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We establish an equivalence between two different quantum quench problems, the joining local
quantum quench and the Mobius quench, in the context of (14 1)-dimensional conformal field theory
(CFT). Here, in the former, two initially decoupled systems (CFTs) on finite intervals are joined
at t = 0. In the latter, we consider the system that is initially prepared in the ground state of
the regular homogeneous Hamiltonian on a finite interval and, after ¢ = 0, let it time-evolve by
the so-called Mobius Hamiltonian that is spatially inhomogeneous. The equivalence allows us to
relate the time-dependent physical observables in one of these problems to those in the other. As
an application of the equivalence, we construct a holographic dual of the Mobius quench from that
of the local quantum quench. The holographic geometry involves an end-of-the-world brane whose

profile exhibits non-trivial dynamics.

I. INTRODUCTION

Spatial inhomogeneity is ubiquitous in quantum many-
body problems and can lead to a rich variety of physics.
On the one hand, it can take the form of randomness or
disorder. An important phenomenon caused by disorder
is the Anderson localization [1], which plays an important
role in the integer quantum hall effect for example. On
the other hand, it can also be introduced in a more con-
trolled manner, such as a harmonic trap of cold atomic
gas [2]. For example, quantum field theory can be stud-
ied on a curved spacetime [3], a setting that appears in
many contexts of physics [4].

In this paper, we are interested in a particular kind of
spatial inhomogeneity that is introduced to many-body
quantum systems in one spatial dimension. It can be ob-
tained from the regular, homogeneous Hamiltonian Hy
— given as a spatial integral of the Hamiltonian density
h(z) as Hy = [ dx h(z) — by deforming it by introducing
an envelop function f(z), H = [dx f(z)h(z). In par-
ticular, we will be interested in the so-called Mobius de-
formation and sine-square deformation (SSD). (See Sec.
IV for the choice of the envelope function and more de-
tails.) One of the initial motivations for these deforma-
tions was to study many-body systems with open bound-
aries numerically while suppressing the boundary effects
[5]. Amazingly, at a conformal quantum critical point, an
SSD Hamiltonian has exactly the same ground state as
that of the regular Hamiltonian with periodic boundary

jkudlerflam@ias.edu
masahiro.nozaki@riken.jp
numasawa@issp.u-tokyo.ac.jp
shinseir@princeton.edu
maotian.tan@apctp.org

R

condition [6-8]. More recently, the Mobius deformation
and SSD have been used to study non-equilibrium dy-
namics [9-12]. Inhomogeneities in CFT are also studied
in [3, 13-17] for example.

The spatial deformation of the above kind appears in
various contexts. Another example is the modular Hamil-
tonian (also known as the entanglement Hamiltonian),
defined for a reduced density matrix for a subregion,
is given in some cases by a spatial deformation of the
regular Hamiltonian (in the above sense). The modu-
lar Hamiltonian for the ground state (vacuum) of a rel-
ativistic invariant theory, when half of the total space is
traced out, is nothing but the Rindler Hamiltonian, and
the evolution by a spatially deformed Hamiltonian ap-
pears in that context [18, 19]. In high-energy physics,
understanding the evolution by modular Hamiltonians is
important to study the structure of spacetime through
the AdS/CFT correspondence [20-26].

Although the action of these spatially deformed Hamil-
tonians on special states is understood through the re-
lation to the undeformed Hamiltonians, the properties
of general excited states are yet to be understood. To
develop a deeper understanding, in this paper, we will
consider two seemingly different quantum quench prob-
lems in the context of (141)-dimensional conformal field
theory (CFT). First, we consider a quantum quench pro-
cess, which we call the Mobius quench, where the system
is initially prepared for the ground state of CFT (with
the regular Hamiltonian) on a finite interval. At ¢ = 0,
the system’s Hamiltonian is changed from the regular
Hamiltonian to the Mo6bius Hamiltonian. This quench
problem was studied in Ref. [9]. Quench problems with
more general spatial deformations are studied in [27]. In
the second quench problem, we initially consider two de-
coupled systems (ground states of CFT), each defined
on a finite interval of equal length. The two systems



are joined or “glued” at ¢t = 0 and then time-evolved by
the uniform CFT Hamiltonian of the coupled intervals
[28]. We call this the local quantum quench. Quantum
quenches in CFT, including local quantum quench, were
studied in various context [29-36].

