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ABSTRACT: We explore a large class of correlation measures called the a—z Rényi mutual in-
formations (RMIs). Unlike the commonly used notion of RMI involving linear combinations
of Rényi entropies, the & — z RMIs are positive semi-definite and monotonically decreasing
under quantum operations, making them sensible measures of total (quantum and classi-
cal) correlations. This follows from their descendance from Rényi relative entropies. In
addition to upper bounding connected correlation functions between subsystems, we prove
the much stronger statement that for certain values of o and z, the @ — z RMIs also lower
bound connected correlation functions. We develop an easily implementable replica trick
which enables us to compute the o — 2 RMIs in a variety of many-body systems including
conformal field theories, free fermions, random tensor networks, and holography.
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1 Introduction

Quantum information theory has proven to be tremendously valuable in understanding the
nature of spatial correlations which are ubiquitous in many-body systems and quantum field
theories. Much attention has been devoted to the von Neumann (entanglement) entropy

Syn(p) == —Tr(plog p) (1.1)

where p is a density matrix i.e. a positive semi-definite, Hermitian matrix with unit trace.
If the state of the system happens to be pure, then a non-zero von Neumann entropy for a
subregion A can be attributed to entanglement between the degrees of freedom contained
in A and its complement. If the state of the system is not pure, then the entropy is not a



faithful measure of correlations. To be a faithful measure of correlations, a quantity must be
monotonically decreasing under quantum operations which are completely positive trace-
preserving (CPTP) maps. This is sometimes referred to as the data processing inequality
(DPI).

To obtain a genuine correlation measure between two subsystems A and B, one may
take a linear combination of von Neumann entropies, called the mutual information

I(A; B) == Syn(pa) + Sun(ps) — Sun(paB). (1.2)

The non-negativity and fulfillment of DPI of the mutual information are equivalent to
the statements that von Neumann entropy is subadditive [1] and strong subadditive [2]
respectively. The mutual information has many additional nice properties, one of the most
physically relevant being that it bounds all connected correlation functions [3|. Namely, if
O 4 and Op are operators with support on regions A and B respectively, then the connected
correlator (O40p). = [(O40RB) —(04)(Op)| is upper bounded by the mutual information

(040p)?
2[0all 108l

In the denominator, we have employed the “operator” or “infinty”-norm which is a limit of

< I(A;B). (1.3)

the Schatten k-norms

X, = <Tr( XTX>k> " (1.4)

When proving properties of the mutual information, it is often useful to re-express the
mutual information as a relative entropy

I(A; B) = D(pagllpa @ pp), (1.5)

where

D(p|lo) := Tr(plog p — plog o). (1.6)

The relative entropy is an asymmetric measure of distinguishability between states p and
o, possessing key properties including non-negativity, vanishing only when the two states
are equal, and fulfillment of the DPI [4]. The mutual information, defined as the relative
entropy between pap and pa ® pp, thus tells us to what extent the state pap does not
factorize across systems A and B, i.e. how much they are correlated.

It is natural to inquire if there are other measures of correlation that are both com-
putable and provide complementary information to the mutual information. A common
substitute for the mutual information is the Rényi mutual information (RMI) that replaces
the von Neumann entropies in (1.2) with Rényi entropies

In(4; B) := Su(pa) + Sulpp) = Snlpap),  Salp) = 7 “logTr(p). (1)

-n
While the RMI mimics the mutual informations fairly well in many situations, it is known
that this quantity is somewhat pathological and cannot be interpreted as a measure of



correlation because it is neither non-negative nor does it satisfy the DPI in regimes of
physical relevance. Said another way, the Rényi entropies do not obey either subadditivity
nor strong subadditivity [5]. One can find simple counter-examples as we demonstrate
in Section 2, where the RMI defined in (1.7) fails to be non-negative, which furthermore
implies violation of the DPI.

In this paper, we investigate a different Rényi generalization of the mutual information
inspired from its expression as a relative entropy rather than its expression as a linear
combination of von Neumann entropies. In particular, we consider a two-parameter family

of Rényi divergences, dubbed the o — z Rényi relative entropies [6]

Do (pllo) = —— log Tr <a 25;)3012;) . (1.8)
The a— z Rényi relative entropies obey the DPI for a large region of the («, z) plane (see [6]
for details). There are two sub-families that have garnered significant attention. These are
the Petz Rényi relative entropy (PRRE) [7-9] and the sandwiched Rényi relative entropy
(SRRE) [10, 11]

Drewrr(pl|6) i= Do (pl|) = —— log T (p%la) (1.9)

1 l-—a l-a ¢
Donaa(pllo) = Dao(pllo) = — log Tr (a 2a o 2a ) . (1.10)

The PRRE obeys the DPI for a € [0, 2] and was analyzed in [12|, whereas the SRRE does
so for a € [1/2,00). Both limit to the relative entropy as « is taken to one. It is clear that
we may now define the e — z Rényi mutual information as

Io2(A; B) := Dq 2 (pasllpa @ pB) (1.11)

By construction, it is non-negative and obeys the DPI. Thus, it is a genuine measure of
correlation.

