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Abstract
Higher order finite difference Weighted Essentially Non-oscillatory (WENO) schemes for 
conservation laws represent a technology that has been reasonably consolidated. They are 
extremely popular because, when applied to multidimensional problems, they offer high 
order accuracy at a fraction of the cost of finite volume WENO or DG schemes. They come 
in two flavors. There is the classical finite difference WENO (FD-WENO) method (Shu 
and Osher in J. Comput. Phys. 83: 32–78, 1989). However, in recent years there is also an 
alternative finite difference WENO (AFD-WENO) method which has recently been for-
malized into a very useful general-purpose algorithm for conservation laws (Balsara et al. 
in Efficient alternative finite difference WENO schemes for hyperbolic conservation laws, 
submitted to CAMC, 2023). However, the FD-WENO algorithm has only very recently 
been formulated for hyperbolic systems with non-conservative products (Balsara et al. in 
Efficient finite difference WENO scheme for hyperbolic systems with non-conservative 
products, to appear CAMC, 2023). In this paper, we show that there are substantial advan-
tages in obtaining an AFD-WENO algorithm for hyperbolic systems with non-conservative 
products. Such an algorithm is documented in this paper. We present an AFD-WENO for-
mulation in a fluctuation form that is carefully engineered to retrieve the flux form when 
that is warranted and nevertheless extends to non-conservative products. The method is 
flexible because it allows any Riemann solver to be used. The formulation we arrive at is 
such that when non-conservative products are absent it reverts exactly to the formulation in 
the second citation above which is in the exact flux conservation form. The ability to transi-
tion to a precise conservation form when non-conservative products are absent ensures, via 
the Lax-Wendroff theorem, that shock locations will be exactly captured by the method. 
We present two formulations of AFD-WENO that can be used with hyperbolic systems 
with non-conservative products and stiff source terms with slightly differing computational 
complexities. The speeds of our new AFD-WENO schemes are compared to the speed of 
the classical FD-WENO algorithm from the first of the above-cited papers. At all orders, 
AFD-WENO outperforms FD-WENO. We also show a very desirable result that higher 
order variants of AFD-WENO schemes do not cost that much more than their lower order 
variants. This is because the larger number of floating point operations associated with 
larger stencils is almost very efficiently amortized by the CPU when the AFD-WENO code 
is designed to be cache friendly. This should have great, and very beneficial, implications 
for the role of our AFD-WENO schemes in the Peta- and Exascale computing. We apply 
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the method to several stringent test problems drawn from the Baer-Nunziato system, two-
layer shallow water equations, and the multicomponent debris flow. The method meets its 
design accuracy for the smooth flow and can handle stringent problems in one and multi-
ple dimensions. Because of the pointwise nature of its update, AFD-WENO for hyperbolic 
systems with non-conservative products is also shown to be a very efficient performer on 
problems with stiff source terms.

Keywords  Hyperbolic PDEs · Numerical schemes · Conservation laws · Stiff source 
terms · Finite difference WENO

Mathematics Subject Classification  65M06 · 65M22 · 65N06 · 35Q35 · 76T10 · 76M20

1  Introduction

In a landmark paper, Harten et al. [27] developed finite volume Essentially Non-Oscilla-
tory (ENO) schemes which could evolve conservation laws with better than second order 
of accuracy. Soon thereafter, Shu and Osher [43, 44] developed finite difference versions 
of ENO schemes which were substantially faster than their finite volume counterparts in 
multi-dimensions. Early versions of ENO schemes suffered from the deficiency that rapid 
switching of the stencils could diminish the order of accuracy. Weighted Essentially Non-
Oscillatory (WENO) schemes overcame this deficiency by making a non-linearly hybrid-
ized weighting of the reconstruction polynomials from multiple stencils (Liu et  al. [33], 
Jiang and Shu [30]). The methods were extended to the seventh, ninth, and eleventh orders 
by Balsara and Shu [11] and much later to seventeenth order by Gerolymos et  al. [26]. 
Some of the early deficiencies of WENO schemes stemmed from a loss of accuracy at criti-
cal points, and a way out of this problem was presented in Henrick et al. [28], Borges et al. 
[12], and Castro et al. [13]. For a comprehensive review of WENO schemes, see Shu [41, 
42].

For a long time now, progress on finite difference WENO schemes has focused on 
improving their performance for hyperbolic systems of conservation laws. The original 
approach by Shu and Osher [43, 44] was based on making a flux vector splitting of the LLF 
flux into left- and right-going contributions and then carrying out an upwinded reconstruc-
tion of those fluxes. However, in recent years, newer hyperbolic PDE systems have come to 
be of interest which have non-conservative products. As a result, it is very desirable to have 
efficient finite difference WENO methods that can evolve hyperbolic systems with non-
conservative products. In the literature, the update of PDEs with non-conservative products 
is mainly done in a fluctuation form, which is quite different from a flux form. Since the 
original Shu and Osher [43, 44] formulation of the finite difference WENO was based on a 
flux form, it is understandable that the extension to the fluctuation form must have seemed 
difficult. As far as we know, the first effort to produce a finite difference WENO scheme 
for treating hyperbolic systems with non-conservative products was made by Balsara et al. 
[5]. The method we presented was cast in a fluctuation form and was, therefore, capable 
of treating PDEs that are in the conservation form as well as PDEs with non-conservative 
products. The problem with a fluctuation form is that unless one engineers the situation 
perfectly it is hard to retrieve a flux conservative form from a fluctuation form. Thanks to 
the high accuracy of the WENO methods, we were able to show that the method in Balsara 
et al. [5] was effectively conservative for all intents and purposes. In other words, even if a 



Communications on Applied Mathematics and Computation	

1 3

problem was dominated by strong shocks, the conservation was preserved to a high level of 
accuracy in all situations where it should have been preserved. However, the method was 
not exactly conservative down to the machine accuracy. In this paper we precisely engineer 
the transcription from the flux form to the non-conservative form and vice versa. Conse-
quently, this paper presents the first finite difference WENO methods that are exactly con-
servative, i.e., they retain a flux form, when the conservation is warranted; but the methods 
presented here can nevertheless handle PDEs with non-conservative products.

The paper by Shu and Osher [44] contained a thorough description of the classical finite 
difference WENO (FD-WENO) that has by now become very successful and extremely 
well known. This well-known FD-WENO formulation is based on the aforementioned flux 
vector splitting. However, the first paper by Shu and Osher [43] also contained the descrip-
tion of another alternative finite difference WENO (AFD-WENO) algorithm that was not 
followed up to any significant extent later, until quite recently. A paper by Merriman [34] 
made some headway in clarifying the AFD-WENO algorithm. Jiang et al. [29] labeled the 
AFD-WENO algorithm in Shu and Osher [43] as the “alternative formulation of the finite 
difference WENO scheme”. (To explain further, it is an alternative algorithm to the orig-
inal, well-known and well-used finite difference WENO algorithm from Shu and Osher 
[44].) Interest in AFD-WENO has been sporadic (Jiang et al. [29, 31], Zheng et al. [49], 
Gao et al. [25]). In Balsara et al. [6] we presented an AFD-WENO formulation for hyper-
bolic conservation laws that overcame its three major weaknesses. First, it was shown that 
the entire algorithm in the conservation form could be derived by using a computer algebra 
system, which demystifies the derivation of the equations. Second, AFD-WENO relies on 
WENO interpolation rather than on the much better known WENO reconstruction. There-
fore, in Balsara et al. [6] we provided all the explicit formulae needed for implementing 
AFD-WENO with the use of the WENO interpolation. Third, the AFD-WENO algorithm 
requires higher order derivatives of the fluxes to be available at zone boundaries. Since 
those derivatives are usually obtained by finite differencing the zone-centered fluxes, they 
can become a source of spurious oscillations when the solution is non-smooth. However, 
please note that the inclusion of those fluxes is also crucially important for preserving the 
order property when the solution is smooth. Balsara et  al. [6] invented a novel WENO 
interpolation which takes the first derivatives of the fluxes at zone centers as its inputs and 
returns the requisite non-linearly hybridized higher order derivatives of flux-like terms at 
the zone boundaries as its output. This non-linear hybridization stabilizes the evaluation 
of the higher derivatives of the fluxes at zone boundaries. Removal of these three barriers 
makes the implementation of AFD-WENO for conservation laws much more accessible to 
the greater community.

A good formulation of AFD-WENO has many desirable traits. In recent years we have 
seen many different Riemann solvers emerge which have special attributes that make them 
very useful in various application areas. Those Riemann solvers do not fit well into the 
strictures of classical FD-WENO because of its focus on reconstructing the fluxes. The 
AFD-WENO algorithm is free of such strictures—any type of Riemann solver can be 
invoked in a pointwise fashion at the zone boundaries. This makes a well-designed AFD-
WENO very broadly applicable to many application areas. Classical FD-WENO also does 
not take well to preserving the free stream condition on curvilinear meshes; whereas AFD-
WENO can indeed take well to curvilinear meshes (Jiang et al. [29, 31]). As a result, we 
see that it would be very desirable to arrive at an AFD-WENO formulation in the fluc-
tuation form that is carefully engineered to retrieve the flux form when that is warranted 
and nevertheless extends to non-conservative products. The method we arrive at is such 
that when non-conservative products are absent it reverts exactly to the method in Balsara 



	 Communications on Applied Mathematics and Computation

1 3

et al. [6] which is in the exact conservation form. Arriving at such a formulation for AFD-
WENO is indeed the primary goal of this paper. Because the method reverts to the algo-
rithm in Balsara et al. [6] when non-conservative products are absent, we do not display 
any results from conservation laws in this paper. Also note that the ability to transition to 
a precise flux conservation form when non-conservative products are absent ensures, via 
the Lax-Wendroff theorem, that shock locations will be exactly captured by the method. 
For many hyperbolic systems some of the components of the solution vector are in the flux 
conservation form while other components might be affected by non-conservative prod-
ucts. In such situations, the AFD-WENO algorithm in this paper is so designed that the 
components of the solution vector that are in the conservation form will indeed be evolved 
by the scheme in a fully conservative fashion. For this reason, all the examples that we 
will present in the later sections will consist of hyperbolic systems with at least some non-
conservative products. When non-conservative products are completely absent, the AFD-
WENO scheme we present here will perform identically to the AFD-WENO scheme in 
Balsara et al. [6]. In that paper, we show numerous examples that are drawn from several 
different conservation laws.

Section  2 derives the AFD-WENO for hyperbolic systems with non-conservative 
products. Section  3 provides further detail for evaluating the non-conservative products 
in a stable but nevertheless higher order fashion. Section 4 provides a pointwise plan for 
implementing the algorithm. Section  5 presents the accuracy analysis, showing that the 
method meets its design accuracy. It also provides a speed comparison of different finite 
difference WENO formulations. Section 6 shows one-dimensional tests. Section 7 presents 
multidimensional tests. Section 8 shows that the method takes well to hyperbolic systems 
that have non-conservative products as well as stiff source terms. Section 9 presents some 
conclusions.

2 � Deriving AFD‑WENO for Hyperbolic Systems with Non‑conservative 
Products

AFD-WENO for conservation laws, along with the reconstruction strategies that support it, 
has been described extensively in Balsara et al. [6]. We consider that paper to be a back-
ground paper for this paper. A majority of hyperbolic systems with non-conservative prod-
ucts will have some components of the solution vector that are indeed in the conservation 
form while the remaining components of the solution vector may have non-conservative 
products. In this section, we wish to arrive at a scheme that retains the conservation form 
for the conserved components while fully accommodating the non-conservative products. 
In Sect. 2.1, we give some background on AFD-WENO schemes. In Sect. 2.2, we present 
a strategy for transitioning from a hyperbolic PDE in the conservation form to a PDE with 
non-conservative products. In Sect.  2.3, we show how we use this strategy to derive an 
update strategy for AFD-WENO that is naturally conservative for those components of the 
hyperbolic PDE that are in the conservation form and can simultaneously accommodate a 
PDE that might have some non-conservative products.

2.1 � AFD‑WENO for PDEs in Conservation Form

Let us start by recalling that classical FD-WENO of the type described in Jiang and Shu 
[30] or Balsara and Shu [11] relies on a fundamental trick that was invented in Shu and 
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Osher [43]. The trick consists of realizing that if one applies reconstruction to a smooth 
(Lipschitz continuous) flux then the finite difference scheme just reduces to a dimension-
by-dimension reconstruction applied to the right- and left-going components of a numeri-
cal flux. Traditionally, the Locally Lax-Friedrichs (LLF) flux splitting is used for this. 
Despite the convenience and simplicity of traditional FD-WENO, it turns out that many 
popular Riemann solvers are not amenable to such a flux splitting. For this reason, sub-
sequent attention has focused on another less-used idea from Shu and Osher [43] which 
was subsequently elaborated on by Merriman [34]. The idea consists of realizing that one 
can use any pointwise Riemann solver at zone boundaries as long as one can add higher 
order flux derivatives at zone boundaries to restore the high order pointwise accuracy at 
the zone centers of the overall finite difference WENO scheme. This scheme is referred 
to as Alternative Finite Difference WENO, or AFD-WENO (Jiang et  al. [29]). In AFD-
WENO one can apply any type of the Riemann solver at zone boundaries, making the 
method more flexible for different uses. For example, low cost Riemann solvers, like the 
HLLI Riemann solver of Dumbser and Balsara [19] which accurately preserves all station-
ary linearly degenerate discontinuities, can also be used. AFD-WENO schemes can also 
retain accuracy on body fitted curvilinear meshes where the preservation of the free stream 
condition seems to be beyond the capabilities of classical FD-WENO (Jiang et al. [31]). A 
corollary of AFD-WENO is that it is not based on the dimension-by-dimension finite vol-
ume reconstruction of the upwinded fluxes but rather on a dimension-by-dimension point-
wise interpolation of the conserved variables. This distinction between reconstruction and 
interpolation is very important. In Balsara et al. [8] several WENO reconstruction formulae 
at different orders have been provided that are useful for classical FD-WENO. In Balsara 
et al. [6] analogous pointwise WENO interpolation formulae have been provided at differ-
ent orders for use in AFD-WENO.