One of the main results of the paper is to establish the
equivalence between these two problems. Not only does
the equivalence allow us to relate the time-dependent
physical observables, but also to gain a deeper under-
standing of aspects of these quantum quench problems.
Here, we note that in (1+1)d CFT many non-equilibrium
problems are related to each other by conformal map-
pings. In particular, all quantum quench problems for
which the relevant spacetime geometry can be mapped
to the upper half-plane are related to each other. These
include, e.g., inhomogeneous global quenches, finite-size
global quenches, splitting local quenches, double lo-
cal quenches, Floquet CFT, etc. They only differ by
the space-dependent Weyl transformation and coordi-
nate transformation. Especially the Weyl transformation
doesn’t affect the time evolution. For example, physical
observables in these quench problems exhibit eternal os-
cillations, albeit the CFT in question can be a fast quan-
tum information scrambler (in the limit of large central
charge). The oscillations can be attributed to the under-
lying SL(2,R) structure of the M6bius Hamiltonian [9].
The non-trivial mapping between the two problems also
allows us to construct their holographic dual (AdS/CFT)
descriptions easily. We find that in the holographic dual
descriptions, the so-called end-of-the-world (EOW) brane
is involved in the bulk [37, 38], the dynamics of which de-
scribes the time-dependence of physical observables (en-
tanglement entropy, energy density). Here, we note that
the EOW brane is a key ingredient of holographic dual-
ity for boundary CFT (BCFT). We will also speculate
that similar equivalence relations can be established for
a wider class of quantum quench problems.

The rest of this paper is organized as follows. In Sec.
I11, we review the local quench on a finite strip and study
the entanglement and energy-density dynamics. In Sec.
1V, we study the Mobius quench and discover its rela-
tion to the local quench problem. Using this relation, we
also study the energy-momentum tensor dynamics in the
Moébius quench. In Sec. V, we construct the holographic
dual of the M&bius quench using the relation between the
two quench problems. In particular, we study the end-
of-the-world brane dynamics and compare it with the en-
tanglement dynamics in CFT analysis. We conclude in
Sec. VI, and provide some future discussions.

II. A WARM UP: GLOBAL QUENCH AND
RINDLER QUENCH

First, we consider global quenches on an infinite line
(—00,00). We imagine that first we have a gapped de-
formation of conformal field theory and then suddenly
turn off the deformation term. The initial gapped ground

state is evolved by the homogeneous CFT Hamiltonian.
To approximate the gapped ground state, we use the
smeared boundary state [32, 39, 40]

o) o e~ TH |BY. (IL1)

The evolution of entanglement entropy on a half line
[0,0) becomes *

(IL.2)

Here 2 is a UV cutoff. Note that entanglement entropy
for even an infinite line is well-defined reflecting the fact
that the initial state only has short-range entanglement.
Entanglement entropy for an infinite line grows linearly in
time forever. When we consider a finite interval instead,
entanglement entropy saturates when the time reaches
the half of the length of the interval divided by the speed
of sounds.

Next, we consider the Rindler quenches. In this prob-
lem, we start from the ground state |G) of the homoge-
neous Hamiltonian Hy = fooo h(z)dz on a half line [0, 00).
Then, we change the Hamiltonian to the Rindler Hamil-
tonian Hy = a [;° xh(x)dz and evolve the original state
|G) by the Rindler Hamiltonian. Here a is a parameter
of the dimension of the inverse of the length. This is
equivalent to putting CFT on a curved spacetime

ds* = —a*z?dt* + da?. (11.3)
Then, the evolution of entanglement entropy for an infi-
nite line [z, 00) is given by
c 2z
Sa = 6 log (? cosh (at)) (11.4)

Two quench problems show a similar evolution of en-
tanglement entropy. Actually, after identifying the pa-
rameter @ = 2% and changing the cutoff z. = =<, the
entropy for a global quench becomes

c 27t c 2z
5 log (Wie cosh (?)) =5 log (? cosh(at)), (IL.5)
and we can obtain exactly the same evolution of the en-
tropy for Rindler quenches.

Actually, these two problems are related in a more di-
rect manner. First, the Euclidean version of the metric
(IL.3) is

ds® = a?z%dr? + dx?

= dr} + dr}, (11.6)
where we used the coordinate transformation
7p = xsin(at), xp = xcos(ar) (IL.7)

1 Here we simply omit a non-universal term, which is denoted as
&y in [40].
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FIG. 1. The map from the Euclidean integral for the vacuum
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state |G) to that for the globally-quenched state e Tt |B).

