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Abstract.—Molecular phylogenies are a cornerstone of modern comparative biology and are commonly employed to in-
vestigate a range of biological phenomena, such as diversification rates, patterns in trait evolution, biogeography, and
community assembly. Recent work has demonstrated that significant biases may be introduced into downstream phy-
logenetic analyses from processing genomic data; however, it remains unclear whether there are interactions among
bioinformatic parameters or biases introduced through the choice of reference genome for sequence alignment and variant
calling. We address these knowledge gaps by employing a combination of simulated and empirical data sets to investi-
gate the extent to which the choice of reference genome in upstream bioinformatic processing of genomic data influences
phylogenetic inference, as well as the way that reference genome choice interacts with bioinformatic filtering choices and
phylogenetic inference method. We demonstrate that more stringent minor allele filters bias inferred trees away from the
true species tree topology, and that these biased trees tend to be more imbalanced and have a higher center of gravity than
the true trees. We find the greatest topological accuracy when filtering sites for minor allele count (MAC) >3-4 in our 51-
taxa data sets, while tree center of gravity was closest to the true value when filtering for sites with MAC >1-2. In contrast,
filtering for missing data increased accuracy in the inferred topologies; however, this effect was small in comparison to the
effect of minor allele filters and may be undesirable due to a subsequent mutation spectrum distortion. The bias introduced
by these filters differs based on the reference genome used in short read alignment, providing further support that choos-
ing a reference genome for alignment is an important bioinformatic decision with implications for downstream analyses.
These results demonstrate that attributes of the study system and dataset (and their interaction) add important nuance for
how best to assemble and filter short-read genomic data for phylogenetic inference. [Bioinformatics; diversification rate;
imbalance; macroevolution; minor allele frequency; phylogenomics.]

Phylogenetic history provides a critical framework for
understanding the myriad components of a lineage’s
evolution, and this “tree thinking” approach is a cor-
nerstone of modern comparative biology (O’'Hara 1997;
Pagel 1999). Large multilocus data sets have become
increasingly important for inferring phylogenetic histo-
ries (e.g., Edwards 2009; Lemmon and Lemmon 2013;
Cloutier et al. 2019; Chan et al. 2020; Huang et al. 2020),
and our ability to resolve relationships among rapidly
diversifying taxa has greatly improved as a result of
advances in high-throughput sequencing methods (e.g.,
Rokas et al. 2003; Philippe et al. 2004; Prasad et al. 2008;
Wagner et al. 2013). However, inferring phylogenetic re-
lationships is not a trivial task, even with genomic data.
These large data sets also present novel —and in some
cases, unexplored —challenges to phylogenetic analyses
(e.g., Jeffroy et al. 2006; Kumar et al. 2012).
Phylogenetic inferences may be sensitive to both sam-
pling and analytical approaches, and previous work has
demonstrated that factors such as taxon sampling (Ran-
nala et al. 1998; Zwickl and Hillis 2002; Heath, Hedtke,
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et al. 2008a; Heath, Zwickl, et al. 2008b; Cusimano and
Renner 2010; Brock et al. 2011), missing data (Wiens
1998; Pybus and Harvey 2000; Wiens 2003; Wiens and
Moen 2008; Lemmon et al. 2009; Wiens and Tiu 2012;
Grievink et al. 2013), and method of phylogenetic re-
construction (Huelsenbeck and Kirkpatrick 1996; Rev-
ell et al. 2005; Riiber and Zardoya 2005; Grievink et al.
2013; Leaché et al. 2015) can affect phylogenetic accu-
racy and downstream inferences about the tempo and
mode of evolution. While bioinformatic filters —such as
those for read depth, missing data per site, missing data
per individual, and minor allele count or frequency —
are often employed to guard against sequencing and
alignment errors, these choices can have unintended
consequences. Not only do these filters tend to reduce
the number of loci in the data set, they can also bias
the characteristics of those loci that are retained for
downstream analyses. In population genetics, rare vari-
ants (i.e., those at <5% frequency in a population) are
common and often of interest (Biddanda et al. 2020),
particularly in disease association studies (e.g., Nelson
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etal. 2012; Momozawa and Mizukami 2021; Weiner et al.
2023) and analyses of fine-scale population structure
(e.g., Slatkin 1985; Novembre et al. 2008), and the in-
clusion or removal of these low-frequency sites can af-
fect estimates of gene flow (Slatkin 1985) or differen-
tiation among populations (Bhatia et al. 2013). Several
recent studies have also demonstrated that discarding
sites with low minor allele frequencies truncates the in-
ferred allele frequency spectrum by removing the most
recent mutations (Shafer et al. 2017; Linck and Battey
2019), which can lead to biased estimates of historical
demography and evolutionary processes, particularly
in the recent past (Boitard et al. 2016).

Similarly, missing data in reduced-representation se-
quencing are expected to be non-randomly distributed
across species and loci, with the amount of missing data
proportional to the genetic distance between taxa (Eaton
etal. 2017) and to locus-specific mutation rates. Filtering
loci by amount of missing data thus disproportionately
excludes loci with high mutation rates, which artificially
truncates the mutational spectrum of the remaining loci
(Huang and Knowles 2016). This has important implica-
tions for analyses explicitly using the mutational spec-
trum for modeling evolutionary history (e.g., inferences
of historical demography, Gutenkunst et al. 2009; Mc-
Tavish and Hillis 2015; Boitard et al. 2016; Hotaling et al.
2018; DeWitt et al. 2021), as well as for phylogenetic
analyses where shared mutations provide information
about evolutionary relationships and branch lengths.
Loci with high mutation rates tend to be more phylo-
genetically informative and, therefore, contribute more
to accurate tree estimation (Lanier et al. 2014). Conse-
quently, removing these loci may then lead to severe
drops in tree estimation accuracy. Consistent with this,
Molloy and Warnow (2018) demonstrated that filtering
genes based on missing data generally reduces the accu-
racy of both species tree and concatenation-based phy-
logenetic analyses, with a greater effect in trees with
more incomplete lineage sorting.

Recent advances in sequencing technologies along
with falling sequencing costs have made it increasingly
feasible to sequence and assemble reference genomes
for non-model species (Feng et al. 2020; Hotaling et al.
2021; Kolora et al. 2021; Rhie et al. 2021; Formenti et al.
2022). Non-model reference genomes can then be used
to assemble short reads from reduced-representation or
whole genome sequencing into shared loci across in-
dividuals, and an increasing number of studies use a
reference genome of a focal study taxon for assembly.
Assembly of reads to a reference genome is based on se-
quence similarity (Catchen et al. 2011), and reads with
higher mutation rates and higher variability will tend to
have lower alignment scores (Nielsen et al. 2011; Huang
and Knowles 2016). Therefore, the choice of an ingroup
(i.e., closely related) versus an outgroup (i.e., more dis-
tant) reference genome with which to align reads may
have substantial consequences for downstream phylo-
genetic analyses. For example, there are likely to be
more reads with lower alignment scores when aligning

to a more distant genome than when using an ingroup
reference, and conserved regions with low mutation
rates are more likely to be kept post-filtering (McCor-
mack et al. 2009; Huang and Knowles 2016). A conse-
quence of this is that DNA fragments carrying the refer-
ence allele will be more likely to map successfully and
pass quality filters, and, therefore, be retained in anal-
yses (Brandt et al. 2015; Ros-Freixedes et al. 2018). This
bias is expected to increase with increasing genetic dis-
tance to the reference genome and to be more prevalent
in regions that are highly polymorphic. Following this
prediction, several recent studies have demonstrated
that reference genome choices can bias population ge-
netic inferences, such as in estimates of historical de-
mography, heterozygosity, and runs of homozygosity
(Shafer et al. 2017; Giinther and Nettelblad 2019; Prasad
et al. 2021; Reid et al. 2021). In phylogenetic analyses,
the use of more divergent reference genomes has been
shown to influence the accuracy of heterozygote calls
(Duchen and Salamin 2021). Additionally, in bacteria,
the failure of more divergent regions of query sequences
to map to the reference sequence can bias both topo-
logical accuracy and branch length estimation (Bertels
et al. 2014). With this knowledge, a more general treat-
ment of biases introduced by reference genome choices
in phylogenetics is warranted.

Systematic biases in sites retained for analyses may
hinder our ability to recover the true evolutionary his-
tory of a clade, and in doing so, may bias inferences
made about the tempo and mode of evolution. Small
changes in the sites retained can have large influences
on the inferred topology and branch lengths (Shen et al.
2017) and, therefore, the diversification patterns in-
ferred from that topology. For example, more stringent
MAC or frequency filters may remove a greater propor-
tion of data from branches at the tips of a phylogeny,
leading to the truncation of these branches and an erro-
neous signal of increasing diversification in the recent
past. Employing a more distant reference genome may
have a similar effect, as this could lead to lower align-
ment scores for the more rapidly evolving sites most
likely to change in recently diverged groups. Alterna-
tively, as missing data are likely to increase with increas-
ing genetic distance between taxa (e.g., due to loss of re-
striction cut sites; Huang and Knowles 2016; Eaton et al.
2017), missing data filters may disproportionately affect
branches toward the base of the tree. Stringent filtering
may reduce data set size, as well as the distribution of
signal across a phylogeny. As phylogenetically informa-
tive sites are lost, increasing noise could lead to more im-
balanced topologies, on average, because there are more
possibilities for a tree to be unbalanced than balanced
(Heard and Mooers 1996, Huelsenbeck and Kirkpatrick

1996; Alanzi and Degnan 2017; Alanzi 2020).

Unfortunately, there is a lack of consensus on how
best to process data for phylogenetic analysis. For exam-
ple, some studies recommend filtering data stringently
to ensure sequence accuracy (Davey et al. 2013). Others
demonstrate that filtering can bias important features of
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the resulting data (Nielsen 2000; Mastretta-Yanes et al.
2015; Huang and Knowles 2016; Chan et al. 2020), and,
therefore, recommend against filtering stringently. It
may also be the case that there is not a universally “best”
approach to these decisions (Nazareno and Knowles
2021); variation in empirical data attributes such as di-
vergence times, incomplete lineage sorting, and genetic
diversity may mean that different filtering decisions are
optimal in different scenarios. For example, Huang and
Knowles (2016) show that high missing data filters are
particularly harmful for data sets with short coalescent
times and it is likely that the consequences of other
filters are similarly context dependent. Consequently,
there may not be a one-size-fits-all prescription that can
be made for the treatment of data for phylogenetics and
the proper filtering choices may be contingent on the
focus of the analysis.

Here, we assess the influence of bioinformatic choices
on phylogenetic inference by combining simulations
and empirical data sets to assess the interacting influ-
ences of reference genome choice, minor allele filters,
and missing data filters on inferred phylogenies. We as-
sess our ability to recover both the true tree and the true
summary statistics describing tree shape and imbalance,
and address 3 main questions: (1) To what extent do
bioinformatic choices affect our ability to recover the
“true” phylogenetic relationships? (2) How do bioinfor-
matic choices bias inferences of diversification patterns
based on tree shape and node distribution? and (3) How
do these biases depend on the diversification history
within the clade? Our results demonstrate that decisions
made by researchers during the assembly and process-
ing of genomic data, as well as characteristics of the true
divergence history among taxa, can bias the data set re-
tained and the inferred phylogenetic tree in ways that
are consequential for macroevolutionary analyses. Fi-
nally, while our inferences focus on single nucleotide
polymorphism (SNP) data sets derived from reduced-
representation data, we outline how these findings are
also applicable to the whole genome data sets that are
becoming more common in modern phylogenomics.