We start by writing an AFD-WENO scheme for a conservation law. We focus on the 
solution of a one-dimensional PDE system given by

Let us establish some notation. Please see Fig. 1. It shows a small section of the mesh func-
tion in a few adjacent zones. The zones are labeled by “ i − 1, i, i + 1 ”, etc. and their zone cent-
ers are denoted by “ xi−1, xi, xi+1 ”, etc. The zone boundaries of each zone “i” are denoted by 
“ xi−1∕2 ” and “ xi+1∕2 ” with Δx = xi+1∕2 − xi−1∕2 being a constant because we have assumed a 
uniform mesh. The associated mesh functions are specified in the pointwise fashion at the 
zone centers and are labeled by “ �i−1,�i,�i+1 ”, etc. Here “U” is a vector of primal variables 
for the hyperbolic PDE that we are considering. For the moment we consider a one-dimen-
sional mesh, but because this is a finite difference scheme, the method can be extended dimen-
sion-by-dimension to multiple dimensions. Using our familiar WENO-AO interpolation strat-
egy, as applied to the point values of the mesh function, we can obtain a suitably high order 
interpolation within each zone. (The “AO” in WENO-AO stands for adaptive order, Balsara 
et al. [8]. See also Balsara et al. [5, 7, 9] for additional insights.) The interpolation within zone 
“i” gives us interpolated values of the mesh function, �̂−

i+1∕2
 and �̂+

i−1∕2
 , at the right and left 

boundaries of the zone being considered, see Fig. 1. We will use a caret to denote such inter-
polated variables. Note that �̂−

i+1∕2
 is available at the left side of the zone boundary xi+1∕2 and 

�̂
+
i−1∕2

 is available at the right side of the zone boundary xi−1∕2 . Doing the same in zone “i + 1”, 
we obtain �̂+

i+1∕2
 at the right side of the zone boundary xi+1∕2 . Similarly from zone “i − 1”, we 

obtain �̂−
i−1∕2

 at the left side of the zone boundary xi−1∕2 . We assume that a Riemann solver 

(1)�t� + �x� = 0.
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with left and right states given by �̂−
i+1∕2

 and �̂+
i+1∕2

 is applied at the zone boundary xi+1∕2 and 
it yields a resolved state �∗

i+1∕2
 that overlies the zone boundary, as seen in Fig. 1. Because we 

wish to eventually work with systems that have non-conservative products, we can use the 
resolved state, and the structure of the Riemann fan, to obtain left- and right-going fluctuations 
at that zone boundary. We denote those fluctuations by �∗−

(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 and 

�∗+
(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 , respectively. (When non-conservative products are absent, these fluctu-

ations carry an amount of upwinding-related information that is comparable to a resolved flux 
which we denote by �∗

(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 .) Likewise, we assume that a Riemann solver with 

left and right states given by �̂−
i−1∕2

 and �̂+
i−1∕2

 is applied at the zone boundary xi−1∕2 and it 
produces left- and right-going fluctuations at that zone boundary which are denoted by 
�∗−

(
�̂

−
i−1∕2

, �̂+
i−1∕2

)
 and �∗+

(
�̂

−
i−1∕2

, �̂+
i−1∕2

)
 , respectively. (When non-conservative prod-

ucts are absent, these fluctuations carry an amount of upwinding-related information that is 
comparable to a resolved flux which we denote by �∗

(
�̂

−
i−1∕2

, �̂+
i−1∕2

)
 .) One of the advantages 

of the AFD-WENO algorithm is that it is agnostic to the type of Riemann solver that is used. 
This completes our description of Fig. 1.

Let us start from a simpler starting point by considering a hyperbolic conservation law, 
see Eq. (1). The discrete in space but continuous in time update equation for the AFD-WENO 
scheme can then be written as

Fig. 1   Part of the mesh around zone “i”. The mesh functions are collocated at the zone centers, as shown 
by the thick dots. The zone boundaries are shown by the vertical lines. The figure also shows the stencils 
associated with the zone “i” for the third- and fifth-order pointwise WENO-AO interpolation strategies. 
We have three smaller third-order stencils and a large fifth-order stencil. For third-order WENO-AO, only 
the three smaller stencils are used, whereas the larger stencil is also used for fifth-order WENO-AO. The 
interpolated variables at the zone boundaries are shown with a caret. The variables with a superscript star 
are resolved states obtained by the pointwise application of a Riemann solver at the zone boundaries. The 
process described here can also be adapted for Multiresolution WENO interpolation
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The above equation was originally set down in Shu and Osher [43] but those who want a 
simpler computer algebra system-based derivation of it with more explanations can also 
see Balsara et al. [6]. The first curly bracket of Eq. (2) would yield a scheme whose accu-
racy is restricted to second order. The higher order flux derivatives are needed for raising 
the accuracy of the update equation to its design accuracy. The black flux derivative terms 
( 
[
�2
x
�
]
i+1∕2

 and 
[
�2
x
�
]
i−1∕2

 ) in the above equation yield a third-order scheme. In that case, 
these second derivatives have to be third-order accurate. If the red flux derivative terms 
( 
[
�4
x
�
]
i+1∕2

 and 
[
�4
x
�
]
i−1∕2

 ) are also included, in addition to the black terms, the scheme 
becomes fifth-order accurate. In that case, all the applicable derivatives have to be fifth-
order accurate. If the blue flux derivative terms ( 

[
�6
x
�
]
i+1∕2

 and 
[
�6
x
�
]
i−1∕2

 ) are also included, 
in addition to the black and red terms, we get a seventh-order scheme. In that case, all the 
applicable derivatives have to be seventh-order accurate. If the magenta flux derivative 
terms ( 

[
�8
x
�
]
i+1∕2

 and 
[
�8
x
�
]
i−1∕2

 ) are included, in addition to the black, red, and blue terms, 
we get a ninth-order scheme. In that case, all the applicable derivatives have to be ninth-
order accurate. We will retain this coloring scheme in all subsequent equations that 
describe the update equation for this scheme. Equation (2) is to be used to derive an AFD-
WENO scheme that can include hyperbolic systems with non-conservative products. At 
this stage of the discussion in this paper, we do not specify how the higher derivatives of 
the flux are to be obtained. For that reason, we keep the notation for the higher derivatives 
of the flux somewhat relaxed. We will tighten up the notation once we get to the part where 
the algorithmic aspects are to be discussed.

Please observe that Eq. (2) is in the flux form and should, therefore, be able to capture 
shocks accurately. The first line in Eq. (2) comes from applying Riemann solvers at zone 
boundaries. These Riemann solvers contain the stabilization, i.e., the numerical dissipa-
tion, that is needed for handling discontinuous solutions. However, if only the first line 
in Eq.  (2) is used, the scheme would be restricted to the second order of accuracy. The 
subsequent higher order derivatives of the flux in Eq. (2) are indeed essential for restoring 
higher order accuracy to Eq. (2). It should also be noted that the higher order derivatives 
can cause Gibbs oscillation and should only be used when the solution is smooth. We see, 
therefore, that the higher order derivatives of the flux in Eq.  (2) constitute a two-edged 
sword. When the solution is smooth, they are needed for higher order accuracy. But, when 
the solution is non-smooth, their suppression is needed for the numerical stabilization of 
the AFD-WENO scheme. In Balsara et al. [6] a variant of WENO interpolation was pre-
sented which can take the zone-centered point values of the fluxes as input and return non-
linearly hybridized values of the higher derivatives of the fluxes at the zone boundaries. It 
was found that this interpolation was very useful in retaining the high order accuracy when 

(2)
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it is justified but nevertheless avoiding spurious numerical oscillations from developing in 
the vicinity of non-smooth solutions. This completes our broad-brush description of the 
AFD-WENO scheme for conservation laws.

2.2 � Insight on Transitioning to Hyperbolic PDEs with Non‑conservative Products

Let us begin with the same conservation law as in Eq. (1) but write it as

The subscripts “C” and “NC” indicate that in the upcoming discussion we will treat the 
flux �C(�) in the conservation form and we will write �NC(�) as if it is only available as a 
non-conservative product. We can now write the characteristic matrix as

As a result, the hyperbolic PDE system in Eq. (3) can be written in any of three equiva-
lent forms:

It is the last form of Eq. (5) that gives us the essential insight because it looks exactly 
like a general hyperbolic PDE system that has some non-conservative products, which we 
write as

Compared to the last Eq. (5), we have obtained Eq. (6) by just erasing the “C” subscript 
for the flux. This is going to be our strategy for starting with Eq. (2) and recasting it in a 
form that accommodates non-conservative products.

2.3 � Deriving an AFD‑WENO Scheme with a Conservative Limit 
and also Accommodation for Non‑conservative Products

There is a good physics-based reason for wanting to write the final numerical update of 
Eq. (6) in the fluctuation form. It stems from the fact that the matrix “A” does have real 
eigenvectors and a complete set of eigenvalues; but it cannot be guaranteed that the matri-
ces “B” and “C” have real eigenvalues or a complete set of eigenvectors. As a result, when 
non-conservative products are present, the fluctuation form is the only way to go. Many 
Riemann solvers for conservation laws have been formulated so that they can be written in 
the flux form or an entirely equivalent fluctuation form that respects conservation. Many of 
those Riemann solvers have been extended so that they can provide a fluctuation form even 
when non-conservative products are present.

(3)�t� + �x� = 0 with the flux splitting �(�) = �C(�) + �NC(�).

(4)
�(�) =

�
(
�
C(�) + �

NC(�)
)

��
= �(�) + �(�) with

�(�) ≡
��

C(�)

��
and �(�) ≡

��
NC(�)

��
.

(5)�t� + �x�(�) = 0 ⇔ �t� + �(�)�x� = 0 ⇔ �t� + �x�C(�) + �(�)�x� = 0.

(6)�t� + �x�(�) + �(�)�x� = 0.
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When the hyperbolic PDE is in the conservation form, it can be written in an entirely 
equivalent fluctuation form. However, the previous paragraph shows us that once we have 
obtained a fluctuation form, we can use it also for a hyperbolic system with non-conserva-
tive products. To that end, let us write the fluctuation form for the left-going fluctuations at 
the zone boundary “ i + 1∕2 ” as

We can also write the fluctuation form for the right-going fluctuations at the zone 
boundary “ i − 1∕2 ” as

We should recall �(�) = �C(�) + �NC(�) and its usage in the above two equations. To 
arrive at our derivation, let us simply replace the resolved flux terms (the ones with the star 
superscripts) in the first curly bracket Eq. (2) with the fluctuation terms from Eqs. (7) and 
(8). From Eq. (2), we get

Now we realize that the −
{
�C

(
�̂

−
i+1∕2

)
− �C

(
�̂

+
i−1∕2

)}/
Δx term, along with the fluc-

tuation term −
{
�∗−

(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
+ �∗+

(
�̂

−
i−1∕2

, �̂+
i−1∕2

)}/
Δx , in the above equation 

will give us a very nice conservation property for those components of the hyperbolic PDE 
that are genuinely in the conservation form. For that reason, we leave those terms as they 
are. However, in our current philosophy, the term −

{
�NC

(
�̂

−
i+1∕2

)
− �NC

(
�̂

+
i−1∕2

)}/
Δx 

is just a placeholder for a non-conservative product and it will eventually have to be repre-
sented in terms of the matrix of non-conservative products “C” in Eq. (9). To that end, we 
perform a Taylor series expansion for the placeholder term and write it as follows:

(7)
�

∗−
(
�̂

−
i+1∕2

, �̂
+
i+1∕2

)
= �

∗
(
�̂

−
i+1∕2

, �̂
+
i+1∕2

)
− �

(
�̂

−
i+1∕2

)

⇒�
∗
(
�̂

−
i+1∕2

, �̂
+
i+1∕2

)
= �

∗−
(
�̂

−
i+1∕2

, �̂
+
i+1∕2

)
+ �C

(
�̂

−
i+1∕2

)
+ �NC

(
�̂

−
i+1∕2

)
.

(8)
�

∗+
(
�̂

−
i−1∕2

, �̂
+
i−1∕2

)
= �

(
�̂

+
i−1∕2

)
− �

∗
(
�̂

−
i−1∕2

, �̂
+
i−1∕2

)

⇒�
∗
(
�̂

−
i−1∕2

, �̂
+
i−1∕2

)
= −�∗+

(
�̂

−
i−1∕2

, �̂
+
i−1∕2

)
+ �C

(
�̂

+
i−1∕2

)
+ �NC

(
�̂

+
i−1∕2

)
.

(9)
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The above equation can also be written in terms of the higher order derivatives of �NC 
that are evaluated at the zone boundaries. This is useful because it will enable us to make a 
simplification in Eq. (9). We, therefore, write the above equation as

In the above two equations we use the “ ≅ ” sign instead of the “=” sign because the two 
sides of the equation are not exactly identical; but they are only identical to the level of dis-
cretization error. This also shows us that this is the step where the exact conservation can 
be lost. However, by localizing this loss of conservation to those components of the solu-
tion vector that have non-zero values for 

(
�𝜕x�̂

)
 , we see that the components of the solu-

tion vector that are in the conservation form will indeed retain the exact flux conservation. 
This is a very important property because it ensures that when the exact conservation is 
guaranteed by the PDE, our AFD-WENO scheme will indeed retain the exact flux conser-
vation in a numerical simulation up to machine precision.

Now by amalgamating Eqs. (9) and (11), we get

The above equation still pertains to Eq. (5). We now realize that to transition from Eqs. 
(5)–(6) we only need to make the transcription �C → � . Therefore, when working with 
Eq. (6), we have

(10)

(11)

(12)
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Till Eq. (12) we had been willing to accept a relaxed notation for the higher deriva-
tives of the fluxes at the zone boundaries because we were just engaged in a derivation. 
In Eq.  (13) and onwards, we have tightened the notation. Therefore, the caret in [
𝜕2
x
�̂

]
i+1∕2

 , and terms like it, indicates that is term is to be obtained via some form of the 

WENO interpolation and the interpolant is to be evaluated at the zone boundary 
“i + 1/2”. The exact form of the interpolation will be discussed in the next section. The 
above equation is potentially very useful in several situations where there is a weak cou-
pling between the conservative terms and the non-conservative products. For example, 
it could be very useful for large combinations of PDE systems like general relativistic 
hydrodynamics where there is a clear split between the Einstein field equations and the 
equations of relativistic hydrodynamics. However, for tightly coupled systems, i.e., sys-
tems where the flux terms and non-conservative terms interact strongly with one 
another, it still has a small deficiency which we explain below.