The left and right panels illustrate the Euclidean path inte-

grals for |G) and e iH | B), respectively.

The coordinate transformation suggests that the ground
state of the homogeneous Hamiltonian is equivalent to
the boundary state with the finite amount of Euclidean
evolution by the Rindler Hamiltonian:

|G) = e~z |B). (IL.8)

Next, changing the spacial coordinate = e%?/a, we ob-
tain
ds? = a?z?dr? + da?

— (*)2(dr? + dp?), (IL9)
which means that after Weyl transformation ds? —
e~2%°ds?, the Euclidean path integral is equivalent to
that of Calabrese-Cardy state preparation for global
quenches [32, 39, 40]. These two show that the corre-

lation functions after Rindler quench is Weyl equivalent
to those after global quenches:

(O1(t1,21) -+ - On(tn, Tn)) Rindier

:e—Alam . e—AnaPn <01(t1, 1’1) . On(tn7 x”»Global .
(I1.10)

In particular, we can apply this relation to twist opera-
tors to study entanglement entropy and we can deduce
the relation (IL.5). In this manner, we can explain the
relation between Rindler quench and global quench fol-
lowing their path integral representations and coordinate
transformations among them.

III. LOCAL QUENCH ON FINITE STRIPS

In Ref. [28], the authors studied a local quantum
quench process in the context of (1+1)d CFT. In this
process, the system is initially “cut” into two indepen-
dent subsystems. To be specific, we consider two intervals
of equal length (= L¢g/2), [—Leg/2,0], and [0, Leg /2].
(Here, denoting the total system size by L.z may look
bizarre. The motivation for this will become clear when
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FIG. 2. The Euclidean geometry for the local quench on a
finite interval. The left figure is the geometry to represent
the joining of two intervals with the regularization parameter
« whereas the right figure is the upper half plane after the
conformal transformation (III.1).

we later make contact with the Mdébius quench.) The
system is initially prepared as the tensor product of the
ground states of the two intervals. These two intervals
are then glued together at time ¢ = 0. Namely, for ¢t > 0,
the system time-evolves by the Hamiltonian for the single
interval of length L.

The quench process can be analyzed by using the Eu-
clidean path integral on a “pants” geometry, which is
represented in Fig. 2. We use w = y + i7 to coordi-
natize this geometry where 7 and y represent Euclidean
temporal and spatial coordinates, respectively. We reg-
ularize this excited state by the Euclidean path integral
for Euclidean time «.

The Euclidean geometry is mapped to the upper half
plane by the conformal transformation [28]

sin( 7 (ia + w))

=9

€= flw) =i (I1.1)

s
L.

sin(+= (ia — w))

=

Physical observables can then be computed from the cor-
responding correlations on the upper half-plane. For
example, the one -oint function of a primary opera-
tor O(w) with conformal dimension A (O(w,w)) =
Aol (1/2Im &) (d¢/dw)|> where O(w,w) is a primary op-
erator, A = 2h is the scaling dimension of O with the
conformal weight h and Ao is the one point function.
Introducing the mapping to the strip £ = ¢'Z¢, which
will use later, we can also write the map as

; T Tw
HEC— itanh i, YR, . (I11.2)
itanh % — tan ™%

The entanglement entropy can be obtained from the
correlation function of the twist-anti-twist operators
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FIG. 3. The time-dependence of the entanglement entropy
after the joining quantum quench, (II1.3). Here, we sub-
tract the ground state entanglement entropy of the interval
[—Leg /2, Lo /2). Here we set Leg = 7.

[41]. The Euclidean time 7 is analytically continued to
Lorentzian time ¢, 7 — it. For general ¢, and for the
subsystem of an interval y € [—L¢g/2,+1/2], we obtain
the following expression for the entanglement entropy:

c 2L\ 2 1
SA(t,l):ulog{( ﬁ) -

TZe 2 sinh? QL’F—O‘
eff

X (M(t,l)2 + M(t,l)N(t,l))], (I11.3)

where c is the central charge, z. is a UV cutoff, and

2ml 2
M(t,1) = ([ N(t,1)2 + sin? =" sinh? =%
Lg Lg
2ml 2 27t
N(t,1) = cos T cosh 2% o5 210 (111.4)
Lg Lg L.g

In particular, at t = 0, the entanglement entropy just
after joining is

6 7ze cosh 7 Ly Ly
(I11.5)

l
c 2L.p COS T T ml
S4 = —log ( of 7%& sinh? + sin? ) .
off

Here z. is a UV cutoff. The profile of the dynamical
entanglement entropy is plotted in Fig. 3. Here, we con-
sider the difference between (I11.3) and the ground state

entanglement entropy, Saig = Salt, l)—Sf{c""Ld(l)7 where
S’f{"“nd(l) =< log( Lol cos L”l

tropy of the ground state on the same strip.