MATERIALS AND METHODS
Overview

We inferred phylogenies for simulated data sets
aligned to reference genomes at varying genetic dis-
tances to the ingroup taxa. We quantified differences
between the true species tree and trees inferred from
210 different combinations of alignment and filtering
options for 10 simulated data sets (Fig. 1), 2 empiri-
cal data sets, and for 2 different choices of reference
genome in each data set. We quantified topological dif-
ferences between phylogenies for all simulated and em-
pirical trees using 3 different tree distance metrics. To
summarize multi-dimensional tree shapes and branch-
ing patterns, we also calculate summary statistics for
tree shape, imbalance, and overall bootstrap support.

For describing tree shape and branching patterns, we
focus on 3 metrics: Colless” imbalance statistic (I.; Col-
less 1982), the Sackin imbalance statistic (Sackin 1972),
and the 1 statistic (Pybus and Harvey 2000). The Colless
and Sackin statistics both increase with increasing tree
imbalance (i.e., more pectinate topologies). The -y statis-
tic is a measure of the distribution of branching events
within a phylogeny; a constant-rate pure-birth tree has
an expected 7 = 0, and an increase in 7 corresponds to
branching times in a tree being closer to the tips (i.e., a
less bottom-heavy topology with higher center of grav-
ity), while a negative y estimate indicates a tree with
more diversification events toward the root (i.e., a more
bottom-heavy topology).

Simulated Data

To replicate the various properties of reduced-
representation genotyping-by-sequencing (GBS) or
restriction-associated-digest sequencing, we simulated
60 independent data sets using the following procedure
(Fig. 1): (1) simulate a species tree for 50 individuals
plus one outgroup taxon at 3 different levels of incom-
plete lineage sorting; (2) simulate 2000 gene genealo-
gies for 5000 bp loci under the multi-species coales-
cent conditioned on the simulated species tree from (1);
(3) simulate genome sequences and 150 bp fastq reads
for each individual for each gene genealogy from (2);
(4) align simulated fastq reads to one ingroup and one
outgroup reference genome; (5) call variants separately
on ingroup and outgroup reference data sets; (6) fil-
ter variants with different parameter combinations; (7)
infer a phylogeny either via concatenation and maxi-
mum likelihood or by first estimating individual gene
trees that are then used to estimate the species tree; and
finally, (8) calculate summary statistics on the output
trees and model the contributions of each bioinformatic
filter to differences in these statistics. Each of these steps
is explained in detail below.

Species and gene trees.—We simulated 50-taxon species
trees (with one individual per taxon) using SimPhy
(Mallo et al. 2016) and employing the Yule process with
3 different birth rates (-SB 0.00001, 0.000005, 0.000001)
to represent three different levels of shared polymor-
phism due to incomplete lineage sorting (ILS; high,
medium, and low, respectively, sensu Mirarab and
Warnow 2015). All simulations had a tree-wide effec-
tive population size of 50,000 (-SP £:50000) and a ra-
tio of 10 between the ingroup height and the branch
from the root to the ingroup (-S0 £:10). We then sim-
ulated genealogies for 2000 loci of 5000 bp each, con-
ditioned on the species tree for the given simulation
and using a tree-wide substitution rate of 3 x 10~ per
generation (similar to that estimated in Lake Malawi ci-
chlid fishes; Malinsky et al. 2018) for converting branch
lengths to the expected number of substitutions per site.
The ancestral gene sequences for these loci were pulled
randomly without replacement from the empirical Lates
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SimPhy

Simulate 10 species trees
(50 tip taxa) for

each tree height

Simulate gene geneologies
for 2000 loci constrained to each
species tree

Speciation rates:
0.00001 (high ILS)
0.000005 (med ILS)
0.000001 (low ILS)

Evolve gene sequences along gene genealogies;
draw variable sites from normal distribution N(150,30)

Size-select ~500bp fragments and simulate
150bp fastq reads for each locus for each individual

Align fastq reads to
each reference genome

Call variants and filter VCF for
QUAL=40, biallelic SNPs,
MAC, and missing data

Remove invariant sites,
convert to phylip

AN

Reference genomes:
outgroup taxon (EXT),

random ingroup taxon (INT)

Min minor allele count (MAC):

0/1/2/3/4/5/10

Missing data allowed:
0/0.25/0.50/0.75/0.90

Split by locus; infer
gene trees

TreeToReads
bwa
samtools
bcftools
vcftools
RAxML
ASTRAL-III

Maximum likelihood
tree inference

\

Species tree inference

N,

Summary statistics and modeling
R for all trees for each reference genome

and analysis method choice
from each of 10 simulations

Ficure 1. We used simulated data and varying bioinformatic filters to compare inferred phylogenies to the true topology used to generate
data. This schematic shows parameter choices that we iterated over (rounded shapes) and steps performed, from species tree simulation to data
analysis (square shapes). Each round of simulation resulted in 35 filtered phylogenetic trees for analysis from each combination of reference

genome choice and phylogenetic inference method, and the simulation was replicated for 10 different simulated species trees at each speciation

rate. QUAL = mapping quality; ILS = incomplete lineage sorting; VCF = variant call format.
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calcarifer reference genome (Vij et al. 2016) (see Sup-
plemental Methods). With these simulation parameters,
ILS levels and gene tree discordance varied from a mean
normalized Robinson-Foulds (RF) distance among gene
trees of 0.061-0.845 (low ILS, mean = 0.165; medium ILS,
mean = 0.568; high ILS, mean = 0.761).

Generating fastqs.—We simulated fastq reads at each lo-
cus for each individual using the TreeToReads pipeline
(McTavish et al. 2017). TreeToReads uses Seq-Gen
(v1.3.4, Rambaut and Grass 1997) for simulating vari-
able sites and ART (vGreatSmokyMountains, Huang
et al. 2012) to simulate Illumina reads. The pipeline
generates simulated Illumina short-read data for indi-
viduals along an input gene genealogy, using a given
number of variable sites, model of evolution, read
length, and fragment length (McTavish et al. 2017). We
simulated 500 bp (s.d. 50) fragment lengths to reflect size
selection for ~500 bp fragments in generating reduced-
representation data. Reads were then simulated as 150
bp single-end reads using the Illumina HiSeq2500 pro-
file in ART. We pulled the number of variable sites for
each fragment from a normal distribution with mean
of 150 and standard deviation of 30. The location of
mutations in the genome were drawn from a uniform
distribution and generated using a generalized time
reversible (GTR) model of sequence evolution with
gamma rate heterogeneity (Lanave et al. 1984; Yang
1993). While the substitution rate specified in SeqGen is
used to translate branch lengths to number of substitu-
tions for the input gene trees, the number of variable
sites specified in TreeToReads translates those numbers
of substitutions into mutations observed at in each lo-
cus, allowing for stochasticity in the location of mu-
tations, and processes like “multiple hits” —mutations
occurring at the same site. The read depth for each in-
dividual at each locus was drawn from a uniform dis-
tribution between 2 and 20, to generate heterogeneity in
read depth and introduce missing data. We specified a
sequencing error file parameterized using the empirical
GBS data in Rick et al. (2022), to mimic empirical errors
introduced in the sequencing process.

Aligning fastqs and calling variants. —For each simulated
tree, we randomly chose an ingroup taxon to be the in-
group reference, and used the simulated outgroup as
our outgroup reference. We aligned all of the simulated
fastq reads to each reference genome using bwa mem
(v0.7.17, Li and Durbin 2009) and samtools mpileup
(v1.6, Li 2011) with default parameters. We then filtered
to retain only variable sites and called variants using
bcftools (v1.9, Li et al. 2009). We retained variants in
the raw VCF file that were biallelic (--min-alleles 2
and --max-alleles 2), had a genotype quality score
(--minGQ) >10 and had a minimum mapping quality
(--minQ) >40.

We then further filtered variant sites using MAC
and missing data filters, based on parameter ranges
observed in published studies. We chose 7 different

minimum MAC cutoffs (0, 1, 2, 3, 4, 5, 10) and 5 dif-
ferent missing data cutoffs (0, 0.25, 0.5, 0.75, 0.90; cor-
responding to the percent of genotyped taxa required
for a site to be retained) in vcftools (v0.1.14, Danecek
etal. 2011), and created SNP data sets using all combina-
tions of these filtering parameters. Individual genotypes
were only called with a read depth >5 (--minDP 5).
Following filtering, the resulting VCFs were converted
to phylip format and invariant sites were removed
using the raxml_ascbias.py script v1.0 from https://
github.com/btmartin721/raxml_ascbias. As a quantita-
tive measure of divergence between the reference and
ingroup lineages, we calculated for each unfiltered data
set (MAC = 0, miss = 0) the mean pairwise genome-
wide divergence, d,,, (or 7,,; Nei and Li 1979) between
the reference genome and all ingroup individuals using
the parseVCF.py and distMat.py scripts from https://
github.com/simonhmartin/genomics_general. Pairwise
dy, is an absolute measure of divergence and reflects
the proportion of shared sites that differ between two
sequences (Cruickshank and Hahn 2014).

Tree estimation.—We used two different methods for
tree estimation: a concatenation-maximum likelihood
method (i.e., RAxML) and a summary species tree method
(i.e., ASTRAL-III). Concatenation analyses ignore vari-
ance in patterns of coalescence across the genome due
to incomplete lineage sorting (ILS), while species tree
methods more explicitly account for ILS and gene tree
discordance resulting from ILS (Liu et al. 2015). Because
we simulated trees with varying amounts of ILS, we
would expect a species tree method to perform better
at recovering trees with high ILS due to explicitly ac-
counting for ILS in its inference and thus it is of in-
terest to determine whether concatenation and species
tree methods differ in their sensitivity to our simulation
parameters and filtering criteria.

For concatenation analyses, we concatenated variant
sites and inferred phylogenies for each of the 2100 sim-
ulation and filtering combinations under a GTRCAT
model of rate heterogeneity with Lewis-type ascertain-
ment bias correction (Leaché et al. 2015) in a full search
for the best scoring ML tree with rapid bootstrap anal-
ysis (100 bootstraps) in the hybrid MPI/Pthreads ver-
sion of RAxML (v8.2.12, Stamatakis 2014). For species tree
analyses, we constructed individual gene trees using
RAXML with a GTRCAT model of rate heterogeneity and
Lewis-type ascertainment bias correction. We then used
ASTRAL-III (Zhang et al. 2018) to estimate the unrooted
species tree given this set of gene trees. ASTRAL is sta-
tistically consistent under the multi-species coalescent
model and finds the species tree that has the maximum
number of shared quartet trees with the set of gene trees.

To measure the effect that each of the bioinfor-
matic choices and tree construction methods has
on downstream phylogenetic analyses, we calculated
the information-corrected normalized Robinson-Foulds
(RF) distance (InfoRobinsonFoulds from the TreeDist
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package in R; Smith 2020) between each inferred tree
and the corresponding original species tree (the “true”
tree). Due to the inability of RF distance to capture all
aspects of tree differences (Smith 2020), we used 2 ad-
ditional metrics of distance to the true tree: quartet dis-
tance (Estabrook et al. 1985) and clustering information
distance (Smith 2020). Quartet distance was calculated
using QuartetDivergence using the tqDist algorithm
(Sand et al. 2014) from the Quartet package in R (Smith
2019), and is a count of the number of 4-taxon state-
ments (quartets) that differ between 2 trees. Clustering
information distance scores a pair of trees based on the
amount of information that one partition contains about
the other and is an information-based tree distance met-
ric that recognizes similarity in tree structure even when
every possible pairing of splits conflicts (Smith 2020),
making it more sensitive than RF distance when trees
are very dissimilar from one another. We also calcu-
lated two measures of imbalance, the Sackin statistic
(Sackin 1972) and Colless” imbalance statistic (I, Col-
less 1982), as well as the tree center of gravity via the 7
statistic (gammaStat from ape; Pybus and Harvey 2000)
and branch length distributions. These statistics are of-
ten used in diversification rate analyses, and, therefore,
any systematic bias in their direction or magnitude may
have important consequences for evolutionary infer-
ences made in these types of analyses. The Sackin and
Colless indices were standardized using the PDA model
(Blum et al. 2006). We additionally calculated imbalance
and vy statistics using only the ingroup taxa and stan-
dardized these statistics by subtracting the value of each
statistic for the true tree from the value calculated for
the inferred tree, thus making those values the deviation
from the true statistic (sensu Stadler et al. 2016). Because
trees inferred in ASTRAL have no terminal branch lengths
and non-terminal coalescent unit branch lengths that are
not robust to gene tree estimation error (Sayyari and Mi-
rarab 2016), we calculated only those summary statistics
that are not dependent on branch length (i.e., omitted
and tree height calculations) for these sets of trees.