A special case that will be useful for consistency checks later on is when pap is a pure
state, where the following equality holds between I, .(A; B) and a specific Rényi entropy
of region A

Io2(A;B) = 25200 ,(pa) = 25:0-a) ,,(pB)- (1.12)
To prove this, consider the following Schmidt decomposition of the pure state ) on AU B

Z\/EIZA liB) , sz =1 (1.13)

which yields

pAB = Z VP lia) i) (jal (GBl, pa®ps =" ppjlia)lis) (ial (Gsl.  (1.14)

ij



It is straightforward to check that

2 20-a)
Io:(A; B) = a_llog( p; * ) (1.15)

1

which is equal to 282(170¢)+1(pA).

The a — z RMIs each provide complementary information. One way to see this is
through their operational interpretations via quantum hypothesis testing, where each value
of o and z characterizes the extent to which pap and pa ® pp may be distinguished using
quantum measurements. A novel complementary aspect of these RMIs is that for particular
values of a and z, they provide lower bounds on connected correlation functions.

Organization In Section 2, we provide a simple example where (1.7) is seen to be negative
and thus not meaningful. We demonstrate how the o« — 2z RMIs avoid this pathological
behavior.

In Section 3, we develop a replica trick for @ — z Rényi relative entropies and RMIs.
This involves considering the joint integer moments of pap and pa ® pp and applying an
appropriate analytic continuation. For Petz RMI and sandwiched RMI, we show how the
replica trick simplifies.

In Section 4, we prove that the o — 2z RMIs both upper and lower bound connected
correlation functions.

In Section 5, we expand upon the previously developed replica trick in 2D conformal
field theories by introducing quasi-local twist operators whose correlation functions evaluate
the a — z RMIs. We identify their scaling dimensions and OPE coefficients, and compute
their values in situations where their behavior is fixed by conformal symmetry and thus
theory-independent.

In Section 6, we give expressions for the a — z RMIs for Gaussian states of fermionic
theories. These are formulas involving just the two-point function and are efficiently eval-
uated numerically, with computational cost growing polynomially with system size instead
of the standard exponential cost in quantum mechanics. At the critical point (massless),
we demonstrate that the ground state RMIs agree with those computed in the previous
section.

In Section 7, we consider states on tensor networks where each tensor is drawn randomly
from a Gaussian distribution. These networks are good models for certain many-body states
including holographic conformal field theories because they obey an area law. We expand
upon this by computing the o — z RMIs in both AdS/CFT and in simple models of black
hole evaporation i.e. “Page curves” for the RMIs.

In Section 8, we conclude with a few loose ends such as the rigorous definitions of RMIs
in algebraic quantum field theory, prospects for characterizing multipartite entanglement
through defining Rényi Markov gaps, and the role of symmetries.



2 A Simple Example

In this section, we explicitly show an example where (1.7) is negative but the o — z RMIs
are positive. Consider a Hilbert space of two qudits H = H4 ® Hp and the global state'

d—1
pap =Y Pyli) (il 4 ® ) (jl5 (2.1)
i,j=0

where P;; equals (1 —p) ifi =j =0, p/(d—1)? if i,j # 0, and zero otherwise. This is a
classically correlated state. The reduced density matrices are

pa= PBiliy{ily, pp= Pli)lly, P:=> Py (2.2)

It is straightforward to evaluate the Rényi entropies

1 n p"

Sn (pAB) =

1 - (2.3)
Sn(pa) = Salpp) = 7 log <(1 -p)"+ (d_l)n_1>
We can now take
Siem _ 1\ "
p= (dg(ln)> , 0<5<2logd. (2.4)

For large d and 0 < n < 1, the Rényi mutual information can clearly become very negative
I,(A; B) = —S. (2.5)

Further simple examples for other values of n can be found in [5].
On the other hand, the a — z RMIs are always positive

I,.(A;B) = log ((1 — p)2 —|—p27°‘) > 0. (2.6)

a—1
Notably, this is independent of both z and d.

3 Replica Trick

The replica trick is a powerful analytic technique which enables us to evaluate various
entanglement and distinguishability measures. The central idea is that integer (joint) mo-
ments of density matrices are frequently within analytic control because they only involve
matrix multiplication and traces. Many quantities of interest involve non-integer powers
or matrix logarithms. The replica trick computes these as analytic continuations of integer
moments. This is particularly powerful in quantum field theory where the integer moments
are computable from partition function on “replica manifolds”.

'"We adapt this example from [5].