) is the entanglement en-

The conformal map (III.1) to the upper half-plane also allows us to compute the time-dependence of the energy-

momentum tensor by

c 3(][‘//)2 _ 2f/f///
Tww(w) = —EL(QU), E(’UJ) = Wv
B - c . _ 3(f‘//)2 _2]?/]?///
Tpw(w) = —gﬁ(w)a L(w) = Tuge (I1L.6)
Explicitly, the holomorphic and anti-holomorphic components of the energy-momentum tensor are given by
) = — 72 11+ cosh(%) — 16 cosh(QL"_‘) COS(QL”—;) + 4cos(4L“T;’)
8LZy (cosh 22 2”—0‘ — cos QL”ﬁ“’)2 ’
_ 2 11+ cosh(4™®) — 16 cosh(Z’m) cos( 2 D) + 4 cos(4™2)
L(w) = ——" Loy Leg @’ (ITL.7)

SLZ,

In Fig. 4, we plot the right-moving part of the stress
tensor. Right at the moment of the quench, the stress
tensor is sharply peaked at y = 0, and then propagates
to the right. Once the peaks hit the boundaries at y =
+L.¢/2, they get reflected back. After that the energy-
momentum tensor profile exhibits an eternal oscillation.
Note that at ¢t = Ley/2 the peak looks like to jump
from one boundary to the other. This jump actually
captures the reflection correctly since the right moving
excitation is reflected to the left moving excitation at the

2na L 27w \2
(cosh T —Cos g )

eff

boundaries.

Note that the eternal oscillations are universal in any
two-dimensional CF'Ts. In particular, we will encounter
the oscillation even in chaotic CFTs like holographic
CFTs. Similar non-thermalizing behaviors are also found
in global quenches with boundaries [42, 43].
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FIG. 4. The plot of the stress tensor for right-moving modes.
We set Loy = m and oo = 0.01 and ¢ = 6.

IV. MOBIUS QUENCH

In this section, we consider another quantum quench
problem, the Mobius quench [9], which is seemingly dif-
ferent from the local quantum quench considered in the
previous section. In the Md6bius quench, we start from
the ground state |GS) of (14+1)d CFT on a finite interval
of length L, Hy|¥o) = Egg|Vo). Here, Hy is the (regu-
lar) Hamiltonian of CFT on a finite interval, and given in
terms of the energy density operator as Hy = fOL dx h(z).
At t = 0, we suddenly change the Hamiltonian from Hy
to the Mdbius Hamiltonian Hyspins = fOL dz f(x)h(x)
with

£.(x) = 1 — tanh(2y) cos (?) . (IV.1)

Here, 7 is a real positive parameter. As we send v — 0
and v — +oo, the Mobius Hamiltonian reduces to the
regular Hamiltonian Hy and the sine-square deformed
(SSD) Hamiltonian, respectively [5-8, 11, 44-59]. In [10],
the Mobius quench starting from a thermal initial state
was studied. In holographic theories, the Mobius quench
induces a non-trivial dynamics (time-dependent deforma-
tion) of the black hole horizon. As we will demonstrate
later, the current Mobius quench induces a non-trivial
dynamics of the EOW brane.

The Mobius Hamiltonian effectively changes the total
system size from L to L.g where L and L.g are related
by [52, 53]

L.y = Lcosh2y. (Iv.2)

Specifically, there is a conformal transformation that
maps the spacetime (cylinder of circumference L) with
Hsbius as the Hamiltonian, to another spacetime (cylin-
der of circumference L.g) with Hy as the Hamiltonian.
In the limit v — 400 (the SSD limit), Leg — +00.