Please look at Eq.  (13) and notice the derivative 
[
𝜕x�̂

]
i
 in the term −�

(
�i

)[
𝜕x�̂

]
i
 . 

That derivative will be evaluated using the WENO interpolation. However, the non-lin-
ear stabilization in WENO is applied to the interpolant, not to its derivative. Therefore, 
it is slightly advantageous to write Eq. (13) in an equivalent form given by

Notice from the above equation that the terms �̂−
i+1∕2

 and �̂+
i−1∕2

 in −�
(
�
i

)(
�̂
−
i+1∕2

− �̂
+
i−1∕2

)/
Δx 

can now be obtained by a good non-linearly hybridized WENO interpolation process. Having 
seen that the flux terms can be written as the finite difference approximation of suitable 

(13)

(14)
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combinations of higher order derivatives at zone boundaries in the above equation, we want 
to use the same idea for the higher order derivatives given by 

[
𝜕3
x
�̂

]
i
 , 
[
𝜕5
x
�̂

]
i
 , 
[
𝜕7
x
�̂

]
i
 , and [

𝜕9
x
�̂

]
i
 in Eq. (14). This is a reasonable thing to do because we have the intuition that a finite 

difference approximation is numerically more stable than the evaluation of higher derivatives 
at zone centers. For that reason, we rewrite Eq. (14) as

The color coding in Eqs. (9)–(15), as it pertains to order of accuracy, is identical to the 
color coding in Eq. (2). Equation (15) is the AFD-WENO update equation that we are seek-
ing. It contains all the update terms that will be needed in AFD-WENO schemes that are up 
to ninth-order accurate. To obtain a third-order AFD-WENO scheme from Eq. (15), please 
retain only the black terms and eliminate the red, blue, and magenta terms. To obtain a 
fifth-order AFD-WENO scheme from Eq. (15), please retain only the black, and red terms 
and eliminate the blue and magenta terms. To obtain a seventh-order AFD-WENO scheme 
from Eq. (15), please retain only the black, red, and blue terms and eliminate the magenta 
terms. To obtain a ninth-order AFD-WENO scheme from Eq.  (15), please retain all the 
terms in that equation. The computer algebra system script in “Appendix A” of Balsara 
et al. [6] can be extended to give even higher orders. In “Appendix A” of this paper, we 
provide an alternative to Eq. (15) which could very slightly reduce the cost of evaluating 
the last curly bracket in Eq. (15).

Equation (15) has such a nice structure that when the matrix of non-conservative prod-
ucts is zero, i.e., when we have “ � = 0 ”, then Eq. (15) reduces identically to Eq. (2) which 
is in manifestly the flux conservation form. When only a few rows of the matrix “C” are 
non-zero, Eq.  (15) retains a nice structure which ensures that the remaining rows of the 
hyperbolic PDE will indeed remain in the flux conservation form. Therefore, Eq.  (15) 
retains the flux conservation form when such a conservation form is present in the govern-
ing PDE, and Eq. (15) nevertheless permits the incorporation of non-conservative products 

(15)
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when the PDE has such products. Furthermore, Eq.  (15) is in the finite difference form, 
which makes it very efficient for high-order accurate computations in multiple dimen-
sions. Also notice that Eq. (15) can be used with any Riemann solver that can be cast in 
the fluctuation form. Since many of the well-known Riemann solvers have a flux form as 
well as a fluctuation form, they can all be used in Eq. (15). Different Riemann solvers may 
have some special properties that make them useful in certain fields of study. This makes 
Eq. (15) broadly applicable to many PDEs in many different fields of study.

To arrive at a non-linearly stabilized version of Eq.  (15), we will need three WENO 
interpolation steps. Notice that the first WENO interpolation is needed to obtain the non-
linearly stabilized and interpolated solution at various locations on the mesh. This will give 
us the first line (i.e., the first three terms) of Eq. (15), which indeed retains up to second 
order of accuracy. It is very desirable that this interpolation be carried out in the eigens-
pace of the governing equation. The first three terms of Eq. (15), if they are used by them-
selves, also guarantee that we will get a very high quality second order scheme if a high 
quality WENO interpolation is used. The last two curly brackets of Eq. (15) only contain 
higher order derivatives that are needed for raising the accuracy of the AFD-WENO 
scheme to the desired accuracy when the solution is smooth. But those higher order deriva-
tives are also a two-edged sword because they can introduce spurious oscillations, thereby 
damaging the accuracy, when the solution is non-smooth. We seek to stabilize them using a 
different style of the WENO interpolation from Balsara et al. [6]. The second WENO inter-
polation is needed for obtaining the non-linearly stabilized higher order derivatives, [
𝜕2
x
�̂

]
i+1∕2

 , 
[
𝜕4
x
�̂

]
i+1∕2

 , 
[
𝜕6
x
�̂

]
i+1∕2

 , and 
[
𝜕8
x
�̂

]
i+1∕2

 (as needed) at the zone boundary “i + 1/2”; 

with analogous evaluations needed at the zone boundary “i − 1/2”. The third WENO inter-
polation is needed for obtaining the non-linearly stabilized higher order derivatives, [
𝜕2
x
�̂

]
i+1∕2

 , 
[
𝜕4
x
�̂

]
i+1∕2

 , 
[
𝜕6
x
�̂

]
i+1∕2

 , and 
[
𝜕8
x
�̂

]
i+1∕2

 (as needed) at the zone boundaries. The 

second and third WENO interpolations can be carried out in the physical space, so that 
their cost can be minimized. It is also useful to emphasize that, Eq. (15) is not the only for-
mulation that is possible. In some circumstances, and for some PDEs where the non-con-
servative products are not strongly non-linear, Eq. (13) can yield a simpler formulation that 
requires only two WENO interpolation steps.

Our experience has been that the WENO interpolation is sufficient for controlling the 
higher order derivative terms in Eq. (15). The WENO interpolation represents a numerics-
based modulation of the solution and applies generally to all PDEs. But for a very small 
number of very stringent hyperbolic systems with non-conservative products a physics-
based modulation of the interpolation requires the use of a flattener algorithm (Colella and 
Woodward [17], Balsara [3, 4]). These physics-based flattener algorithms are PDE-spe-
cific and they are designed to do nothing when the solution is smooth or only mildly non-
smooth, and activate themselves only when the solution is very non-smooth. So, the higher 
derivative terms in Eq. (15) have to be used with care.
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3 � Detailed Strategy for Obtaining the Higher Order Derivatives 
in Eq. (15)

Taken by itself, the first three terms of Eq. (15) would only achieve second order of accu-
racy in space. Equation  (15) shows that the final AFD-WENO scheme requires several 
higher order derivatives to achieve its higher order spatial accuracy. These derivatives are 
essential if higher order accuracy has to be achieved by the overall scheme when it is used 
to treat a solution which is smooth on the mesh. However, if the solution is non-smooth on 
the mesh, these higher order derivatives can even be a source of unphysical oscillations. 
We seek an automatic process that evaluates these derivatives with sufficient accuracy to 
meet the design accuracy of the scheme when the solution is smooth. However, this auto-
matic process should also suppress these derivatives when they are likely to trigger spuri-
ous oscillations.

In Balsara et al. [6], a novel type of WENO interpolation was designed which does 
just that. Figure 2, which is modified from Balsara et al. [6], shows how the set of zone-
centered fluxes 

{
�
(
�i

)}
 is used to obtain the higher order derivatives of the flux at the 

zone boundaries. But realize from examining Eq. (15) that higher derivatives of 
{
�
(
�i

)}
 

are needed at the zone boundaries where they provide higher order contributions to the 
flux terms when the solution is smooth. Section 4 of Balsara et al. [6] provides such a 
WENO interpolation strategy and provides all the explicit formulae for obtaining the 
result. This interpolation strategy is illustrated in Fig. 2. For a third-order AFD-WENO 
scheme, 

[
𝜕2
x
�̂

]
i+1∕2

 is needed at the zone boundary “i + 1/2” with third order of accuracy. 

Therefore, the magenta colored left-biased stencil and the blue colored right-biased 

Fig. 2   Part of the mesh around the zone boundary “i + 1/2”. The fluxes are evaluated pointwise at the zone 
centers, as shown by the thick dots. The zone boundaries are shown by the vertical lines. The figure also 
shows the stencils associated with the zone boundary “i + 1/2” for the third- and fifth-order AFD-WENO 
schemes. We have two smaller third-order stencils and a large sixth-order stencil. For a third-order AFD-
WENO scheme, the two smaller stencils can be non-linearly hybridized. In that case, the second derivatives 
of the flux can be obtained at the zone boundary when the smoothness in the solution warrants it. For the 
fifth-order AFD-WENO, the two smaller stencils can be non-linearly hybridized along with the larger sten-
cil. In that case, the second and fourth derivatives of the flux can be obtained at the zone boundary when 
the smoothness in the solution warrants it. The process described here can be done for Adaptive Order and 
Multiresolution WENO interpolation
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stencil in Fig. 2 can be non-linearly hybridized to get 
[
𝜕2
x
�̂

]
i+1∕2

 . For a fifth-order AFD-

WENO scheme, 
[
𝜕2
x
�̂

]
i+1∕2

 and 
[
𝜕4
x
�̂

]
i+1∕2

 both need to be evaluated at the zone bound-

ary “i + 1/2” with fifth order of accuracy. To achieve that, the magenta colored left-
biased stencil, the blue colored right-biased stencil, and the red colored large sixth-order 
accurate central stencil in Fig. 2 need to be non-linearly hybridized to get 

[
𝜕2
x
�̂

]
i+1∕2

 and 
[
𝜕4
x
�̂

]
i+1∕2

 at the zone boundaries. The exact details of this novel WENO interpolation 

are given in Sect. 4 of Balsara et al. [6]. This paragraph, along with Fig. 2, has shown us 
how the last curly bracket term in Eq. (15) is obtained. It gives us the higher order con-
tributions to the flux terms when the solution is smooth.

Extensive numerical experimentation in Balsara et al. [6] shows that the AFD-WENO 
schemes in the conservation form are indeed very robust when applied to conservation 
laws. This is partly because the Lax-Wendroff theorem comes to the rescue. This is also 
why we wrote the higher order non-conservative products in Eq. (15) in a form that is as 
close as possible to a finite difference-like form. We see from Fig. 3 that the same strat-
egy that was used in Fig. 2 for obtaining higher order derivatives of the fluxes at the zone 
boundaries can also be used for obtaining the higher derivatives of the state “ � ” at the 
zone boundaries.

This completes our description of the non-linearly hybridized WENO interpolation pro-
cesses that will be used to extract all the higher derivatives that we see in Eq. (15).

Fig. 3   Part of the mesh around the zone boundary “i + 1/2”. The state vectors are available pointwise at 
the zone centers, as shown by the thick dots. The zone boundaries are shown by the vertical lines. The 
figure also shows the stencils associated with the zone boundary “i + 1/2” for the third- and fifth-order 
AFD-WENO schemes. We have two smaller third-order stencils and a large sixth-order stencil. For a third-
order AFD-WENO scheme, the two smaller stencils can be non-linearly hybridized. In that case, the second 
derivatives of the state can be obtained at the zone boundary when the smoothness in the solution warrants 
it. For the fifth-order AFD-WENO, the two smaller stencils can be non-linearly hybridized along with the 
larger stencil. In that case, the second and fourth derivatives of the state can be obtained at the zone bound-
ary when the smoothness in the solution warrants it. The process described here can be done for Adaptive 
Order and Multiresolution WENO interpolation
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4 � Pointwise Implementation of Our AFD‑WENO Scheme for Hyperbolic 
PDEs with Non‑conservative Products

The AFD-WENO scheme that we present here is based on the WENO interpolation methods 
described in Sect. 3 of Balsara et al. [6]. In that section, we present Adaptive Order as well 
as Multiresolution methods for starting from point values at zone centers and using them to 
obtain interpolated values at the zone boundaries for feeding to a Riemann solver; as shown 
in Fig. 1. We will also draw on WENO interpolation methods described in Sect. 4 of Balsara 
et al. [6] where we show that the set of flux terms 

{
�
(
�i

)}
 that are evaluated at zone cent-

ers can have their higher derivatives interpolated to the zone boundaries, as shown in Fig. 2. 
We will also use similar methods to take the zone-centered state vector “ � ” and evaluate its 
higher derivatives at zone boundaries; see Fig. 3. While the WENO interpolation in Sects. 3 
and 4 of Balsara et al. [6] is couched in the language of WENO-AO, all the results there can 
be easily transcribed to the Multiresolution WENO from (Zhu and Shu [51]); as a result we 
will show results from WENO-AO and Multiresolution WENO in this paper, displaying that 
in all cases their effective accuracies are almost identical.

The Riemann solver that we will use in this entire work will be the HLLI Riemann 
solver from Dumbser and Balsara [19] where the philosophy of such Riemann solvers is 
explained. In Sect. 5 of Balsara et al. [5] we also catalogue results from Dumbser and Bal-
sara [19] in a notation that is more suited for the WENO interpolation shown in Fig. 1.

We provide a pointwise implementation of our AFD-WENO scheme for treating non-
linear hyperbolic PDEs that have non-conservative products. Some of the steps are similar 
to Balsara et al. [6] and some are different. AFD-WENO schemes are always implemented 
in the dimension-by-dimension fashion, so we only describe one of the dimensional 
updates here. We realize that the update equation, i.e., Eq.  (15), has a lot of terms. The 
optimal sequence of steps given below is designed so that at the end of each step we cata-
logue the parts of Eq. (15) that are in hand. Consequently, by the end of these steps, we can 
finally assemble the entire update equation. The pointwise implementation of our AFD-
WENO scheme into a numerical code goes according to the following steps.

	 (i)	 We start with the mesh function as shown in Fig. 1. This means that at each zone 
center xi we have a pointwise value for the conserved variable �i.

	 (ii)	 Starting from the conserved variables in each zone, obtain the primitive variables. 
Use the conserved and primitive variables, as needed, to obtain the normalized right 
and left eigenvectors in the conserved variables. Also evaluate �

(
�i

)
 and �

(
�i

)
 

pointwise at the center of each zone “i”.
	 (iii)	 As shown in Fig. 1, we use the WENO-AO algorithm from Sect. 3 of Balsara et al. 