Suppose that we are presented with a quantum field theory with local Lagrangian £[¢].
Here ¢ collectively denotes all of the “fundamental fields” of the theory. Many states, such
as the vacuum, may be prepared by a Euclidean path integral. The integer (say n) moments
of a density matrix for a subregion of this state is equivalent to the partition function on a
Riemannian replica manifold, M. This Riemannian manifold is constructed by replicating
the original path integral n times and stitching together these replicas cyclically along the
subregion

15(") = [ 1D8le 20 (3)
For more detail, we refer the reader to [13].

3.1 Rényi Relative Entropies and Mutual Informations

We begin with the most general case of the ov — z Rényi relative entropy, as defined in (1.8).
Using the cyclicity of the trace?, these can be rewritten as

1 a l-a)\*?
1logTr (pza z ) . (3.2)

We then use the following triple replica trick

Da,z(pHU) =

o

1
D, .(pllo) = —— lim log Tr(p™o™)?, (3.3)
a—1 m—)%,n%%
where m, n, and z are first taken to be integers, then analytically continued to any real
value. For the a — z Rényi mutual information, we use this replica trick for the relevant

density matrices

]' : m n z
lim | log T (ps(pa ® pp)") (3.4)

oa—1psepyl-a
z z

I,.(A;B) =

where the trace term corresponds to the replica manifold structure shown in Fig. 1.
The Petz Rényi relative entropy, as defined in (1.9), is a simplification using only two
replica indices [14]

1 : o M
Dayl(p\\a):ﬁ lim logTr (p%c™). (3.5)

m—l—a

The Petz RMI is consequently

lo1(A;B) = lim logTr (pip (P4 ® pB)™) - (3.6)

a— 1 m=l-a
The sandwiched Rényi relative entropy, as defined in (1.10), similarly only requires two
replica indices |14, 15]

1
Daa(pllo) = —— lim logTr (a"pa™) (3.7)

a—lmolza

leading to the sandwiched RMI

loo(AiB) = —— T logTr ((pa@pn)" pan(pa®pp)" )" (38)
M= S5

@
o

2The cyclicity holds even when z is fractional. [6]
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Figure 1. The replica manifold corresponding to Tr (P’XB(PA ® pB)”) withm =3,n=2,2=2
in a (1+ 1)d system as an example. The solid lines represent identifying the corresponding cuts on
neighboring replicas. A; 2 and B; > mark the end points of the intervals A and B, respectively.

4 Bounds on Correlation Functions

One of the most appealing aspects of applying information theoretic tools to many-body
physics is that the information theoretic quantities may be defined and compared between
different systems even when the operator content or number of dimensions are very different.
Nevertheless, one is frequently interested in specific correlation functions. These may, for
example, be useful order parameters for characterizing the phase. In this section, we discuss
how mutual information and the various Rényi generalizations place strong bounds on all
correlation functions in the given quantum state. We first review the classic result for the
mutual information from [3], then prove new constraints.

Consider operators with support in regions A and B, O4 and Op. The absolute value

of their connected correlation function is

(040p)c = [(040p) — (0a){(Op)| = | Tr (pap0a08) — Tr ((pa ® pp) OaOp)|. (4.1)
Holder’s inequality between Schatten k-norms (defined in Eq. (1.4)) states that
XYl < IXILIY N, pogell,o0) (4.2)

1

when p~t 4+ ¢! = 1. Taking X = pup — pa ® pp and Y = O40p, a limit of Holder’s

inequality gives
l(paB — pa® pB)OAOB||, <llpas — pa @ psll, 0405

(4.3)
=2T(paB, pa @ pB)||040B| .,



where we have defined the trace distance, T'(p,0) := %Hp — o||;, which is a metric on the
space of density matrices. The left hand side must be at least as large as the absolute value
of the connected correlator, so

040
Tlons.a 00) 370, o .
We may now use Pinsker’s inequality
D(pllo) > 2T(p, 0)?, (4.5)
which leads to
I(4;B) > (010p): (4.6)

— 2 2
2[0al5 1198l

Therefore, if the mutual information is small, so are all connected correlation functions.
This has the advantage of being operator independent, so that no correlations functions
can be overlooked.

The Rényi relative entropies satisfy Rényi versions of the Pinsker’s inequality in the
regimes where they obey the data processing inequality [16]

Dai(pllo) = Da,a(pllo) = 2minfa, 1]T(p, o). (4.7)
We therefore immediately find that

(040p)?

Iayl(A;B) > Ia,a(A; B) > min[a, 1] .
20412 1051%

(4.8)

When a > 1, the bound from (4.6) is tighter than the bound from (4.8) due to the mono-
tonicity of sandwiched relative entropy with respect to «. When « < 1, the bound (4.8) can
in principle be tighter. Other types of upper bounds originating from variations of Holder’s
inequality and Pinsker’s inequality can be found in Appendix A.