A. The equivalence between the Mdbius quench
and the local quench on finite strips

We now establish the equivalence between the local
quantum quench in the previous section and the Mobius
quench. To this end, we first study the relationship be-
tween the flat metric and the Mobius Hamiltonian. The
time-evolution generated by the Mobius Hamiltonian is
spatially inhomogeneous and corresponds to the metric

d812\/[6bius - _f’Y (.I')thQ + de. (IV3)
The relation between flat metric and the Moébius Hamil-
tonian can be read off from

dstsbins = fv(m)z( — dt? + ( - )2)

f+(@)
= ¥ (—dt* + dy?), (IV.4)
where the Weyl factor ¢2? is given by
e*? = f, ()%, (IV.5)

and y and z are related by the coordinate transformation

_ 1e~27 — tan *L
A N — (IV.6)

ie=27 + tan %

By taking v — oo while keeping y, we can take the SSD
limit. The coordinate transformation in the SSD limit is

then given by
GiET L+ 227ry.
L —2imy

L
Here, y runs from —= to whereas x runs from 0

to L. The latter relation is written as
Y ) (wx) B

t — ) =—1.
L/ ™ \L

The coordinate transformation (IV.6) allows us to re-
late the flat metric and inhomogeneous metric corre-
sponding to the Mobius Hamiltonian. In particular, the
ground state entanglement entropy of the two problems
are related. Since the Mdbius Hamiltonian shares the
same ground state as the regular Hamiltonian Hj, the
entanglement entropy of the ground state (on a finite in-
terval of length L) is given by

(IV.7)

Loy
2

(IV.8)

€27 tan (

(IV.9)

where the subsystem A is the interval [0, z]. By the co-
ordinate change (IV.6) and the Weyl transformation of
the cutoff,

€ — z. =€/ fy(2), (IV.10)



the entanglement entropy (IV.9) becomes

2L ¢ COST -
S = € log (7]? 7@2 sinh? o + sin? Y )
6 TZe coshgjﬂ L.g L.g
‘ (IV.11)
Here, « satisfies
2T 1
h = V.12
o8 Ley  tanh2y’ ( )

or more explicitly « is given as a function of v by

L
a=o cosh(2'y)Arccosh( (Iv.13)

iz)
tanh 2y /"

This equation establishes the relation between the pa-
rameter « in local quenches, which characterizes the en-
ergy scale (and the localization length of the excitation)
of the initial state, and the ~ that characterizes the in-
homogeneity of the Mobius deformation. In particular,
Mobius quench with an inhomogeneity parameter - is
related to a local quench with the specific parameter «
which is determined by (IV.13). The same strategy can
be used to establish the relationship between these two
problems for ¢ > 0. Once again, by coordinate change
and the Weyl transformation the entanglement entropy
for the local quench (I11.3) on a finite strip becomes

c 212 9
5= o | (Zz) (502 + S0 |
(IV.14)
Here
_ g Tt . o 2mt 2ml
h(t,l) = (cos Top + cosh 4~ sin Leﬁ) cos —
+ sinh 4~y sin? 2t ,
L.g
2
F(t0) = \/h(t, 1)2 + sin? %m (IV.15)

This is exactly the time evolution of entanglement en-
tropy after the Mdbius quench found in [9]. This suggests
that the M6bius quench is obtained from the local quench
on the (¢,y) coordinate through the Weyl (IV.5) and co-
ordinate (IV.4) transformations. The evolution of entan-
glement entropy is shown in Fig. 5, where we consider
dynamical entanglement entropy with subtraction of the
t = 0 entanglement entropy S5 (t) = S4(t) — SA(0).
Comparing (I11.2) and (IV.6), if we identify e=?7 =

tanh ﬁ, the conformal map for the local quench (III.2)

gives the holomorphic extension of the spatial coordinate

transformation (IV.6) for the Mobius quench. This cor-
responds to finding the Euclidean path integral represen-
tation of the homogeneous ground state |¥p) using the
Mébius Hamiltonian. This is somewhat similar to the
ground state of Hy on an infinite line that can also be in-
terpreted as the thermofield double state for the Rindler

Hamiltonian.
Sa
0.5

04 / 4 \\\

03 /
/
/

0.2
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FIG. 5. The time evolution of entanglement entropy after
Mobius quench (IV.14) with v = 1. For entanglement entropy,
we subtract the ¢ = 0 entropy on an interval [0, L] i.e. Sa(t)—
S4(0).
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The conformal symmetry implies that when we con-
sider the sudden quench to the Mobius Hamiltonian with
the envelop function f,(z) = 1 — tanh(2v) cos %%, there
is no time evolution. This can be thought of as a BCFT
counterpart of the coincidence of the ground states of
the Mdbius and the homogeneous Hamiltonians. On the
other hand, in the Mobius quench we shorten the pe-
riod of the envelop function L — L/2, which leads to
the branch cut structure in (IV.6) and leads to the ex-
citation for the Mobius Hamiltonian. Because of the Zsy
symmetry x — L — z of the envelop function f,(z) and
the homogeneous ground state, it is natural to expect
that the excitation concentrates near the center xz = L/2.
What we find is that such a local excitation is represented
by the Euclidean path integral (IIL.2) for local quenches
where the sharp excitation is located near the center but
smeared by the regularization «.