[6]. (We have also used the Multiresolution WENO interpolation from Zhu and Shu 
[51] and found no difference.) That section includes all closed form expressions that 
are needed for the WENO interpolation in one dimension. This consists of making 
a non-linear hybridization between a large high order accurate stencil and smaller 
lower order accurate stencils. The neighboring zones around zone “i” are projected 
into the characteristic space of zone “i”. The third- and fifth-order cases are explic-
itly shown in Fig. 1. Once the variables in the neighboring zones around zone “i” 
are projected into the characteristic space of zone “i”, the WENO-AO interpolation 
is carried out in the characteristic space. Projecting the interpolated characteristic 
variables back into the space of right eigenvectors gives us high order accurate �̂−

i+1∕2
 

and �̂+
i−1∕2

 within each zone “i”, as shown in Fig. 1. Since this step involves project-
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ing all the zones in all the stencils of interest into the characteristic space of each 
zone “i” using eigenvectors, it is one of the three computationally expensive steps 
of the algorithm. By the end of this step we should have the WENO interpolation-
based �̂−

i+1∕2
 and �̂+

i+1∕2
 at each zone boundary.

	 (iv)	 At each zone boundary xi+1∕2 , use the left and right states �̂−
i+1∕2

 and �̂+
i+1∕2

 to obtain 
the left-most and right-most going speeds of the Riemann fan; these are denoted by 
SL;i+1∕2 and SR;i+1∕2 . Please note that we are not yet seeking the resolved state within 
the Riemann fan.

	 (v)	 Now, at each zone boundary xi+1∕2 , we hand in the speeds SL;i+1∕2 and SR;i+1∕2 as well 
as the states �̂−

i+1∕2
 and �̂+

i+1∕2
 to the Riemann solver. Unlike the situation with conser-

vation laws (where the Riemann solver returns a resolved flux), we now ask the Riemann 
solver to return fluctuations �∗−

(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 and �∗+

(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 as well as 

the resolved state �∗
i+1∕2

 at each zone boundary “i + 1/2”. This is shown in Fig. 1. By 
the end of this step we should have the resolved state �∗

i+1∕2
 as well as the correspond-

ing fluctuations �∗−
(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 and �∗+

(
�̂

−
i+1∕2

, �̂+
i+1∕2

)
 at each zone boundary.

	 (vi)	 If one wants to make a characteristic projection of the higher derivatives of the flux 
variables, we can do that using �∗

i+1∕2
 . This could be useful in the next step. There-

fore, we find the matrices of right and left eigenvectors corresponding to the resolved 
state �∗

i+1∕2
 at each zone boundary “i + 1/2”. Please notice that if the HLLI Riemann 

solver is used, then we will naturally be constructing the left and right eigenvectors 
from the resolved state of that Riemann solver. Therefore, it is worthwhile to derive 
the maximum use from those eigenvectors.

	 (vii)	 Use the boundary-centered WENO-AO interpolation scheme from Sect. 4 of Balsara 
et al. [6] and Fig. 2 of this paper to start with the zone-centered flux variables and 
interpolate their higher derivatives to the zone boundaries. This gives us suitably 
high order derivatives of the flux variables at each zone boundary. With these high 
order derivatives of the flux variables, we can evaluate all the higher order flux 
derivatives that contribute to each zone boundary; see the last term Eq. (15). (Since 
this step may involve projecting all the zones in all the stencils of interest into the 
characteristic space of each zone boundary “i + 1/2” using eigenvectors, it is the 
second of the three computationally expensive steps of the algorithm. However, we 
have found this characteristic projection to be unnecessary, with the result that the 
WENO interpolation can be applied directly to the flux components.) By the end of 
this step we should have higher order derivatives of the flux like 

[
𝜕2
x
�̂

]
i+1∕2

 , 
[
𝜕4
x
�̂

]
i+1∕2

 , 
[
𝜕6
x
�̂

]
i+1∕2

 , and 
[
𝜕8
x
�̂

]
i+1∕2

 (as needed) at each of the zone boundaries. (If 

the PDE is a conservation law, then by this step we have all the pieces in hand that 
are needed for the assembly of the update equation in Eq. (15).)

	(viii)	 This step is closely analogous to the previous step; except that we now consider the 
zone centered state “ � ” instead of the flux. Use the boundary-centered WENO-AO 
interpolation scheme from Sect. 4 of Balsara et al. [6] and Fig. 3 of this paper to start 
with the zone-centered state variables and interpolate their higher derivatives to the 
zone boundaries. By the end of this step we should have higher order derivatives of 
the state like 

[
𝜕2
x
�̂

]
i+1∕2

 , 
[
𝜕4
x
�̂

]
i+1∕2

 , 
[
𝜕6
x
�̂

]
i+1∕2

 , and 
[
𝜕8
x
�̂

]
i+1∕2

 (as needed) at each 

of the zone boundaries.
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	 (ix)	 Now realize from the previous steps that we have acquired all the terms that will 
contribute to Eq. (15). We assemble Eq. (15) which is our update equation. That 
gives us one spatially higher order update stage of a multistage RK update strategy.

	 (x)	 The above points have only shown one stage of the scheme. It can be coupled with 
an SSP-RK update strategy, say from Shu and Osher [43] or Spiteri and Ruuth [45, 
46], to achieve higher order in time.

	 (xi)	 Some of the PDEs also have stiff source terms; these are usually relaxation terms that 
enable the system to relax to several useful physical limits. The AFD-WENO method 
makes it very simple to treat stiff source terms because the source terms are treated 
pointwise and are collocated at the exact same location as the primal variables. For 
this reason, when stiff source terms are present, we recommend using the Runge-Kutta 
IMEX methods from Pareschi and Russo [35]; see also Kupka et al. [32].

We remind the reader that Eq. (15) has been explicitly written out in “Appendix A” as it 
would pertain to the implementation of third-, fifth-, seventh-, and ninth-order AFD-WENO 
schemes. When making an implementation in code we advise the computational scientist to 
first try and implement the first line of Eq. (15) and make it work for several test problems. 
The subsequent parts of Eq. (15) can be implemented after that.

5 � Accuracy Analysis and Speed Comparisons

In this section, we do not consider hyperbolic conservation laws. The reason is that the cur-
rent algorithm reduces exactly to the algorithm in Balsara et al. [6] where we indeed presented 
many accuracy analyses as applied to several conservation laws. Section 5.1 presents the accu-
racy analysis for the Baer-Nunziato system. Section 5.2 presents the accuracy analysis for the 
two-layer shallow water system. Section 5.3 presents the accuracy analysis for the multiphase 
debris flow model of Pitman and Le. In each instance, the test problems presented here are 
identical to the ones presented in Balsara et al. [5]. For that reason, we do not describe the 
test problems in great detail in this paper. In Sect. 5.4 we cross-compare the speeds of classi-
cal FD-WENO, conservative AFD-WENO, and the AFD-WENO schemes which include non-
conservative products.

Many of the results that follow are tabulated for both the WENO-AO-based interpolation 
method (see Balsara et al. [8], Balsara et al. [6]) as well as the Multiresolution WENO-based 
method (Zhu and Shu [51], Zhu and Qiu [50]) showing that in all instances the two interpola-
tion options yield almost identical accuracies.

5.1 � Accuracy Analysis for the Two‑Dimensional Baer‑Nunziato Model 
for Compressible Multi‑phase Flows

In this section we focus on the Baer-Nunziato compressible multiphase flow proposed by Baer 
and Nunziato [2] and extensively studied at the numerical level by Saurel and Abgrall [39], 
Adrianov and Warnecke [1], Schwendeman et  al. [40], Dumbser et  al. [24], Tokareva and 
Toro [47], Coquel et al. [18], and Chiochetti and Müller [16]. A very useful set of eigenvectors 
has been presented in Tokareva and Toro [47].

The PDE system assumes two phases, a solid phase denoted by the density �1 , the volume 
fraction �1 , the velocity �1 = (u1, v1,w1) , and a pressure p1 , and a gas phase denoted by the 
density �2 , the volume fraction �2 , the velocity �2 = (u2, v2,w2) , and a pressure p2 . The two 



Communications on Applied Mathematics and Computation	

1 3

phases have an interfacial pressure PI and an interfacial velocity �I , but it is suggested in Baer 
and Nunziato [2] to set PI = p2 and �I = �1 . The total energy density for phase “j” is related 
to the specific internal energy ej by �jEj = �jej + �j�

2
j
∕2,

The system requires that the phases volume fractions add up to unity, �1 + �2 = 1 . The 
closure relations for each phase are also given by

where �j is the ratio of specific heats and �j is a constant. For the above EOS, the sound 
speed cj in each phase is given by

In Sect.  4 of Dumbser et  al. [22] a two-dimensional smooth vortex test problem was 
designed for the Baer-Nunziato flow. The problem is an analogue of the hydrodynamic 
vortex. In Balsara et al. [5] the problem was described in detail, so we do not describe it 
again here. For the fifth, seventh, and ninth orders, we also had to double the size of the 
computational domain to obtain results that were independent of the exponential fall off in 
the velocity of the vortex. Table 1 is based on the algorithm described in Eq. (15). It uses 
three WENO interpolation steps per RK stage and per dimension. In Table 1 we show the 
accuracy results on using the WENO-AO interpolation and also the Multiresolution WENO 
interpolation. We see that both algorithms reach their design accuracies and obtain com-
pletely comparable results. Table 2 is based on the algorithm described in Eq. (13). It uses 
two WENO interpolation steps per RK stage and per dimension. We see that it too meets 
the design accuracy, with the exception that at third order its accuracy degrades by some 
amount.

5.2 � Accuracy Analysis for the Two‑Dimensional Two‑Layer Shallow Water Equations

In this section, we focus on the two-layer shallow water equations from Castro et al. [14]. 
The PDE system in 2D is given by defining h1 , u1 , v1 as the height of the upper fluid, 
its x-velocity, and its y-velocity, respectively, and by defining h2 , u2 , v2 as the height of 
the lower fluid, its x-velocity, and its y-velocity, respectively. The bottom topography is 
denoted by “b” and “g” is the gravity. The ratio � ≡ �1∕�2 denotes the ratio of the fluid 
densities. The total surface height, therefore, becomes � = �1 = b + h1 + h2 and the surface 
elevation of the interior layer is denoted by �2 = b + h2 . The conservation law is given by

𝜕t
(
𝜙1𝜌1

)
+ ∇ ⋅

(
𝜙1𝜌1�1

)
= 0,

𝜕t
(
𝜙1𝜌1�1

)
+ ∇ ⋅

(
𝜙1

(
𝜌1�1 ⊗ �1 + � p1

))
− PI∇𝜙1 = 0,

𝜕t
(
𝜙1𝜌1E1

)
+ ∇ ⋅

(
𝜙1�1

(
𝜌1E1 + p1

))
+ PI𝜕t𝜙1 = 0,

𝜕t
(
𝜙2𝜌2

)
+ ∇ ⋅

(
𝜙2𝜌2�2

)
= 0,

𝜕t
(
𝜙2𝜌2�2

)
+ ∇ ⋅

(
𝜙2

(
𝜌2�2 ⊗ �2 + � p2

))
− PI∇𝜙2 = 0,

𝜕t
(
𝜙2𝜌2E2

)
+ ∇ ⋅

(
𝜙2�2

(
𝜌2E2 + p2

))
+ PI𝜕t𝜙2 = 0,

𝜕t𝜙1 + �I ⋅ ∇𝜙1 = 0.

�jej =
pj + �j�j

�j − 1
,

cj =

√
�j

pj + �j

�j
.
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All the linearly degenerate eigenvectors in both directions can be evaluated analytically. 
The non-linear eigenvectors and their eigenvalues have to be found numerically.

In Sect.  4.1 of Dumbser et  al. [21] a two-dimensional smooth vortex test problem was 
designed for the two-layer shallow water flow model. In Balsara et al. [5] the problem was 
described in detail, so we do not describe it again here. For fifth, seventh, and ninth orders, we 
also had to double the size of the computational domain to obtain results that were independ-
ent of the exponential fall off in the velocity of the vortex. Table 3 is based on the algorithm 
described in Eq. (15). It uses three WENO interpolation steps per RK stage and per dimen-
sion. In Table 3 we show the accuracy results on using the WENO-AO interpolation and also 
the Multiresolution WENO interpolation. We see that both algorithms reach their design accu-
racies and obtain comparable results.

5.3 � Accuracy Analysis for the Two‑Dimensional Multiphase Debris Flow Model 
of Pitman and Le

In this section, we consider the multiphase debris flow model of Pitman and Le [37]. We use 
the formulation of Pelanti et al. [36] instead of the original formulation by Pitman and Le [37]. 
The PDE system in 2D is given by defining hs , us , vs as the solid height, the solid x-velocity, 
and the solid y-velocity, respectively, and by defining hf  , uf  , vf  as the fluid height, the fluid 
x-velocity, and the solid y-velocity, respectively. We also have hf = (1 − �)h where � is the 
solid volume fraction and h is the total height. The variable “b” refers to the bottom topogra-
phy and is kept constant in all our test problems. The variable “g” refers to the gravitational 
acceleration and “ � ≡ �f

/
�s ” refers to the density ratio of the fluid and the solid. The time 

evolutionary equations for this model are
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Table 1   The accuracy of the two-dimensional Baer-Nunziato Vortex problem using the AFD-WENO algo-
rithm that is described in Eq. (15); the solid volume fraction is shown

The first half of the table shows the results from WENO-AO interpolation with non-linear limiting. The 
second half shows the same results when multiresolution WENO interpolation is used

WENO-AO-3 L1 error L1 accuracy Linf error Linf accuracy

642 4.880 83E−04 2.662 78E−02
1282 9.536 35E−05 2.36 9.969 71E−03 1.42
2562 1.660 69E−05 2.52 3.513 89E−03 1.50
5122 2.635 32E−06 2.66 1.205 90E−03 1.54
WENO-AO-(5,3)
 322 3.367 06E−04 2.873 33E−02
 642 3.993 96E−05 3.08 3.383 73E−03 3.09
 1282 1.334 99E−06 4.90 1.576 72E−04 4.42
 2562 4.263 64E−08 4.97 5.366 02E−06 4.88

WENO-AO-(7,3)
 322 2.524 04E−04 1.260 94E−02
 642 4.940 39E−06 5.67 4.403 79E−04 4.84
 1282 4.350 96E−08 6.83 5.687 63E−06 6.27
 2562 3.580 42E−10 6.93 4.769 53E−08 6.90

WENO-AO-(9,3)
 322 3.253 16E−04 1.975 61E−02
 642 8.498 05E−07 8.58 7.639 63E−05 8.01
 962 2.647 28E−08 8.56 3.097 00E−06 7.91
 1282 2.221 38E−09 8.61 2.700 35E−07 8.48

Order 3 multires WENO
 642 2.726 29E−04 1.649 69E−02
 1282 5.037 31E−05 2.44 5.606 25E−03 1.56
 2562 8.833 83E−06 2.51 1.873 35E−03 1.58
 5122 1.358 12E−06 2.70 6.182 62E−04 1.60

Order 5 multires WENO
 322 6.033 13E−04 3.299 50E−02
 642 6.903 99E−05 3.13 8.983 65E−03 1.88
 1282 8.847 93E−06 2.96 1.526 44E−03 2.56
 2562 2.002 59E−07 5.47 6.052 37E−05 4.66

Order 7 multires WENO
 322 3.229 61E−04 1.110 33E−02
 642 5.447 78E−06 5.89 5.082 36E−04 4.45
 1282 6.548 79E−08 6.38 1.085 83E−05 5.55
 2562 3.816 89E−10 7.42 5.207 16E−08 7.70

Order 9 multires WENO
 322 2.343 61E−04 8.235 76E−03
 642 8.658 17E−06 4.76 7.153 67E−04 3.53
 962 2.742 30E−08 14.19 3.250 11E−06 13.30
 1282 2.162 89E−09 8.83 2.540 77E−07 8.86
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All the linearly degenerate eigenvectors in both directions can be evaluated analytically. 
The non-linear eigenvectors and their eigenvalues have to be found numerically.