Statistical Analyses

All statistical analyses were conducted in R (v4.0.4,
R Core Team 2021) and plotted using ggplot2 (Wick-
ham 2016). Scripts associated with simulations and
analyses, as well as simulation outputs, are available at
https://github.com/jessicarick/refbias_scripts.

Biases in lost loci. —We first examined the effect of bioin-
formatic filters on the number of loci (size of the data
matrix) and the corresponding mutational spectrum of
retained SNPs. We quantified locus-specific mutation
rate as the number of simulated variable sites for a
given 5000 bp locus. We then compared mutation rates
for SNPs pre- and post-filtering to investigate whether
there were biases in the mutation rates of SNPs lost
via different filters. We used pairwise Kolmogorov-
Smirnov tests (ks.test in R) to statistically compare

distributions of mutation rates from lost SNPs at each
MAC and missing data cutoff. We also calculated the
distribution of mutation rates of loci lost with increas-
ing MAC and missing data filters to determine whether
loci with higher mutation rates are more likely to be lost
first, as has recently been demonstrated in other studies
(e.g., Huang and Knowles 2016; Shafer et al. 2017; Linck
and Battey 2019).

To investigate whether there is a pattern to signal
loss in the phylogeny due to filtering, we compared
the mean number of descendants and bootstrap support
for nodes retained in each filtering step for the RAxML-
inferred trees. If signal is disproportionally lost at the
tips of the tree due to the MAC or missing data filters,
then we would expect the nodes with fewer descen-
dants to disproportionally be lost in the inferred trees.
We used the phytools package (Revell 2012) to compare
each output tree to the original simulated tree (using
the matchNodes function), which provides us with in-
formation about which nodes from the original tree are
missing in the output tree. We then recorded the boot-
strap support (from RAXML output) and number of node
descendants (using getDescendants from phytools) for
each node in the original tree. For each combination of
ILS level, MAC, missing data, and reference genome
choice, we created a null distribution for the expected
mean node descendants and expected mean nodal boot-
strap support using 100 bootstrap replicates, by taking
the mean of # values drawn from the possible values for
each of these, where 7 is the number of nodes lost across
all trees with the given parameters choices. From these
values, we calculated a z-score for the observed mean to
quantify deviation from the bootstrapped mean value.
We repeated the bootstrapping procedure for the nodes
retained in each parameter combination, and calculated
z-scores for these as well.

Tree space analyses.—To further characterize dissimilar-
ity among the inferred phylogenetic trees within each
simulation, we calculated the information-corrected
normalized (Smith 2020) RF distances (Robinson and
Foulds 1981) between all pairwise comparisons of the
output trees that had the same starting species tree
(InfoRobinsonFoulds from TreeDist; Smith 2020). As
noted above, we also compared each output tree to their
starting (“true”) species tree and then performed a prin-
cipal coordinates analysis (PCoA) on all of these pair-
wise distances across the starting trees (using pcoa from
ape, Paradis and Schliep 2019). Using a PCoA approach,
we can visualize differences between trees in multidi-
mensional “tree space” and determine the differenti-
ation among trees with different parameter combina-
tions. These results complement our direct comparisons
to the “true” species tree described above by allowing
us to additionally assess the level of variation across
output trees under each bioinformatic scenario. We cal-
culated the correlation between tree position on the first
two PCoA axes and each of our filtering parameters and
reference genome choice for each group of trees to assess
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the extent to which each of these parameters drives the
clustering of the inferred trees in tree space.

Linear modeling.—To characterize the relationship be-
tween parameter choices (predictors) and the result-
ing trees and tree statistics (responses), we used linear
mixed models (implemented using lme4; Bates et al.
2015) in R. In our linear mixed models, for each tree
height, our predictor variables included reference dis-
tance (mean d,,, between the ingroup taxa and the ref-
erence taxon), MAC cutoff, and missing data cutoff, as
well as pairwise interaction terms between reference
distance and each of MAC and missing data. We ad-
ditionally included a random intercept for simulation
number, such that the overall model was X ~ d,, +
MAC + miss+dxy :MAC +dxy :miss +(1|sim), where X
is our tree statistic of interest, dxy is mean distance to
the reference genome, MAC is minor allele count, miss
is missing data threshold, and sim is simulation repli-
cate number. We assessed model fit using conditional
pseudo-R? values (using r.squaredGLMM from MuMIn;
Barton 2022) and assessed the contribution of each pre-
dictor variable to the response statistic using regression
coefficients. We additionally assessed bivariate correla-
tions between all variable pairs using Pearson’s correla-
tion coefficient, implemented using cor.test inR.

Accounting for the Influence of Data Set Size

Because each filtering step removes SNPs, and, there-
fore, decreases the amount of input data for phyloge-
netic analyses (Supplementary Fig. S2), we performed
further steps to parse out whether the observed effects
were simply due to the loss of power in smaller data sets,
or if additional effects could be attributed to the specific
filters applied and a bias as to which sites are retained.
To investigate the relative influence of each filter on the
three response variables (RF distance to true tree, im-
balance, and gamma), as well as the mutation spectrum,
we subsampled each filtered data set to retain only 6000
random SNPs. We replicated this subsampling 10 times
for each data set and then ran phylogenetic analyses in
RAXML as described above. With these subsampled trees,
we performed the same statistical and modeling steps
described above for the full data sets, and compared
these results to those with the full data sets.

Empirical Data

To investigate to what extent the same patterns ob-
served in our simulated data may affect empirical data
sets, we used two sets of GBS data from clades with
similar ages, but different number of species and ex-
pected levels of gene tree discordance: the radiation of
Lates fishes endemic to Lake Tanganyika and the radi-
ation of cichlid fishes in the tribe Tropheini, also en-
demic to Lake Tanganyika. Both of these clades have
an estimated origin around ~1-2 Ma (Koblmdiller et al.
2021, 2010; Irisarri et al. 2018, although Ronco et al.

2021 estimates the origin of the tropheine radiation to
be ~3.5-5.2 Ma), but very different species richness (n
= 4 Lates spp.; n ~40 described and undescribed tro-
pheine spp., as estimated in Ronco et al. 2020). Thus, the
tropheines represent a clade with high speciation rates,
shorter internodes, and thus potentially higher amounts
of ILS, while ILS is expected to be lower in the more
slowly diversifying Lates clade. Sequences for the Lates
spp. were generated as described in Rick et al. (2022)
(NCBI Sequence Read Archive PRINA776855) and data
for the tropheines were generated in a similar manner
following the GBS protocol in Parchman et al. (2012), as
described in the Supplementary Methods.

Using the same methods as for the simulated data,
the Lates fastq reads were aligned to the L. calcarifer
(distant outgroup) and L. mariae (ingroup) reference
genomes. The tropheine fastq reads were aligned to the
Oreochromis niloticus (distant outgroup) and Pundamilia
nyererei (closely related outgroup) reference genomes
(Brawand et al. 2015). We randomly chose 49 individ-
uals for each of 10 data sets for each clade out of the
n = 229 high-quality (i.e., >100,000 reads assembled to
each reference genome) sequenced individuals for the
Lates spp. and n = 463 high-quality sequenced individ-
uals for the tropheines. We then added the alignments
for the two reference genome individuals to these data
sets, so that the total number of tip taxa was n = 51,
matching our simulations. Following alignment of fastq
reads to the reference genomes, we iterated through
missing data (miss = 0, 0.25, 0.50, 0.75, 0.90) and mi-
nor allele MAC =0, 1, 2, 3, 4, 5, 10) filters and inferred
the phylogeny for each filtered data set using RAxML and
ASTRAL-III, using the same procedures and parameter
choices as with the simulated data. For the 2 empirical
data sets, we retained only scaffolds greater than 100
kb and used 10 kb windows for gene tree inference in
RAXML prior to ASTRAL inference. We then calculated the
RF distance between all trees for each data set and in-
ference method and visualized differences among the
trees using PCoA in R. We calculated imbalance (for both
RAxML and ASTRAL trees) and <y and tree height (for RAxML
trees), and again used linear mixed models to assess
the influence that each of our reference genome choices
and bioinformatic filters had on these tree character-
istics. With the empirical results, we treated the iden-
tity of the reference genome as a binary option (i.e., in-
group/close versus outgroup/distant reference), rather
than as a continuous d,,, variable, such that our models
were X ~ref+MAC+miss+ref:MAC+ref:miss+ (1|sim),
where ref indicates reference genome choice and the
ingroup/close reference was coded as 1 and the out-
group/distant reference was coded as 0.

REsuLTs
Simulations

Our simulation scheme resulted in a total of 4200
phylogenetic trees across 10 replicate simulations and
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2 phylogenetic inference methods, which we analyzed
to determine the influence of reference genome and fil-
tering choices on topology and tree shape metrics. Fol-
lowing filtering and removal of invariant sites, our sim-
ulated data sets retained an average of 77,549 SNPs (95%
quantile = 8320 — 177,830). The mean outgroup ref-
erence genome distance (d,,) was 0.40 (95% quantile =
0.30-0.53), while the ingroup reference genomes were
an average distance of d,,, = 0.039 (95% quantile = 0.031-
0.047 from the other ingroup taxa. As was expected
based on simulation parameters, the mean distance to
the outgroup reference was greatest in the low-ILS trees
(mean = 0.45, range 0.39-0.53), lower in the medium-
ILS trees (mean = 0.38, range 0.33-0.46), and lowest
in the high-ILS trees (mean = 0.37, range 0.30-0.46),
although all of these distributions overlapped (Supple-
mentary Fig. S7). The mean distance to the ingroup ref-
erence was similar among all of the tree heights (low-
ILS trees: mean = 0.040, range 0.031-0.046; medium-ILS
trees: mean = 0.039, range 0.035-0.047; high-ILS trees:
mean = 0.040, range = 0.035-0.044; Supplementary Fig.
S7). Consistent with expectations, the average amount
of gene tree discordance (i.e., mean pairwise normal-
ized RF distance between all gene trees) in the low-ILS
trees was 0.164 (range = 0.096-0.241), in medium-ILS
trees was 0.606 (range = 0.480-0.746), and in high-ILS
trees was 0.771 (range = 0.661-0.845). Our simulated
species trees had overlapping distributions of normal-
ized ingroup imbalance and gamma among tree heights
(Fig. 2), with a mean ingroup I, of 0.412 and mean in-
group 7y of —0.159. Example filtered phylogenies can be
found in Supplementary Figure S1.