At oo = 1/2, the Rényi relative entropies are related to quantum fidelities. Interestingly,
these both lower and upper bound the trace distance [17, 18]

1 — ¢ P1/21(p0)/2 <1-— e~ Pr21/2(0.0)/2 <T(p,0)

(4.9)
< \/1 — e Diyzaleo) < \/1 — e~ D1j20/2(00)
We may then obtain strengthened inequalities on connected correlation functions
1
$j21(A; B) > 1191 /2(A; B) > log (0A05)2 (4.10)

40412, 105]I2,

More interestingly, we are able to place lower bounds. The norm duality relation implies
that

|X]; = sup Tr(XY) (4.11)

‘ o0



The operator Schmidt decomposition gives

OupB = ZZ%OX) ® Og) (4.12)

where p; > 0 and the operators in the sum form an orthnormal basis with respect to the
Hilbert-Schmidt inner product. From norm duality, we learn that there exists a unit norm
operator such that

1 i) (i
T(pap:pa® pp) = 5 > b 0oy, (4.13)

i

Therefore, using (4.9), the RMIs also place lower bounds on connected correlation functions

1 — ¢ 11/21(p0)/2 <1-— e~ 1172172 P7U)/2 Zpl O(z O(l ) (4.14)

5 Conformal Field Theory

We have described in Section 3 how one can recast the calculation of various information
theoretic quantities into the evaluation of a path integral over a replica manifold. In the
case of (1 + 1)d conformal field theory, such path integrals may be expressed as correlation
functions of quasi-local twist operators, which are primary operators that introduce the
appropriate boundary conditions along the cuts in the path integral gluing the different
replicas. We briefly summarize the technique and refer the readers to [13] for details.

It is convenient to think of the path integral over an n-sheeted Riemann surface in
terms of a path integral over the single-sheeted Riemann surface used to prepare the state
but for the tensor product of n CFTs. The fields on copy i are denoted ¢(9. We define
twist operators o4 (9 € Sp, S, is the permutation group) which when inserted into an
expectation value have the sole effect of creating a branch point in the domain of the path
integral. They change the boundary conditions of the path integral by relating the different
replica fields in the following way

D (¥™2 + €)ag(€) = ¢Y (2 + &), (€). (5.1)

The monodromy about the twist operator has implemented the permutation g.
As a simple example, consider the Rényi entropy for a single interval A = [u,v] in the
ground state. Tr(p’) can then be written as

Tr(p%) o< (0(1..0) (W) T (n..1) (V) (5.2)

where (1..n) and (n...1) are the standard cyclic notations. This two-point function is
entirely fixed by the scaling dimensions of the twist operators, Ay, ) and A, 1

n

1 c 1
<‘7(1...n)(U)U(n.‘.l)(U»C:ma A(1 n) — A(n 1) = (n—), (5.3)

where c is the central charge.



For the oo — z Rényi mutual information, a more complicated set of twist operators are
needed to generate the replica manifold in Fig. 1:

z—1
ga = (Hi(m+2n)+1,...,i(m+2n)+m+n),
i=0

z—1
gB = (Hi(m+2n)+1,...,i(m+2n)+m,z’(m+2n)+m+n+1,...,(z‘+1)(m+2n)> ’
i=0
(5.4)

The products within the parentheses are shorthand notations for the cyclic notations, for
example (HZ?:O 3i+1,3i+2,3i+3) = (1,2,3,4,5,6,7,8,9). Below we identify their scaling
dimensions and OPE coefficients.

5.1 Scaling Dimensions

The scaling dimensions of twist operators that generate the manifold in Fig. 1 are deter-
mined by the cycle structure of the corresponding permutations. In general, the scaling
dimension will be

Ng= ) 1% (Igi - 1) : (5.5)

gi€cycles(g) l9i

where the absolute value denotes the length of the cycle.
The permutations on A and B, g4 and gp, consist of one cycle of length (m+n)z , and
nz cycles of length 1. Therefore, the scaling dimension of the corresponding twist operators

are

c 1
AQA :Agzl :AQB :Ag§1 :E ((m+n)z(m+n)z> (56)
When A and B are adjacent, the permutation at their intersection point is gzl gp. This
composite permutation consists of z cycles of length (2n+ 1) and (m — 1)z cycles of length
1. The scaling dimension is then

zc 1
A = —(2 1— ) .
gAlgB 12 n+ 2n+ 1 (5 7)

5.2 OPE Coefficients

In the classic work of Lunin and Mathur [19], general formulas are derived for the OPE
coefficients of twist fields. Unfortunately, in most cases, these formulas are extremely com-
plicated and there is no clear way to analytically continue them properly for our purposes.
Our situation is further complicated by the necessity of twist operators corresponding to
multiple non-trivial cycles. Only in the case z = 1 (the Petz RMI) are all twist operators
single non-trivial cycles.

When the replica manifold has the topology of a sphere, the OPE coefficients are
universal, only depending on the central charge of the theory. We leverage this universality

— 10 —



in Section 6 and obtain the OPE coefficients by evaluating the o — z RMI in free fermion
CFT. Below we show that the replica manifold’s genus is indeed zero in the case of a — z
RMI.