In Sect. 4.2 of Dumbser et al. [21], a two-dimensional smooth vortex test problem was 
designed for the debris flow model. In Balsara et  al. [5] the problem was described in 
detail, so we do not describe it again here. As previously, to minimize the effect of small 
jumps in the velocity field at the periodic boundaries, we double the computational domain 
and stopping time for the fifth-, seventh-, and ninth-order schemes. In Table 4, we show 
the accuracy results on using the WENO-AO interpolation and also the Multiresolution 
WENO interpolation. The algorithm uses three WENO interpolation steps per RK stage 
and per dimension. As before, we see that the scheme reaches its design accuracy.

5.4 � Speed Comparisons

At this point, it is worthwhile to make estimates of the computational cost of various well-
known finite difference WENO algorithms. We do that in this paragraph and in the next 
two paragraphs that follow. The FD-WENO scheme described in Balsara et al. [5] entails 
one WENO reconstruction and one call to the Riemann solver. Since the Riemann solvers 
tend to be light-weight, the majority of the computational cost is in the WENO reconstruc-
tion, which absolutely must be done in the characteristic space if the problem has any sig-
nificant discontinuities. The FD-WENO scheme described in Balsara et al. [5] can handle 
hyperbolic systems with non-conservative products, but it does not guarantee the existence 
of a flux conservative form when a conservation law is used. Since the classical FD-WENO 

Table 2   The accuracy of the two-dimensional Baer-Nunziato vortex problem using the AFD-WENO algo-
rithm that is described in Eq. (13); the solid volume fraction is shown

The table shows the results from WENO-AO interpolation with non-linear limiting

WENO-AO-3 L1 error L1 accuracy Linf error Linf accuracy

642 5.140 71E−04 2.664 99E−02
1282 1.092 75E−04 2.23 1.004 24E−02 1.41
2562 2.189 26E−05 2.32 3.576 57E−03 1.49
5122 4.261 44E−06 2.36 1.246 36E−03 1.52
WENO-AO-(5,3)
 322 3.917 23E−04 3.504 96E−02
 642 4.425 81E−05 3.15 3.395 14E−03 3.37
 1282 1.774 26E−06 4.64 1.619 84E−04 4.39
 2562 8.159 39E−08 4.44 5.825 18E−06 4.80

WENO-AO-(7,3)
 322 2.114 16E−04 1.141 72E−02
 642 5.539 98E−06 5.25 4.183 18E−04 4.77
 1282 5.654 13E−08 6.61 5.312 57E−06 6.30
 2562 6.745 73E−10 6.39 4.963 97E−08 6.74

WENO-AO-(9,3)
 322 2.374 79E−04 1.731 89E−02
 642 9.312 42E−07 7.99 7.177 48E−05 7.91
 962 3.020 17E−08 8.46 2.847 21E−06 7.96
 1282 2.672 08E−09 8.43 2.551 34E−07 8.39
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Table 3   The accuracy of the two-dimensional two-layer shallow water equations vortex problem using the 
AFD-WENO algorithm that is described in Eq. (15); the variable h1 is shown

The first half of the table shows the results from WENO-AO interpolation with non-linear limiting. The 
second half shows the same results when multiresolution WENO interpolation is used

WENO-AO-3 L1 error L1 accuracy Linf error Linf accuracy

642 3.445 83E−03 7.629 37E−02
1282 7.433 27E−04 2.21 2.132 10E−02 1.84
2562 1.170 72E−04 2.67 5.042 81E−03 2.08
5122 1.662 79E−05 2.82 1.289 14E−03 1.97
WENO-AO-(5,3)
 642 3.533 68E−04 2.430 11E−02
 1282 3.517 96E−05 3.33 9.021 15E−03 1.43
 2562 1.308 11E−06 4.75 3.893 11E−04 4.53
 5122 4.207 83E−08 4.96 1.282 75E−05 4.92

WENO-AO-(7,3)
 642 2.260 27E−04 3.914 91E−02
 1282 3.504 01E−06 6.01 1.381 03E−03 4.83
 2562 3.202 43E−08 6.77 1.352 88E−05 6.67
 5122 2.630 13E−10 6.93 1.113 19E−07 6.93

WENO-AO-(9,3)
 322 6.278 01E−03 4.502 78E−01
 642 2.195 48E−04 4.84 2.128 22E−02 4.40
 1282 4.427 86E−07 8.95 1.995 59E−04 6.74
 2562 1.077 59E−09 8.68 5.091 73E−07 8.61

Order 3 multires WENO
 642 2.013 62E−03 5.076 92E−02
 1282 3.776 90E−04 2.41 1.018 69E−02 2.32
 2562 5.474 56E−05 2.79 2.661 40E−03 1.94
 5122 7.659 31E−06 2.84 7.115 64E−04 1.90

Order 5 multires WENO
 642 7.388 35E−04 8.029 79E−02
 1282 8.015 88E−05 3.20 1.253 10E−02 2.68
 2562 3.341 84E−06 4.58 8.724 71E−04 3.84
 5122 6.083 24E−08 5.78 2.787 90E−05 4.97

Order 7 multires WENO
 642 4.218 98E−04 4.340 15E−02
 1282 1.370 73E−05 4.94 3.321 10E−03 3.71
 2562 1.156 96E−07 6.89 7.376 85E−05 5.49
 5122 6.287 99E−10 7.52 4.499 76E−07 7.36

Order 9 multires WENO
322 6.271 52E−03 4.416 70E−01
642 7.007 17E−04 3.16 1.077 67E−01 2.04
1282 6.088 38E−06 6.85 1.529 32E−03 6.14
2562 9.387 93E−09 9.34 5.703 32E−06 8.07
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of Shu and Osher [44] also entailed two WENO reconstruction steps in characteristic vari-
ables, the FD-WENO scheme from Balsara et al. [5] is expected to cost about half as much 
as the classical FD-WENO of Shu and Osher [44].

The AFD-WENO scheme developed in Balsara et al. [6] for conservation laws requires 
two WENO interpolation steps and one call to a (light-weight) Riemann solver. The first 
of these WENO interpolation steps must be done in characteristic variables if the physi-
cal problem has discontinuities. The cost of the second WENO interpolation step may be 
reduced by doing it in a component by component fashion; this is the choice we make in 
this section. Since the classical FD-WENO of Shu and Osher [44] entailed two WENO 
reconstruction steps in characteristic variables, the method in Balsara et al. [6] is expected 
to cost less. Both methods can only treat conservation laws; however, the AFD-WENO 
method is much more versatile in terms of the Riemann solvers it can handle and in terms 
of its ability to work on curvilinear meshes.

The AFD-WENO scheme developed in this paper is more versatile because it can han-
dle hyperbolic systems with non-conservative products. It does this while guaranteeing the 
variables that are still in the conservation form are updated with a strictly flux conservative 
update. The method in this paper requires three WENO interpolation steps and one call to 
a (light-weight) Riemann solver. The first of these WENO interpolation steps must be done 
in characteristic variables if the physical problem has discontinuities. The cost of the sec-
ond and third WENO interpolation steps may be substantially reduced by doing them in a 
component by component fashion; this is the choice that we make here. It could, therefore, 
be slightly more expensive than the classical FD-WENO of Shu and Osher [44], but it is 
much more versatile. It too can handle different types of Riemann solvers (as long as they 
can be written in the fluctuation form) and it too can work on curvilinear meshes.

Lastly, and perhaps most importantly, AFD-WENO schemes have been used in the past 
with central differences for the higher order derivatives. The interested reader might wish 
to know whether using central differences for the higher order derivatives would give a 
scheme that is substantially faster than the current schemes that use the WENO interpo-
lation for their second and third steps? To answer that question, we have also gathered 
timing statistics for AFD-WENO schemes when only central differences are used for the 
higher order derivatives. This answers the question of efficiency. One major purpose of 
scientific computation is to do new problems for which the solution is initially not known. 
The other major purpose of scientific computation is to use well-tested methods on the 
newer classes of PDEs that arise in different fields of science and engineering. Therefore, 
one wants numerical methods for PDEs that have been verified to work on a large range of 
well-known problems stemming from different types of well-known PDEs. One can, there-
fore, ask a further question: for general problems with discontinuities, is it effective to use 
just an AFD-WENO scheme that uses central differences for its higher order derivatives? 
We will show that it is not effective in the subsequent section.

In light of the expectations that were laid out in the above four paragraphs, it is, there-
fore, useful to document the actual speeds of all the above-mentioned finite difference 
WENO formulations on a problem where they are all applicable. For that reason, we took 
the very popular one-dimensional Sod shock tube problem for the Euler flow and ran it 
from start to finish on a 1 000 zone mesh that is evolved for 200 timesteps. Third-order 
accurate in time SSP-RK timestepping was used in all cases. To have a fair comparison 
across the competing WENO formulations, the LLF Riemann solver was used in all cases. 
We did this with a code that was stripped of all input and output functions so that we were 
able to document just the raw number of zones updated per second for this problem for 
the various algorithms. Also note that characteristic-based interpolation was only used in 
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Table 4   The accuracy of the two-dimensional multiphase debris flow model vortex problem using the 
AFD-WENO algorithm that is described in Eq. (15); the variable h

s
 is shown

The first half of the table shows the results from WENO-AO interpolation with non-linear limiting. The 
second half shows the same results when Multiresolution WENO interpolation is used

WENO-AO-3 L1 error L1 accuracy Linf error Linf accuracy

1282 6.806 23E−04 2.426 50E−02
2562 1.407 08E−04 2.27 6.957 20E−03 1.80
5122 2.689 23E−05 2.39 1.772 62E−03 1.97
1 0242 4.304 45E−06 2.64 5.524 26E−04 1.68
WENO-AO-(5,3)
 642 1.277 72E−03 1.131 81E−01
 1282 1.003 27E−04 3.67 1.815 70E−02 2.64
 2562 3.638 59E−06 4.79 6.869 42E−04 4.72
 5122 1.162 63E−07 4.97 2.244 44E−05 4.94

WENO-AO-(7,3)
 642 8.294 24E−04 6.914 61E−02
 1282 1.021 60E−05 6.34 2.365 19E−03 4.87
 2562 9.135 26E−08 6.81 2.332 27E−05 6.66
 5122 7.411 44E−10 6.95 1.946 74E−07 6.90

WENO-AO-(9,3)
 322 6.152 29E−03 4.404 54E−01
 642 7.896 05E−04 2.96 5.237 24E−02 3.07
 1282 1.360 70E−06 9.18 3.389 21E−04 7.27
 2562 3.289 92E−09 8.69 9.669 72E−07 8.45

Order 3 multires WENO
 642 4.161 05E−04 1.576 17E−02
 1282 7.176 71E−05 2.54 3.822 40E−03 2.04
 2562 1.226 07E−05 2.55 8.935 16E−04 2.10
 5122 1.894 26E−06 2.69 2.815 95E−04 1.67

Order 5 multires WENO
 642 1.264 72E−03 7.185 82E−02
 1282 1.684 68E−04 2.91 2.127 44E−02 1.76
 2562 7.525 55E−06 4.48 1.093 12E−03 4.28
 5122 2.056 92E−07 5.19 4.153 23E−05 4.72

Order 7 multires WENO
 642 1.068 38E−03 1.107 62E−01
 1282 2.892 78E−05 5.21 4.475 04E−03 4.63
 2562 2.748 16E−07 6.72 7.939 13E−05 5.82
 5122 1.988 76E−09 7.11 8.115 74E−07 6.61

Order 9 multires WENO
 322 7.926 09E−03 5.180 75E−01
 642 1.240 43E−03 2.68 1.402 28E−01 1.89
 1282 1.316 60E−05 6.56 1.864 57E−03 6.23
 2562 2.339 57E−08 9.14 6.605 66E−06 8.14
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the first step for the algorithm described in this paper as well as the algorithm described in 
Balsara et al. [6]. This is justified because the additional WENO interpolation steps do not 
need characteristic decomposition. A single core of a modern Xeon Gold 6248R processor 
running at 3 GHz was used for all the runs.