Correlations among all variables for the filtered data
sets and RAxML-inferred trees are visualized in Supple-
mentary Figure S3a. Among all of our filtered data
sets, MAC threshold and number of SNPs retained
were highly negatively correlated (Pearson’s r(2098) =
—0.734,p < 2.2e—16; Supplementary Figs. S2 and S3a).
Our two measures of imbalance (i.e., Colless imbal-
ance and Sackin imbalance) were highly correlated as
well (Pearson’s r(2098) = 0.988,p < 2.2e-16), and
these were positively correlated with metrics of topo-
logical distance from the inferred tree to the true tree
(i.e., RF distance, quartet distance, and clustering infor-
mation distance; mean Pearson’s #(2098) = 0.252, all
p < 0.001), although quartet distance was less strongly
correlated with imbalance than the other topological
distance metrics. Ingroup y was inversely correlated to
tree height (Pearson’s r(2098) = 0.781, p < 2.2e—16)—
as is expected given our simulation methods—and
slightly positively correlated with imbalance and topo-
logical distance metrics (Colless imbalance: Pearson’s
r(2098) = 0.319, p < 2.2e—16; RF distance: Pearson’s
r(2098) = 0.329, p < 2.2e—16). Topological distance
from the inferred tree to the true tree was negatively
correlated with average bootstrap support (Pearson’s
r(2098) = 0.779, p < 2.2e—16). Heatmaps visualizing
the way in which each of the inferred tree character-
istics varied across MAC and missing data thresholds

for the RAxML trees can be found in Supplementary
Figures S8-515. Correlations among statistics were simi-
lar for the ASTRAL-inferred phylogenies (Supplementary
Fig. S3b), with the direction of the relationship between
terms consistent between the two inference methods
for 52 of the 72 correlations. Furthermore, the adjusted
RV coefficient (Mayer et al. 2011) between the RAxML
and ASTRAL correlation matrices (Supplementary Fig.
S3) was 0.72, indicating substantial similarity among
matrices.

Distance to true tree.—In our analyses, the ability to re-
cover the input species tree topology in simulated data
sets varied widely across filtering parameters and refer-
ence genome distance. All 4 of our linear mixed models
for RF distance between the RAxML trees and their true
trees explained a majority of the variation in the data
(mean conditional pseudo-R? =0.669, range 0.558-0.758;
Supplementary Table S1), and MAC had the greatest
effect on the distance of the inferred phylogeny to the
true tree. MAC was an important predictor variable in
our linear models for distance to the true tree across all
three simulated tree heights, with increased MAC cor-
responding to topologies more distant to the true tree
(Fig. 3). Missing data had less of an effect on topological
accuracy, and was not an important predictor variable
in our models for all trees combined, or for each of the
three tree heights individually (Fig. 3; Supplementary
Table S1). While we only used RF distance in our linear
mixed models, we observed similar trends across MAC
in quartet and clustering information distances, such
that all 3 topological distance statistics increased with
increasing MAC threshold (Supplementary Fig. 522).

Similar to the modeling results for RAXML trees, all 4
of the linear mixed models for RF distance between the
ASTRAL trees and their true trees explained a majority
of the variation in the data (mean conditional pseudo-
R? =0.742, range 0.636-0.813; Supplementary Table S4).
MAC threshold again had the greatest effect on the dis-
tance of the inferred phylogenies to the true trees (with
more stringent MAC thresholds leading to trees more
different from the true topology), while missing data
was also a significant predictor for the low ILS trees,
high ILS trees, and models with all of the trees combined
(Supplementary Fig. S5b,d).

The influence of reference genome choice had the
greatest effect in high-ILS trees and the weakest effect
in low-ILS trees for the RAxML trees (Fig. 3a). Across all
3 topological distance metrics, trees constructed with
the ingroup reference genome were generally similar
distances from the true tree as those using the out-
group reference genome, with some variation among
MAC thresholds and tree height (Supplementary Fig.
S22a,c.e). High ILS trees aligned to the ingroup refer-
ence and filtered using low MAC thresholds were more
distant to the true tree than outgroup-aligned refer-
ence trees, but at high MAC thresholds, the ingroup
reference trees are more similar to the true tree (i.e.,
have higher topological accuracy). RF and clustering
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Ficure 2. Example simulated species trees from SimPhy for low ILS (speciation rate = 0.000001), medium ILS (speciation rate = 0.000005),
and high ILS (speciation rate = 0.00001) trees (sensu Mirarab and Warnow 2015), and summary statistics for all simulated species trees. All trees
were simulated with 50 taxa and an outgroup (not shown in phylogenies), on which the ingroup clade was rooted. For each tree, the mean
across 10 simulated species trees for the gene tree discordance (as measured by mean pairwise RF distance between gene trees; RF,;), mean
ingroup gamma (y), and mean Colless imbalance statistic (I.), along with their ranges, are given. Note that scales (in coalescent units) are not
consistent among the trees shown. In the righthand panel, the distribution of values across all 30 simulated “true trees” is shown for ingroup
tree height, average branch lengths, mean gene tree discordance, ingroup Colless imbalance, and ingroup gamma.

information distances identified the greatest difference
between trees inferred using ingroup versus outgroup
reference genomes at high MAC thresholds. Quartet
distance metrics (Supplementary Fig. S22¢) indicate that
at low MAC thresholds for medium and high ILS trees,
trees constructed from data aligned to an outgroup ref-
erence genome were generally more similar to the true
tree than those aligned to an ingroup reference genome.
In contrast, at high MAC thresholds, ingroup refer-
ence genomes produced topologies closer to the true
species tree for medium and high ILS trees. Trees with
low ILS had a smaller quartet distance difference be-
tween ingroup and outgroup reference genomes, and
ingroup reference genomes produced trees more similar
to the true tree across all MAC thresholds for these low
ILS trees (Supplementary Fig. S22c). While the ASTRAL-
inferred trees generally showed the same patterns, the
low ILS trees with high MAC thresholds (i.e., most strin-
gent filtering) were much more distant from the true
tree than those inferred using RAxML. Across all MAC
thresholds, the low ILS trees inferred using ASTRAL were
more distant from the true tree than those inferred using
RAxML (Supplementary Fig. 526a,b).

Using PCoA to visualize tree space for RAxML-inferred
trees (Fig. 4), we find that the first two PCoA axes for

the majority of simulations (90%) for trees with low ILS
are correlated with MAC and reference genome choice
(Pearson’s correlation, p < 0.01; Fig. 4b), while only 10%
of simulations had missing data correlated with separa-
tion among trees on either of the first two PCoA axes.
For medium ILS trees, results were similar to those in
our low ILS trees, but MAC and reference genome were
more strongly correlated with distance among trees on
the first two PCoA axes: MAC was strongly correlated
with the first PCoA axis for 100% of simulations and ref-
erence genome identity was correlated with one of the
first two PCoA axes for 90% of simulations. For high ILS
trees, we found that the first two axes were correlated
with MAC and reference genome in 100% of simula-
tions, while missing data were correlated with one of
the first two axes in 60% of simulations. The first two
PCoA axes explained an average of 54.9% of the vari-
ation in the data for RAxML-inferred phylogenies (high
ILS trees, 73.9%; medium ILS trees, 36.8%; low ILS trees,
54.0%), and an average of 81.9% of the variation in the
data for ASTRAL-inferred phylogenies (high ILS trees,
77 .3%; medium ILS trees, 82.4%; low ILS trees, 86.1%). In
treespace for the ASTRAL-inferred phylogenies, the first
PCoA axes were generally correlated with MAC thresh-
old (96% of simulations), while the second PCoA axes
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Ficure 3. MAC threshold had the greatest effect on the calculated tree statistics for our simulated data. MAC threshold was a significant
predictor of (1) distance from the inferred tree to the true tree, (2) the imbalance, and (3) the 7y statistic of the output tree. MAC threshold also
interacted with the distance to the reference genome and tree height. Plots in (a) show coefficient estimates and 95% confidence intervals for
each predictor variable from linear mixed models for the RAxML trees using the indicated statistic as the response variable (RF distance to the
true tree, the gamma statistic for tree shape (), and Colless” imbalance statistic (I..)). Filled in and darkened symbols indicate significant posi-
tive or negative relationships, while faded open symbols are predictors with confidence intervals that overlap zero. Plots in (b) show patterns
of variation in the three response variables for the ingroup across MACs, with shapes indicating the reference genome used (EXT = external
reference; INT = internal reference) and colors indicating the level of ILS. In (b), the statistics are standardized so that the true tree is 0, as

indicated with the solid horizontal lines.

were generally correlated with reference genome iden-
tity (50% of simulations) and missing data (16.7% of
simulations; Supplementary Fig. 518).

As with the full data sets, both MAC and the inter-
action between MAC and reference genome distance
were significant predictors of topological accuracy in
our linear models for our subsampled data sets, where
we controlled for the correlation between MAC and data
set size by subsampling all data sets to 6000 SNPs (Fig.
5a; Supplementary Table S2). Within the subsampled
data sets, there was an even clearer improvement in
tree topology at moderate MAC thresholds over low or
high MAC thresholds, with all 3 distance metrics in-
dicating that the most accurate topologies for all tree
heights and both reference choices occurred at MAC =
3—4 (Supplementary Fig. S22a,c,e). The subsampled data

sets also indicate that in data sets without a MAC filter
(i.e., MAC=0), trees constructed with the ingroup refer-
ence genome are closer to the true tree than those using
the outgroup reference genome for high and medium
ILS trees (Fig. 5b).

Phylogenetic tree imbalance. —Our inference of tree im-
balance also varied widely across filtering parameters
and reference genome choices, and additionally showed
different patterns between RAxML- and ASTRAL-inferred
trees. For the full data sets using RAxML, MAC was
the strongest predictor variable in our models (Fig. 3a;
Supplementary Table S1) and the linear mixed mod-
els explained slightly over half of the variation in the
data (mean pseudo-R? = 0.566, range 0.466-0.669). The
average distance of the reference genome to the ingroup
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Ficure 4. PCoAs based on pairwise RF distances between RAxML-inferred trees demonstrate the relationship between simulated and true
trees in two dimensional tree space and emphasize the role of MAC threshold, missing data threshold, and reference genome on tree topolo-
gies. (a) Example PCoA plot of trees from one iteration of simulated data (high ILS, simulation 18), with the true tree indicated and correlations
between PCoA axes and each of reference genome choice, MAC threshold, and missing data threshold visualized via arrows. (b) Summary of
correlations between each of the three bioinformatic choices and the first two PCoA axes for all simulated and empirical iterations, demonstrat-
ing the relative importance of MAC in the simulated data and missing data in the empirical data sets, while reference genome was important
for all. Barplots show the proportion of iterations for each data set type that had a significant correlation with each of the first two PCoA axes,
assessed using Pearson’s correlation coefficients. Dark green, p-value <0.01 for axis 1; light green, P-value <0.01 for axis 2; yellow, P-value <0.01
for both axis 1 and axis 2; gray, P-value > 0.01 for both axis 1 and axis 2. Correlation coefficients are visualized in Supplementary Fig. 516 and

plots for ASTRAL-inferred trees are in Supplementary Fig. S17.

taxa was only an important predictor in our models for
imbalance when all tree heights were combined, such
that an increased distance to the reference genome in-
creased I.. In high ILS trees, the interaction between
MAC and the distance to the reference genome was also
a significant predictor of tree imbalance (Fig. 3b). Fil-
tering for missing data tended to reduce imbalance in
the inferred trees, but the effect of this filter on ingroup
imbalance was not significant. Both low and medium
ILS trees were closest to the true tree imbalance statistic
at 0 < MAC < 2, while the high ILS trees were clos-
est to the imbalance of the true tree at 3 < MAC < 4
(Fig. 3b). These patterns were the same for both Colless
and Sackin measures of imbalance (Supplementary Fig.
522).

In contrast, linear mixed models for imbalance with
the ASTRAL trees showed differing patterns for the three
categories of ILS. With all three ILS levels combined,
only missing data were a significant predictor of im-
balance, with lower missing data thresholds (i.e., less
stringent filtering) producing trees with lower imbal-
ance (Supplementary Fig. S5f). This pattern is driven
predominantly by the effect of missing data in low

ILS trees, although the trend is similar in medium and
high ILS trees as well (Supplementary Fig. S5h). In high
ILS trees, the reference genome identity also interacted
with both missing data and MAC, such that the pattern
across MAC and missing data differed between data
sets aligned to the ingroup versus outgroup reference
genome. In examining effect plots (Supplementary Fig.
526), the imbalance for all 3 tree heights across both ref-
erence genomes was closest to that of the true tree at 3 <
MAC < 5, although this effect is weak when compared
to the RAXML results.