Consider an N-sheeted surface with k ramification points, with ramification indices ¢;
( =1,..., k), meaning that €; sheets meet at the 4% point. The Riemann-Hurwitz formula
states that such a surface has genus

1 k
— -3 —r N+ .
g jZIGJ 5 + (5.8)

We consider the adjacent interval limit of Fig. 1 (A2 = By). At both A; and By, there is
one ramification point with index (m + n)z and nz with index 1. At Ay = By, there are
z ramification points with index (2n 4 1) and (m — 1)z ramifications points with index 1.
Therefore, the genus of the Riemann surface in Fig. 1 is

gMm = 1[2(m—}—n)z—|—2nz—|-(2714—1)24—(?71—1)2} —w—(m+2n)z+l =0 (5.9)

2 2

Thus, the OPE coefficients are completely universal, fixed by the conformal symmetry.

5.3 Universal Behavior

We are now ready to deduce universal properties of the & — 2 RMI in (1 4 1)d CFTs.

Pure state limit We first consider A to be a region of finite length I4 and B = A, the
complement of A, in the vacuum state. The o« — z RMI is then computed by a two-point
function, which is fixed by conformal symmetry

1 ; B 2c(z+1—a) la
a—1 mﬁgl,lrrlnﬁ% log <UgZIgB (Al)agglgA (A2)>(C = m log o

(5.10)

I,.(A;B) =

We have included an ultraviolet regululator e, which is fixed by dimensional analysis and
implicit in the definition of the twist operators. It can be readily seen that the RMI is equal
to 25201-a) +1(pA)’ in agreement the general result (1.15). This is a consistency check for

our replica trick.

Adjacent Intervals We now turn to the case when intervals A and B are adjacent with
length [4 and [p. In this case, the a — z RMI is computed by a 3-point function of twist
operators, which is determined by the scaling dimensions up to an OPE coefficient:

1 .
I..(A;B) = — m_}gl}gl% log(og, (Al)UgjlgB (AQ)Uggl(BQ»(C 1)
ozt 1-0) lalp + ! log C, |
a,z.

- 3(2+2-20a) Oge(lA—i-lB) a—1

The term involving the OPE coefficient is subleading (O(1)) and we do not have an analytic
expression for it. Because it is universal, we will be able to numerically evaluate it in the
following section using the free fermion CFT.

— 11 —



Moving away from the ground state, we can put the CFT at finite inverse temperature 3
by preparing the Gibbs state via a path integral on the cylinder. The cylinder is conformally
related to the complex plane, so the result for the RMI remains universal

1 .
Ia,Z(A;B) = o1 m_)%l’lflli)% 10g<0'gA (Al)agzlgf; (AQ)Uggl(BQ)>S{3XR .
c(z+1—o<)l 'Bt hwl n log (5.12)
= — 10 — tann — 0 a,zs
3(z+2-2a) &\ 2re B a_1 8%

where for simplicity, we have set [4 = [g = [. A key feature of this formula is that for [ > 3,
it does not grow significantly with [, indicating area law correlations at finite temperature.

6 Free Fermions

We now consider fermionic theories with Hamiltonians that are quadratic in the fermionic
operators {1;,1;} = 0;;

N
H=- hyly;. (6.1)
1,

The eigenstates of this class of Hamiltonians are so-called Gaussian states, completely fixed
by the two-point function [20]

O = (|l W) (6.2)

This presents a dramatic simplification of the reduced density matrices for N4 fermions in
subsystem A, which are characterized by N4 X N4 correlation matrices that are submatrices
of (6.2). Recall, that a density matrix of A is more generally characterized by a 2/V4 x 2Na
matrix.

Consider a correlation matrix for AU B

C = (CAA CAB) . (6.3)

Cpa CBB

The off-diagonal terms correspond to the correlations between A and B. The state p4 ® pp
is characterized by the following correlation matrix

Cua O
C' = . 6.4
(o) 60

The a — 2 RMIs are functions of C' and C’. One may generalize the derivations from
[21, 22] to obtain

~aTrlog(1-0C)
11—«

triog (14 () ™ (1)

In.(A;B) = — Trlog (1 - C")

(&) lzf)z> (6.5)

we
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Figure 2. Left: a« — 2z RMI with [ =4 = [p. Different colors represent different values of a. The
dots are data points while the solid lines are (5.11) with the additive constant involving the UV
cutoff and OPE coefficient numerically fitted. Right: The difference between the o« — z RMI and
(1.7), which converges to the OPE coefficient at large [. The oscillations are an artifact of the RMI
from (1.7) being non-monotonic. For simplicity, we have only plotted the sandwiched RMI (a = z)
in both plots.

The special cases of Petz RMI and sandwiched RMI are immediate.
With (6.5) in hand, we may numerically check the CFT formulas from Section 5. We
consider a massless free fermion (¢ = 1/2) with discretized Hamiltonian

H=— 03 (v —vls) (6:6)

J
In the ground state, the two-point function is
(—=1)7-t-1 .
Smogon o J#!
Cji = {12 = ST (6.7)
2 J= !