In the first four paragraphs of this section, we had catalogued our expectations for 
the speeds of the various finite difference WENO schemes being considered. The data 
from Table 5 shows that the WENO scheme from Balsara et al. [5] is the fastest, which 
bears out our expectations. The classical FD-WENO is somewhat slower than AFD-
WENO from Balsara et  al. [6] because the latter scheme only uses one characteristic 
decomposition whereas the former scheme uses two characteristic decompositions. The 
AFD-WENO scheme from this paper is somewhat slower, but not by much; because it 
only uses one characteristic decomposition along with two interpolations that are done 
component by component. However, it provides more capabilities in that it can handle 
hyperbolic systems with conservative terms as well as non-conservative products. The 
AFD-WENO scheme from Eq. (13) of this paper, which is expected to be faster than the 
AFD-WENO described in Eq. (15) of this paper, is also shown. The AFD-WENO scheme 
that uses only central derivatives is nominally comparable in speed to the AFD-WENO 
scheme from Eq. (13) of this paper. This is understandable because the major cost in high 
order WENO interpolation is associated with the largest stencil, and the central differ-
ences also have to use the same large stencil that is used in the WENO interpolation!

Table 5 also allows us to cross-compare the speeds of the same algorithm at different 
orders of spatial accuracy. Our WENO implementations are based on a strip-mining phi-
losophy, where a one-dimensional strip of data is extracted into long one-dimensional arrays 
and the CPU is asked to work on those strips of data (Colella and Woodward [17], Wood-
ward and Colella [48]). This philosophy is very beneficial for modern CPUs with their large 
caches because the one-dimensional strips can then be loaded into cache very efficiently and 
automatically by the CPU. The CPU can then do a lot of work on each strip before releasing 
it back to the computer’s main memory. By scanning the rows of Table 5, we see that from 
third-order to ninth-order, the increase in cost is very modest. This gives us another insight 
into the nature of finite difference WENO schemes on modern CPUs with large caches. All 
the finite difference WENO schemes in Table 5 incur some fixed costs, such as construct-
ing eigenvectors, invoking Riemann solvers, or copying to and from main memory. When 
the WENO reconstruction or interpolation has been perfectly optimized, the larger stencils 
associated with higher order WENO schemes do not seem to significantly reduce the speed 
(i.e., the number of zones updated per second). Instead, it is now the fixed costs that begin 
to dominate the overall cost of the algorithm. The insight that we gain from scanning the 
rows of Table 5 is that the larger number of floating point operations associated with larger 
stencils is almost free of charge if the finite difference WENO code is designed to be cache 
friendly. Our well-implemented FD-WENO and AFD-WENO schemes come pretty close to 
the promised land of high performance computing where float point operations are almost 
free and the dominant costs are the other fixed costs in the implementation!

6 � One‑Dimensional Test Problems

Here we present the same one-dimensional test problems as from Balsara et al. [5] for 
the Baer-Nunziato system, the two-layer shallow water system, and the multiphase 
debris flow model. In Sect. 6.1, we focus on the Baer-Nunziato model of compressible 
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multi-phase flows. In Sect. 6.2, we focus on the two-layer shallow water equations. In 
Sect. 6.3, we present results from the multiphase debris flow model of Pitman and Le. 
For all the simulations presented in this section, we used a CFL of 0.8 with a third-order 
SSP-RK scheme.

6.1 � One‑Dimensional Test Problems for the Baer‑Nunziato Model for Compressible 
Multi‑phase Flows

For the Baer-Nunziato model described in Sect.  5.1, we first consider the Abgrall prob-
lem from Dumbser et al. [22]. The same problem was also used in Balsara et al. [5]. The 
Abgrall problem, see Saurel and Abgrall [39], is based on the idea that a mixture of the two 
phases moving in 1D with uniform velocity and pressure should be able to continue mov-
ing in this fashion without generating any wiggles in the velocity or pressure. We present 
such a test problem here on a 200 zone mesh that spans the domain [−0.5, 0.5] . In the solid 
phase we set a stiffened EOS with �1 = 3 and �1 = 100 , whereas in the gas phase we set 
�2 = 1.4 and �2 = 0 . The pressures and longitudinal velocities in both phases are set to 
unity. The problem is initialized with �1,L = 800 , �2,L = 2 , �1,L = 0.99 on the left of x = 0 
and �1,R = 1 000 , �2,R = 1 , �1,L = 0.01 to its right. As the Abgrall problem contains strong 
shocks in the volume fractions, therefore we use the flattening algorithm (as described 
in “Appendix B”) to detect the shock locations and there by suppressing the higher order 
terms in the simulation. For zone i, if we have 𝜂i > 10−12 then we set higher order terms in 
Eq. (15), i.e., last two curly bracket terms, to zero. Using the available flattener, we run the 
problem to a final time of t = 0.25 using the fifth-order accurate LLF-based AFD-WENO 
scheme. The result for the solid volume fraction is shown in Fig. 4a, and the pressure and 
velocity profiles are shown in Fig. 4b. We see that the pressure and velocity profiles are 
absolutely flat, showing that the scheme is able to capture the solution without generating 
any oscillations in the velocity and pressure profiles. The seventh- and ninth-order AFD-
WENO schemes also show identical results, and, therefore, they are not presented here.

Table 5   The speed comparison, expressed as number of zones updated per second, for the Sod shock prob-
lem on a one-dimensional 1 000 zone mesh that is evolved for 200 time steps

A single core of a modern Xeon Gold 6248R processor running at 3 GHz was used for all the runs. The 
classical FD-WENO scheme (Shu and Osher [44], Jiang and Shu [30]) is denoted “Classical FD-WENO”; 
the WENO scheme from Balsara et al. [5] is denoted “WENO B23a”; the AFD-WENO scheme from Bal-
sara et  al. [6] is denoted “AFD-WENO B23b”; the AFD-WENO scheme from Eq.  (15) of this paper is 
denoted as “AFD-WENO This Paper”. We also show the AFD-WENO algorithm from Eq.  (13) of this 
paper, which we denote as “AFD-WENO 13”. Lastly, we also show the speed of AFD-WENO algorithm 
from Eq. (15) when only central derivatives are used for the higher order derivatives, and this is denoted as 
“AFD-WENO Central Derivatives”

Third-order 
(zones/s)

Fifth-order (zones/s) Seventh-order 
(zones/s)

Ninth-order 
(zones/s)

Classical FD-WENO 80 260 72 672 65 374 60 685
WENO B23a 98 644 95 720 92 090 88 684
AFD-WENO B23b 91 786 84 623 78 093 76 741
AFD-WENO this paper 85 396 77 907 69 871 66 751
AFD-WENO 13 92 483 83 159 77 105 72 850
AFD-WENO central derivatives 89 302 85 474 78 654 70 042
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Next we consider a set of six one-dimensional Riemann problems from Dumbser et al. 
[22]. The same set of problems was also used in Balsara et al. [5]. Table 6 catalogues the 
parameters for these six Riemann problems. The results for these six problems using the 
AFD-WENO scheme are shown in Figs. 5, 6, 7, 8, 9, and 10. All the Baer-Nunziato Rie-
mann problems were run on a 200 zone mesh.

Figures 5a, b show the solid and gas densities for the RP1 test when a fifth-order HLL-
based AFD-WENO scheme was used. Figures 6a, b show the solid and gas densities for 

Fig. 4   Baer-Nunziato: Abgrall problem using the fifth-order accurate LLF-based AFD-WENO scheme with 
200 zones. a shows the solid volume fraction and b shows the velocities and pressures for both the phases. 
The seventh- and ninth-order AFD-WENO schemes also show identical results and therefore they are not 
shown here

Table 6   Left and right initial states, computational domain 
[
x
L
, x

R

]
= [−0.5, 0.5] , and final times (t

end
) of 

the six Riemann problems for Baer-Nunziato model

end
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the RP2 test when a seventh-order HLL-based AFD-WENO scheme was used. Figures 7a, 
b show the solid and gas densities for the RP3 test when a ninth-order HLL-based AFD-
WENO scheme was used. Figures 8a, b show the solid and gas densities for the RP4 test 
when a fifth-order LLF-based AFD-WENO scheme was used. Figures 9a, b show the solid 
and gas densities for the RP5 test when a seventh-order LLF-based AFD-WENO scheme 
was used. For this problem (RP5), we notice that the seventh- and ninth-order schemes 
tend to exaggerate the small oscillations near shocks if a flattener is not used. For this rea-
son, we have invoked the flattener (given in “Appendix B”) to simulate this problem. Fig-
ures 10a, b show the solid and gas densities for the RP6 test when a ninth-order LLF-based 
AFD-WENO scheme was used. The other higher order LLF-based and HLL-based AFD-
WENO schemes also show identical results, and therefore they are not presented here. In 
each of the six Riemann problems a reference solution has been shown in solid lines. The 
reference solution was obtained using the third-order LLF-based AFD-WENO scheme on 

Fig. 5   Baer-Nunziato: Riemann problem-1 using the fifth-order accurate HLL-based the AFD-WENO 
scheme with 200 zones. a shows the density for the solid phase and b shows the density for the gas phase. 
The seventh- and ninth-order AFD-WENO schemes also show identical results and therefore they are not 
shown here

Fig. 6   Baer-Nunziato: Riemann problem-2 using the seventh-order accurate HLL-based AFD-WENO 
scheme with 200 zones. a shows the density for the solid phase and b shows the density for the gas phase. 
The fifth- and ninth-order AFD-WENO schemes also show identical results and therefore they are not 
shown here
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Fig. 7   Baer-Nunziato: Riemann problem-3 using the ninth-order accurate HLL-based AFD-WENO scheme 
with 200 zones. a shows the density for the solid phase and b shows the density for the gas phase. The fifth- 
and seventh-order AFD-WENO schemes also show identical results and therefore they are not shown here

Fig. 8   Baer-Nunziato: Riemann problem-4 using the fifth-order accurate LLF-based AFD-WENO scheme 
with 200 zones. a shows the density for the solid phase and b shows the density for the gas phase. The 
seventh- and ninth-order AFD-WENO schemes also show identical results and therefore they are not shown 
here

Fig. 9   Baer-Nunziato: Riemann problem-5 using the seventh-order accurate LLF-based AFD-WENO 
scheme with 200 zones. a shows the density for the solid phase and b shows the density for the gas phase. 
We have used flattener for this problem. The fifth- and ninth-order AFD-WENO schemes also show identi-
cal results and therefore they are not shown here
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a mesh with 2 000 zones. We can observe that all the results obtained using AFD-WENO 
schemes provide a clearer representation of the interfaces.

6.2 � One‑Dimensional Test Problems for Two‑Layer Shallow Water Equations

For the two-layer shallow water equations described in Sect. 5.2, a set of three one-dimen-
sional Riemann problems has been presented in Dumbser and Balsara [19], Dumbser et al. 
[21] and Castro et al. [15]. The same set of problems was also used in Balsara et al. [5]. 
Table 7 gives the relevant information for these Riemann problems. All the two-layer shal-
low water Riemann problems were run on a 200 zone mesh with � = 0.8 and g = 9.8.

The first Riemann problem from Table 7 illustrates the preservation of stationary jump 
discontinuities in the linearly degenerate intermediate fields, and the results using the 
fifth-order HLLI-based AFD-WENO scheme are shown in the upper panel of Fig. 11. The 
results from the seventh- and ninth-order AFD-WENO schemes are identical, and therefore 
they are not shown here. Figure 11 shows the ability of our high order schemes to preserve 
stationary discontinuities in linearly degenerate intermediate fields. Figure 12a shows the 
results from the second Riemann problem in Table  7 computed using the seventh-order 
accurate HLLI-based AFD-WENO scheme. The fifth- and ninth-order schemes show the 

Fig. 10   Baer-Nunziato: Riemann problem-6 using the ninth-order accurate LLF-based AFD-WENO 
scheme with 200 zones. a shows the density for the solid phase and b shows the density for the gas phase. 
The fifth- and seventh-order AFD-WENO schemes also show identical results and therefore they are not 
shown here

Table 7   Left and right initial states, computational domain 
[
x
L
, x

R

]
 , location of the discontinuity (x

c
) , and 

final times (t
end

) of the three Riemann problems for the two-layer shallow water model
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identical results, and therefore they are not shown here. Figure 12b shows results from the 
third Riemann problem in Table 7 using the ninth-order accurate HLLI-based AFD-WENO 
scheme. The fifth- and seventh-order schemes show the identical results, and therefore, 
they are not shown here. A third-order AFD-WENO scheme was also run on a mesh with 
2 000 zones to generate a reference solution, and the reference solution is shown with solid 
lines in Fig. 12. We see that the results in Fig. 12 closely match the reference solution.

Fig. 11   Two-layer shallow water: Riemann problem-1 using the fifth-order accurate HLLI-based AFD-
WENO scheme with 200 zones. The seventh- and ninth-order AFD-WENO schemes also show identical 
results and therefore they are not shown here. The top row shows the results from the scheme developed 
here. The bottom row of three figures shows the results from the same scheme when central differences 
are used for the higher order derivatives. We see that using just the central differences results in unphysical 
oscillations. Similar oscillations would be found if central differences were used for a seventh- or ninth-
order scheme

Fig. 12   Two-layer shallow water: a shows the results of Riemann problem-2 using the seventh-order accu-
rate HLLI-based AFD-WENO scheme and b shows the results of Riemann problem-3 using the ninth-order 
accurate HLLI-based AFD-WENO scheme with 200 zones. The fifth- and ninth-order schemes for the Rie-
mann problem-2, and the fifth- and seventh-order schemes for the Riemann problem-3 also show identical 
results and therefore they are not shown here. c shows the results of Riemann problem-3 using the ninth-
order scheme when only central differences are used for the higher order derivatives. We clearly see the 
formation of unphysical oscillations when only central differences are used. Similar oscillations would be 
found if central differences were used for a fifth- or seventh-order scheme
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Let us now address the topic of the effectiveness of an AFD-WENO scheme that uses 
only central differences for its higher order derivatives. RP1 was run when only central dif-
ferences were used for the higher order derivatives and the results are shown in the lower 
panel of Fig. 11. Similarly, RP3 was run when only central differences were used for the 
higher order derivatives and the results are shown in Fig.  12c. In each instance, we see 
that there are unphysical oscillations at the discontinuities. The first key purpose of sci-
entific computation is to do new problems which have not been attempted before and for 
which the solution is not known. The second key purpose is that the methods that have 
been developed should be applicable to newer classes of PDEs that may arise in the future 
in science and engineering. This requires verification of the algorithms on large classes of 
known solutions emerging from different types of PDEs. Before an algorithm can give reli-
able results for newer classes of problems, for which the solution is unknown, it is essential 
that it should reproduce all known problems. The results in Figs.  11 and 12 tell us that 
an AFD-WENO scheme that only uses central differences for its higher order derivatives 
would not constitute a properly verified algorithm.