In the subsampled data sets, MAC was again the
largest driver of standardized ingroup tree imbalance,
with higher MAC thresholds resulting in more imbal-
anced trees and trees farther from the true tree statistic
(Fig. 5; Supplementary Table S2). The interaction term
between MAC and distance to the reference genome
was an important predictor again, but the relationship
was the inverse of the trend seen in the full data sets (i.e.,
the interaction term was negative in the full data sets,
but positive in the subsampled data sets). In addition,
missing data had a significant influence on imbalance
in the subsampled data sets, such that increasing the
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Ficure 5. Models for data sets subsampled to 6000 SNPs supported the role of MAC threshold as a strong predictor of tree topology and
shape. We conducted these analyses to address the role of dataset size versus filtering per se in influencing downstream results. Subsampled
datasets —similar to the findings for datasets differing in size (e.g., Fig. 3) —support a role for MAC’s influence on topology and inferred im-
balance. This suggests that MAC filtering does bias the characteristics of the retained SNPs, in addition to its role in reducing the number of
retained SNPs. Plots in (a) show model coefficients for linear mixed models for the given tree statistic. Color intensity indicates whether coeffi-
cients for the given variable in our linear mixed models were significant (filled in and darker circles) or not significant (faded and open circles).
For all 3 tree statistics, values closer to 0 indicate trees that are closer to the true tree. In (b), the trends in summary statistics across MAC filtering
thresholds demonstrate that all three become increasingly distant from the true tree statistic as the threshold for minimum MAC is increased

(i.e., with more stringent filtering).

missing data threshold reduces tree imbalance (Supple-
mentary Fig. S25b,d), a trend that was weaker but in
the same direction in the full data sets (Supplementary
Fig. S23b,d). In the subsampled data sets, trees of all 3
ILS levels and both reference genome types were clos-
est to the true tree imbalance at 3 < MAC < 4, as well
as when the missing data threshold was most stringent.
However, the range of I. statistics across all missing data
thresholds was only ~0.005 for high and medium ILS
trees, and only ~0.001 for low ILS trees, in contrast to
the greater variation in I, for all tree heights across MAC
thresholds (~0.10).

Influence of parameters on gamma.—As stated previ-
ously, we are only able to calculate v for the RAxML-

inferred trees and not those inferred in ASTRAL, as
ASTRAL does not infer terminal branch lengths. Simi-
lar to topological accuracy and imbalance, the linear
mixed models for standardized 7 of the ingroup ex-
plained a large proportion of the variation in the data for
the RAXML trees (mean pseudo-R? = 0.782, range 0.727-
0.823) and had MAC as the strongest predictor of devi-
ation from the true tree’s vy statistic (Fig. 3), which was
the only significant predictor variable in any of our v
models. Across all 3 tree heights, the values for v were
closest to the true tree at 0 < MAC < 2 and increased
with increasing MAC (Fig. 3b). The change in -y across
MAC values was greatest in the high and medium ILS
trees, and lowest in the low ILS trees, although the
low ILS trees were the most biased away from the true
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v statistic across all MAC thresholds. The reference
genome had little influence on 7y on its own or in inter-
actions with MAC or missing data. Increased missing
data thresholds tended to reduce -y estimates, although
the relationship was weak and the variation in v statis-
tics across missing data values was <1 (Supplementary
Fig. S23f).

We see similar patterns for 7 statistics in the subsam-
pled data sets, with both MAC and missing data being
strong predictors of deviation from the <y of the true tree
(Fig. 5). As with the full data sets, increasing the strin-
gency of the MAC filter increased ingroup -y, while in-
creasing the stringency of the missing data filter reduced
7. The bias introduced by both filters was strongest in
high and medium ILS trees, while low ILS trees had the
most consistent <y values across filter thresholds (Sup-
plementary Figs. S24f and S525f). Across all filtering com-
binations, the inferred topologies tended to be biased
to more positive y values than the true trees, which
were simulated under a pure-birth process and thus had
7 = 0, or just smaller than 0 (Fig. 2). However, val-
ues for v in medium and high ILS trees at 0 < MAC
< 2 ranged from 7 = —6.00 to ¥ = —1.00, with a mean

=—4.4 in high ILS trees and mean 7 = —3.2 in medium
ILS trees. At MAC = 10, these means then became signif-
icantly positive: in high ILS trees, mean y = 3.6 (range
1.2-6.8) and in medium ILS trees, mean y = 5.25 (range
0.3-7.9). In contrast, low ILS trees only varied from a
mean y = —0.4 (range —2.8 to 1.5) at 0 < MAC < 2
to a mean 7y = 1.9 (range —1.08 to 5.6) at MAC = 10.

In the ¥ models including all tree heights, we find
that the distance to the reference genome and the in-
teraction between MAC and distance to the reference
genome were strong predictors in our models (Fig. 5a).
However, neither term is significant in any of our 3 mod-
els for individual tree heights (Fig. 5a), suggesting that
the strength in the all-height model may be an artifact of
the correlation between mean distance to the reference
genome and tree height (which is not included as a pre-
dictor in these models; Supplementary Fig. S3), rather
than being due to the distance to the reference genome
itself. This hypothesis was supported by a lack of dif-
ference between v for trees aligned to the ingroup ver-
sus outgroup reference genomes within each tree height
across MAC (Supplementary Fig. S24f) or missing data
(Supplementary Fig. 525f).

Influence of parameters on mutation spectra. — The patterns
we observed in tree statistics suggest that there may be
a bias in the characteristics of SNPs lost across filtering
parameters, and, therefore, we examined the mutation
rates of SNPs lost at each MAC and missing data cut-
off, as well as how each of these varies across reference
genome choice. We found that SNPs lost at low MAC
and missing data cutoffs were biased toward those lo-
cated on high mutation rate loci (Fig. 6a), which resulted
in MAC and missing data filters truncating the mutation
spectra of retained SNPs toward those with lower muta-
tion rates. The change in mean mutation rate of retained

loci was most dramatic from MAC =2 to MAC =3, and
from miss = 0.75 to miss = 0.9 (Fig. 6).

We also found that the SNPs lost due to MAC filters
were those that provided support for nodes toward the
tips of the tree (Fig. 7a). We found that the lost nodes
had fewer descendants (i.e., were closer to the tips of
the tree) than expected based on a null distribution, and
the lost nodes were also those that had lower nodal boot-
strap support originally (Fig. 7b). As the MAC threshold
increased (i.e., became more stringent), more nodes to-
ward the tips of the tree were then lost, which lowered
the mean number of node descendants for lost nodes
(Fig. 7a). When examining the bootstrap support for
nodes that were lost, we find that nodes lost at low
MAC cut-offs had lower bootstrap support than those
retained, and increasing the MAC cut-off resulted in los-
ing nodes with progressively higher bootstrap support.
There were no clear patterns in the number of node de-
scendants for nodes lost across different missing data
thresholds (Fig. 7c): the mean number of node descen-
dants of lost nodes remained constantly lower than that
of retained nodes independent of missing data thresh-
old. In contrast, the mean bootstrap support of lost
nodes decreased with increasing missing data thresh-
olds (Fig. 7d), indicating that low-support nodes are
being filtered out at high missing data thresholds, but
those lost at lower thresholds are not necessarily the
ones with the lowest bootstrap support.

In contrast to the patterns observed across MAC
thresholds, the distribution of mutation rates did not
differ overall between sites retained in data sets aligned
to the internal versus external reference genomes. Ad-
ditionally, the nodes lost when using an internal versus
external reference genome were not biased toward those
found in a certain part of the trees.

Empirical Analyses

General overview of empirical data sets.—The 10 replicates
of each of our 2 empirical clades (drawing 51 random
individuals each replicate) resulted in data sets with an
average of 82,978 SNPs (tropheines; range 311-550,214)
and 730,239 SNPs (Lates; range 1147-16,018,003). The av-
erage distance of ingroup taxa to the reference genome
for the 40-species tropheine clade’s distant reference
(Oreochromis niloticus) was d,,, = 0.517, and for the close
reference genome (Pundamilia nyererei) was d,, = 0.161
(Supplementary Fig. S7). For the 4-species Lates clade,
the average reference genome distances were d,, = 0.602
(outgroup reference, Lates calcarifer) and d,, = 0.0669
(ingroup reference, L. mariae; Supplementary Fig. S7).
As with our simulated data, the number of SNPs re-
tained was highly inversely correlated with MAC cut-
off (Pearson’s r(1292) = —0.141, p = 3.5e—07) and with
missing data threshold (Pearson’s r(1292) = —0.237, p <
2.2e—16). The number of SNPs retained was also corre-
lated with overall tree height for the RAxML trees (Pear-
son’s r(1292) = 0.384, p < 2.2e—16). Ingroup tree height
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Ficure 6. In our simulations, SNPs that were lost first were biased toward those on loci with higher mutation rates for both MAC (a) and
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threshold. Righthand panels show significance from Kolmogorov-Smirnov tests on the distribution of values for each MAC and missing data
threshold, with asterisks denoting significant differences (p <0.01) among distributions. Note that some distributions are completely overlap-
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calculated as the number of variable sites simulated per 5000 bp locus.

was correlated with ingroup Colless and Sackin imbal-
ance, although the correlation was negative in the tro-
pheines and positive in the Lates clade (tropheines: Pear-
son’s r(593) = —0.275, p = 8.287e—12; Lates: Pearson’s
r(698) =0.114, p = 0.0024). In contrast to the simulations,
tree height was not correlated with ingroup v in either
empirical clade (tropheines: Pearson’s r(593) = 0.006,
P = 0.883; Lates: Pearson’s r(698) = —0.012, p = 0.746).

Tropheine analyses.—For the two empirical data sets
and the phylogenies inferred using RAxML, we mod-
eled ingroup tree height, ingroup Colless imbal-
ance (I.), and ¢ as a function of MAC, missing
data threshold (miss), and reference genome iden-
tity (ref), as well as the interaction between refer-
ence genome choice and each of MAC and miss-
ing data thresholds. In contrast to the simulation

results, the reference genome was treated as a bi-
nary choice (ingroup/close reference versus outgroup/
distant reference), with the more distant genome coded
as 0 and the close genome coded as 1. In our phylo-
genetic inferences for the tropheine data, our models
explained the largest proportion of the variation in the
data for 7y (pseudo-R? = 0.800), and less variation for im-
balance (pseudo-R? = 0.337) and tree height (pseudo-R?
= (0.432). We found that MAC threshold was an impor-
tant predictor of ingroup tree height, imbalance, and 7,
and missing data threshold was an important predic-
tor of ingroup imbalance and -y (Fig. 8a). As the MAC
cutoff became more stringent, the inferred ingroup tree
height increased and <y increased to become more pos-
itive (Fig. 8b). Imbalance decreased as MAC increased
from MAC =0 to MAC = 3, and then the imbalance in-
creased again between MAC =5 and MAC =10 (Fig. 8b).
With increasingly stringent missing data thresholds,
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nodes, respectively. In right panels, dashed lines indicate | z | = 1.96.

ingroup tree height increased and then decreased, in-
group imbalance decreased, and ingroup < decreased
(Fig. 8b).

We additionally found an influence of reference
genome on ingroup tree height and <, via interactions
between the reference genome and our filtering param-
eters (Fig. 8a). In the tropheine topologies, using the out-
group reference genome tended to increase tree height
compared to the ingroup reference genome, particu-
larly at high MAC thresholds. Using the ingroup ref-
erence genome also resulted in trees that were more
imbalanced, while the outgroup reference genome pro-
duced trees that had higher < statistics than trees con-
structed using the ingroup reference genome. At low
MAC thresholds, trees using the ingroup reference were
more tip-heavy than those using the outgroup reference,
but had similar y values to trees using the outgroup ref-
erence at higher MAC thresholds (Fig. 8b). Similarly,
ingroup reference trees had similar < statistics to out-
group reference trees when all missing data was al-
lowed (miss = 0), but then had higher 7 statistics than
the outgroup trees at higher missing data thresholds
(Fig. 8b).