We demonstrate the agreement with CFT results in Figure 2.

We furthermore isolate the OPE coefficient by subtracting the 2*2270‘“ RMI (namely,
n = H%Jrz in (1.7)). The reason we choose this particular RMI is that it has the same
UV regulator.® The Rényi entropies needed are also expressible in terms of the correlation
matrix, leading to

I,(A;B) = ﬁ Trlog ((1—C")* +C") — ﬁ Trlog ((1 — C)* +C%). (6.8)

These are non-monotonic even in the ground state.

7 Random Tensor Networks and AdS/CFT

In this section, we study the RMI in tensor networks and in gravity. Tensor networks have
proven to be an exceptionally useful framework in many-body and high-energy physics
both numerically and theoretically. We focus on a solvable class of tensor networks where
each tensor is drawn randomly from an ensemble [24, 25]. Our main focus will be in

3This method will be explored in detail in [23] with applications to the AdS3;/CFTs correspondence.

— 13 —



applications in quantum gravity where they are known to serve as great models of the
AdS/CFT correspondence. Moreover, they are directly related to a simple model of black
hole evaporation in Jackiw-Teitelboim gravity.

7.1 Single Tensor

We begin with the simplest tensor network consisting of a single random tensor. This
may similarly be considered a random state, whose entropy was first studied by Page [26].
We take the Hilbert space to be tripartitioned as H = Ha ® Hp @ He such that the
unnormalized state can be expanded as

) =Y Tk li)ali) g k) (7.1)
ijk
where the states are orthonormal bases for the subsystems and Tjj;, are independent Gaus-
sian random variables. Due to the Gaussian behavior, we may evaluate ensemble averages
using Wick contractions. We will focus on the Petz RMI, where the the relevant moments
are
Clga'm) Clgg'r) ,0(r)

ZTESa+2m A 4 dB ? dC’
ZTGSQ+2m (dAdBdC)C(T) 7

Tr (phs(pa @ o)™ ) = (7.2)
where d, is the dimension of Hilbert space H., C(-) is the number of cycles in the per-
mutation, and the ensemble averaging is implied. We will always consider the limit of
large Hilbert space dimensions, so the denominator will localize, maximized by the identity
permutation consisting of (a + 2m) cycles.

When one of the subsystems is much larger than the rest (e.g. da > dpd¢), then only
a single permuation dominates the sum, namely 7 = g4. The truncation of the sum to this
single term is

Tr (p%B(pA ® pB)m) =dg*mdg e (7.3)
and the replica limit gives
I,1(A; B) =logdp. (7.4)

A similar analysis occurs in the dp > dadc regime such that I, 1(A; B) = logds. This
represents the maximal amount of entanglement.
When d¢ > dadp, the identity element dominates the sum

Trphip(pa @ pp)™ = (dadp)' =™ (7.5)

and the replica limit leads to trivial Petz RMI. This makes sense because both A and B
are maximally entangled with C. Because entanglement is monogamous [27, 28] A and B
cannot be entangled with each other.

All results so far for the Petz RMI are in agreement with the naive RMI. A more
interesting regime is when d4 ~ dZB ~ do. Here, the dominant contributions to the sum
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come from non-crossing permutations in the first « indices which are enumerated by the
Narayana numbers [29, 30],

- 1/« «
—m—k jk—a .
Ir P%B(PA @ pB)m = gflumk(dAdB)l m dc s i”a,k = (k‘) (k‘ 1)- (7-6)

It is trivial to analytically continue the expression in m. The sum may subsequently be

d§B> |
(7.7)

expressed as a hypergeometric function

_ dAdB dadp\ !
Tr plip(pa @ pp)* ZNak =4 2fi | 1—0, =052 -

The Petz RMI is therefore

a—1 ’

log (4422) + LR Gl ) R
Ia’1<A’ B) - log 2 F} (1 o,—;2; dAdB) (78)

log (dAdB> + a—1 — , dadp <dg

This agrees with (a linear combination) of Page’s formula when « is taken to be one. When
al?4 ~ dQB > do, many of the non-crossing permutations become subdominant so that the
second term in (7.8) disappears.

In the regime where dadp = d¢, the standard RMI is given by

Is_94(A; B) = logoF1(2(a — 1), 20 — 3; 25 1). (7.9)

21— )
See e.g. [31] for computations of these Rényi entropies. This is monotonically decreasing in
«, the opposite behavior of the Petz RMI and we conclude it does not contain information
about the correlations.

The associated phase diagram is shown in Figure 3 and is identical to the phase diagram
for logarithmic negativity for random states [32], though distinct from that for reflected
entropy [33].