6.3 � One‑Dimensional Test Problems for Multiphase Debris Flow Model of Pitman 
and Le

In this section, we present one-dimensional test problems for the multiphase debris flow 
model of Pitman and Le [37] in the formulation of Pelanti et al. [36]. The equations for 
the multiphase debris flow model are described in Sect. 5.3. The test problems we present 
are drawn from Pelanti et al. [36], Dumbser et al. [21], and Rhebergen et al. [38], and they 
have also been integrated in Dumbser and Balsara [19].

Table 8 describes the three Riemann problems that we present here; they are drawn 
from Dumbser and Balsara [19]. In all three Riemann problems we use � = 0.5 and 
g = 9.8 . In all cases we use a one-dimensional mesh with 200 zones. The computational 
domain and the final stopping time are also shown in Table 8. We use the fifth-order 
accurate HLLI-based AFD-WENO scheme for the first problem from Table 8. The prob-
lem corresponds to the superposition of three stationary jump discontinuities in the lin-
early degenerate fields. The problem was run with the anti-diffusive fluxes turned on for 
all the linearly degenerate waves. Figures 13a–e show that all the jumps in the linearly 
degenerate stationary wave families are exactly preserved on the mesh when the full 
algorithm is used. The seventh- and ninth-order AFD-WENO schemes also show identi-
cal results, and therefore they are not shown here. Figures 13f–j show the same results 
from an AFD-WENO scheme that only used central differences for the higher order 

Table 8   Gives the left and right initial states, computational domain 
[
x
L
, x

R

]
 , location of the discontinuity 

(x
c
) and final times (t

end
) of the three Riemann problems for the multiphase debris flow model

c end
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derivatives. We can clearly see that there are spurious oscillations; indicating that such 
a scheme would not pass all the verification test problems. Figure 14 shows the second 
Riemann problem from Table 8 obtained using the seventh-order accurate HLLI-based 
AFD-WENO scheme. The fifth- and ninth-order AFD-WENO schemes also show iden-
tical results, and therefore, they are not shown here. Figure 15 shows the third Riemann 
problem from Table 8 obtained using the ninth-order accurate HLLI-based AFD-WENO 
scheme. The fifth- and seventh-order AFD-WENO schemes also show identical results, 
and therefore they are not shown here. A third-order AFD-WENO scheme was also run 
on a mesh with 2 000 zones in order to generate a reference solution, and the reference 
solution is shown with solid lines in Figs. 14 and 15. We can observe that the results in 
Figs. 14 and 15 closely resemble the reference solution.

Fig. 13   a–e Debris flow: a–d show the jump in the linearly degenerate fields using the fifth-order accurate 
HLLI-based AFD-WENO scheme with 200 zones. e shows the velocity. The seventh- and ninth-order AFD-
WENO schemes also show identical results and therefore they are not shown here. f–j Debris flow: f–i show 
the jump in the linearly degenerate fields using the fifth-order accurate HLLI-based AFD-WENO scheme 
with 200 zones when only central differences are used for the higher order derivatives. j shows the velocity. 
The seventh- and ninth-order AFD-WENO schemes also show identical results and therefore they are not 
shown  here
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7 � Multidimensional Test Problems

In this section, we present the same two-dimensional test problems as from Balsara 
et  al. [5] for the Baer-Nunziato system, the two-layer shallow water system, and the 
multiphase debris flow model. In Sect.  7.1, we focus on the Baer-Nunziato model of 
compressible multi-phase flows. In Sect. 7.2, we focus on the two-layer shallow water 
equations. In Sect. 7.3, we present results from the multiphase debris flow model of Pit-
man and Le. For all the simulations presented in this section, we used a CFL of 0.4 with 
a third-order SSP-RK scheme.

7.1 � Two‑Dimensional Test Problems for the Baer‑Nunziato Model for Compressible 
Multi‑phase Flows

For the Baer-Nunziato model described in Sect.  5.1, we present two multi-dimensional 
problems. The first problem is the shock-bubble interaction problem from Dumbser et al. 
[23]. This problem was also used in Balsara et al. [5]. The second problem is an analog of 
Euler’s Shock-Vortex interaction problem described in Balsara and Shu [11]. Such a prob-
lem for the Baer-Nunziato model has been presented in Sect. 9.2 of Balsara et al. [5]. The 
detailed setup for both problems is given in Balsara et al. [5]; therefore, we do not describe 
the setup here.

The first problem (shock-bubble interaction problem) consists of a planar, right-going 
shock propagating into an ambient medium that contains a bubble with a radius of 0.25. 

Fig. 14   Debris flow: Riemann problem-2 using the seventh-order accurate HLLI-based AFD-WENO 
scheme with 200 zones. The fifth- and ninth-order AFD-WENO schemes also show identical results and 
therefore they are not shown here

Fig. 15   Debris flow: Riemann problem-3 using the ninth-order accurate HLLI-based AFD-WENO scheme 
with 200 zones. The fifth- and seventh-order AFD-WENO schemes also show identical results and therefore 
they are not shown here
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The problem is set up on a domain that spans [−0.5, 3.0] × [−0.75, 0.75] and is run to a 
final time of 0.025 using the third-, fifth-, and seventh-order accurate HLL-based AFD 
WENO-AO schemes on a mesh with 700 × 300 zones. Figure  16a shows the resulting 
solid density for the third-order accurate WENO-AO-3 scheme, Fig. 16b shows the result-
ing solid density for the fifth-order accurate WENO-AO-(5,3) scheme, and Fig. 16c shows 
the resulting solid density for the seventh-order accurate WENO-AO-(7,5,3) scheme. The 
ninth-order scheme shows similar results to seventh-order results; therefore, it is not shown 
here. We observe that the density profile obtained using the third-order scheme lacks sharp 
resolution. In contrast, the fifth- and seventh-order schemes effectively resolve all flow 
structures, thus demonstrating the significance of higher order schemes.

Next, we consider the Shock-Vortex interaction problem for the Baer-Nunziato model. 
A vortex with the mean velocity of the pre-shocked region propagates diagonally into a 
stationary shock, and as time increases, we see various rearranged structures in the vortex 
profile. The computational domain for this problem spans [−0.5, 1.5] × [−0.5, 1.5] , and the 
problem was run to a final time of 0.84 using the fifth-order accurate HLL-based AFD 
WENO-AO-(5,3) scheme on a mesh with 600 × 600 zones. Figures 17a–c show solid vol-
ume fractions at times t = 0.0, 0.23, 0.84. The intermediate time of 0.23 corresponds to 
a time when the vortex has propagated halfway through the shock. Note that the shock 
does not reveal itself in this variable. In Figs. 17d–f, we show the solid x-velocity at times 
t = 0.0, 0.23, 0.84. The shock is visible in this variable. We see that as the vortex propa-
gates through the shock, the structure of the vortex is rearranged by the shock. However, 
the vortex is not fully destroyed by the shock. As a result, the vortex sheds some of its 
angular momentum after it has passed through the shock in an attempt to rearrange its 
structure. This is revealed by the spiral arms that are shed by the vortex in Figs. 17c, f. 
However, the figure shows us that vortices are very robust flow structures because they 
carry the angular momentum of the fluid. Because the angular momentum is conserved by 
the Baer-Nunziato flow, the vortices will not be fully destroyed as they pass through shocks 
of modest strength. This observation about vortices not being fully destroyed by shocks 
was previously established for the Euler flow in Balsara and Shu [11]. However, Fig. 17 
provides further evidence that this insight also holds true for the Baer-Nunziato flow. The 
seventh- and ninth-order AFD-WENO schemes also show identical results, therefore, they 
are not shown here.

7.2 � Two‑Dimensional Test Problems for the Two‑Layer Shallow Water Equations

For the two-layer shallow water equations described in Sect.  5.2, we present two multi-
dimensional problems. The first problem is the shock-bubble interaction, and the second 
problem is the shock-vortex interaction problem. Both problems are presented in great 
details in Sects. 9.3 and 9.4 of Balsara et al. [5]. As the detailed setup is already given in 
Balsara et al. [5], we do not describe the setup here.

The first problem (shock-“bubble” interaction problem) consists of a planar, right-
going shock propagating into an ambient medium which contains a bubble-like struc-
ture. The problem is set up on a domain that spans [−0.5, 3.0] × [−0.75, 0.75] and is run 
to a final time of 0.3 using the third-, fifth-, and seventh-order HLL-based AFD-WENO-
AO schemes on a mesh with 700 × 300 zones. Figure 18a shows the resulting height of 
the lower fluid for the third-order accurate WENO-AO-3 scheme, Fig.  18b shows the 
resulting height of the lower fluid for the fifth-order accurate WENO-AO-(5,3) scheme, 
and Fig. 18c shows the resulting height of the lower fluid for the seventh-order accurate 
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Fig. 16   a Baer-Nunziato model: shock-bubble interaction problem using the third-order accurate HLL-
based AFD WENO-AO-3 scheme with 700 × 300 zones. The solid density profiles have been shown. b 
Baer-Nunziato model: shock-bubble interaction problem using the fifth-order accurate HLL-based AFD 
WENO-AO-(5,3) scheme with 700 × 300 zones. The solid density profiles have been shown. c Baer-Nun-
ziato model: shock-bubble interaction problem using the seventh order accurate HLL-based AFD WENO-
AO-(7,5,3) scheme with 700 × 300 zones. The solid density profiles have been shown. The ninth-order 
scheme also shows identical results and therefore it is not shown here
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WENO-AO-(7,5,3) scheme. The shock propagates into the unshocked medium without 
perturbation till it encounters the depression. When it encounters the “bubble” it sets up 
a left-going bow shock and a wake around the bubble (shown in green color in Fig. 18). 
A very interesting flow structure develops behind the “bubble” as can be seen in Fig. 18. 
The obtained results match with the reported results in Balsara et al. [5]. In Fig. 18c, we 
observe that the seventh-order accurate schemes capture the shock front (shown in red) 
more accurately than the fifth-order accurate results (Fig. 18b). The ninth-order scheme 
shows the identical result to seventh-order results; therefore, it is not shown here. In 
conclusion, the higher order simulations show flow structures that are very crisp, high-
lighting the value of higher order schemes.

Next, we consider the Shock-Vortex interaction problem for the Two-Layer 
Shallow water equations. The computational domain for this problem spans 
[−0.5, 1.5] × [−0.5, 1.5] and the problem was run to a final time of 0.24 using the 
seventh-order accurate HLL-based AFD WENO-AO-(7,3) scheme on a mesh with 
600 × 600 zones. Figures 19a–c show the height of the upper fluid at times t = 0.0, 0.06, 
0.24. The intermediate time of 0.06 corresponds to a time when the vortex has propa-
gated halfway through the shock and a little bend in the shock front can be observed 
at this time. Figures 19d–f show the x-velocity of the upper fluid at times t = 0.0, 0.06, 
0.24. Similar to Figs.  19a–c for the height of the upper fluid, a stationary shock is 
clearly visible in Figs. 19d–f for the x-velocity of the upper fluid. We observe that as the 
vortex propagates through the standing shock, the vortex is not fully destroyed by the 
shock flow. Instead, the vortex sheds some of its angular momentum after it has passed 
through the shock. In doing so, the vortex has rearranged its form. Analogous to the 
Baer-Nunziato flow equations, the two-layer shallow water equations preserve the angu-
lar momentum. As a result, the core of the vortex is not destroyed as it passes through 
the mild shock. The obtained results are consistent with the results given in Balsara 
et al. [5]. The fifth- and ninth-order AFD-WENO schemes also show identical results, 
therefore, they are not shown here.

Fig. 17   Baer-Nunziato: shock-vortex interaction using the fifth-order accurate HLL-based AFD WENO-
AO-(5,3) scheme with 600 × 600 zones at time levels t = 0.0, 0.23, and 0.84. a–c show the solid volume 
fraction at times t = 0.0, 0.23, 0.84. d–f show the solid x-velocity at times t = 0.0, 0.23, 0.84. For the solid 
volume fraction, 30 contours were fit between a range of 0.33 and 0.530. For the solid x-velocity, 30 con-
tours were fit between a range of − 0.5 and 1.95
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Fig. 18   a Two-layer shallow water: shock-bubble interaction problem using the third-order accurate HLL-
based AFD WENO-AO-3 scheme with 700 × 300 zones. The solid density profiles have been shown. b 
Two-layer shallow water: shock-bubble interaction problem using the fifth-order accurate HLL-based 
AFD WENO-AO-(5,3) scheme with 700 × 300 zones. The solid density profiles have been shown. c Two-
layer shallow water: shock-bubble interaction problem using the seventh-order accurate HLL-based AFD 
WENO-AO-(7,5,3) scheme with 700 × 300 zones. The solid density profiles have been shown. The ninth-
order scheme also shows identical results and, therefore, it is not shown here
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7.3 � Two‑Dimensional Test Problems for the Multiphase Debris Flow

In this section, we present two multi-dimensional problems for the multiphase debris flow. 
Both problems are described in Balsara et al. [5]. As the detailed setup is already given in 
Balsara et al. [5], we do not repeat the details here.

The first problem is the shock-“bubble” interaction problem. The problem utilizes the 
Vortex used in Sect. 5.3. Here we consider a domain that spans [−0.5, 3.0] × [−1.25, 1.25] . 
The problem was run to a final time of 0.3 using the third-, fifth-, and seventh-order HLL-
based AFD-WENO-AO schemes on a mesh with 700 × 500 zones. Figure 20a shows the 
final image of the height of the fluid phase for the third-order accurate WENO-AO-3 
scheme, Fig. 20b shows the resulting height of the fluid phase for the fifth-order accurate 
WENO-AO-(5,3) scheme, and Fig. 20c shows the resulting height of the fluid phase for the 
seventh-order accurate WENO-AO-(7,5,3) scheme. When the shock encounters the “bub-
ble”, it creates a left-going bow shock. A ring-shaped structure originating from the area 
of the depression can be observed in Fig.  20. The ninth-order scheme shows the identi-
cal result to seventh-order results; therefore, it is not shown here. Once again, we observe 
that the higher order simulations (fifth and seventh orders) exhibit flow structures that are 
highly sharp. This emphasizes the significance and advantages of employing higher order 
schemes.