In analyses of tree space based on pairwise RF
distances between tropheine phylogenies inferred in
RAxML, trees generally clustered together primarily
based on missing data, with additional influence of

reference genome and MAC (Fig. 4). The first two PCoA
axes were generally correlated with missing data (100%
of replicates on axis 1) and reference genome choice
(80% on axis 2), and a few iterations also had strong cor-
relations between these first two axes and MAC (70% on
axis 1 and 30% on axis 2; Fig. 4b). The first two PCoA
axes combined for RAxML-inferred tropheine phyloge-
nies explained an average of 91.8% of the variation in
the data.

The linear mixed model for Colless imbalance in the
ASTRAL tropheine trees explained just under half of the
variation in the data (pseudo-R? = 0.448), and indi-
cated that imbalance differences between the trees were
driven predominantly by the missing data cutoff and
the interaction between the reference genome choice
and missing data cutoff (Supplementary Table S5; Sup-
plementary Fig. S6), with more stringent missing data
cutoffs leading to less imbalanced trees (Supplemen-
tary Fig. 527). Supporting this, the first PCoA axis for
tropheine trees inferred in ASTRAL was generally signif-
icantly correlated with the missing data cutoff (70% of
iterations; Supplementary Fig. S21a), while MAC was
associated with the first axis in 4 replicate data sets and
the second axis in 4 of the 10 replicate data sets. The
first two PCoA axes combined for ASTRAL-inferred tro-
pheine phylogenies explained an average of 72.2% of the
variation in the data.

20z Jaqwiaydag Qg uo Jasn euozuy jo Alsianiun Aq Gzz0oes2/9/2/L/€ /2101 /01qsAs/wod dno olwapede//:sdiy wolj papeojumoq


https://doi.org/10.5061/dryad.djh9w0w2g
https://doi.org/10.5061/dryad.djh9w0w2g
https://doi.org/10.5061/dryad.djh9w0w2g
https://doi.org/10.5061/dryad.djh9w0w2g
https://doi.org/10.5061/dryad.djh9w0w2g
https://doi.org/10.5061/dryad.djh9w0w2g

2024 RICK ET AL. - REFERENCE BIAS IN PHYLOGENOMICS 91
- Tree Height Hi
igh vs low P —
a) 0.05 b) 06 \ ) gamma in [ : }M
° 2 Y
0.00 B 0 N
b T Ak \
® o \ \
-0.05 + =02 % DALY NN
S \
| S s
- ooEmE-n MR-l (B---k---8---8-8
S - Ingroup imbalance 09
S g~ -
% 001 o 508 A
o =3} NN -
o 3207 g gy AN MAC =10
T -0.1 5E = - N miss =0
S 2106 g - A B---B---E-g y=-4.193
o 8 AAA- s A---A A
= 02 305
° o &Hb oA M- -g-c-= ---fA
g 0.4 P TN e a---f---f _
= High vs low ]
= r Ingroup gamma ——————————— 6 . —__.-A d) imbalance “
0.5 "t L. S g - g--_m ., in Lates
° + g 4 Rt SRRRL ] EF |
0.0 [ ] Eo 2
0.5 ¢ S o A
-U.. =
e ZEAJ x‘\\ , B---E---m---F-g
1.0 £ - sz
¢ MAC =2
S -4012345678910 0 025 05 075 1 ‘ /m%58=7(0)
A& 2 (’0 (/Q/ (2 g g . =0
N b’bc}b QISEON \;g’ S MAC threshold Missing data threshold ‘
& Hx® F S EN LR
& \%”\\\@6 E Et @ A @ Cichlids @ Lates MAC=4
@‘?‘ = (‘o@;@@o@ Outgroup | 777[5%)320_2990
& ngroup = 0.
¢ @ F A Reference Reference ¢
® @ Significant Not significant
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data threshold, reference genome choice, the interaction between missing data threshold and reference genome choice, and the interaction be-
tween MAC threshold and reference genome choice as explanatory variables, and tree height, imbalance, and gamma (y) in the RAxML-inferred
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MAC and missing data thresholds shown in (b) for the three response variables. Example trees are shown from the Lates data demonstrating the
differences between trees at the two extremes for (c) the 7y statistic, and (d) Colless” imbalance statistic. In each pair of trees, datasets differ only
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same individual between the lefthand and righthand trees. Note that in both cases, one of the species (in purple) becomes non-monophyletic

in the tree on the right, which leads to a large change in tree statistics.

Lates analyses. —In our analyses of the Lates topologies,
we found that our models explained the largest amount
of variation in the data for imbalance (pseudo-R? =
0.823), less variation for height (pseudo-R? = 0.567), and
the smallest amount of variation for  (pseudo-R? =
0.261). The MAC threshold was again an important pre-
dictor of ingroup tree height and ingroup < (Fig. 8a).
However, the relationship between MAC and both tree
height and 7y was in the opposite direction to the tro-
pheines and the simulated data: increased stringency
in the MAC filter reduced ingroup tree height and re-
duced ingroup <y values, except for a brief increase in
v at MAC = 3 (Fig. 8b). Similar to the tropheines, im-
balance decreased slightly from 0 < MAC < 2 to 3
< MAC < 5, and then increased again at MAC = 10
(Fig. 8b).

Missing data were also an important predictor of in-
group height in the Lates data, such that increasingly
stringent missing data filters resulted in shorter trees
(Fig. 8b). The reference genome choice, as well as the
interaction between reference genome and our minor
allele and missing data filters, was not an important pre-
dictor in any of our models with the Lates data (Fig. 8a;
Supplementary Table S3), although differences among

trees aligned to different reference genomes can be seen
at some filtering thresholds (Fig. 8b).

Lates trees generally clustered together in PCoA tree
space primarily based on reference genome on the first
PCoA axis and missing data on the second PCoA axis
(Fig. 4b; Supplementary Fig. 5S21b). The MAC filter only
correlated with one of the two main PCoA axes in one
of the ten Lates replicate data sets. The first two PCoA
axes combined for RAxML-inferred Lates phylogenies ex-
plained an average of 42.2% of the variation in the
data.

Filtering parameter choices tended to have a greater
influence on the characteristics of the Lates trees in-
ferred using ASTRAL than those inferred using RAxML.
The MAC threshold, missing data cutoff, and reference
genome identity all were identified as significant predic-
tors in our model for ingroup imbalance (Supplemen-
tary Table S5; Supplementary Fig. S6b). In PCoA space,
the Lates trees inferred using ASTRAL tended to cluster
based on missing data cutoff on the first PCoA axis and
MAC threshold on the second, while reference genome
was correlated with the second PCoA axis in only 2
of the 10 replicate data sets (Supplementary Fig. S21a).
The first two PCoA axes combined for ASTRAL-inferred
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Lates phylogenies explained an average of 43.2% of the
variation in the data.

DiscussioN

SNP data sets are used extensively in population ge-
nomic and phylogenomic studies, but best practices
in the bioinformatic choices made while aligning and
filtering these data remain unclear for both reduced-
representation and whole genome sequencing data sets.
There is no generally accepted analysis pipeline for
these data, and it is unclear whether a “one size fits
all” approach is warranted. Our results from a combi-
nation of simulated and empirical analyses demonstrate
how decisions made by researchers during the assem-
bly and processing of genomic data, as well as charac-
teristics of the true divergence history among taxa, in-
fluence the final data set and the inferred phylogenetic
and diversification history. We found that the value cho-
sen for minor allele filters interacts with the choice of
reference genome and total tree height (and thus ILS)
to bias phylogenetic inferences. This suggests that re-
moving rare variants by retaining only sites that have
a MAC above a certain threshold reduces phylogenetic
accuracy, particularly toward the tips of a tree. In con-
trast, missing data filters can increase the topological
accuracy of the inferred phylogenetic tree, although this
desirable behavior may be countered by an undesirable
truncation of the mutation spectrum. We also examined
the effect these parameter choices have on tree balance
and shape. In our simulations, we found that increasing
the minor allele threshold (and thereby removing rare
variants) generally reduces the accuracy of tree shape
and balance statistics: more stringent filtering results in
increased topological distances, increased imbalances,
and increased <y statistics of inferred trees compared
to the true tree. Our results complement and extend
those from other recent studies—which focused mostly
on single filtering and alignment parameters of inter-
est (e.g., Lanier et al. 2014; Huang and Knowles 2016;
Shafer et al. 2017; Molloy and Warnow 2018; Giinther
and Nettelblad 2019; Linck and Battey 2019; Prasad et al.
2021)—by demonstrating that the choice of reference
genome can also bias phylogenetic analyses, as well as
exacerbate or modify the effects of individual filtering
parameters. Furthermore, a number of these effects are
independent of the overall size of the final data sets, sug-
gesting that it is the nature of the remaining data—not
merely the volume —that biases phylogenetic inference.

Stringent Minor Allele Filters Bias Topological Inference
and Diversification Statistics

Most variation in natural populations is rare, and
rare variants are those that contain the most informa-
tion about differentiation between individuals or popu-
lations (Slatkin 1985; Nelson et al. 2012); thus it is per-
haps unsurprising that we found a clear pattern that

stringent minor allele filters bias inferred topologies.
This was true in both our full data set, and in the sub-
sampled data sets that were used to control for data set
size. Stringently filtered trees tended to be more imbal-
anced and more tip-heavy (i.e., had a less negative %)
than the true species trees. The topologies closest to that
of the true tree and with imbalance closest to that of
the true tree were at MAC 3—4. This suggests that ex-
cluding sites with very low-frequency alleles (<3 copies
across all samples in the data set, corresponding to a mi-
nor allele frequency of 1-3%) leads to more accurate re-
sults in phylogenetic analyses, likely by removing SNPs
that represent sequencing or alignment errors. How-
ever, higher thresholds remove true phylogenetic sig-
nal from the data set, reducing data quality and bi-
asing inferences toward trees that are more pectinate
than the true phylogenetic history. This suggests that
using minor allele frequency filters of 5-10% — common
thresholds in empirical studies—may be unknowningly
biasing evolutionary inferences.

In contrast to the patterns observed with imbalance
and topological accuracy, our inferred topologies had
ingroup v statistics closest to that of the true trees at
the lowest MAC thresholds (MAC = 0-2) and became
much more biased at MAC = 3—4. Our simulated trees
were created using a pure birth process, which pro-
duced vy statistics that follow a standard normal distri-
bution (with a mean ¢y = 0 and sd = 1). The magnitude
of change between phylogenies filtered with MAC =0
and MAC =10 was great enough to change -y from sig-
nificantly negative (y = —5.73) to significantly positive
(7 = 7.84; Supplementary Figs. S8-510), and the mean
absolute change in 7y was 3.28 for low ILS trees, 8.55
for medium ILS trees, and 8.02 for high ILS trees. This
suggests that the MAC filter alone could dramatically
change inferences of diversification rates through time
and, importantly, lead to incorrect macroevolutionary
inferences at high MAC thresholds.