Mapping the Mobius quench to the local quench makes
it easy to calculate the stress tensor profile. The stress
tensor of the Weyl transformed metric ds? = e2#(—dt? +
dy?) is given by

c

TAW 1o (TAW + T;?u)?

= 5 (IV.16)

where TW is the stress tensor in the flat metric ds? =
—dt* + dy? and T, is

1
T;fu = [alb¢av¢ - 5”uu8p¢8p¢ - aﬂ&@ + nuuapap(z’} .
(Iv.17)



In the (t,z) coordinate T}, becomes

272 tanh(27) 2rx 2rx
b _ 2
T = 7z Kl + cos <T)) tanh(27y) — 2 cos (T)},
T — 272 sin?(222) tanh?(2)
TS =T =0. (IV.18)
On the other hand, Tuv becomes
. 2 X(x,t X(x,—t
Ttt($7t) = — 5 ( ( ) ( ))7
8L2cosh” 2y \ Y(z,t)  Y(x,—t)
X 2 X(z,t)  X(x,—t
T (t) = G ( (z,t)  X(z, ))7
8L2f., (x)2cosh® 2y \ Y (z,t)  Y(z,—t)
Ty (,t) = Ty (2, 1)
2 X(x,t)  X(z,—t
_ ™ . (_ (z,t) + (z, )>, (IV.19)
8L2 [, (x) cosh” 2~y Y(z,t)  Y(z,-1)
where X (z,t) and Y (x,t) are given by
X (x,t) =10sinh® 2y £, (2)* + 2 cosh? 27 £, (x)?
27t 2 27t
— 16sinh 2vf, (x){ cosh(27)g+(z) cos T sin T gin 28 }
Leys L Leyy
9 . 2mx . 2mx 4rt
+ 4 tanh 27< cosh(2v)g,(x) + sin —) (cosh(Z’y)gA, () — sin —) cos
L L Leff
24 .. 27T . Amt
— 8 tanh” 27y sin — cosh(2v)g,(z) sin (IV.20)
L Leyy
2t 2 2rt 1
Y(z,t) = {cosh(?v)fw (x) — sinh(2v)gy(z) cos ™ 4 tanh 29 sin T in =T } (Iv.21)
Leyy L Leyy

where we defined a function g, (x) = tanh2y — cos 27%.

At t = 0, the full stress tensor (IV.16) has relatively
simple expression as

c 7T2

Ti(2,0) = —mmfv(m)zv
2 2mx 2
Tm(%o):_izlizcos T tanh27_i7r72.
127 L fvy(2) 127 2L
(Iv.22)

V. HOLOGRAPHIC DUAL DESCRIPTIONS OF
QUENCHES

A. Holographic dual of local quenches on finite
strips

The equivalence we have established allows us to con-
struct the holographic dual description of one of these
quenches starting from that of the other. Here, we
first discuss the holographic dual description of the local

-04 — t=0 \
t=0.1 7 Cosh[2}]
06— t=0.2 Cosh[2y] S/

FIG. 6. The time evolution of energy density after the
Mobius quench (IV.14). The energy density is given by the ¢t
component of (IV.16).

quantum quench. We will later use it to derive the holo-
graphic dual of the Mdbius quench. As the relevant Eu-
clidean path integral is defined on the upper half-plane,
the bulk description is given in terms of AdS/BCFT
[37, 38, 60]. In AdS/BCFT, what corresponds to BCFT
is the bulk AdS space with an end-of-the-world (EOW)
brane.

Adopting to our setup, we expect that the EOW is non-



stationary in time. For the time evolution of states with
FEuclidean path integral preparation, we can consider the
EOW profile in the following manner [61]. We start from
CFT defined on the upper half-plane. The relevant bulk
geometry is AdS with the EOW brane with the metric in

(1,€.€) given by

dn? + déd€

2 _
ds® = o

(V.1)

Assuming the case of tensionless EOW brane for simplic-
ity, the EOW brane location in (n,&,€) is simply given
by £ =¢&.