7.2 General Tensor Networks

So far, we have considered tensor networks without any locality, Haar distributed over
the space of quantum states. It is natural to consider tensor networks with many tensors,
contracted in nontrivial ways. If all of the tensors are independently random, the ensemeble
average over each one will give a sum over the permutation group. In total, the moments
are given by a partition function of a Ising-like model with spins valued in Sy+om

Tr (pAB(pA®pB ) D e Aol

fo:} (7.10)
Al{gz}l = Y (a+2m—Clg;'gy))logd,
{zy}eE
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Figure 3. The phase diagram for the Petz RMI for the single tensor network. In the language
of [32], phase I is unentangled, phase II is entanglement saturation, and phase III is maximally
entangled.

where d is the bond dimension of each link, {g,} labels the spin configuration at each
tensor, and FE is the set of edges in the network. Critically, the model has nontrivial
boundary conditions, corresponding to the spins g4, gp, and e (the identity) in regions A,
B, and C. In general, it is very difficult to evaluate such a partition function. The first
simplification is that for large d, the spin model is in the ferromagnetic phase because the
role of inverse temperature is played by logd. This means that the partition function is
well approximated by the free energy of domain walls in the bulk of the tensor network,
separating the differently aligned spin configurations.

There are further complications when the lengths of the domain walls are degenerate,
leading to highly nontrivial combinatorics [14, 24, 34]. We will assume for simplicity the
non-degeneracy of domain wall configurations, in which case, the partition function reduces
to the computations in the single-tensor network previously derived. The only modification
is that the dimensions of the Hilbert spaces are replaced by the dimensions of the Hilbert
spaces on the associated domain walls, d,,. Because we have taken all bond dimensions to
be equal, we always land in the phase corresponding to (7.8). The Petz RMI is

d
log 2 F1 (l—a,—a;Q;i>
dy,d dy,dvg
log (2422 ) + - dy,dyy > d,
d’yc a—1 d’YAd’Y >’ A B C ) (711)
B

log 2 F1 <17a7704;2;
10 d"(c + dyo
S\ T dvg a1 7

Ia,l(A; B) =

7.3 AdS/CFT and Replica Wormholes

A central motivation for studying the correlation structure of random tensor networks is
due to their close connection with quantum theories of gravity. The two connections that we
discuss in this section are so-called fixed-area states [35, 36] in the AdS/CFT correspondence
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and replica wormholes in the so-called West Coast model of black hole evaporation [37].% As
it turns out, computing Rényi mutual information in these states is identical to the single
random tensor. The dictionary between the models is that the dimension d, is replaced by
eA</4G i AdS /CFT where A, is the area of the associated Ryu-Takayanagi surface and d,
is replaced by e%B# (black hole entropy) or k. (number of flavors of end-of-world branes)
in the West Coast model. We keep this discussion brief, referring the interested reader to
the original literature, because we do not have anything particularly noteworthy to add to
this discussion besides simply computing the “Page curve” for Petz RMI.

8 Discussion

We conclude with a few thoughts.

8.1 Modular Theory

The elephant in the room is that reduced density matrices and traces for subregions do
not exist in quantum field theory. This is due to the universal infinite entanglement in
the vacuum state. More formally, it is the statement that the algebras of observables
associated to local regions being von Neumann algebras of Type III; (see e.g. [38] for a
review). Nevertheless, the mutual information for nonadjacent regions is ultraviolet finite,
suggesting that such a quantity may be well-defined even in the continuum. This is indeed
the case because the relative entropy is well-defined in the continuum and, as we know
well, the mutual information is a specific relative entropy. To formalize this, we need to
introduce aspects of Tomita and Takesaki’s modular theory [39, 40].

Let A be a von Neumann algebra® and two states (i.e. positive maps from A to C) w
and ¢ with vector representatives |Q2) and |®) in a Hilbert space H. We define the relative
Tomita operator as the closure of

Sa,d:4 1 a|P) — al 1) . (8.1)
The relative modular operator is
Aow:4 = S g, 450.0:4. (8:2)

In finite dimensions, if wa and ¢4 are the reduced density matrices for |2) and |®) with
respect to A, then the relative modular operator is simply w 4 ®¢Zl. Araki’s relative entropy
is defined as [41]

D(w,¢; A) = — (P|log Ag.a:4 |P) . (8.3)

While obscured in the present formula, this is independent of the vector representative. In
this language, the mutual information is defined as

I(A; B) := D(wap,wa @ wp; As @ Ap) (8.4)

4To be more specific, we consider the black hole to be in the microcanonical ensemble.

A von Neumann algebra is a subalgebra of all bounded operators on a Hilbert space, B(#), that is its
own double commutant. The commutant of an algebra is the set of bounded operators that commute with
the algebra.
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The availability of a tensor product structure is guaranteed when A and B are non-adjacent
for theories obeying the split property [42]. We may then define the Petz RMI and sand-
wiched RMI in the obvious ways

In1(A;B) := Dg,1(wap,wa ® wp; Aa @ Ap), (8.5)
Ia,a(A; B) :Da,a(WAB;WA®wB;AA®AB)7 .
where [43, 44]
1 a
Daj(w, ¢3A) i= —— 1og (2] AG 9.4 D)

| (8.6)
log (®] A% y. 4 ).