These findings for imbalance and <y statistics follow
from theoretical expectations that recent splits in the
phylogeny have less shared variation supporting them
(i.e., more low-frequency SNPs or rare variants), and
thus are disproportionately lost when using a MAC
filter (Linck and Battey 2019). This is supported by
our findings that the majority of nodes lost due to
the minor allele filter were those with few node de-
scendants (Fig. 7a) and, therefore, less hierarchical re-
dundancy (sensu Eaton et al. 2017). The SNPs lost at
lower MAC thresholds also tended to be those with
higher mutation rates (Fig. 6). At 3 < MAC < 4, we
thus gained topological accuracy but also shortened
branch lengths near the tips of the trees, shifting the
tree’s center of gravity tipward and increasing <y esti-
mates. This process may have also driven the increase in
tree imbalance: the loss of more recently evolved SNPs
removes lineage-specific variation from nested clades,
which then may lead to more pectinate topologies. Be-
cause of where low-frequency SNPs are found in the
tree, these biases we observe in imbalance and y may

20z Jaqwiaydag Qg uo Jasn euozuy jo Alsianiun Aq Gzz0oes2/9/2/L/€ /2101 /01qsAs/wod dno olwapede//:sdiy wolj papeojumoq


https://doi.org/10.5061/dryad.djh9w0w2g

2024 RICK ET AL. - REFERENCE BIAS IN PHYLOGENOMICS 93

be particularly problematic in trees with rapid recent
divergence.

Some MAC-related bias was more apparent in our
subsampled data sets than our full simulations, suggest-
ing an effect of the overall data set size on the general
trends in our parameters of interest described above.
The most clear of these was the shape of the topologi-
cal accuracy response across MAC thresholds: the full
data sets showed a slight increase in topological accu-
racy from MAC =1-2 to MAC = 3—4 (Fig. 3b), while the
subsampled data sets showed a much more dramatic in-
crease in accuracy at MAC =34 (Fig. 5b). This suggests
that the deviation from the true tree when MAC < 2 in
the subsampled data sets may have been due to having
fewer SNPs (i.e., less data) than the full data sets, and,
therefore, the signal from any “erroneous” SNPs (e.g.,
those that result from sequencing errors) was stronger
and more likely to bias the inferred tree. Thus, filtering
out these true sequencing or alignment errors did im-
prove topological accuracy. In this way, our results sug-
gest that using a MAC filter is more important in data
sets with fewer overall SNPs, although this relationship
will need to be explored further in future studies.

These results together suggest that trade-offs exist be-
tween reducing SNP errors, improving topological ac-
curacy, and improving diversification statistic accuracy.
The general consistency observed between results for
the full data sets and results for the subsampled data
sets suggests that the numerical loss of SNPs when us-
ing more stringent filters was not the only factor driving
these patterns, but rather that there are biases in the
characteristics of the SNPs being lost. This also suggests
that caution should be used in evaluating diversification
statistics in trees inferred using heavily filtered data.
Our results echo others’ findings that filtering based on
MAC or minor allele frequency can bias population ge-
netic inferences, especially for events in the recent past
(Boitard et al. 2016; Shafer et al. 2017; Linck and Battey
2019), and provides reason for using caution when in-
terpreting macroevolutionary patterns from SNP-based
phylogenomic datasets.

Some of the patterns in our empirical data mirror
our observations from the simulations. The MAC fil-
ter also had a strong influence on the inferred topol-
ogy, tree height, and 4 for our empirical phyloge-
nies, although the patterns differed between the tro-
pheine and Lates data sets. The change in 7y with MAC
was less evident in our empirical data sets than sim-
ulated data sets; however, ingroup 7 decreased in the
Lates phylogenies, transitioning from a non-significant
7 estimate to significant and negative 7y at more strin-
gent MAC thresholds (Fig. 8b, Supplementary Fig. 515).
Thus, macroevolutionary inferences in this clade would
differ widely at different MAC thresholds (as demon-
strated in Fig. 8c). In contrast, estimates of 7 increased
slightly with increasing MAC filters in the tropheines,
although it remained significantly positive among all
MAC thresholds and thus would not change macroevo-
lutionary inferences (Fig. 8b, Supplementary Fig. S14).

Whereas imbalance for the simulated data sets in-
creased across all MAC thresholds, imbalance actually
decreased for both empirical data sets from MAC =0
to MAC = 3, and then increased again above MAC =
5 (Fig. 8b). We do not know the true value for these
data sets and cannot know whether the values we esti-
mated deviate from the true statistic. However, the con-
sistency of the observed inflection point at mid-range
MAC thresholds may suggest that these data sets are
also improved in this range. In examining the trees with
extreme 7y and imbalance statistics for the empirical data
sets, it appears that trees with the highest imbalance in-
volve non-monophyly of groups expected to be mono-
phyletic (Fig. 8d; Supplementary Fig. S4), suggesting
that these extreme values are not representative of the
true evolutionary relationships. Similarly, the trees with
extremely low < in the Lates data sets involve non-
monophyly of one of the species (Fig. 8c), suggesting
again that extreme values represent bias derived from
topological inaccuracy.

In both the subsampled data sets and the empirical
data sets, there were differences between the responses
at MAC <3 and MAC >4. In the subsampled data sets,
this was a general minimum in divergence from the
true tree, while the truth is unknown for the empiri-
cal data sets. That this threshold would be an inflection
point is not surprising: given that these are diploid data
sets, SNPs filtered at MAC = 3 but not MAC = 2 must
be shared by at least two tip taxa. Consequently, this
is the first MAC filter that must remove shared varia-
tion, rather than alleles found in only a single taxon, and
thus it is expected to have a broader influence on tree
topology and tree metrics.

Missing Data Filters Affect Diversification Statistics

In contrast to the patterns with minor allele filters in
the simulations, stringent missing data filters (i.e., those
that removed sites with lower amounts of missing data)
were associated with an improvement in the accuracy
of imbalance and 7 statistics, and had little effect on
topological accuracy. The subsampled data sets demon-
strated a clear pattern that more stringent missing data
filters resulted in imbalance and 1y statistics closer to the
true values (Fig. 5a). Our full data sets trended the same
direction, although missing data was not a statistically
significant predictor in our models (Fig. 3a).

Missing data had a stronger influence on imbalance
and 7 estimates in our empirical data sets than in our
simulated data sets. While we do not know the truth for
the empirical data sets, we found a negative relation-
ship between these two statistics and missing data for
both the Lates and the tropheines (Fig. 8). This likely re-
flects aspects of our empirical data that are not captured
in our simulations, such as biases in which sites are
most likely to have high levels of missing data (e.g., al-
lelic dropout due to restriction site mutations, which has
been incorporated in other simulation studies that find
a strong bias due to missing data; Huang and Knowles
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2016; Eaton et al. 2017). Our simulated data also had low
overall rates of missing data: an average of only 0.51% of
sites in the unfiltered simulated data had >50% missing
data (mean per-site missing data = 2.21%). In contrast,
our empirical data sets had an average of 97.0% of sites
with >50% missing data (mean per-site missing data =
94.3%). This discrepancy led to fewer sites being lost due
to missing data filters in the simulated data sets, which
then would lead to less variation between phylogenies
inferred at different missing data thresholds.

Despite the low amount of missing data present in
our simulated data sets, we did find that filtering for
missing data improved the accuracy of our imbalance
and <y estimates without much reduction in topological
accuracy. Diversification statistic inferences were most
accurate for simulated data at our most stringent thresh-
old for missing data (miss = 0.9; Supplementary Figs.
523 and S525). This suggests that the reductions in im-
balance and ¢ statistics in both of the empirical data
sets (Fig. 8b) may indicate more accurate inferences as
well. However, the difference in these statistics between
miss = 0.25 and miss = 0.90 was not great enough to
change macroevolutionary inferences based on -y or im-
balance statistics for either clade. In addition, we found
that filtering sites for missing data biased the mutation
spectrum of the retained loci by disproportionately re-
moving SNPs on loci with the highest mutation rates in
the simulation data sets (Fig. 6). Thus, the small possible
improvement in imbalance and <y accuracy may not out-
weigh the previously demonstrated drawbacks to filter-
ing stringently for missing data in real-world data sets
(e.g., Huang and Knowles 2016; Eaton et al. 2017; Chan
et al. 2020).

Reference Genome Choice Can Bias Topological Inference
and Tree Imbalance

In addition to minor allele and missing data filters
influencing the accuracy of inferred trees, our results
suggest that reference genome choice can strongly in-
fluence phylogenetic insights gained from short read
data. The difference between trees aligned to an ingroup
versus an outgroup reference genome was most evi-
dent in PCoA of RF distances among all trees that came
from the same simulated species tree, where the choice
of reference genome was correlated with the first or
second PCoA axis in the majority of analyses for both
RAXML- and ASTRAL-inferred trees (Fig. 4b; Supplemen-
tary Fig. S18). Similarly, reference genome choice was
correlated with the first or second PCoA axis for em-
pirical trees as well, although the effect was stronger
in RAXML trees than those inferred using ASTRAL. How-
ever, in PCoA tree space, there is no clear pattern for
whether the data sets aligned to the ingroup or out-
group reference genome produced trees closer to the
true tree in tree space (among all tree heights, 16.7% of
true trees were closer to trees from the ingroup refer-
ence, 16.7% of true trees were closer to those from the
ougroup reference, and 66.7% were equally close to both

ingroup and outgroup reference trees). Our models, on
the other hand, suggested that the distance to the refer-
ence genome did not have a strong influence on topo-
logical accuracy on its own in our simulated data sets.
This seeming discrepancy likely arose because absolute
RF distance to the true tree (used in our modeling) de-
scribes the one-dimensional magnitude of topological
differences, but not how a tree is different from the true
tree or whether it deviates in the same way that other
trees deviate from the true tree. In contrast, PCoAs ef-
fectively provide a two-dimensional map of tree space,
thus picking up more detail about how similar the in-
ferred trees are to one another and allowing inferences
about which trees differ from the true tree in similar
ways. In doing so, the PCoA results suggest that refer-
ence genome choice may be even more important to the
inferred topology than our modeling results are able to
detect.

Increasing the average distance of the reference
genome to the ingroup taxa increased imbalance in the
inferred topologies, although the influence of reference
genome on its own was not a significant predictor of im-
balance in any of our models. These patterns may have
arisen due to biases in the different characteristics of
loci retained when using ingroup versus outgroup refer-
ence genomes: the former are more likely to retain low-
frequency variation within the ingroup and the latter are
more likely to retain conserved regions with low mu-
tation rates (i.e., sites where the ingroup taxa are more
similar to the reference genome; Brandt et al. 2015; Ros-
Freixedes et al. 2018). The loss of low-frequency variants
within the taxa of interest when using an outgroup ref-
erence genome may lead to a lack of support for nested
clades within the phylogeny, which then leads to more
imbalanced and pectinate topologies. In addition, geno-
type calling accuracy for heterozygotes decreases with
increased distance to the reference genome (Duchen and
Salamin 2021), and it is possible that this influences our
inferred phylogenies as well.

Intriguingly, our tropheine and Lates empirical data
trended in the opposite direction, with the ingroup ref-
erence genome producing trees that were more imbal-
anced than those using the outgroup reference genome
for the RAxML trees, while ASTRAL-inferred trees tended
to be more imbalanced overall (Supplementary Fig.
527), and more imbalanced when using the outgroup
reference than the ingroup reference (Supplementary
Fig. S27). There are several possible explanations for
the discrepancies between the simulated and empirical
data in the RAxML-inferred phylogenies. First, we do not
know the true level of imbalance for the evolutionary
history for these empirical clades, and thus it is possible
that higher imbalance in the tropheines and the Lates are
less biased imbalance estimates, in which case these re-
sults would agree with our simulated data. Second, it is
possible that the different responses are related in differ-
ences in distances to the reference genomes used or re-
lated to differences in taxon sampling. For example, the
tropheine clade’s closer reference (Pundamilia nyererei)
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is not actually nested within the clade, but rather is a
more closely related outgroup than the “outgroup” ref-
erence (Oreochromis niloticus). Thus, the mean distance
to the close reference genome (Supplementary Fig. S7)
was greater in the tropheine clade (d,, = 0.161) than for
the Lates ingroup reference (d,, = 0.0669) or the simu-
lation ingroup references (d,, = 0.039). In addition, the
40-species clade of tropheines is likely to have more low-
frequency variation (i.e., rare variants) captured than
the 4-species clade of Lates—and both of these sampling
structures differ from our simulations, where we simu-
lated each tip as an individual taxon. An extensive body
of work already exists on biases introduced via taxon
sampling choices (e.g., Zwickl and Hillis 2002; Heath,
Zwickl, et al. 2008b; Cusimano and Renner 2010; Brock
et al. 2011; Hohna et al. 2011), and our results indi-
cate that the choice of reference genome may interact
with taxon sampling schemes to bias phylogenetic in-
ferences and diversification statistics. We did find that
there is a smaller difference in the mean number of SNPs
retained between data sets aligned to the close versus
distant reference genomes for the tropheine clade (dif-
ference in means = 9552 SNPs, with more SNPs retained
with the close reference; Supplementary Fig. 529) than
in the Lates clade (difference in means = 57,643 SNPs,
with more SNPs retained with the outgroup reference).
These differences in number of SNPs may indicate dif-
ferences in the characteristics of SNPs retained as well.
While we did not detect differences in mutation spec-
tra retained in outgroup versus ingroup data sets, these
patterns warrant further investigation.