Next, we consider the shock-vortex interaction problem for the multiphase debris flow 
model. The computational domain for this problem spans [−0.5, 1.5] × [−0.5, 1.5] . The 
problem was run to a final time of 0.24 using the ninth-order accurate HLL-based AFD 
WENO-AO-(9,3) scheme on a mesh with 600 × 600 zones. Figures 21a–c show the height 
of the upper fluid at times t = 0.0, 0.06, 0.24. The intermediate simulation time of 0.06 
corresponds to a time when the vortex has propagated halfway through the shock. At this 
time, a slight reduction in the strength of the solid height can be observed in the vortex. 
Figures  21d–f show the solid x-velocity at times t = 0.0, 0.06, 0.24. The standing shock 
is visible in all of the panels of Fig. 21. The vortex sheds some of its angular momentum 

Fig. 19   Two-layer shallow water: shock-vortex interaction using the seventh-order accurate HLL-based 
AFD WENO-AO-(7,3) scheme with 600 × 600 zones at time levels t = 0.0, 0.06, 0.24. a–c Height of the 
upper fluid at times t = 0.0, 0.06, 0.24. d–f show the x-velocity of the upper fluid at times t = 0.0, 0.06, 0.24. 
For the height, 40 contours were fit between a range of 1.0 and 3.4. For the velocity, 40 contours were fit 
between a range of 1.8 and 5.6
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Fig. 20   a Debris flow: shock-
bubble interaction problem 
using the third-order accurate 
HLL-based AFD WENO-AO-3 
scheme with 700 × 500 zones. 
The solid density profiles have 
been shown. b Debris flow: 
shock-bubble interaction problem 
using the fifth-order accurate 
HLL-based AFD WENO-
AO-(5,3) scheme with 700 × 500 
zones. The solid density profiles 
have been shown. c Debris 
flow: shock-bubble interaction 
problem using the seventh-
order accurate HLL-based AFD 
WENO-AO-(7,5,3) scheme 
with 700 × 500 zones. The solid 
density profiles have been shown. 
The ninth-order accurate scheme 
also shows identical results and 
therefore it is not shown here
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after it has passed through the mild shock. In doing so, the vortex has rearranged its form. 
The obtained results are consistent with the results given in Balsara et al. [5]. The fifth- 
and seventh-order AFD-WENO schemes also show identical results, therefore, they are not 
shown here.

8 � Test Problems with Stiff Source Terms

AFD-WENO schemes demonstrate a significant advantage when dealing with stiff source 
terms. Unlike finite volume methods, these schemes operate pointwise, which includes the 
zone centers where the primal variables are located. Consequently, the enforcement of source 
terms aligns with the collocation of variables, leading to enhanced accuracy and low compu-
tation costs. We present two test problems that are based on the Baer-Nunziato compressible 
multi-phase flow with stiff source terms, as given in Dumbser and Boscheri [20]. The same 
set of problems was also used in Balsara et al. [5]. For both the problems, we use a third-order 
accurate IMEX-SSP3(4,3,3) scheme from Pareschi and Russo [35] for the time integration.

The equations for the Baer-Nunziato compressible multi-phase flow with stiff source terms 
are given by

Fig. 21   Debris flow: shock-vortex interaction using the ninth-order accurate HLL-based AFD WENO-
AO-(9,3) scheme with 600 × 600 zones at time levels t = 0.0, 0.06, and 0.24. a–c show the solid height at 
times t = 0.0, 0.06, 0.24. d–f show the solid x-velocity at times t = 0.0, 0.06, 0.24. For the height, 30 con-
tours were fit between a range of 1.0 and 3.0. For the velocity, 30 contours were fit between a range of 1.5 
and 5.6

Table 9   Left states, right states, and final times of the one-dimensional Riemann problem for the Baer-Nun-
ziato compressible multi-phase flow with stiff source terms
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The set of equations mentioned above contains stiff terms on the right-hand side, and the 
stiffness is controlled by two parameters, denoted as � and �.

The first test problem is a one-dimensional problem that spans the domain [−0.5, 0.5] . The 
left and right initial conditions were initialized around x = 0 and are specified in Table 9. The 
problem uses interphase drag � = 103 and pressure relaxation parameter � = 102 . These val-
ues turn this problem into a test problem with a moderately stiff source term. The simulation 
was run till time t = 0.2 on a 400 zone mesh with a CFL of 0.8 using the fifth-order accu-
rate HLL-based AFD WENO-AO-(5,3) scheme. Figures 22a–c show the solid density, solid 
x-velocity, and solid pressure profiles, respectively. We see that the results are comparable to 
those presented in Dumbser and Boscheri [20]. The seventh- and ninth-order AFD-WENO 
schemes also show identical results, therefore, they are not shown here. The reference solution 
is also shown as the solid line in Fig. 22 and was obtained using a third-order scheme with 4 
000 zones.

The second test problem is a two-dimensional Riemann problem. The computational 
domain spans [−0.5, 0.5] × [−0.5, 0.5] . The initial states are described in Table 10. The prob-
lem was run with a CFL of 0.4 to a stopping time of 0.15 on a mesh of 400 × 400 zones. Here 
we have used � = 105 and � = 102 which corresponds to rather severely stiff source terms. 
We run the simulation using the seventh-order accurate HLL-based AFD WENO-AO-(7,3) 
scheme. Figure  23a shows the solid density, Fig.  23b shows the gas density, and Fig.  23c 
shows the solid volume fraction. We observe that the obtained results are consistent with the 
solution presented in Dumbser and Boscheri [20]. The fifth- and ninth-order AFD-WENO 
schemes also show identical results, therefore, they are not shown here.
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Fig. 22   Baer-Nunziato with stiff source: results for the one-dimensional Riemann Problem using the fifth-
order accurate HLL-based AFD WENO-AO-(5,3) scheme with 400 zones. a–c show the solid density, solid 
x-velocity, and solid pressure
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9 � Conclusions

Classical FD-WENO schemes have been available for conservation laws since the early 
papers by Shu and Osher [43, 44], Jiang and Shu [30], and Balsara and Shu [11]. Until very 
recently, all variants of the finite difference WENO scheme have indeed been restricted 
to treating only hyperbolic systems that are in the conservation form. The recent emer-
gence of several classes of hyperbolic systems with non-conservative products exposes a 
dire need for a new class of finite difference WENO schemes that can handle such sys-
tems. This has called for a reassessment of the entire design philosophy of finite differ-
ence WENO schemes. The first step in such a redesign took place very recently in Balsara 
et al. [5] where a very efficient set of finite difference WENO schemes was designed that 
could integrate hyperbolic systems with non-conservative products. The schemes in Bal-
sara et al. [5] were demonstrated to work well for up to ninth order of accuracy. They can 
truly be thought of as being the analogues of the schemes in Shu and Osher [43, 44] when 
the hyperbolic system has non-conservative products. The schemes in Balsara et  al. [5] 
were indeed significantly faster than the classical FD-WENO schemes. However, they were 
written in a fluctuation form which does not simply reduce to a flux conservative form 
when the system is indeed conservative. The present AFD-WENO schemes are very inno-
vative, and to the best of our knowledge have never been presented in the literature. They 
are designed to take the field further so that finite difference WENO methods can handle 
hyperbolic systems with non-conservative products while at the same time respecting the 
Lax-Wendroff theorem when it is applicable.

The present schemes derive their start from alternative finite difference WENO (AFD-
WENO) schemes for conservation laws. A well-developed AFD-WENO scheme offers 
many extremely desirable advantages over a classical FD-WENO scheme. First, it can 
work with any type of Riemann solver and different fields of study may have their own spe-
cial Riemann solver that they find beneficial. Such flexibility is not available in FD-WENO 
formulations, whereas it is indeed available in AFD-WENO formulations. This flexibil-
ity of invoking the Riemann solver at pointwise locations can also be exploited to ensure 
that the final scheme respects the preservation of free stream conditions on curvilinear 
meshes. On such curvilinear meshes, the flux reconstruction of classical FD-WENO meth-
ods becomes a liability; this enables AFD-WENO methods to come to the fore because 
they are not restricted by this liability. The stumbling block in the development of AFD-
WENO schemes was that general-purpose AFD-WENO schemes that can work with mini-
mal or no changes for large classes of hyperbolic conservation laws were not in hand. This 

Table 10   The initial states of the two-dimensional Riemann problem for the Baer-Nunziato compressible 
multi-phase flow with stiff source terms
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barrier was removed in Balsara et  al. [6] where a general-purpose AFD-WENO scheme 
was designed for up to ninth order and shown to work well for large classes of hyperbolic 
conservation laws. The previously mentioned paper set the stage for the work reported in 
this paper.

If an AFD-WENO scheme could be general-purpose, available at several high orders 
and work well for large classes of conservation laws, then one is inclined to ask the fol-
lowing question: why is a general-purpose, high order AFD-WENO scheme not available 
for large classes of hyperbolic systems that have non-conservative products? This ques-
tion is the very important motivating question that animates this entire paper. In Sect. 2, 
we show that there is a way to obtain an answer to this very important question. We start 
with a general flux which we write as having a conservative part and a part which will only 
be thought of as leading to a non-conservative product. This allows us to write the AFD-
WENO update equation in a fluctuation form. Once this door is opened, we carefully track 
which steps retain flux conservation and which steps in the derivation force us to relinquish 
flux conservation. The end result is shown in Eq. (15) which presents a general-purpose, 
high order AFD-WENO scheme that is well-suited for large classes of hyperbolic sys-
tems that have non-conservative products. The scheme we derive in Eq. (15) is one which 
retains a flux conservative update for those components of the PDE that are indeed in the 
conservation form and judiciously relinquishes it for those components of the PDE that are 
dominated by non-conservative products. In retaining the conservation form as much as 
possible, the dictates of the Lax-Wendroff theorem are also preserved as much as possible. 
Two variants are designed, the first one being documented in Eq. (15) and the second one 
in Eq. (13). Equation (15) is based on making three WENO interpolation steps; where the 
first WENO interpolation is done in characteristic space and the next two WENO interpo-
lations are lower cost and can be done component by component. Equation (13) is based 
on making two WENO interpolation steps; where the first WENO interpolation is done in 
characteristic space and the next WENO interpolation is lower cost and can be done com-
ponent by component.

With the formulation in hand, Sect. 3 addresses some issues associated with the non-
linear hybridization and stabilization of the higher order derivatives. Section  4 provides 
point by point details on how the method is implemented.

Section  5 shows accuracy tests. It shows that for three very broad classes of hyper-
bolic systems with non-conservative products—i.e., the Baer-Nunziato system, the two-
layer shallow water system, and the multiphase debris flow model of Pitman and Le—the 

Fig. 23   Baer-Nunziato with stiff source: results for the two-dimensional Riemann problem using the sev-
enth-order accurate HLL-based AFD WENO-AO-(7,3) scheme with 400 × 400 zones. a shows the solid 
density, b shows the gas density, and c shows the solid volume fraction. Thirty equidistant contour lines are 
shown over the color plots
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method achieves its design accuracies. Equally importantly, in Sect. 5.4 we show a speed 
comparison of the classical FD-WENO scheme, the WENO scheme from Balsara et al. [5], 
the AFD-WENO scheme from Balsara et al. [6] which only applies to conservation laws, 
and the two AFD-WENO schemes from this paper which can be applied to any hyperbolic 
system with fluxes as well as non-conservative products. The speeds of the schemes con-
form to our expectations and all schemes are shown to be roughly competitive in perfor-
mance. The differences in speeds are explained thoroughly in Sect. 5.4. In that section we 
also provide a discussion on the implementation of finite difference WENO schemes on 
modern-day CPUs with large caches. We show a very desirable result that higher order var-
iants of finite difference WENO schemes do not cost that much more than their lower order 
variants. The scientific explanation for that stems from our realization that the larger num-
ber of floating point operations associated with larger stencils are almost free of charge if 
the finite difference WENO code is designed to be cache friendly. This should have great, 
and very beneficial, implications for the role of finite difference WENO schemes in Peta- 
and Exascale computing! Simply put: our well-implemented AFD-WENO schemes come 
pretty close to the promised land of high performance computing where float point opera-
tions are almost free and the dominant costs are the other fixed costs in the implementation!

Section  6 shows several stringent one-dimensional test problems drawn from our three 
PDE systems of interest. Section 7 shows multidimensional test problems, again drawn from 
our three PDE systems of interest. Section 8 shows test problems with stiff source terms, 
demonstrating the very favorable handling and features of AFD-WENO in the stiff limit.

Appendix A

The following variant of Eq. (15) may also be used:

(A1)
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It slightly reduces the cost of the interpolation that is needed in the last curly bracket. 
But it requires the evaluation of the matrix multiplication 

(
�𝜕x�̂

)
i
 at each zone center “i” 

to interpolate its derivatives to the zone boundaries.

Appendix B Phase‑Volume‑Based Flattener Function 
for the Baer‑Nunziato Model

Flattening algorithms are used in simulations to detect the location of the strong shocks within 
the computational domain. Their purpose is to enhance the accuracy of the simulation by 
reducing numerical artifacts near discontinuities. For the Euler flow, a flattening function that 
is based on the divergence of the velocity field and characteristic speed has been presented in 
Colella and Woodward [17], and Balsara [4] and it can also be used here. However, we have 
found that a sudden change in the volume fraction can also be a source of spurious oscillations 
for the Baer-Nunziato system. Therefore, we propose a one-dimensional phase-volume based 
flattener function for the Baer-Nunziato model. The flattener algorithm trivially extends to the 
two- and three-dimensional cases. The method begins by computing the sum and difference 
of extremal values (denoted by Δ+

i
� andΔ−

i
�, respectively ) of the solid volume fractions in 

cell i over the neighbouring cells i − 1, i, and i + 1. Mathematically, we define the quantities 
Δ+

i
� andΔ−

i
� as follows:

where �i
1
 is the solid volume fraction within the cell i. In each zone i, the flattener function 

(denoted by �i ) is defined as

where � is a positive constant number which works best for us when we choose � = 0.1 . 
The expression for the quantity ai is given by

The flattener function does not modify the reconstruction/interpolation when the flow 
is smooth or consists of rarefactions, and in that case, �i = 0. However, the flattener func-
tion gradually increases from �i = 0 to �i = 1 when strong shocks are present in the volume 
fraction.
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