Dgo(w, ¢;A) == sup
af ) Sup

8.2 Rényi Markov Gaps

The mutual information is a measure of correlations between just two subsystems. This is
the simplest, and most commonly discussed, form of entanglement. However, multipartite
correlations play a crucial role in many important phenomena, for example the physics of
thermalization. Unfortunately, the detection and quantification of multipartite entangle-
ment has been notoriously difficult, especially in large systems.

Some exciting progress came with the discovery of the so-called reflected entropy [45],
which is the von Neumann entropy of a particular purification that represents a mixed state
pAB as a vector in the natural cone of the GNS Hilbert space |\/pap). While the reflected
entropy is not itself a bipartite correlation measure [46], it has been proven to be a useful
probe of tripartite entanglement [47, 48].

To understand this, we define the set of pure states called the sum of triangle states
(SOTS) on the tripartite Hilbert space H4 ® Hp ® He that only contain pairwise entan-
glement

W’)ABC = @ \/ZTj|¢j>A%B£ |1/’j>B{20£ |7v/’j>c{2AJL : (8.7)
J

Using a structure theorem for states that saturate the strong subadditivity inequality [49],
it can proven that a state is a triangle state if and only if [48]

Sr(A; B) = I(A; B), (8.8)

where Sp(A; B) is the reflected entropy. For all states, h(A; B) = Sr(A; B) — I(A; B) > 0,
so it is reasonable to think of h(A; B), which has been referred to as the Markov gap [50], as
a measure of tripartite entanglement. Indeed, using the continuity of mutual information
and reflected entropy, one can prove that it places a lower bound on the trace distance of
the state to the SOTS.

It is natural to consider Rényi versions of this quantity. For this, let us express the
reflected entropy as a relative entropy

Sr(A; B) = D(paa+Bllpaa- ® pB), (8.9)
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where * denotes the dual space of the original Hilbert space. Considering the partial trace
over A* monotonicity of relative entropy tells us that the reflected entropy is larger than
the mutual information. We may now define the Rényi reflected entropy as®

Si7(A; B) = Da,2(paassllpaar @ pp). (8.10)

By monotonicity of the o — z relative entropies, we can define a set of Rényi Markov gaps,
each of which are positive semidefinite

h®*(A; B) = Sp*(A; B) — In2(A; B) (8.11)

It is known that the monotonicity of relative entropy is saturated if and only if all (mono-

tonic) v — z relative entropies saturate, so we arrive at the following lemma
Lemma 1 h**(A; B) = 0 if and only if [¢) ypo € SOTS.

It may be interesting to study this family of tripartite entanglement quantities in more
depth.

8.3 Symmetry Resolution

There has recently been significant attention directed to the symmetry resolution of various
entanglement measures, stimulated by the work of Goldstein and Sela [51]. When a theory
has a global symmetry, the Hilbert space will fracture as a direct sum over superselection
sectors

H=EPH, (8.12)
q
Density matrices in such systems are also direct sums

p=rirla), Y p=1 (8.13)

It is natural to ask to what extent each symmetry sector contributes to the entanglement
in p. It is straightforward to see that for the von Neumann entropy,

Sun(p) = quSvN(P(Q)) - qu log pg. (8.14)

The first term is the weighted average of the von Neumann entropies of each sector, indi-
vidually called the symmetry resolved entanglement entropy, and the second term is the
Shannon entropy corresponding to the classical distribution into sectors.

Of course, nothing is stopping us from repeating the very same logic for symmetry re-
solved Rényi mutual information, where we consider Rényi relative entropies of the following
two density matrices

pa =P repas(@), pa©ps=E D pupwpral@)® ps(g)- (8.15)
q q q1t+g2=q

The symmetry resolve relative entropy itself has been studied in [52] and we expect similar
techniques, including in CFT, can be used here.

5Note that this is distinct from Rényi versions of reflected entropy that have been studied in the literature.
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A Another upper bound on connected correlation functions

Besides the inequalities (4.6) and (4.8), we point out here another upper bound of the two-
point connected correlation function. The Rényi version of the Pinsker’s inequality (4.7)
involves the trace distance, which is proportional to the Schatten 1-norm. It turns out that
when 0 < a < 1 the Petz RMI is also bounded from below by the Schatten 2-norm, also
known as the Hilbert-Schmidt norm [53]

«
Ioa(A;B) = 5\\PAB—/)A®PB||3 (A1)
This, combined with the Holder inequality
1 XYy
X, > A2
yields
0,03
I,1(A;B) > %, O0<a<l (A.3)
2[|04l2 105l

We now have three upper bounds for the connected correlation function: (4.6), (4.8), and
(A.3). Which one is the strongest depends on pap.
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