Finally, it is also possible that reference genome
quality —not just distance —systematically affects phy-
logenetic inferences, such that more complete reference
genomes retain more SNPs or that more fragmented
genomes tend to retain more conserved variation. The
distant reference genomes used in our empirical analy-
ses here were both chromosome-level assemblies (L. cal-
carifer, 24 chromosomes; O. niloticus, 22 chromosomes),
while the close reference assemblies are not yet assem-
bled into complete chromosomes (L. mariae, 1154 scaf-
folds; P. nyererei, 7236 scaffolds). This pattern —having
a distant, well-assembled genome and a closer, more
fragmented genome available —is common when mak-
ing the choice between a close versus distantly related
reference genome. Thus some of the effect of refer-
ence genome distance that we observe in our empiri-
cal analyses (and perhaps some of the differences be-
tween our empirical and simulation results) may be
linked to assembly completeness. While genome qual-
ity does not appear to bias population genomic demo-
graphic reconstruction methods (Patton et al. 2019), it re-
mains unclear whether phylogenetic inferences are sim-
ilarly unaffected —although this is not something that
we were able to test explicitly with our analyses.

If multiple reference genome choices are available,
one way to potentially mitigate the bias introduced due
to reference genome choice may be to map reads to

multiple reference genomes. This approach is recom-
mended by Bertels et al. (2014), who found that the
choice of reference taxon affected the percentage of
incorrect topologies in their simulations, but demon-
strated that this bias was reduced by replicating anal-
yses over multiple reference genomes. Our results sup-
port this recommendation, as mapping to multiple ref-
erence genomes allows an exploration of how the topol-
ogy changes when the data are aligned to one reference
versus another. Another promising possibility to reduce
the biases demonstrated here may be using multiple ref-
erences to create a “pseudogenome” for the species of
interest (Huang et al. 2014), as demonstrated in Sarver
et al. (2017). By generating a pseudogenome based on
multiple possible references or by incorporating varia-
tion from multiple individuals into a reference assem-
bly (such as with a pangenome; Eizenga et al. 2020),
reference-based mapping biases may be reduced, partic-
ularly when there is great variation among focal species
in their phylogenetic distance to the possible reference
genomes. Both of these options are increasingly possi-
ble due to the acceleration in genome sequencing for
non-model taxa (Hotaling et al. 2021; Rhie et al. 2021;
Formenti et al. 2022). However, not every clade of in-
terest will have multiple reasonable reference genome
options. In this case, our results can be used to inform
filtering practices: stringent filtering thresholds (partic-
ularly for MAC) will bias the results more when using a
distant reference genome than when using an ingroup
(or closely related) reference genome.

Magnitude of Bioinformatic Biases Depend on Interactions
and the True Divergence History

No bioinformatic choice is made in isolation, and
our results demonstrate that the magnitude of bias in-
troduced by each decision depends both on the true
evolutionary history of the clade of interest and on in-
teractions among bioinformatic choices. Generally, our
longest RAxML-inferred trees were the most resistant to
filtering-related deviations in topology and imbalance
(Figs. 3b and 5b), suggesting that trees with low ILS
are the least prone to bias arising from bioinformatic
choices. In these longer trees, larger internode distances
mean that there are more redundant SNPs supporting
each split in the tree and more time for lineage sort-
ing to occur among ancestral polymorphisms, and this
redundancy may allow for correct inferences despite bi-
ased patterns to the loss of SNPs. The low ILS trees,
however, were also generally further from the true v
statistic than medium or high ILS trees, despite also
having more consistent *y statistics across MAC thresh-
olds (Figs. 3b and 5b). The deviation in 7 at low MAC
thresholds for low ILS trees may be due to proportion-
ally more SNPs occurring—and also being lost—along
the tip branches in the low ILS trees, but more work is
needed to interrogate this effect.

The greatest difference observed between RAxML- and
ASTRAL-inferred trees in our simulations was in how
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the low ILS data sets performed at high MAC thresh-
olds. While high and medium ILS trees showed simi-
lar patterns across both MAC and missing data thresh-
olds, ASTRAL inferred much more inaccurate trees at
high MAC thresholds for the low ILS trees, as mea-
sured by all 3 topological distance measures (Supple-
mentary Fig. 526a—f). For imbalance measures, ASTRAL-
inferred trees were closer to the true tree imbalance at
high MAC thresholds than their RAxML-inferred counter-
parts across all 3 tree heights (Supplementary Fig. 526g—
j)- While other results were largely concordant among
inference methods, these differences suggest that the
choice of inference method can additionally interact
with the clade history, alignment choices, and filtering
choices, to influence evolutionary interpretations. It is
possible that the poorer performance of ASTRAL at high
MAC thresholds is due to low numbers of SNPs per lo-
cus leading to loss of signal among gene trees, which
then leads to poor inference of species trees. Thus, de-
spite species tree methods being ILS-aware and gener-
ally performing better than concatenation methods for
data sets with high ILS, our results suggest that they are
not a solution to mitigating all of the biases found in our
study.

Our 2 empirical data sets, which had different
amounts of gene tree incongruence, different imbal-
ances, and different diversification histories, demon-
strate how these bioinformatic filters can interact with
a clade’s evolutionary history to influence phylogenetic
inference. Overall, we saw much more dramatic re-
sponses in tree characteristics in the Lates trees (partic-
ularly tree height and v; Fig. 8b) than in the tropheine
trees across minor allele thresholds, while missing data
had a greater effect on the tropheine trees than the Lates
(particularly for tree height and -y; Fig. 8b). While we do
not know the “true” statistics for the empirical analyses,
we found that v, imbalance, and overall tree height all
showed an inflection point around MAC = 3-4, as was
the case with our simulated data. However, the shape
of these statistics’ responses to MAC across this inflec-
tion point differed between the tropheine, Lates, and
simulated trees (Figs. 3b, 5b, and 8b). In the Lates analy-
ses, the highest 7y values were at moderate minor allele
and moderate missing data thresholds. In the tropheine
data set, on the other hand, 7 increased slightly with
increasing minor allele thresholds and decreased with
increasing missing data thresholds.

These interactions suggest that the best filtering
scheme will differ for data and clades with differ-
ent characteristics (e.g., the rapidity of diversification
within the clade, the amount of incomplete lineage
sorting, the level of missing data or sequencing errors
within the data set, and the overall size of the SNP data
set). With smaller data sets and data sets with higher lev-
els of ILS, moderate minor allele filters (i.e., MAC = 3-4)
likely improve topological inferences, but higher minor
allele filters (i.e., MAC >5) will then reduce the accuracy
of inference. However, in trees with low levels of ILS,
little topological accuracy is gained with shifting from

low (MAC = 0-2) to moderate (MAC = 3-4) minor al-
lele filters. When using an outgroup reference, stringent
MAC filters will have a stronger effect in reducing the
accuracy of inferences, while those same stringent MAC
filters may result in more accurate trees when using an
ingroup reference.

It is also worth noting that our simulations only in-
cluded trees simulated under an equal-rates Yule model
(with equal speciation rates and zero extinction across
all lineages), resulting in balanced topologies with a true
7 = 0. In clades with true divergence histories that are
more pectinate or have a higher or lower center of grav-
ity, it is possible that differences in the distribution of
SNPs across the tree may cause response patterns to
differ. Similarly, imbalanced taxon sampling across the
topology (e.g., clustered sampling) may also affect the
way that a data set responds to bioinformatic choices,
and thus it will be important to investigate these pat-
terns across a variety of different tree shapes to un-
derstand our ability to generalize these results. While
we did not explicitly test uneven taxon sampling here,
an extensive body of work already exists on biases in-
troduced via taxon sampling choices (e.g., Zwickl and
Hillis 2002; Heath, Zwick], et al. 2008b; Cusimano and
Renner 2010; Brock et al. 2011; Hohna et al. 2011), and
our results indicate that the choice of reference genome
may interact with taxon sampling schemes to bias phy-
logenetic inferences and diversification statistics. It is
also possible that linkage among SNPs—or filtering to
reduce linkage—may affect phylogenetic inferences in
empirical datasets, although testing this effect was be-
yond the scope of our simulations.

Conclusions and Recommendations

Our results suggest that stringent bioinformatic filters
tend to reduce the accuracy of phylogenetic analyses
and should therefore be used with caution. However,
best practices for filtering will depend on the specifics
of the divergence history of a clade and the reference
genome(s) available for short read alignment. In par-
ticular, the rapidity of diversification within a clade is
predictive of the sensitivity of phylogenetic analyses to
biases introduced by minor allele and missing data fil-
ters, such that trees with greater gene tree incongru-
ence require these filters to improve inferences, but also
show the most bias compared to the true topologies
and true diversification statistics as filter stringency in-
creases. While the patterns differed slightly depending
on the phylogenetic inference method used, the biases
observed are not completely mitigated by using ILS-
aware species tree methods in place of concatenation-
based inferences, and in fact may be exacerbated when
using species tree methods for clades with low gene
tree incongruence. In addition, we find that data aligned
to more distant reference genomes are more sensitive
to stringent filtering parameters. We further demon-
strate that minor allele filters greater than ~4% reduce
topological accuracy in our 51-taxon phylogenies and
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increase both imbalance and 7 statistics, suggesting that
they are removing important signal above this thresh-
old rather than only removing sequencing or alignment
errors. Thus, our analyses support other recommenda-
tions suggesting that filtering for a MAC of 3 allows for
removing true sequencing errors without removing true
signal in the data in most situations (e.g., Rochette et al.
2019; Rivera-Colén and Catchen 2022; O’Leary et al.
2018). The use of minor allele filters of 5% or higher is
common in many empirical studies; these high thresh-
olds may be inadvertently biasing downstream results
in these studies.

Intriguingly, we also demonstrate that the best fil-
tering scheme for producing an accurate topology and
imbalance statistic may differ from the optimal scheme
for accurate 7 inference. While it may seem counter-
intuitive, topology, imbalance, and <y can all vary in-
dependently (Supplementary Figs. S30-532), and thus
the optimal filtering scheme likely differs depending on
the intended downstream inferences. Although these
general patterns are clear from our simulation results,
we recommend that researchers still replicate their own
analyses over a series of bioinformatic parameter com-
binations to ensure that results are in agreement across
arange of bioinformatic choices. While our results make
clear that reference genome choice and bioinformatic fil-
ters can bias phylogenetic inferences and downstream
macroevolutionary interpretations, the increasing avail-
ability of reference-quality genomes makes it possible
to implement multiple alignment and filtering schemes
to assess the effect that each choice has for the research
question of interest. We encourage careful assessment of
these choices in empirical data sets.
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