We now consider the conformal transformation (III.1)
that connects the upper half-plane and the pants geom-
etry. In Euclidean signature, the conformal transforma-
tion at the boundary

is extended to the bulk as [62]
_ 2:2(f)2(F")
R e T
SR TSt
A T
_ (e
"R A V)

After the coordinate transformation, the metric in

(z,w,w) coordinate is

dz

ds* = — + L(w)(dw)? + L(w)(dw)?

+ (;2 + 22 L(w) (@) ) dwd, (V4)

which is the general solution of the three-dimensional
Einstein gravity [63]. Here

3(f" 2 — QI FI
Ly = 3¢ )4 (f/)Qf "
FIN2 _ o fl £111

L(w) = % (V.5)

In (z,w,w) coordinate, the EOW brane location is
given by &(z,w,w) = £(z,w,w). Rewriting this condi-

tion as z = z(w, w), we obtain
Aee) = \/2<( FRF = (PP = (F=DFF
(V.6)

We can apply the above general prescription for the
stress tensor and the EOW profile to the conformal map
(III.1). We already studied the energy-momentum tensor
in (II1.7). On the other hand, the EOW brane profile is
given by

A(f-DIF

o ALy A(r,y)
2(y,7)* = 7 B(ry) (V.7)

where the numerator A(7,y) and the denominator B(r, y)
are given by

A(r,y) =4 [sin2 LWS; cosh? Lﬂ; + (sinh Lic; — cos L7Tjjc sinh Lﬁe;)z}
X [sin2 % cosh? ge; + (sinh 2:; + cos 555” sinh ;e; )2} , (V.8)
2 2
B(r,y) = smh2 —ﬁ +4co Lg; (cos Lt; — cosh I:ﬁ sh Lt;)
+ 8cosh Lz;— \/(si h? Lop — cosh Lo s % — sinh? %)2 + isinh2 ?TT; sin? 27;? (V.9)

The EOW brane profile calculated from (V.7) is shown
in Fig. 7. Right at the moment of the quench, the EOW
is sharply peaked at y = 0, and almost “touches” the
boundary. For t > 0, the peak splits into left- and right-
moving ones. They propagate away from the y = 0.
These behaviors are consistent with the time-dependence
of the stress-energy tensor. For later times, the EOW
profile looks more complicated.

We note that in the original Poincare coordinate (V.1),

the EOW intersects with the asymptotic boundary. This
does not appear to be the case in Fig. 7. As y = tL.5/2
is the physical boundaries, we may expect that the EOW
intersects with the asymptotic boundary at these points.
The reason for this may be that our coordinates are
“not good.” It is useful to illustrate what happens in
the example of pure global AdSs;. This corresponds to
the a — oo limit where we do not have any excitation.
The relevant conformal transformation is obtained by the
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FIG. 7. The holographic dual description of the local quantum quench for finite intervals. The EOW brane profile is calculated
from (V.7). We set L.y = m. Left: Early time behavior around 0 < ¢t < OAQﬁ. The cutoff is taken to be z. = 0.01. Right:

The behavior near t = ;7.
eff

N

z = 2Lﬁff

FIG. 8. The configuration of the tensionless EOW brane in
the global AdS3. The left panel is in the (n,7,y) coordinate
whereas the right panel is in the (p, 7,y) coordinate. In both
cases, the 7 directions are suppressed.

a — 0o limit of (II1.1), which leads to

f(w) =i " (V.10)
The stress tensor (II1.6) becomes £ = £ = — 75 From
off
this, the metric (V.4) becomes
2% + (14 12 )2d72 + (1 — 15-)2dy>
ds® =  —— & (v.11)

z

This is actually the global AdS3 metric. Changing the
coordinate ﬁ = e~ ” makes it easy to see the equiva-

lence to the global AdSs. In this coordinate system, the
metric is

2 2 2 dr \? ‘12 dy ?
ds® = dp® 4 cosh” p + sinh” p .
Leg Leg
(V.12)

On the other hand, using the map (V.10) in (V.6) the
brane profile becomes

2 =2L.. (V.13)

This actually corresponds to p = 0, which is just a point
in a constant 7 slice. On the other hand, in the global
AdS3 case, the tensionless EOW profile is known to be
given by the solution of [64]

. (V.14)
eff
Therefore, the EOW brane is located at p = 0 and also

at y = :I:L;”7 as depicted in Fig. 8. However, we are

missing the y = iLgff part in the formula (V.6).

