq. (C7) to be,

S2F[W(r)] 1
= C15
SWE)? W)’ (€15
which when evaluated at the critical point W (r) = Wg(r) > 0, gives

S2F[W 1
5v;£(r§?] = Wolr) (C16)

therefore the Gaussian associate of W (r) corresponds to a minimum. The partially flipped Gaussian functions do not
correspond to a definite sign of the second functional derivative, therefore they are neither minima nor maxima.

Appendix D: Wigner Function of Gottesman-Kitaev-Preskill (GKP) States

The finitely squeezed GKP qubit states*®>* are defined in terms of a summation of displaced squeezed vacuum states
as follows,

=)

IL) =) exp(—mA*(2r+L)*/2)D((2t + L)vm)$(&)10) (D)

f=—o0

where L = {0, 1} for the two logical qubit states. Let us use p; = |L)(L| to represent the density operators for the qubit
states. We first calculate the symmetrically ordered characteristic function for p; defined as

2w (0,) = Tr (pre™ 418 ) = (B(m)),, . (D2)

L

Before we proceed, let us make the following abbreviations

DL = Y, e SR DD (20 1 L)/ /2)5(8) (001 §1(E)DT (2 + L)/7/2) (D3)
= Y £ )D@S(E) )01 (E)D(B) (D4)

"
|
8
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with f(t) = exp(—wA*(2t +L)?/2),00 = (2t +L)\/m/2 and B = (2¢' + L)/ /2. Simplifying (D(n)) p, Vields.

(D)), =T ( L S0rD@SE) 00 ST(&)ﬁ*(ﬁ)ﬁ(n)) ©s0)
XA T BSE) 0)015 @' (8)D(m) (D3h)
= X A0S T (00018 €5 (B)DmD(@)SE) (Dse)

= ¥ 07@) T (00018 DES(E) 8(n.B) s

"
|
8

where T =1+ a—f andsince a, B € R, g(n, ¢, B) =exp((n —n*) (o + B)/2). We may further simplify as,

”,;_mf ) Tr (|0)(0]87(£)D(7)S(&)) g(n, e, B) (D6a)
”,;mf ) Tr (0)(0157 (€)S(E)D(7)) g(n, . B) (D6b)
,ﬂ;wf ) Tr (|0)0] (7)) g(n, ct, B) (D6c)
= Y FO7E)ep(—(n—n*) o+ B)/Dexp (—I72) D6d)

tt'=—oc0

where we made the substitution, T/ = tcosh|&| + T*¢® sinh | €|, as a result of reordering S(&) with D(7). Let us assume
that € is real i.e. || = &; 0 = 0 which gives

17> = |7|* (cosh? & + sinh? €) + sinh & cosh & (7% + 7*2) (D7)
We see the following simplifications
©?=n’+(a-p)’+2n(a—p), (D8a)
o =+ (= B)*+(n+n")(a—p). (D8b)
This gives us the final relation,
Z FOf(yexp( TN @EB) n|*(cosh’& +sinh*§)  (n? +n*2)(cosh& sinh§)
- P 2 2 2

(n+n*)(oc—B)(cosh& +sinhE)? (o — B)?*(cosh& +sinh &)?
- 5 - 5 ) (DY)

Subsequently one may use the Fourier transform relation between (1) and W(¥y) as follows

W =5 [dn(me 07, ®10)

2

This Fourier transform kernel simplifies to —iv/21,q + iv/21; p, with the transform variable pairs v/2¢ < 1, and
—+/2p < ny. This gives the Wigner component for each component of the sum,

2
Wiy /(@ P)lap = %eXP (—p2e25 +ivV2p(a—B) —e** (é(a—kﬁ) +q> ) . (D11)
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Hence the complete Wigner function may now be expressed as,

o 1 % 72 7 _ . T 1 . m 2
Wop(gp)= Y, —e "7 (D50 ey (—pze 25+z2\/§p(t—s)\f§ —e25(ﬁ(s+,+2L)\/:+q)> (D12)

T

t,5=—00

ts=—

1 712 1T\ T 1 - T 2
2B (2t4+L)*+ (21 +L)?%) 242 _ e n
:2 7° 2 exp< PPN 4+ 2V 2p(t s),/2 A <ﬁ(s+t+2L),/2+q) ) (D13)

where & = —InA. Note that the Wigner function is not properly normalized and must be done so ad-hoc. An alternative,
but equivalent, definition of the GKP Wigner function can be found in Ref. 7.
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