What we expect for the local quench is essentially the
same. The counterpart of z = 2L .4 is captured by (V.7)
though they are generically a codimension one object
rather than a point in (z,y) plane, which is codimension
two. We expect that we are missing the counterpart of
y= :l:Lsﬁr in the brane motion in the local quench prob-
lem. We note that this missing problem does not occur in
the local quench on an infinite line [61] where the EOW
brane intersects with the AdS boundary at infinity. It
is interesting to comprehensively understand when this
problem occurs and how to remedy it, but we leave it to
a future problem.

Note that the dynamics of the EOW brane in Fig.
7 looks similar to the entanglement dynamics in Fig.
3. Through the holographic entanglement entropy for-
mula [65-67], the entanglement entropy measures the dis-
tance between AdS boundary and the EOW brane. The

sinh psin




qualitative resemblance reflects this connection between
spacetime geometry and entanglement.

B. Holographic dual of M6bius quench

Now we can construct the holographic dual of the
Mbobius quench since we know the map from Mobius
quench to the local quench on a finite strip, and also
the holographic dual of the latter. The dual geometry is
given by
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where the stress tensor profile is given by (IV.19). Now
the cutoff is given by (IV.10), which is position depen-
dent. This position-dependent cutoff reproduces the part
of stress tensor (IV.18) that comes from the Weyl trans-
formation. Because the dual geometry is given by the
dual geometry of the local quench with « in (IV.12), we
can use the EOW profile (V.7). By changing the coor-
dinate from y to z using the diffeomorphism (IV.12), we
obtain the EOW profile for the dual of M&bius quenches.
The result is given by

2 42 —27..2
ds? — dz? —dt +2J’7(x) dx s = 4L25 A(T,y) (V.16)
R o 7 B(r.y)
+ Typdt® + 2Ty dtdx + Tppdx
142 721%2_722} da? — 24t2),
S @) T~ T | (d” = fr(@)7dE) where the numerator A(r, y) and the denominator B(7, y)
(V.15) are given by
|
1 T 1 2
Alr,2) = ————— (Ztanh 2 ) sinh? 7)
(re) £, ()2 tanh?(27) { @N (@) Legy  cosh®2y
12
27z Sinh” 7
—4f.(x) tanh(2 (1 — cos )eff}, V.17
fy(@) (27) 7 cosh? 2 ( )
1 fy(@)? .12 7T
B(r,z) = 7 — 4 tanh(2 x(i—}—Z x) sinh )
(re) £ (2)2 tanh?(27) [cosh2 2~y 27)gy() cosh? 2 f(@) Leyy
+ dtanh(29) ], () L 2T (COSQ’TTI 4+ 9£. (2) tanh(2y) sinh? -7 )? sin? 21z was)
an x)cosh —— [ (—5=— x) tan sin . .
D Leyy cosh? 2y 7 v Leyy cosh? 2y
Here we recall g,(z) = tanh2y — cos 2Z£ and f,(z) = 1 — tanh2ycos 272, After analytically continuing to the

Lorentzian time 7 — it, we obtain the time dependence of the EOW profile.

The EOW profile is shown in Fig. 9. Note that we
again encounter the same problem as in the case of the
local quench where we cannot follow the dynamics of the
EOW profile between ¢ € [Leg/4,3Leg/4]. From the
expression (V.18), we find that there is a periodicity in
real time with the period L.y = L cosh 2.

VI. CONCLUSION

In this paper, we studied the dynamics after the lo-
cal quench on finite intervals and the Mobius quench in
(1+41)d CFT. First, we found that the Mdbius quench
can be obtained from the local quench by diffeomorphism
and Weyl transformations. In the holographic setups, we
employ the AAS/BCFT correspondence and study the
motion of the EOW brane. We also compare this brane
motion with the entanglement dynamics for an interval.
The brane dynamics qualitatively agrees with the entan-
glement dynamics.

There is in principle a vast class of quantum quench
problems that we can consider in (14+1)d CFT. As
demonstrated here, we expect that some of them are re-
lated to each other. It would be interesting to explore
this type of equivalence relation further beyond the spe-
cific examples considered in this paper. This may lead
to a classification of possible dynamical behaviors using
the equivalence relation.
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